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ABSTRACT
Natural history collections are essential for biodiversity and evolution research and for studying biotic responses to global 
change. However, the numbers of specimens within natural history collections pose management challenges. Reduced funds, 
declining taxonomic training and expanding collections can lead to mislabelled or missing specimens. This highlights the need 
for innovative and non-destructive methods of taxonomic verification for specimens in large collections. While genetic analyses 
offer precise verification, they are resource-intensive and less effective on degraded DNA from older specimens, with risks of 
damage to smaller specimens. Computer vision can automate tasks such as species-level verification and morphological exam-
ination, though these techniques have yet to be incorporated and utilised by natural history collections for such management 
tasks. Digitisation initiatives, such as those at the Natural History Museum (NHM), London, have gained momentum in recent 
years, converting specimens to digital formats and enhancing global accessibility. Here, we describe a computer vision pipeline 
applied to the digitised British and Irish Lepidoptera collection at the NHM. Specifically, our pipeline identifies specimens that 
do not match their labelled species status. The pipeline was executed for 100 runs for the Butterfly and Moth datasets, resulting 
in 99,350 out of 350,208 specimens (28.37%) being flagged at least once. We attribute a portion of these as pipeline errors, given 
the likelihood of some mislabelled specimens within training datasets. However, specimens flagged consistently across > 80% of 
pipeline runs are likely mislabelled within the collections. Taxonomic experts visually examined 210 such specimens, finding 145 
to be incorrectly labelled in the collection or the NHM data portal. Additionally, 30 specimens were sent for genetic verification 
to confirm species-level identification. This synergy of computer vision and genetic-based species identification enhances the 
accuracy and efficiency of managing natural history collections, preserving their value for future generations.

1   |   Introduction

Natural History Collections (NHCs) are essential datasets for 
much of modern-day ecology and evolution research (Popov 
et  al.  2021), including as baseline data for documenting biotic 

response to global change (Wilson et al. 2023). With the recent 
push towards massive digitisation efforts by natural history 
museums, NHCs have become ever more accessible to research-
ers, educators and the general public. However, with more re-
searchers accessing large digitised NHCs (Hardy et al. 2023), it 
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becomes increasingly important to ensure that specimen label 
information is accurate (e.g., species name). But finding and 
correcting specimen label errors within large NHCs is resource-
intensive and time-consuming.

The curation, upkeep and maintenance of access to NHCs are 
major challenges for museums. For example, funding and staff-
ing have not kept pace with the expansion of collections, lead-
ing to shortcomings in management and care of these critical 
resources (Paknia et  al.  2015). Adding to these challenges is 
the decreasing reliance on traditional morphological identifi-
cation methods, due to a decline in the number of taxonomic 
specialists, resulting from an ageing expert base and a lack of 
incoming specialists. As expertise in visual morphological iden-
tification decreases, maintaining the accuracy and integrity of 
these extensive collections becomes increasingly challenging 
(Godfray 2002; Bik 2017). One of the unavoidable consequences 
of these challenges is the general reduction in time and exper-
tise dedicated to the maintenance of collections and specimen 
label information, including the time needed to properly curate 
an increasing number of new specimens deposited at museums. 
This can result in out-of-date taxonomic information, missing 
or illegible labels, incorrect species identification and/or errors 
in database entry.

The exact number of mislabelled specimens or other label er-
rors is hard to define and will be collection dependent. Some 
groups have been well studied and kept up to date, with rich 
histories and knowledge associated with them (Salmon 2000), 
while others can be severely lacking in knowledge and exper-
tise. For instance, a recent study found that 58% of tropical 
plant specimens they reviewed were misidentified and esti-
mated that 50% of all tropical plant specimens are likely to be 
mislabelled within NHCs (Goodwin et al. 2015). The authors 
indicate that this is due to the large influx of specimens de-
posited since 1970 and the lack of taxonomic experts with the 
knowledge base required to classify them. Regions in the trop-
ics and developing countries, characterised by high biodiver-
sity and complex environments, have historically been under 
sampled, leading to a lower knowledge base associated with 
them compared to other areas (Moura and Jetz 2021). NHCs 
also hold the exciting possibility of containing undiscovered 
species (Parsons et  al.  2022). These species may be hidden 
under incorrect labels or overlooked because of their scarcity 
and strong morphological resemblance to known species. The 
minor differences distinguishing these species can be difficult 
to detect through standard examination, especially when they 
are closely related (i.e., cryptic species).

All the above underscores the need for accurate identification 
methods in collections, whether for curatorial purposes or bio-
diversity discovery. Modern methods for species identification, 
like genetic analysis, offer accuracy but come with high resource 
demands (Shendure et al. 2017). Applying genetic analysis to en-
tire larger collections could lead to astronomical expenses and 
extensive time requirements. Moreover, the DNA in historical or 
dried specimens is often degraded, thus providing less informa-
tion than that of fresh or well-preserved samples and requires 
more robust genetic-based examinations (Marinček et al. 2022; 
Molbert et al. 2023; Rayo et al. 2024). Furthermore, many his-
torical specimens are deemed to be too important for destructive 

sampling. As such, extracting DNA from these specimens is not 
always viable.

In addition, many museums have embarked on the mass digiti-
sation of their collections, a step that serves multiple purposes 
(Hardy et al. 2023). Digitisation not only preserves the physical 
integrity of specimens but also allows them to become readily 
available for researchers across the globe, fostering wider col-
laboration and analysis, and significantly enriching our under-
standing of biodiversity and natural history.

In parallel to the mass digitisation of collections is the major 
advancement of artificial intelligence (AI) which has the po-
tential to revolutionise the way collections are analysed and 
utilised (Groom et  al.  2023). In particular, computer vision 
(CV) methods can be used for rapid species identification 
(Hollister et  al.  2022), pattern recognition and morpholog-
ical analyses (Hollister et  al.  2023). The careful coupling of 
CV with digitised NHCs can bring unprecedented efficiency, 
accuracy and speed to species identification, which is a core 
component of collections management and museum-based 
research.

Beyond verification, CV opens a myriad of possibilities for 
diverse research projects, ranging from tracking phenotypic 
changes with temperature (Wilson et al. 2023) to understand-
ing complex ecological interactions (Johannes et  al.  2024). 
The integration of CV into natural history research could not 
only streamline labour-intensive processes of verifying the 
integrity of the organisation of collections but also pave the 
way for innovative methods of exploring and interpreting the 
vast datasets these collections represent. As AI continues to 
evolve, it promises to unlock new dimensions of knowledge 
and collaboration in the study of biodiversity (Karbstein 
et al. 2024; Borowiec et al. 2022; Seeland et al. 2019; Wäldchen 
and Mäder  2018). A CV-based system or assistive tool could 
help alleviate some of the burden of managing large NHCs 
by scanning large collections of digitised specimens at high 
speeds, highlighting discrepancies leading to a streamlined 
and more accurate verification process.

One of the first massive digitisation projects was the ‘iCol-
lections’, a programme undertaken by the Natural History 
Museum (NHM), London to digitise its collections of British 
and Irish butterflies (Paterson et al. 2016). The data captured 
includes species name, georeferenced location, collector and 
collection date, along with a digital image of each specimen 
and a scale for size reference. This initiative is part of a broader 
NHM programme to digitise its vast collections, comprising ap-
proximately 80 million specimens and objects. The iCollections 
data have been used to address various scientific questions, 
such as how climate warming might affect species distribu-
tion, phenology and body size (Wilson et  al.  2023; Fenberg 
et al. 2016; Garner et al. 2024; Blagoderov et al. 2017). The digi-
tised data has been made publicly accessible through the NHM 
data portal, offering valuable resources for researchers, conser-
vationists, and the public.

Our research is focused on developing an advanced image clas-
sification pipeline specifically engineered to identify incorrectly 
labelled specimens at the species level within the iCollections. 
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Utilising our pipeline, we can detect instances where specimens, 
presently labelled as one species, are consistently predicted by 
the system to belong to a different species. These flagged spec-
imens are then organised and presented for a streamlined vi-
sual verification process by collection staff. In scenarios where 
a definitive determination remains inconclusive, we integrate 
more traditional methods such as reviewing ecological data as-
sociated with specimens (sample location, collector and/or the 
geographic range of specimen) and when a conclusive answer 
is unable to be obtained, we utilised molecular methods to as-
certain final verification. This blend of AI-driven analysis and 
more traditional techniques not only streamlines the verifica-
tion process but also significantly contributes to the integrity 
and reliability of NHCs in the ever-evolving landscape of biodi-
versity research.

2   |   Methodology

2.1   |   Data Set Creation and Image Preprocessing

The iCollections dataset comprises the British and Irish 
Lepidoptera (Lepidoptera Linnaeus, 1758) collections housed 
at the NHM. We split the collection into the butterflies and 
moths. Both groups were filtered to only include species where 
the total number of specimens was equal to or greater than 400 
per species, allowing for a sufficient number to train (250 im-
ages), validate (50 images) and run inference with the remaining 
images (≥ 100). Low numbers of training specimens have been 
shown to result in poor CV performance (Xu et al. 2023; Buslaev 
et al. 2020; Shorten and Khoshgoftaar 2019). The filtered butter-
fly dataset comprised 59 species and a total of 127,671 individual 
specimens, while the moth dataset comprised 283 species, with 
a total of 222,537 individual specimens. Both training and val-
idation images were synthetically augmented four times by the 
application of rotations, zooms and slight brightening, thereby 
generating varied synthetic images; augmenting datasets in this 
manner has been shown to enhance CV performance (Shorten 
and Khoshgoftaar 2019; Khalifa et al. 2022).

2.2   |   Model Architecture and Training Procedure

We utilised a VGG16 (Simonyan and Zisserman 2014) base with 
a custom selection of top layers, totalling 26 layers. This model 

used the ImageNet weights for the initial foundational learning, 
leveraging the pre-existing knowledge embedded within the 
base model. In the initial phase of training, the VGG16 base was 
maintained in a locked state, focusing the learning process on 
the custom top layers for a duration of five training runs. Then 
for the fine-tuning phase, the remaining layers were unlocked 
except for the bottom eight layers. This was allowed to run in-
definitely but had a strict ‘early stopping’ protocol that would 
cease training after 1 decrease in the validation accuracy score 
and would save the best weights once finished. Furthermore, 
the hyperparameters of the custom top layers of the model were 
optimised using the ‘TF-keras-tuner’ library. The resultant 
optimum values obtained from this process were consistently 
applied across all runs and across both moths and butterflies, en-
suring uniformity and precision in our approach. Additionally, 
all model runs were seeded with the same value to ensure re-
producibility and to initialise each model with identical starting 
parameters and neural network weights. This would also mean 
that when a respective trained model is used for inference, it will 
always give the same prediction results.

2.3   |   Dataset Cropping

Initial trials of the dataset and model architecture employed a 
heatmap-based class activation mapping (CAM) system to ver-
ify that the neural network within the trained model utilised 
features upon the specimens rather than to irrelevant back-
ground noise. The ‘GradCAM’ system was selected for this 
purpose because it can visualise the pixels and regions that con-
tribute most strongly to the prediction of the model by scoring 
pixels and overlaying a heat-map colour system based on this 
score (Selvaraju et al. 2020). Hollister et al. (2023) showed that 
properly trained CV models combined with heat-maps can high-
light the morphological features that distinguish closely related 
species.

During preliminary tests, many heat-maps concentrated on the 
specimen labels instead of the insects themselves (Figure 1A). 
To mitigate this, we implemented a separate preprocessing 
pipeline using the YOLOv8 object detection algorithm trained 
specifically to detect Lepidoptera specimens (Sohan et al. 2024). 
The pipeline crops each image using the bounding boxes re-
turned during inference, thereby excluding most irrelevant 
background. Subsequent heatmap analysis of these cropped 

FIGURE 1    |    Example of heat-map attention on labels (A) versus directly on the specimen (B).
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images showed that a model's attention was now appropriately 
focused on the specimens rather than on the labels (Figure 1B).

2.4   |   Pipeline Development

Our pipeline identifying specimens that do not match their la-
belled species status is shown in Figure 2. The butterfly dataset 
comprised 59 species and the moth dataset 283 species, where 
each species is one class (step 1). For every run of the pipeline, 
300 images were sampled at random from the full set of images 
for each class, of which 250 were reserved for training and 50 
for validation (step 2). Then the images were augmented, and 
the model was trained and validated (step 3). All remaining 
images (109,971 butterfly and 137,637 moth) create the test set. 
The trained model then performed inference on the entire test 
dataset using TensorFlow's Evaluation protocol. This assigned 
each test image the label with the highest confidence score and 
compared it with the species label it is currently assigned to de-
termine whether the prediction was correct (step 4) and was re-
corded (step 5).

Steps 2–5 were repeated 100 times, each repetition sampling 
a fresh training and validation subset (step 6). Because the 
test pool vastly exceeded the training and validation pools re-
quired for an individual run, there is a probability that images 
appeared in the test set several times. Across the 100 runs, 
the number of times the pipeline classified a specimen image 
as a different species label from its current species label was 
counted. When this misclassification was found to be desig-
nated as the same label on each of the trained models, this 
value was noted and was designated the image's ‘Reoccurring 
Prediction Value’ (RPV) (step 7). For example, if the pipeline 
classifies a specimen as species A for each of the 100 pipeline 
runs, but its current species label identifies it as species B, then 
it is assigned a RPV of 100.

2.5   |   Human Interrogation

Taxonomists specialising in morphological identification of 
Lepidoptera from the NHM, with a combined expertise span-
ning over 50 years, were enlisted to help inspect specimens 
flagged by the model. Specifically, they were tasked with looking 

at specimens that the model identified as belonging to a species 
that is different from its current NHM species record. They were 
tasked with visually inspecting specimens that were flagged by 
the pipeline from within the NHM collections. They were told to 
verify specimens according to four options:

1.	 Labelled wrong: The specimen was incorrectly labelled in 
the collection.

2.	 Pipeline wrong: The pipeline made a mistake and incor-
rectly predicted a specimen as a different species to that 
which it was labelled as in the collection.

3.	 Portal wrong: The specimen was correctly labelled in 
the collection; however, it was incorrectly labelled as the 
wrong species (or not present) upon the NHM data portal.

4.	 Unknown: The experts were unable to verify what the 
specimen was or that it was currently inaccessible.

They also added notes to each specimen examined, noting what 
could have resulted in either of the four choices. To visually in-
spect every specimen across the two groups would have taken 
a very long time for the small team of experts. Therefore, it was 
decided to go through a sample of the specimens with RPVs 
> 80, allowing for a review of the most likely mislabelled spec-
imens. Additional specimens with RPVs < 80 were also exam-
ined. The examinations were conducted over 4 sessions with an 
allotted time of 16 h. This resulted in a total of 210 specimens 
being examined.

2.6   |   Note Standardisation

Notes and comments were standardised. Each specimen was as-
signed a visual-difficulty score as follows:

1.	 Easy to verify with the naked eye.

2.	 Difficult, but not impossible, to verify.

3.	 Difficult; required additional contextual information (e.g., 
sampling location, date, or size relative to the predicted 
species).

4.	 Impossible to verify visually; referred for further 
confirmation.

FIGURE 2    |    Flow diagram showing the pipeline process.
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2.7   |   Genetic Verification

Specimens unable to be verified visually (category 4 above) 
were designated for genetic verification. However, several ad-
ditional specimens not in this category were selected to allow 
for validation of the visual based verification conducted by the 
experts. DNA was extracted in a dedicated historical DNA fa-
cility using the protocol outlined by Hall et  al.  (2023), with 
NGS library building following the protocol detailed in Marsh 
et al. (2025), using the ‘Santa Cruz Reaction’ (Kapp et al. 2021) 
with the modifications of Nguyen et al. (2023). Libraries were 
shotgun sequenced on an Illumina NovaSeq XPlus 25B lane 
with a commercial provider, targeting 5–10 million PE reads 
per specimen. The COX1 barcode gene was recovered using 
MitoGeneExtractor (Brasseur et al. 2023) which uses exoner-
ate (Slater and Birney 2005) to map reads to a target reference, 
in this case the closest reference sequence available on NCBI 
protein database along with ~40 common contaminant se-
quences (i.e., bacteria, fungi, human, wolbachia) to help filter 
out non-target reads.

3   |   Results

3.1   |   Pipeline Results

The 100 butterfly model runs achieved a range of F1-scores be-
tween 0.9497 and 0.9267 and the 100 moth model runs achieved 
a range of F1-scores between 0.8486 and 0.8386. The F1-score is 
the harmonic mean of precision and recall, and provides a bal-
anced measure of classification performance. Out of the original 
127,671 butterfly specimens, 17,562 individual specimens were 
flagged by the model at least once across all 100 runs. The num-
ber of specimens that received a RPV of one greatly outnumbers 
the number of specimens that received a RPV of 100 (Table 1). 
When the RPV are combined into intervals of 10, over 83% of 
specimens are categorised with an RPV of 1–10, with the next 
interval of 11–20, occurring over 6%. Less than 1% of specimens 
flagged by the pipeline occurred in the RPV interval of 91–100. 
Out of the original 222,537 moth specimens, 81,788 individual 

specimens were flagged by the model at least once across all 
100 runs. Again, the number of specimens that received a RPV 
once outnumbers the specimens that were received a RPV of 
100 (Table  1). Over 80% of specimens flagged by the pipeline 
occurred in the RPV interval of 1–10, with the next interval of 
11–20, occurring over 9%. Just over 0.1% of specimens occurred 
in the interval with a RPV of 91–100.

3.2   |   Visual Verification Interrogation

3.2.1   |   Error Type Analysis

In total, 210 specimens were visually inspected: 120 butterflies 
and 90 moths. 56.67% of the specimens examined had an RPV 
> 80, meaning that they were consistently flagged by the model 
as being incorrectly labelled (Figure 5). An additional 493 hy-
brid butterflies were flagged by the pipeline; however, these 
technically belong to no official species and were verified to be 
hybrids by the experts, and these were excluded from the re-
maining evaluations.

The most commonly occurring error among the specimens that 
were visually inspected by the taxonomists was that the spec-
imens were labelled wrong (54 butterfly, 57 moth) (Figure 3). 
This was followed by the pipeline being wrong (42 butterfly, 21 
moth), then the portal being wrong (20 butterfly, 6 moth), with 
the lowest category being unknown (4 butterfly, 6 moth).

3.2.2   |   Difficulty of Verification Analysis

In general, specimens that were given a difficulty score of 1 by the 
taxonomists were more likely to be labelled wrong (Figure 4). This 
pattern is seen in reverse when examining verifications with a dif-
ficulty score of 3, where the pipeline was more often the reason for 
the errors. This demonstrates that errors in the labelled wrong cat-
egory were more likely to be rated as easy to visually verify (score 
of 1), while errors in the pipeline wrong category were more likely 
to be rated as difficult to visually verify (score of 3).

TABLE 1    |    Reoccurring prediction values (RPV) for butterflies and moths in intervals of 10.

RPV interval
Butterfly: number 

of specimens
Butterfly: percentage 

of total
Moth: number 
of specimens

Moth: percentage 
of total

91–100 171 0.97 94 0.11

81–90 157 0.89 255 0.31

71–80 129 0.73 255 0.43

61–70 121 0.69 446 0.55

51–60 179 1.02 613 0.75

41–50 242 1.38 1088 1.33

31–40 295 1.68 1834 2.24

21–30 507 2.29 3307 4.04

11–29 1121 6.38 8150 9.96

01–10 14,639 83.36 65,652 80.27
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3.2.3   |   Relationship Between Difficulty and RPV

Most specimens examined had high RPV values, but in general, 
as RPV decreases, the difficulty level also tends to decrease 
(Figure  5). Difficulty Level 1, which contains the most speci-
mens, shows the greatest variability, with prediction values dis-
tributed across the entire range. In contrast, Difficulty Levels 3 
and 4 are more prevalent among specimens with higher RPVs.

3.2.4   |   Examples of Verified Labelled Wrong Specimens

Here we present two examples of when labelling was incor-
rect. Figure  6A is a whole drawer of Boloria selene (Denis & 
Schiffermüller, 1775) (Figure  6C) while those highlighted are 
Boloria euphrosyne (Linnaeus, 1758) (Figure 6D). Guides dedi-
cated to visual morphology separate these two species based on 
the pattern of the outside edges of the wings with little else consid-
ered to separate specimens (European Butterflies Group 2024). 
However, once the difference was noted, experts found it easy 
to discern between the two and gave these a difficulty of 1. 

Figure 6B is a whole drawer image of Earophila badiata (Denis 
& Schiffermüller, 1775) (Figure 6E) while the highlighted spec-
imens are of Catarhoe rubidata (Denis & Schiffermüller, 1775) 
(Figure 6F). Visual verification of these specimens was, in the 
opinion of the experts, easy to discern and gave these a diffi-
culty of 1. Moreover, these specimens were all input by a single 
curator and again, according to the experts, it was a mistake that 
should have been avoided.

3.2.5   |   Examples of Verified Pipeline Wrong Specimens

Specimen ‘BMNH(E)501105’ (Figure  7A) belongs to the species 
Maculinea arion (Linnaeus, 1758) (Figure 7B). The pipeline pre-
dicted this specimen as Cupido minimus (Fuessly, 1775) (Figure 7C) 
with an RPV of 93. Visual verification by the experts confirmed 
that the pipeline labelled this wrong due to a large size difference 
between the current species label and predicted species label as 
can be seen in the images with scalebars and labels (Figure 7D–F). 
The experts noted that while the morphology when viewing the 
cropped images does resemble the predicted species, the specimen 
in question could easily be verified when viewing it in person or 
when viewing the image alongside the scalebar.

Figure  8A shows specimen ‘BMNH(E)1390409’ belonging to 
Aricia agestis (Denis & Schiffermüller, 1775) (Figure  8B). The 
pipeline predicted this as Aricia artaxerxes (Fabricius, 1775) with 
an RPV of 98 (Figure 8C). Visual verification confirmed that the 
pipeline had labelled this wrong because the location that the 
specimen was sampled from was outside its geographic range. 
Again, it was noted that while the morphology of the specimen 
in question resembled the predicted species rather than actual 
species, the location that the specimen was sampled from would 
verify that the pipeline predicted it incorrectly. Figure 8D is the 
location the specimen was sampled from while Figure 8E is the 
range of the current species label and Figure 8F is the range of 
the predicted species label.

3.2.6   |   Examples of Portal Wrong

Figure 9 highlights various errors on the NHM portal in which 
specimens, their associated information, or their retrieval via 
the search function from the server storage can be affected. 

FIGURE 4    |    Bar chart showing the difficulty assigned to the visual 
verifications for moth and butterfly specimens.

FIGURE 5    |    Histogram showing the reoccurring prediction value 
and difficulty of specimens visually examined.

FIGURE 3    |    Bar chart showing the combined error results for the 
butterflies and moths.

 20457758, 2025, 7, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1002/ece3.71648 by T

est, W
iley O

nline L
ibrary on [22/07/2025]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense
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When ID BMNH(E)1176803 (Figure 9A) is requested on the por-
tal, links for two specimens are retrieved (Figure 9A,B). When 
ID BMNH(E)1098971 is requested, a single link is retrieved 
that contains two specimens (Figure  9C,D). Although the ID 
number matches the ID on specimen 8C, the information on 
the link belongs to specimen 8D, yet the ID on 8D is different 
(1094975). Further complicating the mislabelling, specimen 9C, 
Coenonympha tullia (Müller, 1764), is not of the same family as 
specimen 8D, Pyronia tithonus (Linnaeus, 1758). When search-
ing for ID BMNH(E)1146807 (Figure 9E), the portal retrieves a 
completely different ID, and the associated information belongs 
to specimen 9F. When ID BMNH(E)1063847 is requested, a link 
for specimen 9G is retrieved. Upon reviewing the information 

on this link, although the ID number matches the specimen, the 
attached information (i.e., its taxonomic name, its sampling co-
ordinates, and its drawer number within the collections) belongs 
to a different species (Figure 9H).

3.3   |   Genetic Verification Results

Thirty specimens were selected for genetic analysis, made up 
of 19 butterfly specimens and 11 moth specimens (Figure 10). 
Among the butterflies, 15 specimens that the visual taxono-
mists had flagged as incorrectly identified by the pipeline were 
confirmed as incorrect through genetic analysis. However, four 

FIGURE 6    |    Verified example of labelled wrong specimens flagged by the pipeline. Whole drawer image of Boloria selene (A) with an example 
specimen of this species (C). Highlighted specimens in (A) are Boloria euphrosyne (D) but mislabelled as B. selene. (B) is a whole drawer of Earophila 
badiata with an example specimen of this species (E).  Highlighted specimens in (B) are Cupido minimus (F) but mislabelled as E. badiata..

FIGURE 7    |    Verified example of when the pipeline made an incorrect prediction. Specimen ‘BMNH(E)_501105’ (A, D) is correctly labelled as 
Maculinea arion on the specimen label (B, E), but was incorrectly predicted by the pipeline to be Cupido minimus (C, F). Although the visual taxon-
omists note that these species look similar when images are cropped without scale bars (A–C), the size differences between these species are obvious 
traits that are used to tell them apart (D–F).
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specimens contradicted both the pipeline's prediction and the 
visual taxonomists' assessment, which had supported the pipe-
line's prediction. For the moths, genetic analysis confirmed that 
three specimens were incorrectly identified by the pipeline, in 
line with the visual taxonomists' assessment. In contrast, the 
genetic analysis showed that eight specimens contradicted both 
the pipeline and the visual taxonomists. Out of the four speci-
mens that were given a difficulty score of four (three butterflies 
and one moth), only two came back from the genetics examina-
tion. Both contradicted the pipeline's predictions.

4   |   Discussion

A primary challenge of natural history museums is the tax-
onomic identification, curation and management of vast and 
continuously growing numbers of specimens (Miller et al. 2004; 

Mujtaba et al. 2018). Our study describes a CV pipeline applied 
to the digitised British and Irish Lepidoptera collection at the 
NHM, London. This pipeline was developed to automatically 
identify mislabelled specimens, thereby enhancing the accuracy 
and efficiency of managing these collections.

Out of the original 127,671 individual butterfly specimens, 
17,562 were flagged by the pipeline at least once (out of 100 runs, 
28.37%). However, analysis of RPV demonstrated that > 83% of 
specimens received an RPV of 1–10, while less than 1% reached 
an RPV of 91–100. Similarly, for the moth dataset compris-
ing 222,537 specimens, 81,788 were flagged by the pipeline at 
least once, with over 80% falling within the RPV range of 1–10, 
while less than 0.12% received an RPV of 91–100. This suggests 
that while many specimens were flagged by the pipeline, only 
a small fraction were consistently flagged as being potentially 
mislabelled. Such specimens (e.g., RPV > 80) should be visually 

FIGURE 8    |    Verified example of when the pipeline made an incorrect prediction. Specimen ‘BMNH(E)1390409’ (A) its sampled location (D) with 
an example of this species Aricia agestis (B) and collection locations for this species (E). The pipeline incorrectly predicted this specimen to be Aricia 
artaxerxes (C), but it is only found in the northern portion of the UK (F) and does not overlap with A. agestis.

FIGURE 9    |    (A–H) Various examples of issues with specimen storage and retrieval from within the NHM portal.
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inspected by taxonomists and re-labelled if required. This is sup-
ported by expert visual examination where 56.67% of the speci-
mens they examine had an RPV > 80 (Figure 5). We confirmed 
that 147 of the inspected specimens (out of 210; 70%) were in-
deed incorrectly labelled, either within the collection or during 
the digitisation process.

In contrast, specimens within the lower RPV ranges (i.e., 1–10) 
will most likely show pipeline-based errors due to the dataset 
containing mislabelled specimen images. Although only a small 
portion of the total number of flagged specimens was examined, 
70% of those examined were incorrectly labelled as either la-
belled wrong or portal wrong. Even in a scenario where these 
specimens were the only mislabelled specimens within the 
dataset, they would ultimately destabilise a CV model's true po-
tential. Research has shown that incorrectly labelled specimens 
that have been used in the training dataset erode the accuracy 
of the resulting model (Northcutt et al. 2021). Therefore, it could 
be assumed that a model known to have incorrectly labelled 
specimens will undoubtedly produce false positive predictions. 
Future work should focus on this and investigate whether there 
is a relationship between RPV values and pipeline accuracy.

The mislabelled specimens identified in this study underscore 
the complexity of managing and curating large NHCs. Our find-
ings align with previous research suggesting that manual label-
ling errors are not uncommon in such extensive collections, with 
errors reported to be as high as 50% within certain collections 
(Goodwin et al. 2015). This substantial error rate highlights the 
critical need for technological solutions (such as that described 
here) to be used in combination with expert knowledge for the 
curation and maintenance of large NHCs. Here, we show that 
automated methods can be used to flag specimens that are poten-
tially labelled differently from their current status. However, in 
order to verify and rectify such curation issues, the expert opin-
ion and extensive knowledge of museum curators and taxono-
mists are needed. We see the collaboration between automated 
methods and traditional taxonomists as being key for the future 
curation and maintenance of very large and growing NHCs.

The genetic analysis confirmed that the pipeline made several 
incorrect predictions, highlighting areas where it aligned with 
human expertise and also contradicted their predictions. For 
the butterfly specimens, 15 instances were identified where the 
pipeline predictions were incorrect, and these errors were accu-
rately caught by the visual taxonomists, showcasing their tax-
onomic expertise. However, in four cases, the genetic analysis 
contradicted both the pipeline and the visual taxonomists, in-
dicating that both methods occasionally fail to capture the true 
identity of certain specimens. Similarly, for the moth specimens, 
three cases were confirmed where the pipeline predictions were 
incorrect, and these errors were also identified by the visual tax-
onomists. In contrast, eight instances showed that the genetic 
analysis went against the predictions of both the pipeline and 
the visual taxonomists. These findings suggest that while the 
pipeline can be effective in identifying potential mislabelling, 
it is not infallible, reinforcing the importance of a multi-faceted 
approach to specimen verification.

The synergy of CV, visual and genetic methods offers robust 
approaches for managing and curating large NHCs. The com-
bination of these methods is particularly important given the 
challenges associated with each. Visual verification can be 
subjective and dependent on the availability and expertise of 
taxonomic specialists (Austen et al. 2016), while genetic anal-
ysis, though precise, can be resource-intensive and some-
times impractical for older or degraded specimens (Karbstein 
et al. 2024).

Despite the promising results, our study has several limitations. 
One notable limitation is the current inability of the pipeline to 
integrate information on specimen size differences or geograph-
ical range. For instance, some species may be morphologically 
similar but vary significantly in size or are endemic to different 
regions, leading to potential misidentifications by the pipeline 
(Figure 7 and 8). Initial testing showed that the original images 
which included scalebars and labels interfered with the training 
of the CV models and resulted in the models occasionally utilis-
ing these parts of the images rather than the desired specimen. 

FIGURE 10    |    Pie charts showing the results from the genetic verification.
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This was circumvented by cropping the images so that the 
specimens took up as much of the image as possible, resulting 
in reduced noise for model training. However, this ultimately 
resulted in the pipeline unable to differentiate between size as 
all images are processed as the same size. This limitation sug-
gests that further refinement of the pipeline is necessary to in-
corporate additional contextual data, such as specimen size and 
collection location, to improve accuracy. Additionally, experi-
menting with systems where CV models focus on specific areas 
while ignoring excessive noise could be explored.

Our results have revealed a wide range of reasons why specimens 
within NHCs can become mislabelled, with the biggest being 
human error. Some specimens showed clear and obvious mor-
phological defining features that should have been, at least in the 
opinion of the visual-based experts, easy to have been correctly 
labelled. Due to the age of some of these collections (Paterson 
et al. 2016), the true reasons as to how these errors occurred will 
never be known. However, current issues where limitations in re-
sources mean that curation staff are unable to dedicate sufficient 
time to manually verify specimens and manage collections mean 
that these errors could persist. Specimens that are mislabelled on 
the portal can also be attributed to human error. The journey of 
a specimen from its initial input into the collections to its even-
tual digital representation on the portal would have gone through 
many different individuals including several generations of cura-
tors, photographing teams, or server-level teams, all with varying 
levels of expertise. The NHM is currently several years into an 
ambitious project to digitise and upload their NHCs. This high-
lights that communications from different departments should 
be a priority when creating such projects and implementing veri-
fication steps to avoid errors.

Our study demonstrates that automated methods can be used 
as important tools for taxonomists and curators to manage very 
large NHCs. Future work should focus on developing user-
friendly interfaces and tools for museum staff and taxonomists 
to easily interact with and validate the results from the CV pipe-
line, which could streamline the verification process and free up 
staff time for other collection management tasks and research.

5   |   Conclusion

In conclusion, our study demonstrates the potential of a com-
bined approach using CV, visual verification, and genetic 
analysis to significantly improve the accuracy and efficiency 
of managing NHCs. By automating the initial identification of 
potentially mislabelled specimens, our CV pipeline offers a scal-
able solution to the pervasive issue of taxonomic misidentifica-
tion in large collections. This automation not only enhances the 
speed and accuracy of specimen verification but also alleviates 
the burden on human experts, allowing them to focus on more 
complex tasks that require specialised knowledge.

The integration of AI-driven technologies into museum curation 
practices represents a significant step forward in preserving the 
integrity and utility of these invaluable scientific resources for 
future research and conservation efforts. Furthermore, our ap-
proach underscores the importance of a multi-faceted verifica-
tion process, combining the strengths of various methodologies 

to achieve a more reliable and comprehensive system. By con-
tinuing to innovate and improve these methods, we can ensure 
that natural history collections remain accurate, accessible, and 
valuable resources for scientists and researchers worldwide, 
thereby supporting ongoing biodiversity research and conserva-
tion initiatives.
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