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ABSTRACT

Holographic duality provides a microscopic interpretation of asymptotically Anti-de
Sitter supergravity solutions. The dual states of the field theory give rise to expect-
ation values of light operators. These expectation values correspond to coefficients
in the asymptotic expansion of gauge-invariant combinations of supergravity fields.
We consider the duality between type IIB theory on AdSsxS® and 4D N = 4 super
Yang-Mills theory, focusing on the half-BPS sector. We clarify the structure of
the precision holographic dictionary, making explicit the distinction between single-
trace operators and single-particle operators, where the latter contain admixtures
of multi-traces. We rewrite the holographic dictionary for half-BPS operators of
dimension four in the single-particle basis. We then apply this dictionary to per-
form precision holographic studies of two different smooth supergravity solutions
in the class derived by Lin, Lunin and Maldacena, that have been recently used
to compute all-light four-point correlators by making extrapolations of heavy-light
correlators.



1 Introduction

Holographic duality is the remarkable conjecture that a gravitational theory in d+ 1 dimensions
(possibly times other compact directions) may be completely equivalent to a non-gravitational
theory that lives on the d-dimensional boundary of the original space-time [1]. Most typically,
the gravitational theory lives in (d 4+ 1)-dimensional Anti-de Sitter space (AdSgi1), and the
non-gravitational theory is a conformal field theory (CFTy).

On the gravitational side of such a duality, there can be large families of asymptotically
Anti-de Sitter supergravity solutions that are horizonless and smooth up to possible physical
sources. Holography relates these solutions to generically heavy pure states of the dual field
theory. An interesting class of such solutions are those that are backreacted coherent bound
states of many supergravitons, see for example [2-9]. For many of these families of supergravity

solutions, there is a detailed proposal for the dual CFT states.

Several of these proposed identifications between supergravity solutions and CFT states
have passed non-trivial tests using precision holographic studies of protected heavy-light three-
point correlation functions [10-13], using the formalism developed in [14-16]. To perform such
studies, one constructs gauge-invariant combinations of supergravity fields, and studies their
asymptotic expansion at large radial distance in AdS. Coefficients in this expansion are dual to

expectation values of light operators in the corresponding heavy CFT state.

Smooth supergravity solutions have also been used to compute heavy-light and all-light
correlators, including very recently [17-19] in the duality between type IIB theory on AdSsx
S®> and 4D N = 4 SU(N) super Yang-Mills (SYM) theory [1]. These works used half-BPS
asymptotically AdS5xS® smooth horizonless supergravity solutions in the class derived by Lin,
Lunin and Maldacena (LLM) [3]. The correlators were computed in the supergravity regime in

the bulk, i.e. at large IV and large 't Hooft coupling.
These recent AdS;/CFT, developments build on similar work in AdS3/CFTy duality on

heavy-light four-point correlators [20-23] and computing all-light correlators by making ex-
trapolations thereof [24-27]; see also the related works [28-30]. Here, ‘heavy’ denotes CFT
operators whose conformal dimensions scale linearly with the central charge ¢ in the large ¢
limit, and ‘light’ denotes CFT operators whose conformal dimensions are independent of ¢ in

the large c limit.

The recent computations of four-point correlators in [17-19] used two different LLM geo-
metries. Each of these solutions is defined by a profile function that describes the boundary
of a single droplet in the free fermion description of the LLM solutions. The work of [17] used
a profile function that involves a single mode, that had been studied in [16]. By contrast, the
work of [18,19] used a solution [31] that lies in the consistent truncation of [32], that was first
constructed and studied in [33,34], and corresponds to an elliptical profile function [35]; see

also [36]. For a selection of other recent work involving LLM solutions, see [37-43].

The primary motivations for this work are to make precise the difference between the two
LLM backgrounds studied in [17-19], and to investigate the holographic description of these
solutions with AdS5;/CFT, precision holography [14,16].

In this paper we study these two solutions perturbatively in a small parameter a. The back-



grounds agree to order «, but differ at order o®. At first order in «, the linearised supergravity
fields are among the fluctuations around global AdSsxS® classified in [44], as shown in [45].
These fields are dual to the state |Os) corresponding to the chiral primary operator Oy ~ Tr Z2,
where Z is a holomorphic combination of two of the six hermitian adjoint scalars of the dual

field theory, Z = %(@1 +i®?).

Beyond the linearised order, in general LLM solutions are dual to multi-traces built from
powers of the field Z. These operators have scaling dimension equal to a particular U(1) R-
charge in the SO(6) R-symmetry group, A = J. In [31] it was proposed that the LLM solution
in the consistent truncation is dual to a coherent state composed only of powers of O. This
proposal was refined very recently in [19]. We will find supporting evidence for this proposal.
We shall furthermore demonstrate that, by contrast, the solution defined by the single-mode
profile is dual to a state that contains the dimension-four chiral primary Oy at order a2, and
fix the coefficient of O4 in the state at this order.

To establish these results, we revisit the AdS;/CFTy precision holographic dictionary, and
first clarify that it was originally derived in the single-trace basis of the dual CFT [14,16]. We
then rewrite the dictionary in the single-particle basis, which will be much more convenient
for our analysis. Single-particle CFT operators are defined to be half-BPS operators that
are orthogonal to all multi-trace operators [46,47]. They are proposed to be dual to single-
particle supergravity states on global AdS5xS°. This generalizes the earlier work of [48-50].
In the single-particle basis, the holographic dictionary takes a simpler form in terms of the 5D
supergravity fields that arise from Kaluza-Klein reduction. The analogous single-particle basis
has also been recently used in AdS3/CFT3 holography [12].

We then use the precision holographic dictionary in the single-particle basis to study the two
LLM geometries in question. To do so, on the supergravity side, we convert each background
into de Donder-Lorentz gauge, building on the results of [17]. On the CFT side, we make an
Ansatz for the dual CFT states up to order o?.

We compute expectation values of the single-particle chiral primary operators of dimension
two and four, and of certain SO(6) R-symmetry descendants thereof. The first few expectation
values we compute are used to fix the coefficients in the CFT states, thus distinguishing the dual
CF'T states to the respective LLM backgrounds. The remaining expectation values, in particular
those of the R-symmetry descendants, represent non-trivial cross-checks of the dual CFT states,
and also of the holographic dictionary in the single-particle basis. These cross-checks include

an operator whose expectation value arises at order a3.

The structure of this paper is as follows. In Section 2 we present the holographic dictionary
in the single-particle basis, as well as the explicit form of the light operators whose expectation
values we compute, including a set of R-symmetry descendants of the single-particle chiral
primaries. In Section 3 we describe the two LLM solutions we consider, and make explicit
the difference between the solutions in supergravity. In Section 4 we analyze the full set of
holographic expectation values up to order a2, and fix the dual CFT states to the two LLM
solutions. In Section 5 we perform a non-trivial cross-check of the heavy state dual to the
solution defined by the single-mode profile by computing an expectation value at order o. In

Section 6 we discuss our results.



2 Precision AdS5;/CFT4 holography in the single-particle basis

In this section we start by presenting the light operators whose expectation values we compute
in this paper. We then discuss the relation between extremal three-point correlators and single-
particle operators. We review the relevant parts of the precision holographic dictionary in
AdSs [14,16], and clarify that the dictionary was derived in the trace basis. We then rewrite

the dictionary in the single-particle basis.

2.1 Single-particle chiral primaries

Single-particle operators are defined to be orthogonal to all multi-trace operators, i.e. to have
vanishing two-point functions with all such operators [46,47]. We work with gauge group SU(NV)

and with complex combinations of the six hermitian scalar fields ®* as follows,

1 1 ) > _
ﬁ(‘b(%)ﬂ‘b(w)): Z(ﬂrf)—\/i

and similarly for X, X,Y,Y in terms of ®*, where a runs over 3,...,6.

Z(z) = (' (2) — i®*(z)) , (2.1)

We absorb the appropriate factors of the Yang-Mills coupling and of 27 into the definition
of the operators, as is often done (see e.g. [51,52,16]), such that the two-point correlators take
the form

5", — Lov, 6,

<qu<$)er<y)> - |.CC o y|2 . (22)

We shall work at leading order in large N. The 1/N term in the propagator is subleading (see
e.g. [53]) and shall play no role in the present work. From now onwards, we shall suppress the

spacetime dependence in most equations.

We first introduce the following notation for non-unit-normalized single-trace chiral primary
operators,
Ty = Tr(Z%). (2.3)

As usual, it is convenient to define single-trace operators that are unit-normalized at leading
order in large N, with A = J =k, see e.g. [54],
Tr(Z*
7, = 2
VEN?2
The unit-normalized single-particle chiral primaries take the following form at leading order
in large N [47],

(2.4)

2
Oy = Ty, Oy = Ty — N(OQ)Q’ (2.5)

where we have kept only the leading term in the coefficient of the double-trace (O2)2. We
emphasize that this term can contribute at leading order in large N in extremal and heavy-

light correlators.



2.2 Single-particle R-symmetry descendants

In this section we work out the explicit form of the single-particle R-symmetry descendants
whose expectation values we shall compute in this paper. By “R-symmetry descendants” we
mean operators obtained by acting on chiral primaries with (bosonic) lowering operators of the
SO(6) R-symmetry.

First, we recall that the states dual to LLM solutions involve multi-traces composed of
powers of the field Z. Such states break the SO(6) R-symmetry to SO(4). We will compute
expectation values of some SO(4)-invariant R-symmetry descendants of chiral primaries. We
thus define T}, ,,, to be the SO(4) invariant R-symmetry descendants of the single-trace operators
T}, that have charge m under the U(1) selected by Z, and that are unit-normalized. Likewise,
we define Oy, to be the analogous descendants of the single-particle chiral primaries O. We

work to leading order in large N throughout.

We start with the single-trace operators. The explicit forms of the descendants of single-
trace CPOs can be obtained directly from the relevant spherical harmonic in terms of the six
scalars @ [54] (see below around Eq. (2.13)). Alternatively, one can act on the chiral primary
with the following SO(4)-invariant lowering operator [31], which lowers the U(1) R-charge by 2

units:

J-

6
g, J70 = (J'—iJ*),  a=3,...,6, (2.6)
a=3

where

g ) -0
U= 4 ) )] =
J 1 Tr <<I> 557 o 8<I>i>’ i,j=1,...,6. (2.7)

For instance, the neutral descendant O2 o = T3¢ is

On — 1 1

At dimension four, the single-trace charge-two descendant Ty o ~ J~ T}, takes the form

Tr(QZZ - %@‘I(I)“) - Tr<2ZZ — (XX + YY)) . (2.8)

1 _ 1
Tyo = Tr(2Z3Z _ 72099 — fZ<I>“Z®“> , 2.9
125 e 5 (2.9)

and the single-trace dimension-four neutral descendant T} ¢ is

1 _ _ o _
Tio = ——Tr|22222 4+ (22)? — ( 27 + 77)0°0" + Z@aZcba) 2.10
w0 = e 2228 + (22 - (22 + 22) 210)

1 1
+< (cpaqﬂq)bq)b i 2<I>a<1>b<1>a<1>b)} .

We next discuss the single-particle descendants O42 and Os9. To obtain their explicit
expressions, one can either act with the above SO(4)-invariant lowering operator on Oy, or one
can add all possible SO(4)-invariant combinations of double-traces to T4 2 and Ty o and fix their

coefficients by imposing orthogonality with all double-traces. We obtain

4/3 2
Y2 0,050 +
VION 27T /10NS

Osp = Tyo — TrZ®* TrZ (2.11)



and

3 2
Osp = Tyo— NS (020)% — fTOTOQ + f ———Tr 23" Tr 70"
1
- [ Tro*®b Trd2d’ — = (Trd*d® 2) . 2.12
v L (o) (2.12)

In the above expressions, only the terms that are composed solely of Z, Z contribute to the
expectation values of these operators in LLM geometries. We have included these terms for
completeness, and for possible use in future work. However, for the applications in Sections 4

and 5, all terms that involve any fields other than Z, Z can be ignored.

2.3 Extremal three-point functions and single-particle operators

More generally, let us consider the following single-trace operators,

T, =l

Q1 tg

Tr (™ - k), (2.13)

where C7 is a totally symmetric traceless rank-k tensor of SO(6). These operators live in
half-BPS multiplets [54]. For details and conventions, see Appendix A. For our holographic
applications, we focus on operators up to dimension four, in the SU(N) theory. Thus the
mixing in the single-particle operators involves at most double-trace operators, and no triple or

higher traces.

Let us review the relation between extremal three-point functions and the mixing coefficients
of double-traces in single-particle operators [48-50]. Consider three unit-normalized single-trace
operators 17, T, and T7,, such that k; = ko + k3. The protected extremal three-point function
takes the form [54]

(k2 + k3)koks (CT1C2C13)

1
(Tr, ()T, (x2)Tr (23)) = N ool —mpPR (2.14)

where (CT1C2073) is the unique SO(6) invariant formed by contracting all indices in the tensors
C'a  Eq. (A.6), and is related to the triple intersection of spherical harmonics az, 1,7,, Eq. (A.5),

by
1 k1lkolks!

(%2 + 2)!2%(2—2) aqlaglas!

annr = (chololsy (2.15)

where ¥ = k1 + ko + k3, a1 = %(k:z + ks — k1), and similarly for ag, a3. At extremality, i.e. for
k1 = ko + k3, this becomes

1
QriIsI3 = (k1+1)(k1+2) 2k1_1

(chcloby = 2k )(Chielob)y | (2.16)

Thus we have

(chololsy = “Zf(l;f) . for ky=ky+ks. (2.17)

Note that there are no contractions between 717, and 77, inside the extremal correlator.

Therefore we can take the coincident limit x5 — 22 and obtain the two-point function

)> _ l o (k2+k3)k2k3
NZ(kQ + ]{73) ’ml — [1;2‘2(/92-‘1-/63) ’

(Tr, (1) (T1,T1,) (2 (2.18)



From now on, we will suppress the coordinate dependence in most correlators.

We introduce the notation C'12:%3 for the mixing coefficients by writing the single-particle
operator in the form
Op =T, - > ChvRBT, T, (2.19)
Io+1I3=I1
where the notation Is+13 = I denotes that the sum is over all I, I3 compatible with ko+ks = k1
and charge conservation. Note that a particular double-trace combination enters this sum either

once if it is a square of a single trace, or twice if it is a product of two distinct operators.

As discussed above, the mixing coefficients can be determined by requiring the vanishing of

the two-point functions with all double-traces. One finds [48]

(kz + kg)kgkg

chl2ds
2N

(chol2olsy (2.20)

For our applications in the present work, we now specialize to single-particle operators which
are SO(4) singlets, and also on those double-traces in such operators that are themselves SO(4)
singlets, since only such terms will contribute to the expectation values in the backgrounds we
study. Then the multi-index I reduces to I = (k,m). We have

2 G(4m)(2n)(2p)
c4m),(2m),(2,p) — =2 ZEm)(En)(p) ’ 291
N z(4) (221)
which agrees with the appropriate mixing coefficients in the single-particle operators presented

in the previous subsection. Thus (2.19) becomes

Ot = Ty — 2 2Am(C0)(2p)

, mTNT @) 020,02y, (2.22)

where we sum over all n, p compatible with R-charge conservation.

It is convenient to express the precision holographic dictionary in terms of expectation values
of operators with a different normalisation to (2.4), (2.5), which arises from the supergravity

computation of two and three-point functions [14,16], that is,
Tr = NiTy, Or = NiyOy, (2.23)

where
N N

S Ni=5k=2Vk-1 for k#2. (2.24)

Ny =

T
We note that the same normalisation coefficient N}, appears for both 7, and Oj. Also, the
normalization coefficients N}, are the same for the SO(6) descendants as for the corresponding
CPOs.

Finally, we express (2.22) in explicit form for 7y j:

Ni 2 agam)(2n)(2p)

ﬁ,m = O4,m + /\TQQN 2(4) 027n027p, (2.25)

where Ny/NZ = 21/37%/N.



2.4 Kaluza-Klein reduction to five dimensions

We now review part of the Kaluza-Klein reduction of type IIB supergravity on S° and its
application to holography [44,54,14]. We use z to denote AdSs coordinates, y to denote S°
coordinates, and from now on we use a,b to denote indices on S°. We focus on the trace of the
10D metric on S°, and the five-form with all legs on S°. The fluctuations of these fields have

KK expansions of the form

W (,y) = > mi(@)Y (),

(2.26)
fabcde (x, y) = Z Albl(m)eabcdeyl(y) y

where Y/ denotes scalar spherical harmonics on S°, see Appendix A. We focus on solutions that

preserve SO(4) isometry in S°, so as above, I reduces to I = (k,m).

From the fields 7wy and b7, we form the combination s;, which is part of the set of fields that
diagonalize the equations of motion, and which is given by
= — — 10(k +4)by) . 2.27
One then defines fields St which satisfy five-dimensional field equations that can be integ-

rated into a five-dimensional action without derivative couplings. The relation between the
fields St and sy takes the form [54, 14]

Sr=si+ Y (J7¥sysx + L5 Dys DPsi) + O([s]?), (2.28)

J,K
where D,, denotes the covariant derivative on empty AdSs. For the computation of expecta-
tion values of operators of dimension two, the linear term is sufficient. For the computation
of expectation values of operators of dimension four, the linear and quadratic terms are suffi-

cient [14]. We therefore write the relevant terms in the relations between the fields S; and the
fields sy for k = 2,3,4 as [16]

8k(k — 1)(k + 2)2(k)

Sr = w(sy)sr, w(sI):\/ hr ., k=2,3; (2.29)
2V3 A (4m)(2n) (2p)
Sam) = 7 <5(4’m) T 27:(4) = (8352m52p) + TDusem D'sep) | - (2.30)

2.5 Holographic dictionary in the single-trace basis

We now clarify that the previous derivation of the precision holographic dictionary [14,16] was
done in the trace basis. Using the notation [S];, for the coefficient of z* in the Fefferman-Graham

expansion of the field S, the radial canonical momenta are given by [14, 16]
W =2(Smly s e = @k =) [Skml, (B £2). (2.31)

Firstly, for O, = T2,m the holographic dictionary is given by?

N2
(O2m) = (Tom) = 277_‘_271-%27)71 (2.32)

!The relation between our notation and that of [16] is T = Os,,.



Next, the combination of supergravity fields dual to the expectation value of the single-trace

operator 7Ty ,, involves quadratic terms in 7r§2,)n as follows [16]:

N> [ @, 2V3 (2)_(2)
(Tam) = 55 (m,m T @ damen @ Ty | - (2.33)

The quadratic terms were added in order to ensure consistency with the fact that in the trace
basis, extremal three-point correlators are non-zero, and they factorize into a product of two-

point functions [14].

2.6 Holographic dictionary in the single-particle basis

We now rewrite the holographic dictionary in the single-particle basis. We propose that the
holographic dictionary for the expectation value of the single-particle operator Oy, takes the
simple form
N? ()
<O4,m> = ﬁﬂ'&m. (234)
As a corollary of this proposal, we obtain the dictionary for the double-trace operators, as

follows. Combining (2.33) and (2.34) we obtain

N? 2V3 @ (2
(Tam) = (Oam) + 22 () U e ) T2 T2 p (2.35)

Combining this with Eqgs. (2.25) and (2.32), we obtain the following simple formula,

N2\ ) )
<02,m02,n> = 277T2 7T2’m7T2,n = <O2,m><02,n>a (2.36)

which is consistent with large N factorization.

For use when working with ten-dimensional solutions, we now record formulae for the super-
gravity expectation values in terms of the fields sy that arise directly from the Fourier expansion
of the 10D fields, Eq. (2.27). Firstly, combining (2.32) and (2.29), and using the square bracket

notation introduced above (2.31), we have

NZ% 28
<(927m> = ﬁ? [5(27m)]2 . (237)
For Oy, we use the fact that for the following coefficient,
ﬂfﬁ"ﬁz = 4[Samly (2.38)

there exists a form of the dictionary in terms of sy, ,,, with no derivatives. Specifically, using [16]

[Dus(lm)D“S(zn)h =4 [8(2,m)5(2,n)]4 5 (2.39)
from (2.30) one can derive

2V/3 37
[54,m] = = [S(m) — a7 Aam)(2n)(2p)S(2,n)S(2, . (2'40)
4 5 (4,m) 92(4)( )(2n)(2p) = ( )(p)4



Then using (2.34) and (2.31), the holographic dictionary for Qg ,, in terms of sy is given by
NZ 4.3

74
<O4,m> = = [28 4m) T a7 Adm)(2n)(2p)S(2,n)S(2, } (2'41)
22 5 (4,m) 92(4)()( )(P)()(P)4
For comparison, we also record the dictionary for 7a,, [16, Eq. (2.27)],
NZ% 43 2
(Tam) = 55— [28 4m) T 575 Aam)(2n)(2p)S(2,) S (2, ] ) (2.42)
272§ (4,m) 3,2(4)()( )(p)()(p)4
which is consistent with the discussion above. Finally, for the double-traces we have
8N4
<02,m02,n> = 9? [827m]2 [32,71]2 . (243)

3 Supergravity solutions
3.1 LLM solutions in AdSsxS?®

We now review the asymptotically AdSsxS® LLM solutions [3]. These solutions contain only

the metric and five-form field strength. The solutions take the form

ds® = —h72(dt + Vidz®)? + h2(dy? + da'dz®) + yeCdO3 + ye CdQZ
1
h™2 = 2ycosh G, z= 3 tanh G,
Yoy Vi = €052, Y (0;V; — 0;V;) = €502,
Fs = Fdat Adz” AdQs + Fjdat A da? A dQs

F
F

dBy A (dt + V) + B,dV + dB,
dBy A (dt + V) + B,dV +dB,

1 - 1
B, _11/2626‘7 B, = _Zy2€_2G’
A 1 z + l 5 1 L l
dB = -3y’ x3d | 2|,  dB=——y’wd| 52|,
4 Y2 1 "
where 3 is the Hodge dual on R? parameterized by (y,z1,22), in this section i = 1,2, and
where
orany) = L [ Zhrh 0daidss
T Jre (= 2)2 +92) (3.2)
Vi(er,a0,y) = 2 2(a), xh, 0)(z; — o) da’ dy :
i ) ) T Jp2 ((:L’ _ x/)Q + y2)2

Regularity imposes a boundary condition on the x1—x3 plane at y = 0, which ensures that one
or both of the three-spheres in the metric shrink smoothly. The boundary condition is that the
function z(z1, 2,0) take the values £1/2. This can be depicted as a colouring of the R? at iy = 0
into black and white regions. The black regions correspond to droplets in a free fermion phase
space, and their total area is fixed to be 27 in our conventions. The free fermion description

also plays a role in the holographic description of the corresponding CFT operators [51,55].
The two backgrounds we study in this paper both involve a single black region. The bound-

ary of this region is specified by a function that we shall refer to as the ‘profile function’. To write

the profile functions, we introduce plane polar coordinates via z1 = r cos ¢ and zo = 7 sin ¢.

10



The first profile corresponds to the configuration that lives in the consistent truncation. The

small « expansion of the profile function is [31]?

2

r(@) = ri(¢) = \/ 1+ arcos(2) + %cos(llqb) +0(a?)

. .2 (3.3)
_ @ 7, o 7 3
= 1+20052¢+16 <3cos4gb 1>+O(a).
In the second profile, studied in [16,17], 72(¢) involves a single mode:
(@) = ro(d) = \/1+ acos(2¢)
2 (3.4)

=1+ %cos2q3— % (COS4¢~7+1) +0(a”),

where a < 1 in the first line, and we expand for small « in the second line. We see that the

2

two profiles (3.3), (3.4) agree up to order « but differ at order «®. For small a, each profile

describes a ripple on a unit circle.

We expand the metric and five-form field strength in small «v, up to order o®. For the metric,
we introduce the notation
9=99+ag® +a?g® . (3.5)

When o = 0, both profiles reduce to the unit circle, which corresponds to empty global
AdS. The quantities z and V are given in [3]. After the change of coordinates

y = Rcosb, r =V R2+1siné, b =¢—t, (3.6)

the metric and flux are those of empty global AdS;xS°, where the radii of AdS5 and S° are
both set to 1,

ds* = —(R®+1)dt® + + R2dQ3 + d6* + sin’ 0d¢* + cos? 0d03

R2+1
Fs = R3dt AdR A dQs + cos® 0sin 0 d A do A dSds .

(3.7)

3.2 First-order backgrounds

At first order in «, the LLM solutions specified by both the profiles (3.3) and (3.4) are the fields
of a linearised supergraviton in global AdS;xS® [3,56]. For later convenience we will generalise

the discussion slightly, and present the first-order fields that correspond to the profile
~ a ~
r(¢) =1+ 5 cos(ng) + O(a?) , (3.8)

which for n = 2 reduces to the linearisation of the profiles (3.3), (3.4).

For holography, one must either fix a gauge, as done in [44], or work in a gauge-invariant
formalism [14]. We choose to impose de Donder-Lorentz gauge, in which the physical degrees

of freedom are manifest, defined by

D%apy = Dhep = 0. (3.9)

2The relation to the notation of [31] iS Gthere = —€there- We also note that in the very recent work [19], the
parameter o is different to ours; it is given by aunere = 5 tanh (4= ) where the €there of [31] and [19] are the
same up to an overall sign.

11



Here round brackets on indices denote symmetric traceless part, u, v, ... denote AdSs indices,

and we remind the reader that a,b, ... denote S° indices.

The linearised diffeomorphism that converts the order « fields into de Donder-Lorentz gauge

is given in [45]. In this gauge, the first-order metric and four-form potential Ail) are given by

6 4 1 0
g/(,t]i/) = Z (_5‘n‘snyng;(g/) + In| + 1an(uvu)5n) ) gég = Z Q‘nysnYng((Xg)y
Afll) = Z (Yn *adss dsp — Sp *gs dYy)
n==42
here
" 1

Y, = e sinl™ 6. (3.11)

mn

= Sln|(R2+ )RS

3.3 Second-order backgrounds

At order o, we again impose de Donder-Lorentz gauge. The closed-form order o fields that
follow from the single-mode profile given in Eq. (3.4) were computed and converted into Kaluza-
Klein form and de Donder-Lorentz gauge in [17]. We do the same for the solution in the
consistent truncation. The order o fields are somewhat lengthy, and we shall not present them
here. The explicit form of the order o? metric of the solution specified by the single-mode

profile can be found in [17].

Let us compare the two profile functions that we study. The difference between the profiles
in Egs. (3.3) and (3.4) is

ro(@) —ri(¢) = §COS4(5 +0(a?), B =—-——. (3.12)

where we have introduced § by comparison with the linear terms in « in (3.3), (3.4).

Correspondingly, the difference between the two metrics is proportional to the metric of the
linearized fields (3.10)—(3.11) for n = 4, but with a coefficient proportional to o rather than
a. Explicitly, denoting the second-order metric corresponding to the profile 7“1(@;) by gf) and
likewise for the second profile, we have

2 2 1 a
o = L. 13

We then expand the order o metric and five-form field strength in S® spherical harmonics.

We focus on the components given in (2.26), and compute the fields sy defined in (2.27), which

we will use to compute holographic expectation values in the next section.

4 Determining the dual CFT states

4.1 Ansatz for the CFT states

In order to perform our precision holographic analysis, we now parameterise a family of CFT
states that will include the two states of interest to us. The first ingredient will be the expansion

of a coherent state built only from powers of Oz. The second ingredient will be a term linear

12



in O4 at order a?, since we have seen that the difference between the Profile 1 and Profile 2

solutions is a single mode of frequency 4.

Several years ago, it was suggested that the solution corresponding to the single-mode profile
may correspond to a coherent state built only from powers of Oy [16]. However, more recently,
it has been proposed that the solution in the consistent truncation is the one that is dual to a

coherent state built only from powers of Oy [31].

We will find evidence in support of the more recent proposal, demonstrate that the CFT
state dual to the solution defined by the single-mode profile contains Oy, and fix the coefficient
of O4 in the CFT state dual to that solution.

In preparation for constructing an appropriate Ansatz for the dual CFT states, we note
that a solution composed of a set of linearised single-particle fluctuations corresponds to the

following CFT state, to leading order in large N:

Nay,
2\/n’

where «, is the amplitude of a linearised fluctuation of frequency n, in the normalization used

) = [0) + > 6, 0nl0) + O(37), On = (4.1)

in Section 3. The coefficient ¢,, was worked out in [16].

We will proceed by making an Ansatz with arbitrary coefficients, A, B, C, that we will fix
by holographic computations. These coefficients will be useful to illustrate the structure of the
calculation. We have seen that the solutions corresponding to both Profile 1 and Profile 2 have,
to linear order in @ = g, a linearized mode of frequency 2. The difference between the profiles
is a linearized mode of frequency 4, but with coefficient ay = 8 = —a?/2, see Eq. (3.12). We

thus consider the candidate set of states
52
) = A7 (10) +C02000) + B (022 10) +40:0410) + OGL3D ) . (42

where )
N« Na

g = ——, 0y = ——.
2 WG 4 3

To order o, the norm of the state is N' = 1 — C?53/2.

(4.3)

To fix the coefficients A, B, C, we first compute the relevant set of CFT expectation values
up to order a?. These are protected quantities, and we compute them using the free theory. We
continue to suppress the spacetime dependence of the correlators. We shall compute expectation

values of the supergravity-normalized versions of the various operators, see Eqgs. (2.23)—(2.24).

Because of the orthogonality of the single-particle basis, the expectation values of the charged
operators O, Oy, O3 are simply proportional to the respective coefficients C, A, B, as follows.
In the following equations, we write the leading-order result in the small o expansion (likewise

for da, 04); for ease of presentation, we suppress the notation --- + O(a) etc. Firstly,
2
2/ 272

Next, exploiting the orthogonality between single-particle and multi-particle operators, we find

V3N?
A2

(H|Oy|H) = NoCa(0305) =

Ca. (4.4)

(H|O4|H) = N1A84(0} 04) = — Aa?. (4.5)

13



For 02, we obtain

» BO3

35 <(og)2(02)2> _ N g, (4.6)

(H|(02)° |H) = = o

We now consider the neutral operators Os and Q4. At order §3, and given the above
Ansatz, these are only sensitive to the linear term in d9, proportional to Os, in (4.2). Firstly,

at order 03,
(H|O40|H) = N3C?63(0504005) = 0, (4.7)

since (0304,002> is an extremal three-point correlator of single-particle operators. The CFT

expectation value of Oy at this order is [16]

N2/2

_ 2¢2/t _
(H|(’)270|H) = N>C 52<0202,002> = NG

C%a?. (4.8)

4.2 Analysis of the solution in the consistent truncation

It has been argued that the LLM solution in the consistent truncation should be a coherent
state composed of multi-traces of the operator Oy only [31]. If this is correct, then the single-
particle operator O4 should have zero expectation value in the corresponding heavy state. We

will verify that this is indeed the case, and determine the state to order a?.

For Profile 1, using (2.26)—(2.27), the complete list of the fields s; up to order o? is
36—2it 3€2it
22 T g+ Y T gRIy)
V3 (20R* 4+ 57R? +27)
5(20) = 5 13 a, (4.10)
160 (R% +1)
111R*+55

a, (4.9)

] = a”, 4.11
40 1995 (R2 4 1)° (4.11)
S(aa) = LZMQOZQ’ S(4,-4) = L”Qoﬂ. (4.12)
YT 64 (R2+ 1) ’ 64 (R2 + 1)

To order o and exactly in R, we find the five-dimensional fields defined in Eq. (2.30) to be

Sy =0, Su0=0. (4.13)

To extract the supergravity expectation values, we must put the metric in Fefferman-Graham
form. Recall that we denote the metric on empty global AdS5 as g?w. Similarly to [16] we write

the zero-mode on S° of the metric as gfﬁ) + iLgV with il?w = h?“, + %wogff). Then to order a?,
gl(f,),) + ﬁgu is given by

24R8 + 72RS 4 24924
ds%o):—dtQ(R2+1)<1+a2 R® +72RS + T7TR* + 55R? + )

32(R2+1)*
dR? 24R® + T6R* + 149R? + 15
* (1 —a® — ) (4.14)
32(R2 +1)
- R22 <1 2 72R® 4+ 216 R* + 199R? + 45)
K 96 (R2 + 1)° '
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The relation between the bulk radial coordinate and the Fefferman-Graham one is given by

R=--2-22, % 84 (4.15)

however only the first term R = % is relevant to our analysis.

We now read off the supergravity expectation values using the holographic dictionary in
Eqgs. (2.37)—(2.42). Using the Fefferman-Graham expansion and taking into account terms up

to a2, the supergravity expectation values are

NZ o N2\/2
(O2) = SN o, (O20) = 4\/%2042, (4.16)
N*V3 it o N*V3 -,
(O4) =0, (Os0) = 0, (Ta) = ooz € @ (Tap) = N (4.17)

When comparing to CF'T expectation values, we will set ¢t = 0.

Comparing the expectation values of the charged operators Og, O3 and Oy to their respective
CFT expectation values in Eqgs. (4.4)-(4.6), we obtain to leading order in large N

C=1, B=1  A=0, (4.18)

where we note that the double-trace factorization given in Eq. (2.36) implies B = 2.

The expectation value of Q49 at order a?

vanishes in supergravity, since S;0 = 0, and
also in the CFT. The expectation value of Oz gives an independent cross-check of C' = 1.
The agreement of both (O49) and (Oz0) gives a non-trivial test of the completeness of the

Ansatz (4.2) to this order.

Thus, for the solution in the consistent truncation, we see that to order 6% the following
CF'T state is consistent with all available expectation values of the known precision holographic

dictionary:

) = 7 (10) + 820:00) + 303 0210} + 069 ) (4.19)

where N 52
«
b = —=, N=1-2.

This is evidence in support of the proposal of [31] that the CFT state should be composed of

(4.20)

multi-traces of O only.® Tt also agrees with the very recent refinement of this proposal in [19];

the relation between the notations of these works is given in footnote 2.

4.3 Analysis of the single-mode ripple solution

We now analyse the solution defined by the single-mode profile. For this solution, the fields
82492, 520 and s40 are the same as for the solution in the consistent truncation. The only
different component fields are s4 +4, given below, and there are no other fields up to order a?.

This reflects the fact that the difference between solutions 1 and 2 is proportional to a single

3We note that a computation of (O4) = (O4,0) = 0 was reported in [31], however the holographic dictionary
quoted in Eq. (B.5) of that work is the dictionary for the single-trace operators, Eq. (2.42), rather than the
dictionary for the single-particle operators, Eq. (2.41).
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mode of frequency +4, see Eq. (3.12). For the solution specified by the single-mode profile, we

have
174t 1764t
S(4) = g0, S44) = ————Q (4.21)
64 (R* +1) 64 (R2 +1)
We therefore find the five-dimensional fields Sy ,,, to be
—4it
Sy = —Lgag, Si0 = 0. (4.22)

8(R%2+1)
The Fefferman-Graham expansion depends only on the zero-modes of the ten-dimensional metric

reduced on S°. Therefore it is the same as that of Profile 1 in Eq. (4.15).

Most of the supergravity expectation values for Profile 2 are the same as those for Profile
1, and are not sensitive to the difference between the two profiles.

However, importantly, for the single-mode profile, the supergravity expectation values of
Oy and 7T differ from the Profile 1 expressions in Eqs. (4.16), (4.17). The full set of non-zero

supergravity expectation values up to order a? for the single-mode profile background are:

N2, N%/2
<02> = 2\@7‘_26 2t0[, <02,0> = 4\/37_(_2052’ <04,0> = 07
(4.23)
VBN i o N>V3 it o N*V3
(O4) = - w2 © 9 (Ta) = iz ¢ Taor = 2\/5W2a ’

Comparing the supergravity and CFT expressions for the expectation values of Oz, O3, and
particularly Oy, we find that for the solution defined by the single-mode profile, the dual CFT
state has coefficients

C =1, B =1, A=1. (4.24)

Thus, for the solution defined by the single-mode profile, to leading order in large N and to
order o?, the following CFT state is consistent with all available expectation values of the

known precision holographic dictionary:
52
H) = N (\0> + 02 O2|0) + 52 (02)*[0) + 64 04]0) + 0(53,55)) , (4.25)

where ) )
Na Na 1)

0y = ——, 0y = ——, N =1-2.
EOWD) ! 8 2

We note that in the holographic study of the single-mode profile solution in [16], the single-

(4.26)

trace basis was used. The expectation values of Oz, Oz, and T4 in (4.23) agree with those
reported in [16]. By contrast, the expectation value of 74 in this background was not examined
in that work. By computing the expectation value of O4, we have demonstrated the presence
of Oy, and fixed its coefficient in the dual CF'T state.

5 Cross-check at cubic order
In this section we consider the solution defined by the single-mode profile, and make a cross-

check of the dual CFT state given in Eq. (4.25). We do so by considering the charged R-
symmetry descendant operator Q4. For this operator, the CFT state (4.25) up to order a?

16



gives rise to an expectation value at order a®. We demonstrate that this is precisely reproduced

by the corresponding supergravity analysis.

To do so, we compute the closed-form LLM solution that follows from the single-mode profile
to order o, and bring it to de Donder-Lorentz gauge We then extract the KK fields s; as
before. The complete list of the fields sy at order a3 is

e 2 (119R® + 459R* + 477R? + 116) ,
S(4,2) = 5 o, (51)
2244/10 (R? + 1)
e~ (720R® + 2112R® + 2247R* 4 836 R* 4 233) ,

S = a” . 5.2
®2) 2560 (R? + 1)° (5.2)

3

We note in passing that the order o term in 5(2,2) implies an a” correction to the super-

gravity expectation value of (Os), which in our parameterization takes the form

(05) = 2\[;( +3a) (5.3)

This would be sensitive to a possible term proportional to a?|0s) in the dual state, however
we have expanded the dual state only to order o, so this is beyond the precision to which we

work. We thus focus instead on Oy 2.

To compute the supergravity expectation value of Oy 2, we compute the 5D field Sy 2. Using
Eq. (2.30) we obtain
3 (2800R° + 10567 R* + 8296 R* 4 2909) e~ **

Sio = —\/— a”. 5.4
2 10 11200 (R2 + 1)° (54

The relevant coefficient in the Fefferman-Graham expansion is

1 /3
[Saoly = —74\/qe Pa?, (5.5)

4V 10

and so the holographic expectation value is

N? |3 it 3
(O42) = o2\ 10 o (5.6)
We now compare this result to the CFT, i.e. we compute (Oy42) in the state (4.25):
<H‘O4)2‘H) N452 ( <(OT) 047202> + 54<0104’202>> . (5.7)

Firstly, <(O§)QO472 Og> gives a subleading contribution in large N compared to the term pro-
portional to <Oj1 04,203), see Appendix B for details.

Next, we consider <OjL 04203). Expanding OZ in terms of single-traces, this is
i f 2/ (oh?
<O4O4’202> = <T4 04’2T2> — N< (02) 04’202>. (5.8)

We have determined already that the second correlator on the right-hand side of Eq. (5.8) is

subleading compared to the first one. The first term evaluates to

(T]O42Ts) = (T)TyoTs) — i@ (Th0Ts) Ts) . (5.9)

V10N
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Furthermore, the second term on the right-hand side of Eq. (5.9) is suppressed at large N

compared to the first term, see Appendix B for details. So, to leading order in large N, we have

4
<OZO4,202> - <TIT472T2> - ﬁ (510)
The CFT expectation value at this order, from (5.7), is then
4626 N? |3
(H|O4p|H) = Nj—pt = —a?, (5.11)

VBN 2x2\ 10

which precisely agrees with the holographic result (5.6). This is a non-trivial cross-check of
the CFT state dual to the single-mode profile solution given in Eq. (4.25). This also repres-
ents a non-trivial check of the proposed holographic dictionary for single-particle operators in
Eqgs. (2.34), (2.41).

6 Discussion

In this paper we revisited the AdS;/CFT, precision holographic dictionary for heavy-light
three-point correlators. We clarified that it was originally expressed in the single-trace basis,
and rewrote it in the single-particle basis. The holographic dictionary takes a simpler form in

the single-particle basis, see Eq. (2.34).

The single-particle basis gave a distinct advantage over the trace basis for our computation,
because the dual CFT states we studied involve both single and double-trace operators. The
orthogonality of the single-particle basis meant that each coefficient in our Ansatz for the dual

CFT states was controlled by a single expectation value, see Eqgs. (4.2)—(4.6).

We performed a holographic analysis of the two LLM supergravity solutions under consid-
eration, perturbatively in «.. From the asymptotic expansion of the appropriate gauge-invariant
fields, we first computed the expectation values of the operators that directly control the coeffi-
cients in the Ansatz for the dual CFT states. These determine the dual CFT states up to order
a? and at leading order in large N, see Eqs. (4.19) and (4.25).

We also computed the supergravity expectation values of a set of R-symmetry descendants
of chiral primaries. All of these resulted in precise agreement between gravity and CFT. We
computed all expectation values that arise up to order o2, and also the expectation value of the
R-symmetry descendant Oy in the solution defined by the single-mode profile, which arises at
order 3. The agreement of these expectation values constitutes a set of non-trivial cross-checks

of both the dual CFT states and the precision holographic dictionary in the single-particle basis.
Our results represent evidence in favour of the proposal that the dual CFT state of the LLM

solution that lies in the consistent truncation is a coherent state composed only of powers of the
dimension-two chiral primary Oz [31,19]. We showed that the solution defined by a single-mode
profile contains, by contrast, the dimension-four chiral primary Oy at order o, and determined
the coefficient of O4 at this order.

This raises a natural question for future work. That is, for the solution defined by the
single-mode profile, what the dual CF'T state is at higher orders in «. It is natural to expect

that a sequence of higher-dimension operators appears at successive orders in «. Such terms
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can in principle be analyzed by extending the precision holographic dictionary to operators with

dimensions higher than four, which has not been done to date.

To extend the holographic dictionary to operators of dimension six, it would first be neces-
sary to solve explicitly the relation between the five-dimensional fields S; and the fields sy, see
Eq. (2.28), up to cubic order in s, to account for cubic terms in sy ,,. This entails expanding
the equations of motion up to cubic order in fluctuations and performing field redefinitions to
remove derivative couplings [54,14]. This would enable a study of the dual CFT state of the

solution defined by a single-mode profile up to order o?.

More broadly, the LLM family of solutions is a large class, and there are even larger classes
of 1/4 and 1/8-BPS solutions, see e.g. [35,57,58]. It would be interesting to perform precision
holographic analyses of more general asymptotically AdSsxS® solutions. We re-emphasize that
the holographic dictionary in the single-particle basis gives an advantage over the single-trace

basis, and we expect that this form of the dictionary will prove useful for future studies.
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A Spherical harmonics and symmetric traceless tensors

We consider the following single-trace operators,

Tr = CL , Tr(® ... o) (A.1)

i1l

where C7 is a totally symmetric traceless rank-k tensor of SO(6), which live in half-BPS mul-
tiplets [54]. The tensors C' are unit-normalized, (C'C”) = C] ; C{ . = 6"/, Each C'
corresponds to a scalar SO(6) spherical harmonic via Yyl = CZII% " - .. g% for unit-norm vec-
tors % € RS.

Scalar spherical harmonics on S satisfy
OgY! = AlYD A = —k(k+4), k=0,1,2,... (A.2)
We write the metric on S° as
dsis = d? + sin? 0d¢?® + cos? 03 . (A.3)

In this paper we restrict to harmonics with SO(4) isometry, which depend only on 6 and ¢.

(k,m)

Then the multi-index I reduces to I = (k,m) and the scalar harmonics Y are given in

terms of hypergeometric functions [14].
Denoting the area of the unit five-sphere by ws = 73, the scalar spherical harmonics are

then normalized as

L[ ynyn 2(k)ol 2 y(k) = L

ws Jss Lk + 1)(k+2) (A.4)
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The triple intersection constants ay, 1,7, are defined by

1
annt, = = f yhyhyl (A.5)

In terms of the SO(6) invariant (see e.g. [50])

(chcholy = of ch cs (A.6)

11~-~ia2j1~--ja3 j1~--ja3 lln-lal l1..‘lali1‘..ia2 )
we have the following relation, used in the main text around Eq. (2.15),

1 F1lkolks!
iz + 2)[2%(2*2) atlaslas!

(111[2[3 = <C]1012CI3> Y (A7)

where ¥ = k1 + ko + k3, a1 = %(1{72 + ks — k1), and similarly for as, as.

We record here some useful values of triple intersection constants:

3z(4
Aa0)(2,-2)2-2) = 2(4), a(4,0)(2,0)(2,0) = 2\(/5) ,

z(4) 3
Q(4,0)(2,2)(2,-2) = %» 4(4,2)(2,0)(2,-2) = 2(4) 10

B CFT expectation values at cubic order

In this appendix we record some details of the free CFT computations in Section 5. We first

describe the computation of the expectation value of O49. Our starting point is Eq. (5.7), i.e.

%

(H(012lH) = Nt (%

<(O;)2047202> + (54<0104,202>> . (B.1)

Firstly, we verify explicitly that <(O$)204,202> gives a subleading contribution in large N

compared to the term proportional to (01047202). Rewriting in the trace basis, we have

43
01204205) = (TIPTysTo) — —=2 ((T))? (Tu,0To) To) . B.2
((03)704202) = ((13)"Tu2T3) \/EN« 5)" (T2,0T2) T?) (B.2)
Explicitly, the relevant terms that contribute to these correlators are
2 _ 1 72\ 2 35 2
(T))*Ty2To) = 5 \/5N5<(TrZ ) T Z°Z T Z%), (B.3)
(TH? (T oTo) To) = V2 (Tv2%)* (TvZ2Z Tv2%) Te Z2%) . (B.4)
2 ’ 4y/3N5
Free-field Wick contractions give
(T TiaTs) = —=— + OV (B.5)
2 » \/ENQ )
442
T2 (T oTo) To) = —— + O(N™Y). B.6
(T3)7 (To0T2) T3) 73N (N7) (B.6)
Therefore
((01)?04205) = O(N), (B.7)
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and so
N1 ((03)204205) = a*O(N?). (B.8)

Now we turn to (OZO4,202>. The structure of this computation is described around Eq. (5.9)
of the main text; here we describe in more detail the fact that the following correlator gives a

subleading contribution at large N:

V2 _ _
(T} (To0To) Ty) = W(TrZ4 (TvZZTxZ?) TrZ?). (B.9)
Free-field Wick contractions give
(TrZ* (TrZZTeZ?) TrZ?) = 8N* + O(N), (B.10)
so we find Y
1 2v/2 _
N<T4T (TaoT2) To) = o +ON 5). (B.11)
Thus, to leading order in large N, we have
(0104205) = (T]Ty2Ts) + O(N73), (B.12)

leading to Eq. (5.10) of the main text.
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