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1 Introduction

Holographic duality is the remarkable conjecture that a gravitational theory in d+1 dimensions
(possibly times other compact directions) may be completely equivalent to a non-gravitational
theory that lives on the d-dimensional boundary of the original space-time [1]. Most typically,
the gravitational theory lives in (d + 1)-dimensional Anti-de Sitter space (AdSd+1), and the
non-gravitational theory is a conformal field theory (CFTd).

On the gravitational side of such a duality, there can be large families of asymptotically
Anti-de Sitter supergravity solutions that are horizonless and smooth up to possible physical
sources. Holography relates these solutions to generically heavy pure states of the dual
field theory. An interesting class of such solutions are those that are backreacted coherent
bound states of many supergravitons, see for example [2–9]. For many of these families of
supergravity solutions, there is a detailed proposal for the dual CFT states.
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Several of these proposed identifications between supergravity solutions and CFT states
have passed non-trivial tests using precision holographic studies of protected heavy-light three-
point correlation functions [10–13], using the formalism developed in [14–16]. To perform
such studies, one constructs gauge-invariant combinations of supergravity fields, and studies
their asymptotic expansion at large radial distance in AdS. Coefficients in this expansion are
dual to expectation values of light operators in the corresponding heavy CFT state.

Smooth supergravity solutions have also been used to compute heavy-light and all-light
correlators, including very recently [17–19] in the duality between type IIB theory on AdS5×
S5 and 4D N = 4 SU(N) super Yang-Mills (SYM) theory [1]. These works used half-BPS
asymptotically AdS5×S5 smooth horizonless supergravity solutions in the class derived by
Lin, Lunin and Maldacena (LLM) [3]. The correlators were computed in the supergravity
regime in the bulk, i.e. at large N and large ’t Hooft coupling.

These recent AdS5/CFT4 developments build on similar work in AdS3/CFT2 duality
on heavy-light four-point correlators [20–23] and computing all-light correlators by making
extrapolations thereof [24–27]; see also the related works [28–30]. Here, ‘heavy’ denotes CFT
operators whose conformal dimensions scale linearly with the central charge c in the large
c limit, and ‘light’ denotes CFT operators whose conformal dimensions are independent
of c in the large c limit.

The recent computations of four-point correlators in [17–19] used two different LLM
geometries. Each of these solutions is defined by a profile function that describes the boundary
of a single droplet in the free fermion description of the LLM solutions. The work of [17] used
a profile function that involves a single mode, that had been studied in [16]. By contrast, the
work of [18, 19] used a solution [31] that lies in the consistent truncation of [32], that was
first constructed and studied in [33, 34], and corresponds to an elliptical profile function [35];
see also [36]. For a selection of other recent work involving LLM solutions, see [37–43].

The primary motivations for this work are to make precise the difference between the
two LLM backgrounds studied in [17–19], and to investigate the holographic description of
these solutions with AdS5/CFT4 precision holography [14, 16].

In this paper we study these two solutions perturbatively in a small parameter α. The
backgrounds agree to order α, but differ at order α2. At first order in α, the linearised
supergravity fields are among the fluctuations around global AdS5×S5 classified in [44], as
shown in [45]. These fields are dual to the state |O2⟩ corresponding to the chiral primary
operator O2 ∼ Tr Z2, where Z is a holomorphic combination of two of the six hermitian
adjoint scalars of the dual field theory, Z = 1√

2(Φ1 + iΦ2).
Beyond the linearised order, in general LLM solutions are dual to multi-traces built from

powers of the field Z. These operators have scaling dimension equal to a particular U(1)
R-charge in the SO(6) R-symmetry group, ∆ = J . In [31] it was proposed that the LLM
solution in the consistent truncation is dual to a coherent state composed only of powers of
O2. This proposal was refined very recently in [19]. We will find supporting evidence for
this proposal. We shall furthermore demonstrate that, by contrast, the solution defined by
the single-mode profile is dual to a state that contains the dimension-four chiral primary
O4 at order α2, and fix the coefficient of O4 in the state at this order.

To establish these results, we revisit the AdS5/CFT4 precision holographic dictionary,
and first clarify that it was originally derived in the single-trace basis of the dual CFT [14, 16].
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We then rewrite the dictionary in the single-particle basis, which will be much more convenient
for our analysis. Single-particle CFT operators are defined to be half-BPS operators that are
orthogonal to all multi-trace operators [46, 47]. They are proposed to be dual to single-particle
supergravity states on global AdS5×S5. This generalizes the earlier work of [48–50]. In the
single-particle basis, the holographic dictionary takes a simpler form in terms of the 5D
supergravity fields that arise from Kaluza-Klein reduction. The analogous single-particle
basis has also been recently used in AdS3/CFT2 holography [12].

We then use the precision holographic dictionary in the single-particle basis to study
the two LLM geometries in question. To do so, on the supergravity side, we convert each
background into de Donder-Lorentz gauge, building on the results of [17]. On the CFT side,
we make an Ansatz for the dual CFT states up to order α2.

We compute expectation values of the single-particle chiral primary operators of dimension
two and four, and of certain SO(6) R-symmetry descendants thereof. The first few expectation
values we compute are used to fix the coefficients in the CFT states, thus distinguishing the
dual CFT states to the respective LLM backgrounds. The remaining expectation values, in
particular those of the R-symmetry descendants, represent non-trivial cross-checks of the
dual CFT states, and also of the holographic dictionary in the single-particle basis. These
cross-checks include an operator whose expectation value arises at order α3.

The structure of this paper is as follows. In section 2 we present the holographic dictionary
in the single-particle basis, as well as the explicit form of the light operators whose expectation
values we compute, including a set of R-symmetry descendants of the single-particle chiral
primaries. In section 3 we describe the two LLM solutions we consider, and make explicit
the difference between the solutions in supergravity. In section 4 we analyze the full set
of holographic expectation values up to order α2, and fix the dual CFT states to the two
LLM solutions. In section 5 we perform a non-trivial cross-check of the heavy state dual
to the solution defined by the single-mode profile by computing an expectation value at
order α3. In section 6 we discuss our results.

2 Precision AdS5/CFT4 holography in the single-particle basis

In this section we start by presenting the light operators whose expectation values we compute
in this paper. We then discuss the relation between extremal three-point correlators and
single-particle operators. We review the relevant parts of the precision holographic dictionary
in AdS5 [14, 16], and clarify that the dictionary was derived in the trace basis. We then
rewrite the dictionary in the single-particle basis.

2.1 Single-particle chiral primaries

Single-particle operators are defined to be orthogonal to all multi-trace operators, i.e. to have
vanishing two-point functions with all such operators [46, 47]. We work with gauge group
SU(N) and with complex combinations of the six hermitian scalar fields Φi as follows,

Z(x) = 1√
2

(
Φ1(x) + iΦ2(x)

)
, Z̄(x) = 1√

2

(
Φ1(x) − iΦ2(x)

)
, (2.1)

and similarly for X, X̄, Y, Ȳ in terms of Φa, where a runs over 3, . . . , 6.
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We absorb the appropriate factors of the Yang-Mills coupling and of 2π into the definition
of the operators, as is often done (see e.g. [16, 51, 52]), such that the two-point correlators
take the form

⟨Z̄p
q(x)Zr

s(y)⟩ =
δp

sδr
q − 1

N δp
q δr

s

|x − y|2
. (2.2)

We shall work at leading order in large N . The 1/N term in the propagator is subleading (see
e.g. [53]) and shall play no role in the present work. From now onwards, we shall suppress
the spacetime dependence in most equations.

We first introduce the following notation for non-unit-normalized single-trace chiral
primary operators,

T̂ k = Tr(Zk) . (2.3)

As usual, it is convenient to define single-trace operators that are unit-normalized at leading
order in large N , with ∆ = J = k, see e.g. [54],

Tk = Tr(Zk)
√

kN
k
2

. (2.4)

The unit-normalized single-particle chiral primaries take the following form at leading
order in large N [47],

O2 = T2 , O4 = T4 −
2
N

(O2)2 , (2.5)

where we have kept only the leading term in the coefficient of the double-trace (O2)2.
We emphasize that this term can contribute at leading order in large N in extremal and
heavy-light correlators.

2.2 Single-particle R-symmetry descendants

In this section we work out the explicit form of the single-particle R-symmetry descendants
whose expectation values we shall compute in this paper. By “R-symmetry descendants” we
mean operators obtained by acting on chiral primaries with (bosonic) lowering operators
of the SO(6) R-symmetry.

First, we recall that the states dual to LLM solutions involve multi-traces composed of
powers of the field Z. Such states break the SO(6) R-symmetry to SO(4). We will compute
expectation values of some SO(4)-invariant R-symmetry descendants of chiral primaries.
We thus define Tk,m to be the SO(4) invariant R-symmetry descendants of the single-trace
operators Tk that have charge m under the U(1) selected by Z, and that are unit-normalized.
Likewise, we define Ok,m to be the analogous descendants of the single-particle chiral primaries
Ok. We work to leading order in large N throughout.

We start with the single-trace operators. The explicit forms of the descendants of
single-trace CPOs can be obtained directly from the relevant spherical harmonic in terms
of the six scalars Φi [54] (see below around eq. (2.13)). Alternatively, one can act on the
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chiral primary with the following SO(4)-invariant lowering operator [31], which lowers the
U(1) R-charge by 2 units:

J− ≡
6∑

a=3
J−aJ−a , J−a ≡ (J1a − iJ2a) , a = 3, . . . , 6, (2.6)

where
J ij = −i Tr

(
Φi ∂

∂Φj
− Φj ∂

∂Φi

)
, i , j = 1, . . . , 6 . (2.7)

For instance, the neutral descendant O2,0 = T2,0 is

O2,0 = 1√
6N

Tr
(

2ZZ̄ − 1
2ΦaΦa

)
= 1√

6N
Tr
(
2ZZ̄ − (XX̄ + Y Ȳ )

)
. (2.8)

At dimension four, the single-trace charge-two descendant T4,2 ∼ J−T4, takes the form

T4,2 = 1√
10N2 Tr

(
2Z3Z̄ − Z2ΦaΦa − 1

2ZΦaZΦa
)

, (2.9)

and the single-trace dimension-four neutral descendant T4,0 is

T4,0 = 1
2
√

5N2 Tr
[
2Z2Z̄2 + (ZZ̄)2 −

(
(ZZ̄ + Z̄Z)ΦaΦa + ZΦaZ̄Φa

)
(2.10)

+ 1
6

(
ΦaΦaΦbΦb + 1

2ΦaΦbΦaΦb
)]

.

We next discuss the single-particle descendants O4,2 and O4,0. To obtain their explicit
expressions, one can either act with the above SO(4)-invariant lowering operator on O4, or
one can add all possible SO(4)-invariant combinations of double-traces to T4,2 and T4,0 and
fix their coefficients by imposing orthogonality with all double-traces. We obtain

O4,2 = T4,2 −
4
√

3√
10N

O2O2,0 + 2√
10N3 TrZΦa TrZΦa (2.11)

and

O4,0 = T4,0 −
3√
5N

(O2,0)2 − 2√
5N

O†
2O2 + 2√

5N3 TrZΦa TrZ̄Φa

− 1
6
√

5N3

(
TrΦaΦb TrΦaΦb − 1

4 (TrΦaΦa)2
)

. (2.12)

In the above expressions, only the terms that are composed solely of Z, Z̄ contribute to the
expectation values of these operators in LLM geometries. We have included these terms for
completeness, and for possible use in future work. However, for the applications in sections 4
and 5, all terms that involve any fields other than Z, Z̄ can be ignored.

2.3 Extremal three-point functions and single-particle operators

More generally, let us consider the following single-trace operators,

T̂I = CI
i1···ik

Tr(Φi1 · · ·Φik) , (2.13)
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where CI is a totally symmetric traceless rank-k tensor of SO(6). These operators live in
half-BPS multiplets [54]. For details and conventions, see appendix A. For our holographic
applications, we focus on operators up to dimension four, in the SU(N) theory. Thus the
mixing in the single-particle operators involves at most double-trace operators, and no triple
or higher traces.

Let us review the relation between extremal three-point functions and the mixing coeffi-
cients of double-traces in single-particle operators [48–50]. Consider three unit-normalized
single-trace operators TI1 , TI2 and TI3 , such that k1 = k2 + k3. The protected extremal
three-point function takes the form [54]

⟨TI1(x1)TI2(x2)TI3(x3)⟩ = 1
N

√
(k2 + k3)k2k3 ⟨CI1CI2CI3⟩
|x1 − x2|2k2 |x1 − x3|2k3

, (2.14)

where ⟨CI1CI2CI3⟩ is the unique SO(6) invariant formed by contracting all indices in the
tensors CIa , eq. (A.6), and is related to the triple intersection of spherical harmonics aI1I2I3 ,
eq. (A.5), by

aI1I2I3 = 1(
1
2Σ + 2

)
! 2

1
2 (Σ−2)

k1!k2!k3!
α1!α2!α3!⟨C

I1CI2CI3⟩ , (2.15)

where Σ = k1 + k2 + k3, α1 = 1
2(k2 + k3 − k1), and similarly for α2, α3. At extremality,

i.e. for k1 = k2 + k3, this becomes

aI1I2I3 = 1
(k1 + 1)(k1 + 2) 2k1−1 ⟨C

I1CI2CI3⟩ ≡ z(k1)⟨CI1CI2CI3⟩ . (2.16)

Thus we have

⟨CI1CI2CI3⟩ = aI1I2I3

z(k1) , for k1 = k2 + k3 . (2.17)

Note that there are no contractions between TI2 and TI3 inside the extremal correlator.
Therefore we can take the coincident limit x3 → x2 and obtain the two-point function

⟨TI1(x1) (TI2TI3) (x2)⟩ = 1
N

aI1I2I3

z(k2 + k3)

√
(k2 + k3)k2k3

|x1 − x2|2(k2+k3) . (2.18)

From now on, we will suppress the coordinate dependence in most correlators.
We introduce the notation CI1,I2,I3 for the mixing coefficients by writing the single-

particle operator in the form

OI1 = TI1 −
∑

I2+I3=I1

CI1,I2,I3 TI2TI3 , (2.19)

where the notation I2 + I3 = I1 denotes that the sum is over all I2, I3 compatible with
k2 + k3 = k1 and charge conservation. Note that a particular double-trace combination
enters this sum either once if it is a square of a single trace, or twice if it is a product
of two distinct operators.

– 6 –
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As discussed above, the mixing coefficients can be determined by requiring the vanishing
of the two-point functions with all double-traces. One finds [48]

CI1,I2,I3 =
√

(k2 + k3)k2k3
2N

⟨CI1CI2CI3⟩ . (2.20)

For our applications in the present work, we now specialize to single-particle operators
which are SO(4) singlets, and also on those double-traces in such operators that are them-
selves SO(4) singlets, since only such terms will contribute to the expectation values in the
backgrounds we study. Then the multi-index I reduces to I = (k, m). We have

C(4,m),(2,n),(2,p) = 2
N

a(4m)(2n)(2p)
z(4) , (2.21)

which agrees with the appropriate mixing coefficients in the single-particle operators presented
in the previous subsection. Thus (2.19) becomes

O4,m = T4,m − 2
N

a(4m)(2n)(2p)
z(4) O2,nO2,p , (2.22)

where we sum over all n, p compatible with R-charge conservation.
It is convenient to express the precision holographic dictionary in terms of expectation

values of operators with a different normalisation to (2.4), (2.5), which arises from the
supergravity computation of two and three-point functions [14, 16], that is,

Tk = NkTk , Ok = NkOk , (2.23)

where
N2 = N

π2 , Nk = N

π2 (k − 2)
√

k − 1 for k ̸= 2 . (2.24)

We note that the same normalisation coefficient Nk appears for both Tk and Ok. Also,
the normalization coefficients Nk are the same for the SO(6) descendants as for the cor-
responding CPOs.

Finally, we express (2.22) in explicit form for T4,k:

T4,m = O4,m + N4
N 2

2

2
N

a(4m)(2n)(2p)
z(4) O2,nO2,p , (2.25)

where N4/N 2
2 = 2

√
3π2/N .

2.4 Kaluza-Klein reduction to five dimensions

We now review part of the Kaluza-Klein reduction of type IIB supergravity on S5 and its
application to holography [14, 44, 54]. We use x to denote AdS5 coordinates, y to denote
S5 coordinates, and from now on we use a, b to denote indices on S5. We focus on the trace
of the 10D metric on S5, and the five-form with all legs on S5. The fluctuations of these
fields have KK expansions of the form

ha
a(x, y) =

∑
πI(x)Y I(y) ,

fabcde(x, y) =
∑

ΛIbI(x)ϵabcdeY I(y) ,
(2.26)

– 7 –
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where Y I denotes scalar spherical harmonics on S5, see appendix A. We focus on solutions
that preserve SO(4) isometry in S5, so as above, I reduces to I = (k, m).

From the fields πI and bI , we form the combination sI , which is part of the set of fields
that diagonalize the equations of motion, and which is given by

sI = 1
20(k + 2) (πI − 10(k + 4)bI) . (2.27)

One then defines fields SI which satisfy five-dimensional field equations that can be
integrated into a five-dimensional action without derivative couplings. The relation between
the fields SI and sI takes the form [14, 54]

SI = sI +
∑
J,K

(
JIJKsJsK + LIJKDµsJDµsK

)
+ O([s]3) , (2.28)

where Dµ denotes the covariant derivative on empty AdS5. For the computation of expectation
values of operators of dimension two, the linear term is sufficient. For the computation
of expectation values of operators of dimension four, the linear and quadratic terms are
sufficient [14]. We therefore write the relevant terms in the relations between the fields SI

and the fields sI for k = 2, 3, 4 as [16]

SI = w(sI)sI , w(sI) =

√
8k(k − 1)(k + 2)z(k)

k + 1 , k = 2, 3 ; (2.29)

S(4,m) = 2
√

3
5

(
s(4,m) −

a(4m)(2n)(2p)
27z(4)

(
83s(2,n)s(2,p) + 7Dµs(2,n)D

µs(2,p)
))

. (2.30)

2.5 Holographic dictionary in the single-trace basis

We now clarify that the previous derivation of the precision holographic dictionary [14, 16]
was done in the trace basis. Using the notation [S]k for the coefficient of zk in the Fefferman-
Graham expansion of the field S, the radial canonical momenta are given by [14, 16]

π
(2)
2,m = 2 [S2,m]2 , π

(2k−4)
k,m = (2k − 4) [Sk,m]k (k ̸= 2) . (2.31)

Firstly, for O2,m = T2,m the holographic dictionary is given by1

⟨O2,m⟩ = ⟨T2,m⟩ = N2

2π2 π
(2)
2,m . (2.32)

Next, the combination of supergravity fields dual to the expectation value of the single-trace
operator T4,m involves quadratic terms in π

(2)
2,m as follows [16]:

⟨T4,m⟩ = N2

2π2

(
π

(4)
4,m + 2

√
3

z(4)a(4m)(2n)(2p)π
(2)
2,nπ

(2)
2,p

)
. (2.33)

The quadratic terms were added in order to ensure consistency with the fact that in the
trace basis, extremal three-point correlators are non-zero, and they factorize into a product
of two-point functions [14].

1The relation between our notation and that of [16] is Tk = OSk .
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2.6 Holographic dictionary in the single-particle basis

We now rewrite the holographic dictionary in the single-particle basis. We propose that
the holographic dictionary for the expectation value of the single-particle operator O4,m

takes the simple form

⟨O4,m⟩ = N2

2π2 π
(4)
4,m . (2.34)

As a corollary of this proposal, we obtain the dictionary for the double-trace operators,
as follows. Combining (2.33) and (2.34) we obtain

⟨T4,m⟩ = ⟨O4,m⟩ + N2

2π2
2
√

3
z(4)a(4m)(2n)(2p)π

(2)
2,nπ

(2)
2,p . (2.35)

Combining this with eqs. (2.25) and (2.32), we obtain the following simple formula,

⟨O2,mO2,n⟩ =
(

N2

2π2

)2

π
(2)
2,mπ

(2)
2,n = ⟨O2,m⟩⟨O2,n⟩ , (2.36)

which is consistent with large N factorization.
For use when working with ten-dimensional solutions, we now record formulae for the

supergravity expectation values in terms of the fields sI that arise directly from the Fourier
expansion of the 10D fields, eq. (2.27). Firstly, combining (2.32) and (2.29), and using the
square bracket notation introduced above (2.31), we have

⟨O2,m⟩ = N2

2π2
2
√

8
3
[
s(2,m)

]
2

. (2.37)

For O4, we use the fact that for the following coefficient,

π
(4)
4,m = 4 [S4,m]4 , (2.38)

there exists a form of the dictionary in terms of sk,m with no derivatives. Specifically, using [16][
Dµs(2,m)D

µs(2,n)
]

4
= 4

[
s(2,m)s(2,n)

]
4

, (2.39)

from (2.30) one can derive

[S4,m]4 = 2
√

3
5

[
s(4,m) −

37
9z(4)a(4m)(2n)(2p)s(2,n)s(2,p)

]
4

. (2.40)

Then using (2.34) and (2.31), the holographic dictionary for O4,m in terms of sI is given by

⟨O4,m⟩ = N2

2π2
4
√

3
5

[
2s(4,m) −

74
9z(4)a(4m)(2n)(2p)s(2,n)s(2,p)

]
4

. (2.41)

For comparison, we also record the dictionary for T4,m [16, eq. (2.27)],

⟨T4,m⟩ = N2

2π2
4
√

3
5

[
2s(4,m) + 2

3z(4)a(4m)(2n)(2p)s(2,n)s(2,p)

]
4

, (2.42)

which is consistent with the discussion above. Finally, for the double-traces we have

⟨O2,mO2,n⟩ = 8N4

9π4 [s2,m]2 [s2,n]2 . (2.43)
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3 Supergravity solutions

3.1 LLM solutions in AdS5×S5

We now review the asymptotically AdS5×S5 LLM solutions [3]. These solutions contain only
the metric and five-form field strength. The solutions take the form

ds2 = −h−2(dt + Vidxi)2 + h2(dy2 + dxidxi) + yeGdΩ2
3 + ye−GdΩ̃2

3 ,

h−2 = 2y cosh G , z = 1
2 tanh G ,

y∂yVi = ϵij∂jz , y (∂iVj − ∂jVi) = ϵij∂yz ,

F5 = Fµνdxµ ∧ dxν ∧ dΩ3 + F̃µνdxµ ∧ dxν ∧ dΩ̃3 ,

F = dBt ∧ (dt + V ) + BtdV + dB̂ , (3.1)

F̃ = dB̃t ∧ (dt + V ) + B̃tdV + dB̃ ,

Bt = −1
4y2e2G , B̃t = −1

4y2e−2G ,

dB̂ = −1
4y3 ∗3 d

(
z + 1

2
y2

)
, dB̃ = −1

4y3 ∗3 d

(
z − 1

2
y2

)
,

where ∗3 is the Hodge dual on R3 parameterized by (y, x1, x2), in this section i = 1, 2,
and where

z(x1, x2, y) = y2

π

∫
R2

z(x′
1, x′

2, 0)dx′
1dx′

2
((x − x′)2 + y2)2 ,

Vi(x1, x2, y) = ϵij

π

∫
R2

z(x′
1, x′

2, 0)(xj − x′
j)dx′

1dx′
2

((x − x′)2 + y2)2 .

(3.2)

Regularity imposes a boundary condition on the x1–x2 plane at y = 0, which ensures that
one or both of the three-spheres in the metric shrink smoothly. The boundary condition is
that the function z(x1, x2, 0) take the values ±1/2. This can be depicted as a colouring of
the R2 at y = 0 into black and white regions. The black regions correspond to droplets in
a free fermion phase space, and their total area is fixed to be 2π in our conventions. The
free fermion description also plays a role in the holographic description of the corresponding
CFT operators [51, 55].

The two backgrounds we study in this paper both involve a single black region. The
boundary of this region is specified by a function that we shall refer to as the ‘profile function’.
To write the profile functions, we introduce plane polar coordinates via x1 = r cos ϕ̃ and
x2 = r sin ϕ̃.

The first profile corresponds to the configuration that lives in the consistent truncation.
The small α expansion of the profile function is [31]2

r(ϕ̃) = r1(ϕ̃) =

√
1 + α cos(2ϕ̃) + α2

2 cos(4ϕ) + O(α3)

= 1 + α

2 cos 2ϕ̃ + α2

16
(
3 cos 4ϕ̃ − 1

)
+ O(α3) .

(3.3)

2The relation to the notation of [31] is αhere = −ϵthere. We also note that in the very recent work [19], the
parameter α is different to ours; it is given by αthere = 1√

2 tanh
(

ϵthere
2

)
where the ϵthere of [31] and [19] are

the same up to an overall sign.
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In the second profile, studied in [16, 17], r2(ϕ̃) involves a single mode:

r(ϕ̃) = r2(ϕ̃) =
√

1 + α cos(2ϕ̃)

= 1 + α

2 cos 2ϕ̃ − α2

16
(
cos 4ϕ̃ + 1

)
+ O(α3) ,

(3.4)

where α < 1 in the first line, and we expand for small α in the second line. We see that
the two profiles (3.3), (3.4) agree up to order α but differ at order α2. For small α, each
profile describes a ripple on a unit circle.

We expand the metric and five-form field strength in small α, up to order α2. For the
metric, we introduce the notation

g = g(0) + αg(1) + α2g(2) . (3.5)

When α = 0, both profiles reduce to the unit circle, which corresponds to empty global
AdS. The quantities z and V are given in [3]. After the change of coordinates

y = R cos θ , r =
√

R2 + 1 sin θ , ϕ̃ = ϕ − t , (3.6)

the metric and flux are those of empty global AdS5×S5, where the radii of AdS5 and S5

are both set to 1,

ds2 = −(R2 + 1)dt2 + dR2

R2 + 1 + R2dΩ̃2
3 + dθ2 + sin2 θdϕ2 + cos2 θdΩ2

3 ,

F5 = R3 dt ∧ dR ∧ dΩ̃3 + cos3 θ sin θ dθ ∧ dϕ ∧ dΩ3 .

(3.7)

3.2 First-order backgrounds

At first order in α, the LLM solutions specified by both the profiles (3.3) and (3.4) are the
fields of a linearised supergraviton in global AdS5×S5 [3, 56]. For later convenience we will
generalise the discussion slightly, and present the first-order fields that correspond to the profile

r(ϕ̃) =1 + α

2 cos(nϕ̃) + O(α2) , (3.8)

which for n = 2 reduces to the linearisation of the profiles (3.3), (3.4).
For holography, one must either fix a gauge, as done in [44], or work in a gauge-invariant

formalism [14]. We choose to impose de Donder-Lorentz gauge, in which the physical degrees
of freedom are manifest, defined by

Dah(ab) = Dahaµ = 0 . (3.9)

Here round brackets on indices denote symmetric traceless part, µ, ν, . . . denote AdS5 indices,
and we remind the reader that a, b, . . . denote S5 indices.

The linearised diffeomorphism that converts the order α fields into de Donder-Lorentz
gauge is given in [45]. In this gauge, the first-order metric and four-form potential A

(1)
4

are given by

g(1)
µν =

∑
n=±2

(
−6

5 |n|snYn g(0)
µν + 4

|n| + 1Yn∇(µ∇ν)sn

)
, g

(1)
αβ =

∑
n=±2

2|n|snYn g
(0)
αβ ,

A
(1)
4 =

∑
n=±2

(Yn ⋆AdS5 dsn − sn ⋆S5 dYn) ,

(3.10)
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where
sn = |n| + 1

8|n|(R2 + 1)|n|/2 eint , Yn = einϕ sin|n| θ . (3.11)

3.3 Second-order backgrounds

At order α2, we again impose de Donder-Lorentz gauge. The closed-form order α2 fields
that follow from the single-mode profile given in eq. (3.4) were computed and converted into
Kaluza-Klein form and de Donder-Lorentz gauge in [17]. We do the same for the solution
in the consistent truncation. The order α2 fields are somewhat lengthy, and we shall not
present them here. The explicit form of the order α2 metric of the solution specified by
the single-mode profile can be found in [17].

Let us compare the two profile functions that we study. The difference between the
profiles in eqs. (3.3) and (3.4) is

r2(ϕ̃) − r1(ϕ̃) = β

2 cos 4ϕ̃ +O(α3) , β = −α2

2 , (3.12)

where we have introduced β by comparison with the linear terms in α in (3.3), (3.4).
Correspondingly, the difference between the two metrics is proportional to the metric of

the linearized fields (3.10)–(3.11) for n = 4, but with a coefficient proportional to α2 rather
than α. Explicitly, denoting the second-order metric corresponding to the profile r1(ϕ̃) by
g

(2)
1 and likewise for the second profile, we have

g
(2)
2 − g

(2)
1 = −1

2 g
(1)
(n=4) . (3.13)

We then expand the order α2 metric and five-form field strength in S5 spherical harmonics.
We focus on the components given in (2.26), and compute the fields sI defined in (2.27),
which we will use to compute holographic expectation values in the next section.

4 Determining the dual CFT states

4.1 Ansatz for the CFT states

In order to perform our precision holographic analysis, we now parameterise a family of
CFT states that will include the two states of interest to us. The first ingredient will be the
expansion of a coherent state built only from powers of O2. The second ingredient will be
a term linear in O4 at order α2, since we have seen that the difference between the Profile
1 and Profile 2 solutions is a single mode of frequency 4.

Several years ago, it was suggested that the solution corresponding to the single-mode
profile may correspond to a coherent state built only from powers of O2 [16]. However, more
recently, it has been proposed that the solution in the consistent truncation is the one that
is dual to a coherent state built only from powers of O2 [31].

We will find evidence in support of the more recent proposal, demonstrate that the
CFT state dual to the solution defined by the single-mode profile contains O4, and fix the
coefficient of O4 in the CFT state dual to that solution.
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In preparation for constructing an appropriate Ansatz for the dual CFT states, we note
that a solution composed of a set of linearised single-particle fluctuations corresponds to
the following CFT state, to leading order in large N :

|Φ⟩ = |0⟩ +
∑

n

δn On|0⟩ + O(δ2
n) , δn = Nαn

2
√

n
, (4.1)

where αn is the amplitude of a linearised fluctuation of frequency n, in the normalization
used in section 3. The coefficient δn was worked out in [16].

We will proceed by making an Ansatz with arbitrary coefficients, A, B, C, that we will
fix by holographic computations. These coefficients will be useful to illustrate the structure of
the calculation. We have seen that the solutions corresponding to both Profile 1 and Profile
2 have, to linear order in α = α2, a linearized mode of frequency 2. The difference between
the profiles is a linearized mode of frequency 4, but with coefficient α4 = β = −α2/2, see
eq. (3.12). We thus consider the candidate set of states

|H⟩ = N
(
|0⟩ + C δ2 O2|0⟩ + B

δ2
2
2 (O2)2 |0⟩ + Aδ4 O4|0⟩ + O(δ3

2 , δ2
4)
)

, (4.2)

where
δ2 = Nα

2
√

2
, δ4 = −Nα2

8 . (4.3)

To order α2, the norm of the state is N = 1 − C2δ2
2/2.

To fix the coefficients A, B, C, we first compute the relevant set of CFT expectation
values up to order α2. These are protected quantities, and we compute them using the free
theory. We continue to suppress the spacetime dependence of the correlators. We shall
compute expectation values of the supergravity-normalized versions of the various operators,
see eqs. (2.23)–(2.24).

Because of the orthogonality of the single-particle basis, the expectation values of the
charged operators O2, O4, O2

2 are simply proportional to the respective coefficients C, A, B, as
follows. In the following equations, we write the leading-order result in the small α expansion
(likewise for δ2, δ4); for ease of presentation, we suppress the notation · · ·+O(α#) etc. Firstly,

⟨H|O2|H⟩ = N2Cδ2⟨O†
2O2⟩ = N2

2
√

2π2 Cα . (4.4)

Next, exploiting the orthogonality between single-particle and multi-particle operators, we find

⟨H|O4|H⟩ = N4Aδ4⟨O†
4 O4⟩ = −

√
3N2

4π2 Aα2 . (4.5)

For O2
2, we obtain

⟨H| (O2)2 |H⟩ = N 2
2

Bδ2
2

2
〈(

O†
2

)2
(O2)2 〉 = N4

8π4 Bα2 . (4.6)

We now consider the neutral operators O2,0 and O4,0. At order δ2
2, and given the

above Ansatz, these are only sensitive to the linear term in δ2, proportional to O2, in (4.2).
Firstly, at order δ2

2,

⟨H|O4,0|H⟩ = N4C2δ2
2⟨O

†
2O4,0O2⟩ = 0 , (4.7)
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since ⟨O†
2O4,0O2⟩ is an extremal three-point correlator of single-particle operators. The CFT

expectation value of O2,0 at this order is [16]

⟨H|O2,0|H⟩ = N2C2δ2
2⟨O

†
2O2,0O2⟩ = N2√2

4
√

3π2 C2α2 . (4.8)

4.2 Analysis of the solution in the consistent truncation

It has been argued that the LLM solution in the consistent truncation should be a coherent
state composed of multi-traces of the operator O2 only [31]. If this is correct, then the
single-particle operator O4 should have zero expectation value in the corresponding heavy
state. We will verify that this is indeed the case, and determine the state to order α2.

For Profile 1, using (2.26)–(2.27), the complete list of the fields sI up to order α2 is

s(2,2) = 3e−2it

8 (R2 + 1)α , s(2,−2) = 3e2it

8 (R2 + 1)α , (4.9)

s(2,0) =
√

3
(
20R4 + 57R2 + 27

)
160 (R2 + 1)3 α2 , (4.10)

s(4,0) = 111R2 + 55
192

√
5 (R2 + 1)3 α2 , (4.11)

s(4,4) = 37e−4it

64 (R2 + 1)2 α2 , s(4,−4) = 37e4it

64 (R2 + 1)2 α2 . (4.12)

To order α2 and exactly in R, we find the five-dimensional fields defined in eq. (2.30) to be

S4 = 0 , S4,0 = 0 . (4.13)

To extract the supergravity expectation values, we must put the metric in Fefferman-
Graham form. Recall that we denote the metric on empty global AdS5 as g0

µν . Similarly
to [16] we write the zero-mode on S5 of the metric as g

(0)
µν + h̃0

µν with h̃0
µν = h0

µν + 1
3π0g

(0)
µν .

Then to order α2, g
(0)
µν + h̃0

µν is given by

ds2
(0) = −dt2

(
R2 + 1

)(
1 + α2 24R8 + 72R6 + 77R4 + 55R2 + 24

32 (R2 + 1)4

)

+ dR2

R2 + 1

(
1 − α2 24R6 + 76R4 + 149R2 + 15

32 (R2 + 1)4

)
(4.14)

+ R2dΩ2
3

(
1 − α2 72R6 + 216R4 + 199R2 + 45

96 (R2 + 1)3

)
.

The relation between the bulk radial coordinate and the Fefferman-Graham one is given by

R = 1
z
− z

4 − 3α2

16 z − α2

64 z3 + . . . , (4.15)

however only the first term R = 1
z is relevant to our analysis.
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We now read off the supergravity expectation values using the holographic dictionary in
eqs. (2.37)–(2.42). Using the Fefferman-Graham expansion and taking into account terms
up to α2, the supergravity expectation values are

⟨O2⟩ = N2

2
√

2π2 e−2itα , ⟨O2,0⟩ = N2√2
4
√

3π2 α2 , (4.16)

⟨O4⟩ = 0 , ⟨O4,0⟩ = 0 , ⟨T4⟩ = N2√3
2π2 e−4itα2 , ⟨T4,0⟩ = N2√3

2
√

5π2 α2 . (4.17)

When comparing to CFT expectation values, we will set t = 0.
Comparing the expectation values of the charged operators O2, O2

2 and O4 to their
respective CFT expectation values in eqs. (4.4)–(4.6), we obtain to leading order in large N

C = 1 , B = 1, A = 0 , (4.18)

where we note that the double-trace factorization given in eq. (2.36) implies B = C2.
The expectation value of O4,0 at order α2 vanishes in supergravity, since S4,0 = 0, and

also in the CFT. The expectation value of O2,0 gives an independent cross-check of C = 1.
The agreement of both ⟨O4,0⟩ and ⟨O2,0⟩ gives a non-trivial test of the completeness of the
Ansatz (4.2) to this order.

Thus, for the solution in the consistent truncation, we see that to order δ2
2 the following

CFT state is consistent with all available expectation values of the known precision holographic
dictionary:

|H⟩ = N
(
|0⟩ + δ2 O2|0⟩ + 1

2δ2
2 (O2)2 |0⟩ + O(δ3

2)
)

, (4.19)

where
δ2 = Nα

2
√

2
, N = 1 − δ2

2
2 . (4.20)

This is evidence in support of the proposal of [31] that the CFT state should be composed
of multi-traces of O2 only.3 It also agrees with the very recent refinement of this proposal
in [19]; the relation between the notations of these works is given in footnote 2.

4.3 Analysis of the single-mode ripple solution

We now analyse the solution defined by the single-mode profile. For this solution, the fields
s2,±2, s2,0 and s4,0 are the same as for the solution in the consistent truncation. The only
different component fields are s4,±4, given below, and there are no other fields up to order
α2. This reflects the fact that the difference between solutions 1 and 2 is proportional to a
single mode of frequency ±4, see eq. (3.12). For the solution specified by the single-mode
profile, we have

s(4,4) = 17e−4it

64 (R2 + 1)2 α2 , s(4,−4) = 17e4it

64 (R2 + 1)2 α2 . (4.21)

3We note that a computation of ⟨O4⟩ = ⟨O4,0⟩ = 0 was reported in [31], however the holographic dictionary
quoted in eq. (B.5) of that work is the dictionary for the single-trace operators, eq. (2.42), rather than the
dictionary for the single-particle operators, eq. (2.41).
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We therefore find the five-dimensional fields S4,m to be

S4 = −
√

3 e−4it

8 (R2 + 1)2 α2 , S4,0 = 0 . (4.22)

The Fefferman-Graham expansion depends only on the zero-modes of the ten-dimensional
metric reduced on S5. Therefore it is the same as that of Profile 1 in eq. (4.15).

Most of the supergravity expectation values for Profile 2 are the same as those for Profile
1, and are not sensitive to the difference between the two profiles.

However, importantly, for the single-mode profile, the supergravity expectation values of
O4 and T4 differ from the Profile 1 expressions in eqs. (4.16), (4.17). The full set of non-zero
supergravity expectation values up to order α2 for the single-mode profile background are:

⟨O2⟩ = N2

2
√

2π2 e−2itα , ⟨O2,0⟩ = N2√2
4
√

3π2 α2 , ⟨O4,0⟩ = 0 ,

⟨O4⟩ = −
√

3N2

4π2 e−4itα2 , ⟨T4⟩ = N2√3
4π2 e−4itα2 , ⟨T4,0⟩ = N2√3

2
√

5π2 α2 ,

(4.23)

Comparing the supergravity and CFT expressions for the expectation values of O2, O2
2,

and particularly O4, we find that for the solution defined by the single-mode profile, the
dual CFT state has coefficients

C = 1 , B = 1, A = 1 . (4.24)

Thus, for the solution defined by the single-mode profile, to leading order in large N and
to order α2, the following CFT state is consistent with all available expectation values of
the known precision holographic dictionary:

|H⟩ = N
(
|0⟩ + δ2 O2|0⟩ + δ2

2
2 (O2)2 |0⟩ + δ4 O4|0⟩ + O(δ3

2 , δ2
4)
)

, (4.25)

where
δ2 = Nα

2
√

2
, δ4 = −Nα2

8 , N = 1 − δ2
2
2 . (4.26)

We note that in the holographic study of the single-mode profile solution in [16], the
single-trace basis was used. The expectation values of O2, O2,0, and T4,0 in (4.23) agree with
those reported in [16]. By contrast, the expectation value of T4 in this background was not
examined in that work. By computing the expectation value of O4, we have demonstrated
the presence of O4, and fixed its coefficient in the dual CFT state.

5 Cross-check at cubic order

In this section we consider the solution defined by the single-mode profile, and make a
cross-check of the dual CFT state given in eq. (4.25). We do so by considering the charged
R-symmetry descendant operator O4,2. For this operator, the CFT state (4.25) up to order
α2 gives rise to an expectation value at order α3. We demonstrate that this is precisely
reproduced by the corresponding supergravity analysis.
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To do so, we compute the closed-form LLM solution that follows from the single-mode
profile to order α3, and bring it to de Donder-Lorentz gauge. We then extract the KK fields
sI as before. The complete list of the fields sI at order α3 is

s(4,2) = e−2it
(
119R6 + 459R4 + 477R2 + 116

)
224

√
10 (R2 + 1)5 α3 , (5.1)

s(2,2) = e−2it
(
720R8 + 2112R6 + 2247R4 + 836R2 + 233

)
2560 (R2 + 1)5 α3 . (5.2)

We note in passing that the order α3 term in s(2,2) implies an α3 correction to the
supergravity expectation value of ⟨O2⟩, which in our parameterization takes the form

⟨O2⟩ = N2

2
√

2π2

(
α + 3

4α3
)

. (5.3)

This would be sensitive to a possible term proportional to α3 |O2⟩ in the dual state, however
we have expanded the dual state only to order α2, so this is beyond the precision to which
we work. We thus focus instead on O4,2.

To compute the supergravity expectation value of O4,2, we compute the 5D field S4,2.
Using eq. (2.30) we obtain

S4,2 = −
√

3
10

(
2800R6 + 10567R4 + 8296R2 + 2909

)
e−2it

11200 (R2 + 1)5 α3 . (5.4)

The relevant coefficient in the Fefferman-Graham expansion is

[S4,2]4 = −1
4

√
3
10e−2itα3 , (5.5)

and so the holographic expectation value is

⟨O4,2⟩ = − N2

2π2

√
3
10e−2itα3 . (5.6)

We now compare this result to the CFT, i.e. we compute ⟨O4,2⟩ in the state (4.25):

⟨H|O4,2|H⟩ = N4δ2

(
δ2

2
2
〈(

O†
2
)2

O4,2O2
〉

+ δ4⟨O†
4O4,2O2⟩

)
. (5.7)

Firstly,
〈
(O†

2)2 O4,2 O2
〉

gives a subleading contribution in large N compared to the term
proportional to ⟨O†

4 O4,2 O2⟩, see appendix B for details.
Next, we consider ⟨O†

4O4,2O2⟩. Expanding O†
4 in terms of single-traces, this is

⟨O†
4O4,2O2⟩ = ⟨T †

4 O4,2T2⟩ −
2
N

〈(
O†

2
)2

O4,2O2
〉

. (5.8)

We have determined already that the second correlator on the right-hand side of eq. (5.8) is
subleading compared to the first one. The first term evaluates to

⟨T †
4 O4,2T2⟩ = ⟨T †

4 T4,2T2⟩ −
4
√

3√
10N

⟨T †
4 (T2,0T2) T2⟩ . (5.9)
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Furthermore, the second term on the right-hand side of eq. (5.9) is suppressed at large N

compared to the first term, see appendix B for details. So, to leading order in large N , we have

⟨O†
4O4,2O2⟩ = ⟨T †

4 T4,2T2⟩ = 4√
5N

. (5.10)

The CFT expectation value at this order, from (5.7), is then

⟨H|O4,2|H⟩ = N4
4δ2δ4√

5N
= − N2

2π2

√
3
10α3 , (5.11)

which precisely agrees with the holographic result (5.6). This is a non-trivial cross-check
of the CFT state dual to the single-mode profile solution given in eq. (4.25). This also
represents a non-trivial check of the proposed holographic dictionary for single-particle
operators in eqs. (2.34), (2.41).

6 Discussion

In this paper we revisited the AdS5/CFT4 precision holographic dictionary for heavy-light
three-point correlators. We clarified that it was originally expressed in the single-trace basis,
and rewrote it in the single-particle basis. The holographic dictionary takes a simpler form
in the single-particle basis, see eq. (2.34).

The single-particle basis gave a distinct advantage over the trace basis for our computation,
because the dual CFT states we studied involve both single and double-trace operators. The
orthogonality of the single-particle basis meant that each coefficient in our Ansatz for the
dual CFT states was controlled by a single expectation value, see eqs. (4.2)–(4.6).

We performed a holographic analysis of the two LLM supergravity solutions under
consideration, perturbatively in α. From the asymptotic expansion of the appropriate gauge-
invariant fields, we first computed the expectation values of the operators that directly control
the coefficients in the Ansatz for the dual CFT states. These determine the dual CFT states
up to order α2 and at leading order in large N , see eqs. (4.19) and (4.25).

We also computed the supergravity expectation values of a set of R-symmetry descendants
of chiral primaries. All of these resulted in precise agreement between gravity and CFT.
We computed all expectation values that arise up to order α2, and also the expectation
value of the R-symmetry descendant O4,2 in the solution defined by the single-mode profile,
which arises at order α3. The agreement of these expectation values constitutes a set of
non-trivial cross-checks of both the dual CFT states and the precision holographic dictionary
in the single-particle basis.

Our results represent evidence in favour of the proposal that the dual CFT state of the
LLM solution that lies in the consistent truncation is a coherent state composed only of
powers of the dimension-two chiral primary O2 [19, 31]. We showed that the solution defined
by a single-mode profile contains, by contrast, the dimension-four chiral primary O4 at order
α2, and determined the coefficient of O4 at this order.

This raises a natural question for future work. That is, for the solution defined by the
single-mode profile, what the dual CFT state is at higher orders in α. It is natural to expect
that a sequence of higher-dimension operators appears at successive orders in α. Such terms

– 18 –



J
H
E
P
0
7
(
2
0
2
5
)
0
2
7

can in principle be analyzed by extending the precision holographic dictionary to operators
with dimensions higher than four, which has not been done to date.

To extend the holographic dictionary to operators of dimension six, it would first be
necessary to solve explicitly the relation between the five-dimensional fields SI and the fields
sJ , see eq. (2.28), up to cubic order in sJ , to account for cubic terms in s2,m. This entails
expanding the equations of motion up to cubic order in fluctuations and performing field
redefinitions to remove derivative couplings [14, 54]. This would enable a study of the dual
CFT state of the solution defined by a single-mode profile up to order α3.

More broadly, the LLM family of solutions is a large class, and there are even larger classes
of 1/4 and 1/8-BPS solutions, see e.g. [35, 57, 58]. It would be interesting to perform precision
holographic analyses of more general asymptotically AdS5×S5 solutions. We re-emphasize that
the holographic dictionary in the single-particle basis gives an advantage over the single-trace
basis, and we expect that this form of the dictionary will prove useful for future studies.
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A Spherical harmonics and symmetric traceless tensors

We consider the following single-trace operators,

T̂I = CI
i1···ik

Tr(Φi1 · · ·Φik) (A.1)

where CI is a totally symmetric traceless rank-k tensor of SO(6), which live in half-BPS
multiplets [54]. The tensors CI are unit-normalized, ⟨CICJ⟩ ≡ CI

i1···ik
CJ

i1···ik
= δIJ . Each CI

corresponds to a scalar SO(6) spherical harmonic via Y I = CI
i1···ik

xi1 · · ·xik for unit-norm
vectors xij ∈ R6.

Scalar spherical harmonics on S5 satisfy

□S5Y I = ΛIY I , ΛI = −k(k + 4), k = 0, 1, 2, . . . (A.2)

We write the metric on S5 as

ds2
S5 = dθ2 + sin2 θdϕ2 + cos2 θdΩ2

3 . (A.3)

In this paper we restrict to harmonics with SO(4) isometry, which depend only on θ and
ϕ. Then the multi-index I reduces to I = (k, m) and the scalar harmonics Y (k,m) are given
in terms of hypergeometric functions [14].

Denoting the area of the unit five-sphere by ω5 = π3, the scalar spherical harmonics
are then normalized as

1
ω5

∫
S5

Y I1Y I2 = z(k)δI1I2 , z(k) ≡ 1
2k−1(k + 1)(k + 2) . (A.4)
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The triple intersection constants aI1I2I3 are defined by

aI1I2I3 ≡ 1
ω5

∫
S5

Y I1Y I2Y I3 . (A.5)

In terms of the SO(6) invariant (see e.g. [50])〈
CI1CI2CI3

〉
≡ CI1

i1... iα2 j1 ...jα3
CI2

j1...jα3 l1...lα1
CI3

l1...lα1 i1...iα2
, (A.6)

we have the following relation, used in the main text around eq. (2.15),

aI1I2I3 = 1(
1
2Σ + 2

)
! 2

1
2 (Σ−2)

k1!k2!k3!
α1!α2!α3!⟨C

I1CI2CI3⟩ , (A.7)

where Σ = k1 + k2 + k3, α1 = 1
2(k2 + k3 − k1), and similarly for α2, α3.

We record here some useful values of triple intersection constants:

a(4,4)(2,−2)(2,−2) = z(4) , a(4,0)(2,0)(2,0) = 3z(4)
2
√

5
,

a(4,0)(2,2)(2,−2) = z(4)
2
√

5
, a(4,2)(2,0)(2,−2) = z(4)

√
3
10 .

(A.8)

B CFT expectation values at cubic order

In this appendix we record some details of the free CFT computations in section 5. We first
describe the computation of the expectation value of O4,2. Our starting point is eq. (5.7), i.e.

⟨H|O4,2|H⟩ = N4δ2

(
δ2

2
2
〈
(O†

2)2O4,2O2
〉

+ δ4⟨O†
4O4,2O2⟩

)
. (B.1)

Firstly, we verify explicitly that
〈
(O†

2)2O4,2O2
〉

gives a subleading contribution in large N

compared to the term proportional to ⟨O†
4O4,2O2⟩. Rewriting in the trace basis, we have

⟨(O†
2)2O4,2O2⟩ = ⟨(T †

2 )2T4,2T2⟩ −
4
√

3√
10N

⟨(T †
2 )2 (T2,0T2) T2⟩ . (B.2)

Explicitly, the relevant terms that contribute to these correlators are

⟨(T †
2 )2T4,2T2⟩ = 1

2
√

5N5 ⟨
(
TrZ̄2

)2
TrZ3Z̄ TrZ2⟩ , (B.3)

⟨(T †
2 )2 (T2,0T2) T2⟩ =

√
2

4
√

3N5 ⟨
(
TrZ̄2

)2 (
TrZZ̄ TrZ2

)
TrZ2⟩ . (B.4)

Free-field Wick contractions give

⟨(T †
2 )2T4,2T2⟩ = 16√

5N2 + O(N−4) , (B.5)

⟨(T †
2 )2 (T2,0T2) T2⟩ = 4

√
2√

3N
+ O(N−4) . (B.6)
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Therefore
⟨(O†

2)2O4,2O2⟩ = O(N−4) , (B.7)

and so

N4δ3⟨(O†
2)2O4,2O2⟩ = α3O(N0) . (B.8)

Now we turn to ⟨O†
4O4,2O2⟩. The structure of this computation is described around

eq. (5.9) of the main text; here we describe in more detail the fact that the following
correlator gives a subleading contribution at large N :

⟨T †
4 (T2,0T2) T2⟩ =

√
2

4
√

3N5 ⟨TrZ̄4
(
TrZZ̄TrZ2

)
TrZ2⟩ . (B.9)

Free-field Wick contractions give

⟨TrZ̄4
(
TrZZ̄TrZ2

)
TrZ2⟩ = 8N3 + O(N) , (B.10)

so we find

1
N

⟨T †
4 (T2,0T2) T2⟩ = 2

√
2√

3N3 + O(N−5) . (B.11)

Thus, to leading order in large N , we have

⟨O†
4O4,2O2⟩ = ⟨T †

4 T4,2T2⟩ + O(N−3) , (B.12)

leading to eq. (5.10) of the main text.
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