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Abstract

Ratio regression has been developed as a flexible instrument to allow

for a wide class of count data distributions. In particular, it turns out

to be useful in zero-truncated count distributions as they typically arise

in capture-recapture settings. One-inflation describes the occurrence of

extra-ones relative to a base count distribution and is a phenomenon fre-

quently occurring in capture-recapture studies caused, for example, by

behavioral change. The work presented here shows how one-inflation can

be incorporated into ratio regression modeling and how one-inflation can

be assessed in ratio regression modeling. Population size estimation on

the basis of ratio regression is discussed and applied to a case study on

heroin users in Chiang Mai (Thailand). For all model-based estimators

computational inference is developed by means of the bootstrap. As sev-

eral versions of the bootstrap are possible, a simulation study is included
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comparing the different approaches. One of the main results shows that

integrating the model selection into the population size inference leads to

favourable properties such as good coverage probabilities.

Key words: Zero-truncated count distribution, Count inflation, Semi-parametric

estimator of population size, Nonparametric bootstrap method, Model selection

1 Introduction

Ratio regression is a powerful tool to allow a broader modeling approach to

count data distributions. It has been developed in series of works motivated by

zero-truncated count data as they typically arise in marginal capture-recapture

sampling frames (Böhning et al. 2013, Böhning 2016, Böhning et al. 2016,

Böhning et al. 2023). For a general introduction into the capture-recapture

methodology, see McCrea and Morgan (2015) or Böhning, Bunge, and van der

Heijden (2018). Recently, one-inflation has found considerable interest in the

area of count modeling (Böhning et al. 2019, Böhning and Ogden 2021, Böhning

and Friedl 2024, Chiu and Chao 2016, Godwin 2017, Godwin and Böhning 2017,

Godwin 2019, Tuoto et al. 2022), and this paper is about incorporating potential

one-inflation into the ratio regression modeling.

Before we start introducing the basic methodology, we illustrate in elemen-

tary terms which problems arise in the case of one-inflation for zero-truncated

count data. As a simple and hypothetical example consider 500 counts sampled

from a Poisson distribution with mean 2 and 500 extra counts of 1 so that the

total population size is N = 1000. The entire frequency distribution is shown

in Table 1, where fx denotes the frequency of count x. Suppose we ignore

Table 1: One-inflated Poisson data

f0 f1 f2 f3 f4 f5 f6 f7 f8 n
74 626 130 108 33 19 8 1 1 926

knowledge of f0, in other words, we are treating the sample as zero truncated

with observed sample size n = 926. We can find an estimate of N using the

EM algorithm (Dempster, Laird and Rubin 1977) of N̂ = 1434 which is about

1.5 times the true size of N = 1000. This overestimation issue becomes even

more pronounced when using the estimator of Chao (1987) (see also Chao and

Colwell 2017), given by f̂0 = f2
1 /(2f2), which has been developed to adjust for

population heterogeneity in the Poisson parameter. The Chao estimator has a
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lower bound property in the sense that the estimate provides a lower bound in

expectation if the Poisson parameter follows an arbitrary random effects distri-

bution. However, one-inflation models do not belong to this class of unobserved

heterogeneity models and the estimator loses its lower bound property. In the

example, it can be seen that f̂0 = 1507, so that N̂C = n+ f̂0 = 2433, consider-

ably overestimating the true N of 1000. Hence, one-inflation carries the risk of

overestimation the true population size, potentially quite strongly.

The current work has focused on one-inflation and ratio regression and has

the following key points of novelty:

• It shows how one-inflation can be incorporated into ratio regression mod-

eling.

• It demonstrates how one-inflation can be assessed in the general context

of ratio regression.

• It shows how population size estimation can be achieved using ratio re-

gression with and without one-inflation.

• It illustrates the concepts with a case study on heroin users in Chiang Mai

(Thailand).

• It discusses how model selection can be built into the process of population

size inference.

• It also provides a new semi-parametric estimator of population size which

is built on the ratio regression modeling with and without one-inflation.

• A simulation study is provided comparing these proposed approaches.

In the next section, we describe ratio regression and illustrate which risks

are involved in ratio regression when one-inflation is ignored.

2 Count distribution and ratio regression mod-

eling

We consider a count random variable X taking values x ∈ {0, 1, · · · ,m}. Here,

m is a positive integer or m = ∞, depending on the setting. Let px denote

the associated probability mass function P (X = x) = px for which we seek
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an appropriate model. A key idea is that it is frequently easier to develop an

appropriate model for px if we consider ratios of neighboring probabilities

Rx =
px+1

px
(1)

for x = 0, 1, · · · ,m−1. If px = exp(−θ)θx/x! is the Poisson distribution (where

θ > 0) then Rx = θ/(x+1). If px = θ(1−θ)x (where θ ∈ (0, 1)) is the geometric

distribution then Rx = 1 − θ. Note that the ratio of successive probabilities is

particularly suitable for zero-truncated distributions as the zero-truncated ratio

Rx =
px+1/(1− p0)

px/(1− p0)

and the untruncated ratio (1) are identical. It is also suitable for distributional

families where the normalizing constant is more difficult to compute as it cancels

out in the ratio. To illustrate as an example, we consider the two-parameter

Conway-Maxwell-Poisson (COM) distribution with the probability mass func-

tion as

px =
µx/(x!)λ

c(µ, λ)
, (2)

where c(θ) is the normalizing constant defined by c(θ) = c(µ, λ) =
∑∞

j=0 µ
j/(j!)λ

for both µ and λ are positive, or µ ∈ (0, 1) for λ = 0. The COM distribution con-

tains some well-known discrete distributions. For λ = 1 the COM distribution

simply reduces to the Poisson(µ) and for λ = 0 it is the geometric distribution.

More details on the COM distribution including an illustration of its flexibility

are given in Sellers (2023). The corresponding ratios for the COM distribution

are given by

Rx =
µ

(x+ 1)λ
. (3)

Here we see a benefit of moving to ratios as we reach a simplified model where

the normalizing constant has cancelled out. Taking logarithms on both sides of

(3), we achieve

logRx = logµ− λ log(x+ 1) = β0 + β1 log(x+ 1). (4)

It is convenient to think of (4) as regression of Rx on log(x + 1) using a log-

link function so-called ratio regression. Then, log µ and λ correspond to the

intercept and the slope, respectively. The geometric distribution is characterized

by a slope of zero, whereas the Poisson distribution has a fixed negative slope
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of -1. The COM distribution has an arbitrary intercept and arbitrary negative

slope. From (4), we have µ = exp(β0) and no restriction on β0 as µ > 0 implies

β0 ∈ (−∞,∞). However, we must constrain β1 < 0 due to λ > 0 if we would

like to retain a valid COM distribution. The fundamentals of ratio regression

have been developed in Böhning, Baksh, Lerdsuwansri, and Gallagher (2013) as

well as in Böhning (2016).

Given a sample X1, X2, · · · , Xn of size n, we can estimate Rx by rx =

fx+1/fx, where fy is the frequency of sample elements Xi equal to y. However,

the aforementioned concept is far more general as we are able to consider more

general models

log rx = β0 + β1g1(log(x+ 1)) + · · ·+ βpgp(log(x+ 1)) + ϵx, (5)

where gj(.) are known functions for j = 1, 2, · · · , p and ϵx is a random error.

To estimate the regression coefficients β0 and βj for j = 1, 2, · · · , p, we use

weighted least square with weights as the inverse variance of log rx which is

the inverse of 1/fx+1 + 1/fx. Strictly speaking, fitting the model E(log rx) =

β0+β1g1(log(x+1))+ · · ·+βpgp(log(x+1)) will lead to fits l̂og rx, but it seems

reasonable to take anti-logs of the fits (which we denote as r̂x) to achieve

r̂x = exp
[
β̂0 + β̂1g1(log(x+ 1)) + · · ·+ β̂pgp(log(x+ 1))

]
.

We can then use the recursive relationship p̂x+1 = r̂xp̂x to find

p̂x+1 = p̂0

x∏
j=0

r̂j (6)

for x = 0, 1, · · · ,m− 1. Finally, we can determine p̂0 as the inverse of

1 +

m−1∑
j=0

j∏
x=0

r̂x. (7)

For more details, see Böhning, Lerdsuwansri and Sangnawakij (2023).

Hence, any regression model of the type given in (5) can be related to a

unique discrete probability distribution. Moreover, we see the importance of

the link function as it guarantees that all fitted ratios are positive.
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3 Ratio regression and one-inflation

We are interested in investigating the effect of one-inflation on the ratio re-

gression. Given a base distribution px, one-inflation is defined by means of an

extra-weight α leading to

p′x =

αpx, if x ̸= 1

(1− α) + αpx, if x = 1.
(8)

Figure 1 shows a ratio regression from a Poisson with parameter 3 and 70%

one-inflation. Note that only the ratios for x = 0 and x = 1 are affected by the

extra-inflation as the weight parameter cancels out for x > 1. In fact, p′1/p
′
0 is

increased and p′2/p
′
1 is decreased. It appears reasonable to assume that both

effects balance out as they go in opposite directions.

The situation is different when there is zero-truncation. In the case of a

zero-truncated base distribution (8) takes the form

p′x =

α px

1−p0
, if x ̸= 1

(1− α) + α px

1−p0
, if x = 1.

(9)

An illustration of the ratio regression from a zero-truncated Poisson with param-

eter 3 and 70% one-inflation is given in Figure 2. Clearly, here a less balancing

situation is occurring as the ratio p′1/p
′
0 is missing. Any regression will have

a slope biased to take a more positive value. Hence, we need ratio regression

models coping with one-inflation. Model (10) is the basic regression model, here

for the case of the COM distribution

model M0 : log rx = β0 + β1 log(x+ 1). (10)

To allow for one-inflation we can simply include an extra-term in (10) leading

to

model M1 : log rx = β0 + β1 log(x+ 1) + β2I1(x) (11)

where I1(.) is the indicator function defined as I1(x) = 1 if x = 1 and 0 oth-

erwise. We note that model M0 is nested in model M1 which would allow a

likelihood ratio test to determine if these two models are significantly different,

i.e., if there is evidence of one-inflation. However, we are interested in putting

the assessment in a broader context. For this purpose, we utilize the Akaike-
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and Bayesian Information Criteria, defined as

AIC = −2 logL+ 2p (12)

and

BIC = −2 logL+ p log(n), (13)

respectively. Here, logL is the log-likelihood, evaluated at the maximum like-

lihood estimates for the model under consideration, p is the number of model

parameters, and n (only relevant for (13)) is the number of different, observed

x-values. More details on weighted regression and computation of the likelihood

as well as the information criteria are given in the Appendix section.
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Figure 1: Log ratios for counts from Poisson distribution with parameter 3 and
70% one-inflation. The solid red line represents no inflation.
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Figure 2: Log ratios for a zero-truncated Poisson distribution with parameter 3
and 70% one-inflation. The solid red line represents no inflation.

4 A case study on heroin users in the Chiang

Mai province (Thailand)

Drug abuse has become a serious problem in Thailand. The legal system has

shifted from punishment to treatment and rehabilitation for people who use

drugs. Here we consider heroin user data from the Chiang Mai province in

2013 – 2018. The list of the surveillance system is from Chiang Mai Thanyarak

Hospital serving as a treatment facility. The information is constructed on the

basis of frequencies of both outpatient and inpatient treatment episodes.

Shown in Table 2 is the number of heroin users who visited the treatment

facility in 2013-2018. There were 537 drug addicts who contacted the hospital

exactly once, 152 were treated twice, 80 were treated three times, and so forth.

A total size of observed heroin users were 843 patients with a list of 1481 records

receiving treatment for heroin. We use only the data with a count of repeated

visits not more than 6 as the last frequencies are very low (see also Jongsomjit

and Lerdsuwansri (2023) for further details). Clearly, heroin addicts who never

visited the treatment facility do not appear in the register and hence there are
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no zeros observed. In addition, a relatively large number of ones are there.

Table 2: Frequencies fx of the number of times x a heroin user visited a treat-
ment center in Chiang Mai province in 2013-2018

x 1 2 3 4 5 6 n
fx 537 152 80 34 15 8 843
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1.

0
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5
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0

log(x+1)

lo
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r x
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Figure 3: Log ratios for the heroin user data set from Chiang Mai. The circles
represent the observed log ratios, M1 is the solid red line, and M0 is the dashed
line. Note that only 5 points are used in the plot as the last frequencies are very
low.

Table 3: Estimated regression coefficients and associated model selection criteria
for the case of heroin users

Model β̂0 (SE) β̂1 (SE) β̂2 (SE) Log-L AIC BIC
M0 -1.68 (0.30) 0.70 (0.30) - 0.49 5.01 3.84
M1 -0.38 (0.33) -0.26 (0.26) -0.70 (0.17) 6.18 -4.37 -5.93

Table 3 shows the regression coefficients with their associated standard errors
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as well as the model selection criteria. We can see that for model M0 the slope

estimate is much more positive and the intercept considerably more negative

than the respective terms for model M1. Hence, model M1 has a clear debiasing

effect on the relevant parameter estimates. This point is also illustrated in

Figure 3. Note that in Figure 3 only the non-inflated part of model M1 is

shown, as it is the one used for prediction at x = 0.

According to the information criteria, AIC and BIC, modelM1 gives a better

fit than model M0. Using the fitted value from M1 (ignoring the one-inflation

term) r̃x = exp[β̂0+ β̂1 log(x+1)], following the details given already in (6) and

(7), we can then use the recursive relationship p̃x+1 = r̃xp̃x to find

p̃0 =
(
1 +

m−1∑
j=0

j∏
x=0

r̃x
)−1

. (14)

Hence, from the fitted model for r̃x we have unique probabilities p̃0, p̃1, · · · , p̃m
readily available, constructed as previously.

We now apply these ideas to the heroin user data set. According to the

previous results, we arrive at model M1 as a suitable model. As there is a

one-to-one relationship, any ratio regression model can be associated with a

corresponding, unique probability model. In the case here, the fitted values

r̃x = exp[−0.38 − 0.26 log(x + 1)] lead to p̃0 = 0.41, p̃1 = 0.28, p̃2 = 0.16, p̃3 =

0.08, p̃4 = 0.04, p̃5 = 0.02, and p̃6 = 0.01. Remarkably, once the ratio regression

model has been estimated, a valid count distribution can be simply derived as

just illustrated above.

5 Simulation for model-based assessment

We are interested in not only incorporating one-inflation into ratio regression

model but also using the log-likelihood-based selection criteria, AIC and BIC,

to select the best-fitted one. As the associated ratio regression model leads to

unique probabilities for the count random variable, a question arises whether the

suggested information criteria correctly select the model. We therefore provide

a simulation study for the model-based assessment to illustrate how this con-

cept works. The simulation settings and procedure are given in the following.

The population size N is set at 100 and 1000. We consider three distributions:

(1) Poisson distributions with means θ = 2 and 3, (2) geometric distributions

with probability parameters θ = 0.2 and 0.3, and (3) Conway-Maxwell-Poisson
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distributions with parameters (µ, λ) = (2, 0.9) and (3, 0.9). We study three

setting: no, 10% and 50% extra-ones. N counts are generated under the respec-

tive settings and zero-counts are ignored. We fit models M0 and M1, as well

as compute the AIC and BIC values for each model. At this stage, the model

with the smallest AIC and BIC is chosen. Each scenario in the simulation is

conducted in R (R Core Team 2024) and repeated 10,000 times. Finally, the

average percentage of selecting model M0 is evaluated.

The simulation results are presented in Table 4. It is clearly seen that the

highest percentages of selecting model M0 appear under the situation of no one-

inflation for all population scenarios. The percentages of selecting model M0

always decrease as the amount of one-inflation increase indicating that AIC and

BIC do a good job of selecting the true model. The results behave the same way

for all distributions in the study. The simulations show that performance of the

model selection improves for a larger population size. Evidently, the information

criteria provide a reliable way of selecting between the ratio regression model

with and without one-inflation.

6 Population size estimation

We now turn to quantify the number of unobserved units and the unknown

true size of the population in the context of capture-recapture approach. For a

study of a closed population of sizeN units, we assume that a sample of observed

counts of size n is available with fx as the frequency of units which have been

observed exactly x times for x = 1, 2, · · · ,m where m is the largest observed

count. Since unseen units do not appear in the sample, the corresponding

frequency f0 is unknown. An estimate for f0 can be obtained using the Horvitz-

Thompson estimator

f̂0 = n
p̂0

1− p̂0
. (15)

This leads to the familiar Horvitz-Thompson estimator of population size N ,

N̂ = n+ f̂0 =
n

1− p̂0
, (16)

where p̂0 is the estimated probability of a zero count. In the current work, p̂0

is found from the ratio regression based on model M0.

Likewise, we have model M1, the ratio regression model coping with one-

inflation. However, some modifications are required for estimating the pop-
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Table 4: Percentages of selecting model M0 based upon AIC and BIC; P (θ)
stands for Poisson distribution with parameter θ, G(θ) for geometric with pa-
rameter θ, and COM(µ, λ) for Conway-Maxwell-Poisson distribution with pa-
rameters (µ, λ)

N = 100 N = 1000
Population AIC BIC AIC BIC

no one-inflation
P(2) 0.5454 0.5097 0.6752 0.6615
P(3) 0.6666 0.6498 0.7321 0.7485
G(0.2) 0.7193 0.7704 0.7828 0.8816
G(0.3) 0.6841 0.6946 0.7763 0.8408

COM(2, 0.9) 0.6050 0.5634 0.7018 0.6995
COM(3, 0.9) 0.7028 0.7012 0.7482 0.7787

10% one-inflation
P(2) 0.5238 0.5003 0.3737 0.3604
P(3) 0.5841 0.5654 0.0637 0.0710
G(0.2) 0.5917 0.6454 0.0569 0.1100
G(0.3) 0.6224 0.6265 0.2097 0.2762

COM(2, 0.9) 0.5787 0.5400 0.3008 0.2989
COM(3, 0.9) 0.5192 0.5187 0.0169 0.0222

50% one-inflation
P(2) 0.2559 0.2181 0.0008 0.0005
P(3) 0.1031 0.0888 0 0
G(0.2) 0.0890 0.0934 0 0
G(0.3) 0.1978 0.1813 0 0

COM(2, 0.9) 0.2236 0.1889 0.0001 0.0001
COM(3, 0.9) 0.0550 0.0501 0 0

ulation size. In the case that the observed sample will contain one-inflated

singletons and non-inflated singletons, it is not known which singleton belongs

to the inflated and which belongs to the non-inflated part. Consequently, the

singletons are completely removed and estimation is based on the remaining

counts of size n − f1. Also, p̃0 and p̃1 are the predicted probabilities for the

non-inflated part of M1. This leads to a modified Horvitz-Thompson estimator

f̂0 = (n− f1)
p̃0

1− p̃0 − p̃1
, (17)

and the total population size estimator N̂ = n+ (n− f1)
p̃0

1−p̃0−p̃1
follows.

In addition to the Horvitz-Thompson estimator, we have also included the

Chao estimator N̂C = n+ f2
1 /(2f2) (Chao 1989, Chao and Colwell 2017, Chao
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and Bunge 2002) and the Chao estimator modified for one inflation N̂MC =

n + (2/9)f3
2 /f

2
3 (for details see Böhning, Kaskasamkul and van der Heijden

2019). If a geometric distribution as a kernel in the nonparametric Chao mixture

deems more appropriate (than a Poisson kernel), the Chao bounds take the form

N̂CG = n+f2
1 /f2 and modified for one inflation N̂MCG = n+f3

2 /f
2
3 . The latter

seems reasonable in case the ratio regression has a positive slope which is not

feasible for the Conway-Maxwell-Poisson distribution. Projection to the feasible

space (arbitrary intercept and non-positive slope) leads to a zero slope which

corresponds to the geometric distribution.

7 A semi-parametric estimator of population size

for the general ratio regression model

Let us now consider the general case of a ratio regression model M1 with po-

tential one-inflation

log rx = β0 + β1g1(log(x+ 1)) + · · ·+ βpgp(log(x+ 1)) + βp+1I1(x) + ϵx, (18)

for x = 0, 1, · · · ,m−1, where I1(x) is the indicator function for x = 1. Suppose

we fit model (18) and use the part without the one-inflation term in model M1

(this is the black line in Figure 3)

r̃x = exp
[
β̂0 + β̂1g1(log(x+ 1)) + · · ·+ β̂pgp(log(x+ 1))

]
,

we are able to find p̃0 as the inverse of

1 +

m−1∑
j=0

j∏
x=0

r̃x. (19)

From here the size estimator of missed units f̂0 = (n − f1)
p̃0

1−p̃0−p̃1
follows as

developed in the previous section.

Alternatively, we can think of

p̃x = p̃x+1/r̃x, (20)

from where

p̃0 = p̃1/r̃0 (21)
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follows. Unfortunately, replacing p̃1 by f1 in (21) is not feasible as f1 is one-

inflated. However, using p̃1 = p̃2/r̃1 we can extend (21) by

p̃0 =
p̃2
r̃0r̃1

. (22)

Now it is possible to replace p̃2 in (22) by its estimate f2, which leads to the

semi-parametric estimator

f̂0,sm =
f2
r̃0r̃1

. (23)

Ultimately, we define the semi-parametric estimator of population size

N̂sm = n+
f2
r̃0r̃1

. (24)

8 Population size inference for the case study

So far, population size estimators are derived using ratio regression with and

without one-inflation. Here we have the Horvitz-Thompson (HT) and semi-

parametric (SM) estimators. Additionally, we have Chao’s estimator and the

modified Chao’s estimators which do not require any modeling. In this section,

we discuss population size inference which can be done by the nonparametric

bootstrap method in different ways. These will be illustrated through the case

study on heroin users in Chiang Mai (Thailand).

8.1 Nonparametric bootstrap method without model se-

lection for population size inference

Table 5 shows the estimated number of hidden heroin users and population sizes.

The last two columns of table present the 90% and 95% percentile bootstrap

confidence intervals for N . We use B = 10000 bootstrap samples based on

the procedure given in Algorithm 1 further below. The results demonstrate

that the estimated population size from the conventional Chao estimator is

considerably different from the modified Chao’s estimator. They also depend on

the choice of the probability base model (Poisson or geometric distribution). In

addition, choosing between Chao’s and the modified Chao’s estimator requires

knowledge on the presence of one-inflation. In other words, a distributional

analysis is required before population size estimation can be considered. For

example, the ratio plot (Böhning et al., 2013; Böhning, 2016) can be used to
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explore the pattern of the distribution for capture-recapture data. In fact, it is

often easier to find an appropriate ratio regression model than a proper model

for the count distribution. As shown above, the regression model approach

leads to a valid count distribution. From the results in Table 5, it can be

seen that the HT and SM estimates computed under the same regression model

do not differ substantially. Both f̂0 and N̂ computed based on models M0

are considerably different from those computed from model M1. To choose

a reasonable regression model, we may use the AIC and BIC as performance

criteria. As noted in Table 3, model M1 provides the smallest AIC and BIC for

the heroin addict dataset. This evidence shows that the estimators based on

model M1 could be applied for population size inference.

Table 5: Estimated number of unobserved units, population size estimates
(Bootstrap median) and 90% and 95% percentile bootstrap confidence inter-
val (CI) for population size of Chiang Mai heroin user

Method f̂0 N̂ 90% CI 95% CI
HT (model M0) 2950 3793 (3835) (2987, 5010) (2841, 5323)
HT (model M1) 414 1257 (1265) (938, 2587) (915, 3117)
SM (model M0) 2710 3553 (3595) (2844, 4614) (2717, 4858)
SM (model M1) 392 1235 (1245) (933, 2526) (912, 3058)
Chao (geometric) 1897 2740 (2742) (2413, 3149) (2361, 3235)
modified Chao (geometric) 549 1392 (1397) (1167, 1796) (1133, 1911)
original Chao (Poisson) 949 1792 (1792) (1627, 1999) (1601, 2040)
modified Chao (Poisson) 122 965 (964) (913, 1054) (907, 1078)

Table 6: Estimated population size, standard error of N̂ , 90% and 95% per-
centile bootstrap confidence interval (CI) for the number of Chiang Mai heroin
users and percentage of selecting model M1 using the nonparametric bootstrap
method with model selection

Method N̂ SE(N̂) 90% CI 95% CI % of model M1

HT (Algorithm 2) 1249 975.07 (938, 3874) (914, 4213) 83.23
HT (Algorithm 3) 1244 957.32 (933, 3870) (912, 4220) 83.87
SM (Algorithm 2) 1242 948.72 (934, 3768) (911, 4096) 83.61
SM (Algorithm 3) 1248 945.91 (936, 3814) (912, 4172) 84.00

To estimate confidence intervals, we use the nonparametric bootstrap as

described in the capture-recapture literature (for details see Anan, Böhning and

Maruotti 2017). The major difference to the standard nonparametric bootstrap
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is the fact that the following bootstrap takes into account the observed sample

size n as part of the inference (each bootstrap sample will generate a different

observed n). However, it does not account for model selection.

Algorithm 1: Simple bootstrap with imputation of f0

1. Find the estimate of N , denoted as N̂ , and f̂0 = N̂ − n from the sample

data (0-truncated sample).

2. Draw a bootstrap sample of size N̂ from a multinomial distribution with

probabilities f̂0/N̂, f1/N̂, · · · , fm/N̂ , where m is the largest count.

3. Truncate zero counts and compute the population size from the bootstrap

sample, namely N̂∗.

4. Repeat steps 2 and 3 for B times to get estimates N̂∗(1), N̂∗(2), · · · , N̂∗(B).

5. Find the lower and upper limits of the (1−α)100% confidence interval for

N from the (α/2)th and (1−α/2)th quantiles of N̂∗(b), for b = 1, 2, · · · , B.

8.2 Nonparametric bootstrap method with model selec-

tion for population size inference

As shown in the previous sections, the ratio regression with and without one-

inflation can be used to guide population size estimation provided by AIC or

BIC. However, basing inferences on a single model may lead to bias towards the

model of choice according to AIC or BIC. In other words, there are two realistic

models (M0 and M1) in our case that could have been selected for inference.

Therefore, in the following part, we will introduce two bootstrap methods for

the HT and SM model-based estimators and will include model selection in the

inference process to deal with the uncertainty that comes with the sampling.

The procedures for estimating the population size for each bootstrap method

are given in Algorithms 2 and 3. Note that the bootstrapping in Algorithm 2 is

different from that in Algorithm 3. The former requires a double-bootstrap sam-

ple to estimate the unobserved frequency in order to improve the performance

of bootstrap methods for bias correction. Meanwhile, the bootstrap method in

Algorithm 3 has no imputation for the missing data.
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Algorithm 2: Double bootstrap with incorporating model selection

1. From the zero-truncated sample, draw a bootstrap sample of size n from

a multinomial distribution with probabilities f1/n, f2/n, · · · , fm/n.

2. Find the regression coefficients under models M0 and M1, calculate AIC

for each model

3. Determine if M0 or M1 is more appropriate w.r.t. the AIC.

4. Estimate f0 and N from the model-based estimator, according to the

choice of M0 or M1, denoted as f̂∗
0 and N̂∗, respectively.

5. Draw a bootstrap sample from a multinomial distribution with probabili-

ties f̂∗
0 /N̂

∗, f1/N̂
∗, f2/N̂

∗, · · · , fm/N̂∗.

6. Truncate zero counts and find the best of models under regression analysis.

7. According to the choice of the best model, estimate N using the model-

based estimator, namely N̂∗∗.

8. Repeat the steps 1 to 7 for B times to get bootstrap estimates N̂∗∗(1),

N̂∗∗(2), · · · , N̂∗∗(B).

9. Find the population size estimate as median and the confidence interval

for N as percentile intervals of the bootstrap estimates N̂∗∗(1), N̂∗∗(2),

· · · , N̂∗∗(B).

Algorithm 3: Simple bootstrap with incorporating model selection

1. From the zero-truncated sample, draw a bootstrap sample of size n from

a multinomial distribution with probabilities f1/n, f2/n, · · · , fm/n.

2. Find the regression coefficients under models M0 and M1, calculate AIC

from each model.

3. Determine if M0 or M1 is more appropriate w.r.t. the AIC.

4. Estimate f0 and N on the basis of the chosen model M0 or M1.

5. Repeat the steps 1 to 4 for B times to get bootstrap estimates N̂∗(1),

N̂∗(2), · · · , N̂∗(B).
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6. Find the population size estimate as median and the confidence inter-

val for N as percentile intervals of the bootstrap estimates N̂∗(1), N̂∗(2),

· · · , N̂∗(B).

Table 6 presents the estimated population size and confidence interval com-

puted using the nonparametric bootstrap method with model selection in sta-

tistical inference. For the heroin dataset, the estimates of N obtained from

the two types of bootstrap are fairly close. The population size estimate from

the HT estimator is similar to that of the SM estimator. Furthermore, we can

see that the model-based estimators provide population size estimates that are

closer to the modified Chao estimators for one-inflation than the conventional

Chao estimator. Evidence for choosing the correct model is also shown by the

percentage of selecting model M1. It is given in the last column of Table 6.

Obviously, model M1 has a high percentage of selection from the resample pro-

cess. Since model M1 corresponds to the extra-one term, the heroin dataset is

assumed to be the one-inflation scenario.

The comparison of the confidence intervals for N given in Tables 5 and 6 is

displayed also in Figure 4. The bootstrap methods incorporating model selection

for population size inference provide a larger interval length than those without

model selection. This appears to be in line with the expectation that model

selection goes along with an increased variability. However, we will study this

in more details in a simulation which will be used to assess the performance of

our methods. It is described in the next section.

9 Simulation for population size estimators

A simulation study is undertaken to investigate the performance of the proposed

estimators derived from ratio regression modeling and other well-established

ones for population size estimation. We evaluate the performance of the methods

in terms of frequentist performance measures, including relative bias, relative

mean squared error (RMSE), coverage probability of the confidence interval, and

interval width. For the study, a specific base model for count data is required

to draw the samples. We consider Poisson, geometric, and COM distributions,

and their one-inflated versions. The parameter configurations of the probability

models and population sizes are the same as those in Section 5. Here, B =

18



1000 2000 3000 4000 5000

95% Bootstrap Confidence Interval for N

HT M0

HT M1

SM M0

SM M1

HT Alg2

HT Alg3

SM Alg2

SM Alg3

Figure 4: Interval plots of 95% bootstrap confidence intervals for N from the
heroin users data computed by the methods with and without model selection.

1000 bootstrap samples are used based on the procedures given in Algorithm 1

for Chao’s and modified Chao’s estimators and model-based estimators without

model selection, as well as Algorithms 2 and 3 for model-based estimators using

model selection. Each scenario is repeated H = 1500 times. We average the

relative bias and RMSE of the estimated population size across all simulation

replications. They are given by

RB(N̂) =
1

N

(
1

H

H∑
h=1

N̂h −N

)
=

Bias(N̂)

N

and

RMSE(N̂) =
1

N2

(
1

H

H∑
h=1

(N̂h −N)2

)
=

V ar(N̂) + [Bias(N̂)]2

N2
.
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For interval estimation, the coverage probability and expected length of the

confidence interval for N are computed by

CP =
#(Lh ≤ N ≤ Uh)

H

and

EL =
1

H

H∑
h=1

(Uh − Lh),

respectively, where #(Lh ≤ N ≤ Uh) is the number that the true parameter

value N lies within the lower and upper limits. As usual, we seek small bias

and variance. However, our focus here is on coverage probability as the major

performance measure to account for uncertainty assessment. We prefer a con-

fidence interval that has close-to-nominal coverage. Additionally, our interest

is in the assessment of including model selection into the estimation of popu-

lation size, in particular the assessment of identifying one-inflation using ratio

regression.

The population size estimates and their performances based on data gener-

ated either without or with one-inflation sampling are presented in Figures 5,

6 and 7. The main simulation results are summarized as follows in some key

messages. More extensive simulation results are available as web supplement.

In Figure 5 we focus on coverage probability of the 95% confidence intervals

for the stand-alone estimators (no modeling involved) of Chao and its modi-

fied version for one-inflation based on the Poisson kernel (classical Chao) and

the geometric kernel. They occur as C, MC, CG and MCG, respectively. We

clearly can see that these estimators work fine under the setting they have been

developed for, but break down if these settings are not met. Figure 6 shows the

coverage probabilities for models M1 and M0 without model selection (meaning

based on Algorithm 1). We see the break-down of coverage probability for M0

if one-inflation increases. The coverage probability for M1 is fine in all cases.

However, this should be carefully interpreted as in this case model M1 includes

the Poisson, geometric and COM distribution as well as one-inflation. Hence

it covers a wider range of distribution but might be different in other settings.

In Figure 7 we see the coverage probabilities for the model-based estimators

including model selection. HT stands for the Horvitz-Thompson as developed

in Section 6 and SM stands for the semi-parametric estimator developed in Sec-

tion 7. In a nutshell, the computational expensive Algorithm 2 works fine in
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all scenarios, where the simplified and less expensive Algorithm 3 breaks down

in several settings, see the left panels in Figure 7. It appears that only Algo-

rithm 2 can be recommended and there are negligible differences between the

(more complex) Horvitz-Thompson estimator and the simple semi-parametric

estimator.

10 Discussion

The current work has presented a flexible tool for finding an appropriate count

density which is quite suitable for population size estimation. In the past,

capture-recapture estimation has been dominated by stand-alone estimators.

A prominent representative is the lower bound estimator developed by Chao

(Chao 1989, Chao and Colwell 2017) which performs well in many settings.

However, it fails to do so when there is one-inflation where it loses its lower

bound property and can experience serious overestimation bias. Modification

of Chao’s estimator has been suggested in the case of one-inflation (Böhning

et al. 2019, Chiu and Chao 2016) that performs well under the occurrence of

extra-ones and retains the lower bound property. The general disadvantage of

stand-alone estimators, however, can be seen in the fact that they might perform

well in situations for which they have been developed whereas they might fail

to do so in others.

Here we present a model-based approach which selects models first on the

basis of some selection criterion, such as the AIC or BIC, then, after select-

ing the best model, constructs the population size estimator on the basis of

the chosen model. Although this procedure seems quite reasonable, it has the

drawback that it will be biased towards the selected model. In other words,

the available sample is only one of many possible and if another sample of the

same type would be available, another model might have been chosen. This is

particular the case in situations where several models under competition have

information criteria values which are quite close to each other. For this reason,

a bootstrap procedure has been developed and shown to perform well which

allows the integration of model selection into the estimation of population size,

an example of computational statistical inference. It is applied here to models

with and without incorporating one-inflation, however, the principle is far more

general applicable. A similar approach has been suggested by Silverman et al.

(2024) with the difference that the suggested bootstrap only focuses on the ob-
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served data (similar to our Algorithm 3) and ignores the uncertainty involved

in estimating the missing cell.

Evidently, bootstrapping for population size estimation can be done in dif-

ferent ways. In Algorithm 1, model selection is ignored and the expectation here

is that the involved uncertainty is underestimated. Algorithm 2 is suggesting

a double bootstrap. In the first bootstrap model selection is accounted for, in

the second bootstrap sample estimation of the missing cell count is adjusted

for. Algorithm 3 is a simplified version of Algorithm 2 in which the bootstrap

for the model selection part is retained, but the bootstrap for the imputation

part is dropped. These have been compared in a simulation study to shed some

light on their performance. As a major result we can summarize that including

model selection into the inference is essential to yield valid inference and the

simplified version (Algorithm 3) seems not sufficient to accomplish this. It seems

necessary to account for uncertainty in the imputation step which is delivered

with Algorithm 2.

11 Appendix: Likelihood and information crite-

ria in weighted regression

The weighted regression is handled slightly different in the literature and, con-

sequently, in the associated computer packages. We follow the approach that R

(R Core Team 2024) is taking. Consider a linear regression model

yi = xT
i β + ϵi, (25)

where the independent errors are ϵi ∼ N(0, σ2/wi). Here σ2 is an unknown

variance parameter and the positive weights wi are assumed to be known, often

proportional to some pre-specified variances. In total, we write σ2
i = σ2/wi.

The log-likelihood is provided as

logL(β, σ2) = −n

2
log(2π)− 1

2

∑
i

log(σ2
i )−

1

2

∑
i

(yi − xT
i β)

2

σ2
i

. (26)

The β coefficients are estimated as weighted least squares β̂ which are also

the maximum likelihood estimates under normality. Care needs to be taken

when estimating the variance parameter σ2. Typically, the unbiased estimator

SSE/(n − p) is used where SSE =
∑

i wi(yi − ŷi)
2 with ŷi = xT

i β̂ for i =
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1, 2, · · · , n and p is the number of β-parameters. An important point is that

the maximum likelihood estimator of σ2 is given by σ̂2 = SSE/n so that the

maximum log-likelihood is given as logL(β̂, σ̂2). As there are p parameters in

β and one additional variance parameter, AIC and BIC are given as

−2 logL(β̂, σ̂2) + 2(p+ 1)

and

−2 logL(β̂, σ̂2) + (p+ 1) log(n),

respectively. Note that n here is referred to as the number of observed x-values.
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Böhning, D., Bunge, J. and van der Heijden, P.G.M. (2018) Capture-Recapture

Methods for the Social and Medical Sciences. Boca Raton: Chapman &

Hall/CRC.
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(a) P(3) and N = 100

 

(b) P(3) and N = 1000

 

(c) G(0.2) and N = 100

 

 

 

 

  

(d) G(0.2) and N = 1000

 

 

 

 

  

(e) COM(3, 0.9) and N = 100

 

 

 

  
(f) COM(3, 0.9) and N = 1000

Figure 5: Coverage probabilities of 95% confidence intervals for N under Chao’s
and modified Chao’s estimators with bootstrap simulations.
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(a) P(3) and N = 100

 

(b) P(3) and N = 1000

 

(c) G(0.2) and N = 100

 

(d) G(0.2) and N = 1000

 

(e) COM(3, 0.9) and N = 100

 

(f) COM(3, 0.9) and N = 1000

Figure 6: Coverage probabilities of 95% confidence intervals for N under simu-
lations with bootstrap Algorithm 1.
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(a) P(3) and N = 100
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(b) P(3) and N = 1000
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(c) G(0.2) and N = 100
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(d) G(0.2) and N = 1000
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(e) COM(3, 0.9) and N = 100
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(f) COM(3, 0.9) and N = 1000

Figure 7: Coverage probabilities of 95% confidence intervals for N under simu-
lations with bootstrap Algorithms 2 and 3.
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