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Abstract

Holographic duality provides a microscopic interpretation of asymptotically Anti-de

Sitter supergravity solutions. The dual states of the field theory give rise to expect-

ation values of light operators. These expectation values correspond to coefficients

in the asymptotic expansion of gauge-invariant combinations of supergravity fields.

We consider the duality between type IIB theory on AdS5×S5 and 4D N = 4 super

Yang-Mills theory, focusing on the half-BPS sector. We clarify the structure of

the precision holographic dictionary, making explicit the distinction between single-

trace operators and single-particle operators, where the latter contain admixtures

of multi-traces. We rewrite the holographic dictionary for half-BPS operators of

dimension four in the single-particle basis. We then apply this dictionary to per-

form precision holographic studies of two different smooth supergravity solutions

in the class derived by Lin, Lunin and Maldacena, that have been recently used

to compute all-light four-point correlators by making extrapolations of heavy-light

correlators.



1 Introduction

Holographic duality is the remarkable conjecture that a gravitational theory in d+1 dimensions

(possibly times other compact directions) may be completely equivalent to a non-gravitational

theory that lives on the d-dimensional boundary of the original space-time [1]. Most typically,

the gravitational theory lives in (d + 1)-dimensional Anti-de Sitter space (AdSd+1), and the

non-gravitational theory is a conformal field theory (CFTd).

On the gravitational side of such a duality, there can be large families of asymptotically

Anti-de Sitter supergravity solutions that are horizonless and smooth up to possible physical

sources. Holography relates these solutions to generically heavy pure states of the dual field

theory. An interesting class of such solutions are those that are backreacted coherent bound

states of many supergravitons, see for example [2–9]. For many of these families of supergravity

solutions, there is a detailed proposal for the dual CFT states.

Several of these proposed identifications between supergravity solutions and CFT states

have passed non-trivial tests using precision holographic studies of protected heavy-light three-

point correlation functions [10–13], using the formalism developed in [14–16]. To perform such

studies, one constructs gauge-invariant combinations of supergravity fields, and studies their

asymptotic expansion at large radial distance in AdS. Coefficients in this expansion are dual to

expectation values of light operators in the corresponding heavy CFT state.

Smooth supergravity solutions have also been used to compute heavy-light and all-light

correlators, including very recently [17–19] in the duality between type IIB theory on AdS5×
S5 and 4D N = 4 SU(N) super Yang-Mills (SYM) theory [1]. These works used half-BPS

asymptotically AdS5×S5 smooth horizonless supergravity solutions in the class derived by Lin,

Lunin and Maldacena (LLM) [3]. The correlators were computed in the supergravity regime in

the bulk, i.e. at large N and large ’t Hooft coupling.

These recent AdS5/CFT4 developments build on similar work in AdS3/CFT2 duality on

heavy-light four-point correlators [20–23] and computing all-light correlators by making ex-

trapolations thereof [24–27]; see also the related works [28–30]. Here, ‘heavy’ denotes CFT

operators whose conformal dimensions scale linearly with the central charge c in the large c

limit, and ‘light’ denotes CFT operators whose conformal dimensions are independent of c in

the large c limit.

The recent computations of four-point correlators in [17–19] used two different LLM geo-

metries. Each of these solutions is defined by a profile function that describes the boundary

of a single droplet in the free fermion description of the LLM solutions. The work of [17] used

a profile function that involves a single mode, that had been studied in [16]. By contrast, the

work of [18, 19] used a solution [31] that lies in the consistent truncation of [32], that was first

constructed and studied in [33, 34], and corresponds to an elliptical profile function [35]; see

also [36]. For a selection of other recent work involving LLM solutions, see [37–43].

The primary motivations for this work are to make precise the difference between the two

LLM backgrounds studied in [17–19], and to investigate the holographic description of these

solutions with AdS5/CFT4 precision holography [14,16].

In this paper we study these two solutions perturbatively in a small parameter α. The back-
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grounds agree to order α, but differ at order α2. At first order in α, the linearised supergravity

fields are among the fluctuations around global AdS5×S5 classified in [44], as shown in [45].

These fields are dual to the state |O2⟩ corresponding to the chiral primary operator O2 ∼ TrZ2,

where Z is a holomorphic combination of two of the six hermitian adjoint scalars of the dual

field theory, Z = 1√
2
(Φ1 + iΦ2).

Beyond the linearised order, in general LLM solutions are dual to multi-traces built from

powers of the field Z. These operators have scaling dimension equal to a particular U(1) R-

charge in the SO(6) R-symmetry group, ∆ = J . In [31] it was proposed that the LLM solution

in the consistent truncation is dual to a coherent state composed only of powers of O2. This

proposal was refined very recently in [19]. We will find supporting evidence for this proposal.

We shall furthermore demonstrate that, by contrast, the solution defined by the single-mode

profile is dual to a state that contains the dimension-four chiral primary O4 at order α2, and

fix the coefficient of O4 in the state at this order.

To establish these results, we revisit the AdS5/CFT4 precision holographic dictionary, and

first clarify that it was originally derived in the single-trace basis of the dual CFT [14,16]. We

then rewrite the dictionary in the single-particle basis, which will be much more convenient

for our analysis. Single-particle CFT operators are defined to be half-BPS operators that

are orthogonal to all multi-trace operators [46, 47]. They are proposed to be dual to single-

particle supergravity states on global AdS5×S5. This generalizes the earlier work of [48–50].

In the single-particle basis, the holographic dictionary takes a simpler form in terms of the 5D

supergravity fields that arise from Kaluza-Klein reduction. The analogous single-particle basis

has also been recently used in AdS3/CFT2 holography [12].

We then use the precision holographic dictionary in the single-particle basis to study the two

LLM geometries in question. To do so, on the supergravity side, we convert each background

into de Donder-Lorentz gauge, building on the results of [17]. On the CFT side, we make an

Ansatz for the dual CFT states up to order α2.

We compute expectation values of the single-particle chiral primary operators of dimension

two and four, and of certain SO(6) R-symmetry descendants thereof. The first few expectation

values we compute are used to fix the coefficients in the CFT states, thus distinguishing the dual

CFT states to the respective LLM backgrounds. The remaining expectation values, in particular

those of the R-symmetry descendants, represent non-trivial cross-checks of the dual CFT states,

and also of the holographic dictionary in the single-particle basis. These cross-checks include

an operator whose expectation value arises at order α3.

The structure of this paper is as follows. In Section 2 we present the holographic dictionary

in the single-particle basis, as well as the explicit form of the light operators whose expectation

values we compute, including a set of R-symmetry descendants of the single-particle chiral

primaries. In Section 3 we describe the two LLM solutions we consider, and make explicit

the difference between the solutions in supergravity. In Section 4 we analyze the full set of

holographic expectation values up to order α2, and fix the dual CFT states to the two LLM

solutions. In Section 5 we perform a non-trivial cross-check of the heavy state dual to the

solution defined by the single-mode profile by computing an expectation value at order α3. In

Section 6 we discuss our results.
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2 Precision AdS5/CFT4 holography in the single-particle basis

In this section we start by presenting the light operators whose expectation values we compute

in this paper. We then discuss the relation between extremal three-point correlators and single-

particle operators. We review the relevant parts of the precision holographic dictionary in

AdS5 [14, 16], and clarify that the dictionary was derived in the trace basis. We then rewrite

the dictionary in the single-particle basis.

2.1 Single-particle chiral primaries

Single-particle operators are defined to be orthogonal to all multi-trace operators, i.e. to have

vanishing two-point functions with all such operators [46,47]. We work with gauge group SU(N)

and with complex combinations of the six hermitian scalar fields Φi as follows,

Z(x) =
1√
2

(
Φ1(x) + iΦ2(x)

)
, Z̄(x) =

1√
2

(
Φ1(x)− iΦ2(x)

)
, (2.1)

and similarly for X, X̄, Y, Ȳ in terms of Φa, where a runs over 3, . . . , 6.

We absorb the appropriate factors of the Yang-Mills coupling and of 2π into the definition

of the operators, as is often done (see e.g. [51,52,16]), such that the two-point correlators take

the form

⟨Z̄p
q(x)Z

r
s(y)⟩ =

δpsδrq − 1
N δpqδrs

|x− y|2
. (2.2)

We shall work at leading order in large N . The 1/N term in the propagator is subleading (see

e.g. [53]) and shall play no role in the present work. From now onwards, we shall suppress the

spacetime dependence in most equations.

We first introduce the following notation for non-unit-normalized single-trace chiral primary

operators,

T̂ k = Tr(Zk) . (2.3)

As usual, it is convenient to define single-trace operators that are unit-normalized at leading

order in large N , with ∆ = J = k, see e.g. [54],

Tk =
Tr(Zk)
√
kN

k
2

. (2.4)

The unit-normalized single-particle chiral primaries take the following form at leading order

in large N [47],

O2 = T2 , O4 = T4 −
2

N
(O2)

2 , (2.5)

where we have kept only the leading term in the coefficient of the double-trace (O2)
2. We

emphasize that this term can contribute at leading order in large N in extremal and heavy-

light correlators.
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2.2 Single-particle R-symmetry descendants

In this section we work out the explicit form of the single-particle R-symmetry descendants

whose expectation values we shall compute in this paper. By “R-symmetry descendants” we

mean operators obtained by acting on chiral primaries with (bosonic) lowering operators of the

SO(6) R-symmetry.

First, we recall that the states dual to LLM solutions involve multi-traces composed of

powers of the field Z. Such states break the SO(6) R-symmetry to SO(4). We will compute

expectation values of some SO(4)-invariant R-symmetry descendants of chiral primaries. We

thus define Tk,m to be the SO(4) invariant R-symmetry descendants of the single-trace operators

Tk that have charge m under the U(1) selected by Z, and that are unit-normalized. Likewise,

we define Ok,m to be the analogous descendants of the single-particle chiral primaries Ok. We

work to leading order in large N throughout.

We start with the single-trace operators. The explicit forms of the descendants of single-

trace CPOs can be obtained directly from the relevant spherical harmonic in terms of the six

scalars Φi [54] (see below around Eq. (2.13)). Alternatively, one can act on the chiral primary

with the following SO(4)-invariant lowering operator [31], which lowers the U(1) R-charge by 2

units:

J− ≡
6∑

a=3

J−aJ−a , J−a ≡ (J1a − iJ2a) , a = 3, . . . , 6, (2.6)

where

J ij = −iTr

(
Φi ∂

∂Φj
− Φj ∂

∂Φi

)
, i , j = 1, . . . , 6 . (2.7)

For instance, the neutral descendant O2,0 = T2,0 is

O2,0 =
1√
6N

Tr
(
2ZZ̄ − 1

2
ΦaΦa

)
=

1√
6N

Tr
(
2ZZ̄ − (XX̄ + Y Ȳ )

)
. (2.8)

At dimension four, the single-trace charge-two descendant T4,2 ∼ J−T4, takes the form

T4,2 =
1√

10N2
Tr
(
2Z3Z̄ − Z2ΦaΦa − 1

2
ZΦaZΦa

)
, (2.9)

and the single-trace dimension-four neutral descendant T4,0 is

T4,0 =
1

2
√
5N2

Tr

[
2Z2Z̄2 + (ZZ̄)2 −

(
(ZZ̄ + Z̄Z)ΦaΦa + ZΦaZ̄Φa

)
(2.10)

+
1

6

(
ΦaΦaΦbΦb +

1

2
ΦaΦbΦaΦb

)]
.

We next discuss the single-particle descendants O4,2 and O4,0. To obtain their explicit

expressions, one can either act with the above SO(4)-invariant lowering operator on O4, or one

can add all possible SO(4)-invariant combinations of double-traces to T4,2 and T4,0 and fix their

coefficients by imposing orthogonality with all double-traces. We obtain

O4,2 = T4,2 −
4
√
3√

10N
O2O2,0 +

2√
10N3

TrZΦaTrZΦa (2.11)
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and

O4,0 = T4,0 −
3√
5N

(O2,0)
2 − 2√

5N
O†

2O2 +
2√
5N3

TrZΦaTrZ̄Φa

− 1

6
√
5N3

(
TrΦaΦbTrΦaΦb − 1

4
(TrΦaΦa)2

)
. (2.12)

In the above expressions, only the terms that are composed solely of Z, Z̄ contribute to the

expectation values of these operators in LLM geometries. We have included these terms for

completeness, and for possible use in future work. However, for the applications in Sections 4

and 5, all terms that involve any fields other than Z, Z̄ can be ignored.

2.3 Extremal three-point functions and single-particle operators

More generally, let us consider the following single-trace operators,

T̂I = CI
i1···ikTr(Φ

i1 · · ·Φik) , (2.13)

where CI is a totally symmetric traceless rank-k tensor of SO(6). These operators live in

half-BPS multiplets [54]. For details and conventions, see Appendix A. For our holographic

applications, we focus on operators up to dimension four, in the SU(N) theory. Thus the

mixing in the single-particle operators involves at most double-trace operators, and no triple or

higher traces.

Let us review the relation between extremal three-point functions and the mixing coefficients

of double-traces in single-particle operators [48–50]. Consider three unit-normalized single-trace

operators TI1 , TI2 and TI3 , such that k1 = k2+k3. The protected extremal three-point function

takes the form [54]

⟨TI1(x1)TI2(x2)TI3(x3)⟩ =
1

N

√
(k2 + k3)k2k3 ⟨CI1CI2CI3⟩
|x1 − x2|2k2 |x1 − x3|2k3

, (2.14)

where ⟨CI1CI2CI3⟩ is the unique SO(6) invariant formed by contracting all indices in the tensors

CIa , Eq. (A.6), and is related to the triple intersection of spherical harmonics aI1I2I3 , Eq. (A.5),

by

aI1I2I3 =
1(

1
2Σ+ 2

)
! 2

1
2
(Σ−2)

k1!k2!k3!

α1!α2!α3!
⟨CI1CI2CI3⟩ , (2.15)

where Σ = k1 + k2 + k3, α1 = 1
2(k2 + k3 − k1), and similarly for α2, α3. At extremality, i.e. for

k1 = k2 + k3, this becomes

aI1I2I3 =
1

(k1 + 1)(k1 + 2) 2k1−1
⟨CI1CI2CI3⟩ ≡ z(k1)⟨CI1CI2CI3⟩ . (2.16)

Thus we have

⟨CI1CI2CI3⟩ =
aI1I2I3
z(k1)

, for k1 = k2 + k3 . (2.17)

Note that there are no contractions between TI2 and TI3 inside the extremal correlator.

Therefore we can take the coincident limit x3 → x2 and obtain the two-point function

⟨TI1(x1) (TI2TI3) (x2)⟩ =
1

N

aI1I2I3
z(k2 + k3)

√
(k2 + k3)k2k3

|x1 − x2|2(k2+k3)
. (2.18)
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From now on, we will suppress the coordinate dependence in most correlators.

We introduce the notation CI1,I2,I3 for the mixing coefficients by writing the single-particle

operator in the form

OI1 = TI1 −
∑

I2+I3=I1

CI1,I2,I3 TI2TI3 , (2.19)

where the notation I2+I3 = I1 denotes that the sum is over all I2, I3 compatible with k2+k3 = k1

and charge conservation. Note that a particular double-trace combination enters this sum either

once if it is a square of a single trace, or twice if it is a product of two distinct operators.

As discussed above, the mixing coefficients can be determined by requiring the vanishing of

the two-point functions with all double-traces. One finds [48]

CI1,I2,I3 =

√
(k2 + k3)k2k3

2N
⟨CI1CI2CI3⟩ . (2.20)

For our applications in the present work, we now specialize to single-particle operators which

are SO(4) singlets, and also on those double-traces in such operators that are themselves SO(4)

singlets, since only such terms will contribute to the expectation values in the backgrounds we

study. Then the multi-index I reduces to I = (k,m). We have

C(4,m),(2,n),(2,p) =
2

N

a(4m)(2n)(2p)

z(4)
, (2.21)

which agrees with the appropriate mixing coefficients in the single-particle operators presented

in the previous subsection. Thus (2.19) becomes

O4,m = T4,m − 2

N

a(4m)(2n)(2p)

z(4)
O2,nO2,p , (2.22)

where we sum over all n, p compatible with R-charge conservation.

It is convenient to express the precision holographic dictionary in terms of expectation values

of operators with a different normalisation to (2.4), (2.5), which arises from the supergravity

computation of two and three-point functions [14,16], that is,

Tk = NkTk , Ok = NkOk , (2.23)

where

N2 =
N

π2
, Nk =

N

π2
(k − 2)

√
k − 1 for k ̸= 2 . (2.24)

We note that the same normalisation coefficient Nk appears for both Tk and Ok. Also, the

normalization coefficients Nk are the same for the SO(6) descendants as for the corresponding

CPOs.

Finally, we express (2.22) in explicit form for T4,k:

T4,m = O4,m +
N4

N 2
2

2

N

a(4m)(2n)(2p)

z(4)
O2,nO2,p , (2.25)

where N4/N 2
2 = 2

√
3π2/N .
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2.4 Kaluza-Klein reduction to five dimensions

We now review part of the Kaluza-Klein reduction of type IIB supergravity on S5 and its

application to holography [44, 54, 14]. We use x to denote AdS5 coordinates, y to denote S5

coordinates, and from now on we use a, b to denote indices on S5. We focus on the trace of the

10D metric on S5, and the five-form with all legs on S5. The fluctuations of these fields have

KK expansions of the form

haa(x, y) =
∑

πI(x)Y
I(y) ,

fabcde(x, y) =
∑

ΛIbI(x)ϵabcdeY
I(y) ,

(2.26)

where Y I denotes scalar spherical harmonics on S5, see Appendix A. We focus on solutions that

preserve SO(4) isometry in S5, so as above, I reduces to I = (k,m).

From the fields πI and bI , we form the combination sI , which is part of the set of fields that

diagonalize the equations of motion, and which is given by

sI =
1

20(k + 2)
(πI − 10(k + 4)bI) . (2.27)

One then defines fields SI which satisfy five-dimensional field equations that can be integ-

rated into a five-dimensional action without derivative couplings. The relation between the

fields SI and sI takes the form [54,14]

SI = sI +
∑
J,K

(
JIJKsJsK + LIJKDµsJD

µsK
)
+O([s]3) , (2.28)

where Dµ denotes the covariant derivative on empty AdS5. For the computation of expecta-

tion values of operators of dimension two, the linear term is sufficient. For the computation

of expectation values of operators of dimension four, the linear and quadratic terms are suffi-

cient [14]. We therefore write the relevant terms in the relations between the fields SI and the

fields sI for k = 2, 3, 4 as [16]

SI = w(sI)sI , w(sI) =

√
8k(k − 1)(k + 2)z(k)

k + 1
, k = 2, 3 ; (2.29)

S(4,m) =
2
√
3

5

(
s(4,m) −

a(4m)(2n)(2p)

27z(4)

(
83s(2,n)s(2,p) + 7Dµs(2,n)D

µs(2,p)
))

. (2.30)

2.5 Holographic dictionary in the single-trace basis

We now clarify that the previous derivation of the precision holographic dictionary [14,16] was

done in the trace basis. Using the notation [S]k for the coefficient of zk in the Fefferman-Graham

expansion of the field S, the radial canonical momenta are given by [14,16]

π
(2)
2,m = 2 [S2,m]2 , π

(2k−4)
k,m = (2k − 4) [Sk,m]k (k ̸= 2) . (2.31)

Firstly, for O2,m = T2,m the holographic dictionary is given by1

⟨O2,m⟩ = ⟨T2,m⟩ =
N2

2π2
π
(2)
2,m . (2.32)

1The relation between our notation and that of [16] is Tk = OSk .
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Next, the combination of supergravity fields dual to the expectation value of the single-trace

operator T4,m involves quadratic terms in π
(2)
2,m as follows [16]:

⟨T4,m⟩ =
N2

2π2

(
π
(4)
4,m +

2
√
3

z(4)
a(4m)(2n)(2p)π

(2)
2,nπ

(2)
2,p

)
. (2.33)

The quadratic terms were added in order to ensure consistency with the fact that in the trace

basis, extremal three-point correlators are non-zero, and they factorize into a product of two-

point functions [14].

2.6 Holographic dictionary in the single-particle basis

We now rewrite the holographic dictionary in the single-particle basis. We propose that the

holographic dictionary for the expectation value of the single-particle operator O4,m takes the

simple form

⟨O4,m⟩ =
N2

2π2
π
(4)
4,m . (2.34)

As a corollary of this proposal, we obtain the dictionary for the double-trace operators, as

follows. Combining (2.33) and (2.34) we obtain

⟨T4,m⟩ = ⟨O4,m⟩+ N2

2π2

2
√
3

z(4)
a(4m)(2n)(2p)π

(2)
2,nπ

(2)
2,p . (2.35)

Combining this with Eqs. (2.25) and (2.32), we obtain the following simple formula,

⟨O2,mO2,n⟩ =

(
N2

2π2

)2

π
(2)
2,mπ

(2)
2,n = ⟨O2,m⟩⟨O2,n⟩ , (2.36)

which is consistent with large N factorization.

For use when working with ten-dimensional solutions, we now record formulae for the super-

gravity expectation values in terms of the fields sI that arise directly from the Fourier expansion

of the 10D fields, Eq. (2.27). Firstly, combining (2.32) and (2.29), and using the square bracket

notation introduced above (2.31), we have

⟨O2,m⟩ =
N2

2π2

2
√
8

3

[
s(2,m)

]
2
. (2.37)

For O4, we use the fact that for the following coefficient,

π
(4)
4,m = 4 [S4,m]4 , (2.38)

there exists a form of the dictionary in terms of sk,m with no derivatives. Specifically, using [16][
Dµs(2,m)D

µs(2,n)
]
4
= 4

[
s(2,m)s(2,n)

]
4
, (2.39)

from (2.30) one can derive

[S4,m]4 =
2
√
3

5

[
s(4,m) −

37

9z(4)
a(4m)(2n)(2p)s(2,n)s(2,p)

]
4

. (2.40)
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Then using (2.34) and (2.31), the holographic dictionary for O4,m in terms of sI is given by

⟨O4,m⟩ =
N2

2π2

4
√
3

5

[
2s(4,m) −

74

9z(4)
a(4m)(2n)(2p)s(2,n)s(2,p)

]
4

. (2.41)

For comparison, we also record the dictionary for T4,m [16, Eq. (2.27)],

⟨T4,m⟩ =
N2

2π2

4
√
3

5

[
2s(4,m) +

2

3z(4)
a(4m)(2n)(2p)s(2,n)s(2,p)

]
4

, (2.42)

which is consistent with the discussion above. Finally, for the double-traces we have

⟨O2,mO2,n⟩ =
8N4

9π4
[s2,m]2 [s2,n]2 . (2.43)

3 Supergravity solutions

3.1 LLM solutions in AdS5×S5

We now review the asymptotically AdS5×S5 LLM solutions [3]. These solutions contain only

the metric and five-form field strength. The solutions take the form

ds2 = −h−2(dt+ Vidx
i)2 + h2(dy2 + dxidxi) + yeGdΩ2

3 + ye−GdΩ̃2
3 ,

h−2 = 2y coshG , z =
1

2
tanhG ,

y∂yVi = ϵij∂jz , y (∂iVj − ∂jVi) = ϵij∂yz ,

F5 = Fµνdx
µ ∧ dxν ∧ dΩ3 + F̃µνdx

µ ∧ dxν ∧ dΩ̃3 ,

F = dBt ∧ (dt+ V ) +BtdV + dB̂ , (3.1)

F̃ = dB̃t ∧ (dt+ V ) + B̃tdV + dB̃ ,

Bt = −1

4
y2e2G , B̃t = −1

4
y2e−2G ,

dB̂ = −1

4
y3 ∗3 d

(
z + 1

2

y2

)
, dB̃ = −1

4
y3 ∗3 d

(
z − 1

2

y2

)
,

where ∗3 is the Hodge dual on R3 parameterized by (y, x1, x2), in this section i = 1, 2, and

where

z(x1, x2, y) =
y2

π

∫
R2

z(x′1, x
′
2, 0)dx

′
1dx

′
2

((x− x′)2 + y2)2
,

Vi(x1, x2, y) =
ϵij
π

∫
R2

z(x′1, x
′
2, 0)(xj − x′j)dx

′
1dx

′
2

((x− x′)2 + y2)2
.

(3.2)

Regularity imposes a boundary condition on the x1–x2 plane at y = 0, which ensures that one

or both of the three-spheres in the metric shrink smoothly. The boundary condition is that the

function z(x1, x2, 0) take the values ±1/2. This can be depicted as a colouring of the R2 at y = 0

into black and white regions. The black regions correspond to droplets in a free fermion phase

space, and their total area is fixed to be 2π in our conventions. The free fermion description

also plays a role in the holographic description of the corresponding CFT operators [51,55].

The two backgrounds we study in this paper both involve a single black region. The bound-

ary of this region is specified by a function that we shall refer to as the ‘profile function’. To write

the profile functions, we introduce plane polar coordinates via x1 = r cos ϕ̃ and x2 = r sin ϕ̃.

10



The first profile corresponds to the configuration that lives in the consistent truncation. The

small α expansion of the profile function is [31]2

r(ϕ̃) = r1(ϕ̃) =

√
1 + α cos(2ϕ̃) +

α2

2
cos(4ϕ) +O(α3)

= 1 +
α

2
cos 2ϕ̃+

α2

16

(
3 cos 4ϕ̃− 1

)
+O(α3) .

(3.3)

In the second profile, studied in [16,17], r2(ϕ̃) involves a single mode:

r(ϕ̃) = r2(ϕ̃) =

√
1 + α cos(2ϕ̃)

= 1 +
α

2
cos 2ϕ̃− α2

16

(
cos 4ϕ̃+ 1

)
+O(α3) ,

(3.4)

where α < 1 in the first line, and we expand for small α in the second line. We see that the

two profiles (3.3), (3.4) agree up to order α but differ at order α2. For small α, each profile

describes a ripple on a unit circle.

We expand the metric and five-form field strength in small α, up to order α2. For the metric,

we introduce the notation

g = g(0) + αg(1) + α2g(2) . (3.5)

When α = 0, both profiles reduce to the unit circle, which corresponds to empty global

AdS. The quantities z and V are given in [3]. After the change of coordinates

y = R cos θ , r =
√

R2 + 1 sin θ , ϕ̃ = ϕ− t , (3.6)

the metric and flux are those of empty global AdS5×S5, where the radii of AdS5 and S5 are

both set to 1,

ds2 = −(R2 + 1)dt2 +
dR2

R2 + 1
+R2dΩ̃2

3 + dθ2 + sin2 θdϕ2 + cos2 θdΩ2
3 ,

F5 = R3 dt ∧ dR ∧ dΩ̃3 + cos3 θ sin θ dθ ∧ dϕ ∧ dΩ3 .

(3.7)

3.2 First-order backgrounds

At first order in α, the LLM solutions specified by both the profiles (3.3) and (3.4) are the fields

of a linearised supergraviton in global AdS5×S5 [3,56]. For later convenience we will generalise

the discussion slightly, and present the first-order fields that correspond to the profile

r(ϕ̃) = 1 +
α

2
cos(nϕ̃) +O(α2) , (3.8)

which for n = 2 reduces to the linearisation of the profiles (3.3), (3.4).

For holography, one must either fix a gauge, as done in [44], or work in a gauge-invariant

formalism [14]. We choose to impose de Donder-Lorentz gauge, in which the physical degrees

of freedom are manifest, defined by

Dah(ab) = Dahaµ = 0 . (3.9)

2The relation to the notation of [31] is αhere = −ϵthere. We also note that in the very recent work [19], the
parameter α is different to ours; it is given by αthere = 1√

2
tanh

(
ϵthere

2

)
where the ϵthere of [31] and [19] are the

same up to an overall sign.
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Here round brackets on indices denote symmetric traceless part, µ, ν, . . . denote AdS5 indices,

and we remind the reader that a, b, . . . denote S5 indices.

The linearised diffeomorphism that converts the order α fields into de Donder-Lorentz gauge

is given in [45]. In this gauge, the first-order metric and four-form potential A
(1)
4 are given by

g(1)µν =
∑
n=±2

(
−6

5
|n|snYn g

(0)
µν +

4

|n|+ 1
Yn∇(µ∇ν)sn

)
, g

(1)
αβ =

∑
n=±2

2|n|snYn g
(0)
αβ ,

A
(1)
4 =

∑
n=±2

(Yn ⋆AdS5 dsn − sn ⋆S5 dYn) ,
(3.10)

where

sn =
|n|+ 1

8|n|(R2 + 1)|n|/2
eint , Yn = einϕ sin|n| θ . (3.11)

3.3 Second-order backgrounds

At order α2, we again impose de Donder-Lorentz gauge. The closed-form order α2 fields that

follow from the single-mode profile given in Eq. (3.4) were computed and converted into Kaluza-

Klein form and de Donder-Lorentz gauge in [17]. We do the same for the solution in the

consistent truncation. The order α2 fields are somewhat lengthy, and we shall not present them

here. The explicit form of the order α2 metric of the solution specified by the single-mode

profile can be found in [17].

Let us compare the two profile functions that we study. The difference between the profiles

in Eqs. (3.3) and (3.4) is

r2(ϕ̃)− r1(ϕ̃) =
β

2
cos 4ϕ̃ + O(α3) , β = −α2

2
. (3.12)

where we have introduced β by comparison with the linear terms in α in (3.3), (3.4).

Correspondingly, the difference between the two metrics is proportional to the metric of the

linearized fields (3.10)–(3.11) for n = 4, but with a coefficient proportional to α2 rather than

α. Explicitly, denoting the second-order metric corresponding to the profile r1(ϕ̃) by g
(2)
1 and

likewise for the second profile, we have

g
(2)
2 − g

(2)
1 = −1

2
g
(1)
(n=4) . (3.13)

We then expand the order α2 metric and five-form field strength in S5 spherical harmonics.

We focus on the components given in (2.26), and compute the fields sI defined in (2.27), which

we will use to compute holographic expectation values in the next section.

4 Determining the dual CFT states

4.1 Ansatz for the CFT states

In order to perform our precision holographic analysis, we now parameterise a family of CFT

states that will include the two states of interest to us. The first ingredient will be the expansion

of a coherent state built only from powers of O2. The second ingredient will be a term linear
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in O4 at order α2, since we have seen that the difference between the Profile 1 and Profile 2

solutions is a single mode of frequency 4.

Several years ago, it was suggested that the solution corresponding to the single-mode profile

may correspond to a coherent state built only from powers of O2 [16]. However, more recently,

it has been proposed that the solution in the consistent truncation is the one that is dual to a

coherent state built only from powers of O2 [31].

We will find evidence in support of the more recent proposal, demonstrate that the CFT

state dual to the solution defined by the single-mode profile contains O4, and fix the coefficient

of O4 in the CFT state dual to that solution.

In preparation for constructing an appropriate Ansatz for the dual CFT states, we note

that a solution composed of a set of linearised single-particle fluctuations corresponds to the

following CFT state, to leading order in large N :

|Φ⟩ = |0⟩+
∑
n

δnOn|0⟩+O(δ2n) , δn =
Nαn

2
√
n

, (4.1)

where αn is the amplitude of a linearised fluctuation of frequency n, in the normalization used

in Section 3. The coefficient δn was worked out in [16].

We will proceed by making an Ansatz with arbitrary coefficients, A, B, C, that we will fix

by holographic computations. These coefficients will be useful to illustrate the structure of the

calculation. We have seen that the solutions corresponding to both Profile 1 and Profile 2 have,

to linear order in α = α2, a linearized mode of frequency 2. The difference between the profiles

is a linearized mode of frequency 4, but with coefficient α4 = β = −α2/2, see Eq. (3.12). We

thus consider the candidate set of states

|H⟩ = N
(
|0⟩+ C δ2O2|0⟩+B

δ22
2

(O2)
2 |0⟩+Aδ4O4|0⟩+O(δ32 , δ

2
4)

)
, (4.2)

where

δ2 =
Nα

2
√
2
, δ4 = −Nα2

8
. (4.3)

To order α2, the norm of the state is N = 1− C2δ22/2.

To fix the coefficients A,B,C, we first compute the relevant set of CFT expectation values

up to order α2. These are protected quantities, and we compute them using the free theory. We

continue to suppress the spacetime dependence of the correlators. We shall compute expectation

values of the supergravity-normalized versions of the various operators, see Eqs. (2.23)–(2.24).

Because of the orthogonality of the single-particle basis, the expectation values of the charged

operators O2, O4, O2
2 are simply proportional to the respective coefficients C, A, B, as follows.

In the following equations, we write the leading-order result in the small α expansion (likewise

for δ2, δ4); for ease of presentation, we suppress the notation · · ·+O(α#) etc. Firstly,

⟨H|O2|H⟩ = N2Cδ2⟨O†
2O2⟩ =

N2

2
√
2π2

Cα . (4.4)

Next, exploiting the orthogonality between single-particle and multi-particle operators, we find

⟨H|O4|H⟩ = N4Aδ4⟨O†
4O4⟩ = −

√
3N2

4π2
Aα2 . (4.5)
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For O2
2, we obtain

⟨H| (O2)
2 |H⟩ = N 2

2

Bδ22
2

〈(
O†

2

)2
(O2)

2 〉 =
N4

8π4
Bα2 . (4.6)

We now consider the neutral operators O2,0 and O4,0. At order δ22 , and given the above

Ansatz, these are only sensitive to the linear term in δ2, proportional to O2, in (4.2). Firstly,

at order δ22 ,

⟨H|O4,0|H⟩ = N4C
2δ22⟨O

†
2O4,0O2⟩ = 0 , (4.7)

since ⟨O†
2O4,0O2⟩ is an extremal three-point correlator of single-particle operators. The CFT

expectation value of O2,0 at this order is [16]

⟨H|O2,0|H⟩ = N2C
2δ22⟨O

†
2O2,0O2⟩ =

N2
√
2

4
√
3π2

C2α2 . (4.8)

4.2 Analysis of the solution in the consistent truncation

It has been argued that the LLM solution in the consistent truncation should be a coherent

state composed of multi-traces of the operator O2 only [31]. If this is correct, then the single-

particle operator O4 should have zero expectation value in the corresponding heavy state. We

will verify that this is indeed the case, and determine the state to order α2.

For Profile 1, using (2.26)–(2.27), the complete list of the fields sI up to order α2 is

s(2,2) =
3e−2it

8 (R2 + 1)
α , s(2,−2) =

3e2it

8 (R2 + 1)
α , (4.9)

s(2,0) =

√
3
(
20R4 + 57R2 + 27

)
160 (R2 + 1)3

α2 , (4.10)

s(4,0) =
111R2 + 55

192
√
5 (R2 + 1)3

α2 , (4.11)

s(4,4) =
37e−4it

64 (R2 + 1)2
α2 , s(4,−4) =

37e4it

64 (R2 + 1)2
α2 . (4.12)

To order α2 and exactly in R, we find the five-dimensional fields defined in Eq. (2.30) to be

S4 = 0 , S4,0 = 0 . (4.13)

To extract the supergravity expectation values, we must put the metric in Fefferman-Graham

form. Recall that we denote the metric on empty global AdS5 as g0µν . Similarly to [16] we write

the zero-mode on S5 of the metric as g
(0)
µν + h̃0µν with h̃0µν = h0µν +

1
3π

0g
(0)
µν . Then to order α2,

g
(0)
µν + h̃0µν is given by

ds2(0) = −dt2
(
R2 + 1

)(
1 + α2 24R

8 + 72R6 + 77R4 + 55R2 + 24

32 (R2 + 1)4

)
+

dR2

R2 + 1

(
1− α2 24R

6 + 76R4 + 149R2 + 15

32 (R2 + 1)4

)
(4.14)

+R2dΩ2
3

(
1− α2 72R

6 + 216R4 + 199R2 + 45

96 (R2 + 1)3

)
.
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The relation between the bulk radial coordinate and the Fefferman-Graham one is given by

R =
1

z
− z

4
− 3α2

16
z − α2

64
z3 + . . . , (4.15)

however only the first term R = 1
z is relevant to our analysis.

We now read off the supergravity expectation values using the holographic dictionary in

Eqs. (2.37)–(2.42). Using the Fefferman-Graham expansion and taking into account terms up

to α2, the supergravity expectation values are

⟨O2⟩ =
N2

2
√
2π2

e−2itα , ⟨O2,0⟩ =
N2

√
2

4
√
3π2

α2 , (4.16)

⟨O4⟩ = 0 , ⟨O4,0⟩ = 0 , ⟨T4⟩ =
N2

√
3

2π2
e−4itα2 , ⟨T4,0⟩ =

N2
√
3

2
√
5π2

α2 . (4.17)

When comparing to CFT expectation values, we will set t = 0.

Comparing the expectation values of the charged operatorsO2, O2
2 andO4 to their respective

CFT expectation values in Eqs. (4.4)–(4.6), we obtain to leading order in large N

C = 1 , B = 1, A = 0 , (4.18)

where we note that the double-trace factorization given in Eq. (2.36) implies B = C2.

The expectation value of O4,0 at order α2 vanishes in supergravity, since S4,0 = 0, and

also in the CFT. The expectation value of O2,0 gives an independent cross-check of C = 1.

The agreement of both ⟨O4,0⟩ and ⟨O2,0⟩ gives a non-trivial test of the completeness of the

Ansatz (4.2) to this order.

Thus, for the solution in the consistent truncation, we see that to order δ22 the following

CFT state is consistent with all available expectation values of the known precision holographic

dictionary:

|H⟩ = N
(
|0⟩+ δ2O2|0⟩+

1

2
δ22 (O2)

2 |0⟩+O(δ32)

)
, (4.19)

where

δ2 =
Nα

2
√
2
, N = 1− δ22

2
. (4.20)

This is evidence in support of the proposal of [31] that the CFT state should be composed of

multi-traces of O2 only.3 It also agrees with the very recent refinement of this proposal in [19];

the relation between the notations of these works is given in footnote 2.

4.3 Analysis of the single-mode ripple solution

We now analyse the solution defined by the single-mode profile. For this solution, the fields

s2,±2, s2,0 and s4,0 are the same as for the solution in the consistent truncation. The only

different component fields are s4,±4, given below, and there are no other fields up to order α2.

This reflects the fact that the difference between solutions 1 and 2 is proportional to a single

3We note that a computation of ⟨O4⟩ = ⟨O4,0⟩ = 0 was reported in [31], however the holographic dictionary
quoted in Eq. (B.5) of that work is the dictionary for the single-trace operators, Eq. (2.42), rather than the
dictionary for the single-particle operators, Eq. (2.41).
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mode of frequency ±4, see Eq. (3.12). For the solution specified by the single-mode profile, we

have

s(4,4) =
17e−4it

64 (R2 + 1)2
α2 , s(4,−4) =

17e4it

64 (R2 + 1)2
α2 . (4.21)

We therefore find the five-dimensional fields S4,m to be

S4 = −
√
3 e−4it

8 (R2 + 1)2
α2 , S4,0 = 0 . (4.22)

The Fefferman-Graham expansion depends only on the zero-modes of the ten-dimensional metric

reduced on S5. Therefore it is the same as that of Profile 1 in Eq. (4.15).

Most of the supergravity expectation values for Profile 2 are the same as those for Profile

1, and are not sensitive to the difference between the two profiles.

However, importantly, for the single-mode profile, the supergravity expectation values of

O4 and T4 differ from the Profile 1 expressions in Eqs. (4.16), (4.17). The full set of non-zero

supergravity expectation values up to order α2 for the single-mode profile background are:

⟨O2⟩ =
N2

2
√
2π2

e−2itα , ⟨O2,0⟩ =
N2

√
2

4
√
3π2

α2 , ⟨O4,0⟩ = 0 ,

⟨O4⟩ = −
√
3N2

4π2
e−4itα2 , ⟨T4⟩ =

N2
√
3

4π2
e−4itα2 , ⟨T4,0⟩ =

N2
√
3

2
√
5π2

α2 ,

(4.23)

Comparing the supergravity and CFT expressions for the expectation values of O2, O2
2, and

particularly O4, we find that for the solution defined by the single-mode profile, the dual CFT

state has coefficients

C = 1 , B = 1, A = 1 . (4.24)

Thus, for the solution defined by the single-mode profile, to leading order in large N and to

order α2, the following CFT state is consistent with all available expectation values of the

known precision holographic dictionary:

|H⟩ = N
(
|0⟩+ δ2O2|0⟩+

δ22
2

(O2)
2 |0⟩+ δ4O4|0⟩+O(δ32 , δ

2
4)

)
, (4.25)

where

δ2 =
Nα

2
√
2
, δ4 = −Nα2

8
, N = 1− δ22

2
. (4.26)

We note that in the holographic study of the single-mode profile solution in [16], the single-

trace basis was used. The expectation values of O2, O2,0, and T4,0 in (4.23) agree with those

reported in [16]. By contrast, the expectation value of T4 in this background was not examined

in that work. By computing the expectation value of O4, we have demonstrated the presence

of O4, and fixed its coefficient in the dual CFT state.

5 Cross-check at cubic order

In this section we consider the solution defined by the single-mode profile, and make a cross-

check of the dual CFT state given in Eq. (4.25). We do so by considering the charged R-

symmetry descendant operator O4,2. For this operator, the CFT state (4.25) up to order α2
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gives rise to an expectation value at order α3. We demonstrate that this is precisely reproduced

by the corresponding supergravity analysis.

To do so, we compute the closed-form LLM solution that follows from the single-mode profile

to order α3, and bring it to de Donder-Lorentz gauge. We then extract the KK fields sI as

before. The complete list of the fields sI at order α3 is

s(4,2) =
e−2it

(
119R6 + 459R4 + 477R2 + 116

)
224

√
10 (R2 + 1)5

α3 , (5.1)

s(2,2) =
e−2it

(
720R8 + 2112R6 + 2247R4 + 836R2 + 233

)
2560 (R2 + 1)5

α3 . (5.2)

We note in passing that the order α3 term in s(2,2) implies an α3 correction to the super-

gravity expectation value of ⟨O2⟩, which in our parameterization takes the form

⟨O2⟩ =
N2

2
√
2π2

(
α+

3

4
α3
)
. (5.3)

This would be sensitive to a possible term proportional to α3 |O2⟩ in the dual state, however

we have expanded the dual state only to order α2, so this is beyond the precision to which we

work. We thus focus instead on O4,2.

To compute the supergravity expectation value of O4,2, we compute the 5D field S4,2. Using

Eq. (2.30) we obtain

S4,2 = −
√

3

10

(
2800R6 + 10567R4 + 8296R2 + 2909

)
e−2it

11200 (R2 + 1)5
α3 . (5.4)

The relevant coefficient in the Fefferman-Graham expansion is

[S4,2]4 = −1

4

√
3

10
e−2itα3 , (5.5)

and so the holographic expectation value is

⟨O4,2⟩ = −N2

2π2

√
3

10
e−2itα3 . (5.6)

We now compare this result to the CFT, i.e. we compute ⟨O4,2⟩ in the state (4.25):

⟨H|O4,2|H⟩ = N4δ2

(
δ22
2

〈(
O†

2

)2
O4,2O2

〉
+ δ4⟨O†

4O4,2O2⟩
)

. (5.7)

Firstly,
〈
(O†

2)
2O4,2O2

〉
gives a subleading contribution in large N compared to the term pro-

portional to ⟨O†
4O4,2O2⟩, see Appendix B for details.

Next, we consider ⟨O†
4O4,2O2⟩. Expanding O†

4 in terms of single-traces, this is

⟨O†
4O4,2O2⟩ = ⟨T †

4O4,2T2⟩ −
2

N

〈(
O†

2

)2
O4,2O2

〉
. (5.8)

We have determined already that the second correlator on the right-hand side of Eq. (5.8) is

subleading compared to the first one. The first term evaluates to

⟨T †
4O4,2T2⟩ = ⟨T †

4T4,2T2⟩ −
4
√
3√

10N
⟨T †

4 (T2,0T2)T2⟩ . (5.9)
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Furthermore, the second term on the right-hand side of Eq. (5.9) is suppressed at large N

compared to the first term, see Appendix B for details. So, to leading order in large N , we have

⟨O†
4O4,2O2⟩ = ⟨T †

4 T4,2T2⟩ =
4√
5N

. (5.10)

The CFT expectation value at this order, from (5.7), is then

⟨H|O4,2|H⟩ = N4
4δ2δ4√
5N

= −N2

2π2

√
3

10
α3 , (5.11)

which precisely agrees with the holographic result (5.6). This is a non-trivial cross-check of

the CFT state dual to the single-mode profile solution given in Eq. (4.25). This also repres-

ents a non-trivial check of the proposed holographic dictionary for single-particle operators in

Eqs. (2.34), (2.41).

6 Discussion

In this paper we revisited the AdS5/CFT4 precision holographic dictionary for heavy-light

three-point correlators. We clarified that it was originally expressed in the single-trace basis,

and rewrote it in the single-particle basis. The holographic dictionary takes a simpler form in

the single-particle basis, see Eq. (2.34).

The single-particle basis gave a distinct advantage over the trace basis for our computation,

because the dual CFT states we studied involve both single and double-trace operators. The

orthogonality of the single-particle basis meant that each coefficient in our Ansatz for the dual

CFT states was controlled by a single expectation value, see Eqs. (4.2)–(4.6).

We performed a holographic analysis of the two LLM supergravity solutions under consid-

eration, perturbatively in α. From the asymptotic expansion of the appropriate gauge-invariant

fields, we first computed the expectation values of the operators that directly control the coeffi-

cients in the Ansatz for the dual CFT states. These determine the dual CFT states up to order

α2 and at leading order in large N , see Eqs. (4.19) and (4.25).

We also computed the supergravity expectation values of a set of R-symmetry descendants

of chiral primaries. All of these resulted in precise agreement between gravity and CFT. We

computed all expectation values that arise up to order α2, and also the expectation value of the

R-symmetry descendant O4,2 in the solution defined by the single-mode profile, which arises at

order α3. The agreement of these expectation values constitutes a set of non-trivial cross-checks

of both the dual CFT states and the precision holographic dictionary in the single-particle basis.

Our results represent evidence in favour of the proposal that the dual CFT state of the LLM

solution that lies in the consistent truncation is a coherent state composed only of powers of the

dimension-two chiral primary O2 [31,19]. We showed that the solution defined by a single-mode

profile contains, by contrast, the dimension-four chiral primary O4 at order α2, and determined

the coefficient of O4 at this order.

This raises a natural question for future work. That is, for the solution defined by the

single-mode profile, what the dual CFT state is at higher orders in α. It is natural to expect

that a sequence of higher-dimension operators appears at successive orders in α. Such terms
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can in principle be analyzed by extending the precision holographic dictionary to operators with

dimensions higher than four, which has not been done to date.

To extend the holographic dictionary to operators of dimension six, it would first be neces-

sary to solve explicitly the relation between the five-dimensional fields SI and the fields sJ , see

Eq. (2.28), up to cubic order in sJ , to account for cubic terms in s2,m. This entails expanding

the equations of motion up to cubic order in fluctuations and performing field redefinitions to

remove derivative couplings [54, 14]. This would enable a study of the dual CFT state of the

solution defined by a single-mode profile up to order α3.

More broadly, the LLM family of solutions is a large class, and there are even larger classes

of 1/4 and 1/8-BPS solutions, see e.g. [35, 57, 58]. It would be interesting to perform precision

holographic analyses of more general asymptotically AdS5×S5 solutions. We re-emphasize that

the holographic dictionary in the single-particle basis gives an advantage over the single-trace

basis, and we expect that this form of the dictionary will prove useful for future studies.
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A Spherical harmonics and symmetric traceless tensors

We consider the following single-trace operators,

T̂I = CI
i1···ikTr(Φ

i1 · · ·Φik) (A.1)

where CI is a totally symmetric traceless rank-k tensor of SO(6), which live in half-BPS mul-

tiplets [54]. The tensors CI are unit-normalized, ⟨CICJ⟩ ≡ CI
i1···ikC

J
i1···ik = δIJ . Each CI

corresponds to a scalar SO(6) spherical harmonic via Y I = CI
i1···ikx

i1 · · ·xik for unit-norm vec-

tors xij ∈ R6.

Scalar spherical harmonics on S5 satisfy

□S5Y
I = ΛIY I , ΛI = −k(k + 4), k = 0, 1, 2, . . . (A.2)

We write the metric on S5 as

ds2S5 = dθ2 + sin2 θdϕ2 + cos2 θdΩ2
3 . (A.3)

In this paper we restrict to harmonics with SO(4) isometry, which depend only on θ and ϕ.

Then the multi-index I reduces to I = (k,m) and the scalar harmonics Y (k,m) are given in

terms of hypergeometric functions [14].

Denoting the area of the unit five-sphere by ω5 = π3, the scalar spherical harmonics are

then normalized as

1

ω5

∫
S5

Y I1Y I2 = z(k)δI1I2 , z(k) ≡ 1

2k−1(k + 1)(k + 2)
. (A.4)
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The triple intersection constants aI1I2I3 are defined by

aI1I2I3 ≡ 1

ω5

∫
S5

Y I1Y I2Y I3 . (A.5)

In terms of the SO(6) invariant (see e.g. [50])〈
CI1CI2CI3

〉
≡ CI1

i1... iα2 j1 ...jα3
CI2
j1...jα3 l1...lα1

CI3
l1...lα1 i1...iα2

, (A.6)

we have the following relation, used in the main text around Eq. (2.15),

aI1I2I3 =
1(

1
2Σ+ 2

)
! 2

1
2
(Σ−2)

k1!k2!k3!

α1!α2!α3!
⟨CI1CI2CI3⟩ , (A.7)

where Σ = k1 + k2 + k3, α1 =
1
2(k2 + k3 − k1), and similarly for α2, α3.

We record here some useful values of triple intersection constants:

a(4,4)(2,−2)(2,−2) = z(4) , a(4,0)(2,0)(2,0) =
3z(4)

2
√
5

,

a(4,0)(2,2)(2,−2) =
z(4)

2
√
5
, a(4,2)(2,0)(2,−2) = z(4)

√
3

10
.

(A.8)

B CFT expectation values at cubic order

In this appendix we record some details of the free CFT computations in Section 5. We first

describe the computation of the expectation value of O4,2. Our starting point is Eq. (5.7), i.e.

⟨H|O4,2|H⟩ = N4δ2

(
δ22
2

〈
(O†

2)
2O4,2O2

〉
+ δ4⟨O†

4O4,2O2⟩
)

. (B.1)

Firstly, we verify explicitly that
〈
(O†

2)
2O4,2O2

〉
gives a subleading contribution in large N

compared to the term proportional to ⟨O†
4O4,2O2⟩. Rewriting in the trace basis, we have

⟨(O†
2)

2O4,2O2⟩ = ⟨(T †
2 )

2T4,2T2⟩ −
4
√
3√

10N
⟨(T †

2 )
2 (T2,0T2)T2⟩ . (B.2)

Explicitly, the relevant terms that contribute to these correlators are

⟨(T †
2 )

2T4,2T2⟩ =
1

2
√
5N5

⟨
(
TrZ̄2

)2
TrZ3Z̄ TrZ2⟩ , (B.3)

⟨(T †
2 )

2 (T2,0T2)T2⟩ =

√
2

4
√
3N5

⟨
(
TrZ̄2

)2 (
TrZZ̄ TrZ2

)
TrZ2⟩ . (B.4)

Free-field Wick contractions give

⟨(T †
2 )

2T4,2T2⟩ =
16√
5N2

+O(N−4) , (B.5)

⟨(T †
2 )

2 (T2,0T2)T2⟩ =
4
√
2√

3N
+O(N−4) . (B.6)

Therefore

⟨(O†
2)

2O4,2O2⟩ = O(N−4) , (B.7)
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and so

N4δ
3⟨(O†

2)
2O4,2O2⟩ = α3O(N0) . (B.8)

Now we turn to ⟨O†
4O4,2O2⟩. The structure of this computation is described around Eq. (5.9)

of the main text; here we describe in more detail the fact that the following correlator gives a

subleading contribution at large N :

⟨T †
4 (T2,0T2)T2⟩ =

√
2

4
√
3N5

⟨TrZ̄4
(
TrZZ̄TrZ2

)
TrZ2⟩ . (B.9)

Free-field Wick contractions give

⟨TrZ̄4
(
TrZZ̄TrZ2

)
TrZ2⟩ = 8N3 +O(N) , (B.10)

so we find
1

N
⟨T †

4 (T2,0T2)T2⟩ =
2
√
2√

3N3
+O(N−5) . (B.11)

Thus, to leading order in large N , we have

⟨O†
4O4,2O2⟩ = ⟨T †

4T4,2T2⟩+O(N−3) , (B.12)

leading to Eq. (5.10) of the main text.
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