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Abstract: Accurate forecasting of the remaining useful life (RUL) of aviation equipment is 
crucial for enhancing safety and reducing maintenance costs. This study presents a novel 
hybrid prognostic methodology that integrates physics-based and data-driven models to 
improve RUL estimations for critical aircraft components. The physics-based approach 
simulates long-term degradation patterns using fundamental principles such as mass con-
servation and Bernoulli’s equation, while the data-driven model employs a hyper tangent 
boosted neural network (HTBNN) to detect short-term anomalies and deviations in real-
time sensor data. The integration of various models enhances accuracy, adaptability, and 
reliability in prognostics. The proposed methodology is assessed using NASA’s N-
CMAPSS dataset for gas turbines and a fuel system test rig, demonstrating a 15% improve-
ment in prediction accuracy and a 20% reduction in uncertainty compared to traditional 
methods. These findings highlight the potential for widespread application of this hybrid 
methodology in predictive maintenance and prognostic and health management (PHM) 
of aircraft systems. 
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systems; data-driven models; physics-based models; hyper tangent boosted neural  
network (HTBNN) 
 

1. Introduction 
Prognostics and health management (PHM) has emerged as a vital discipline in aer-

ospace engineering, driven by the escalating complexity, expense, and safety require-
ments of contemporary aircraft systems. A primary purpose of PHM is to accurately fore-
cast the RUL of system components, facilitating proactive scheduling of maintenance ac-
tivities [1]. It mitigates the risk of unforeseen failures, minimises downtime, and enhances 
resource allocation. 

Historically, two predominant methodologies have arisen in RUL prediction: physics-
based modelling and data-driven modelling. Physics-based approaches are founded on es-
tablished physical principles and domain expertise. They model system behaviour using dif-
ferential equations, degradation laws, or thermodynamic models, providing significant inter-
pretability and traceability. These strategies are appropriate for situations with identified fail-
ure modes and thoroughly characterised systems. Nevertheless, they frequently have difficul-
ties in adapting to real-world operational variability, particularly in the face of unexpected or 
unmodelled circumstances. Moreover, they necessitate considerable domain expertise and 
may incur substantial computing costs for large-scale systems. 
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In contrast, data-driven models utilise machine learning algorithms trained on sensor 
data to identify patterns suggestive of deterioration or malfunction. These approaches are 
intrinsically flexible and capable of modelling non-linear interactions, rendering them ap-
propriate for dynamic operational contexts. Notwithstanding their adaptability, data-
driven models frequently face criticism for their opaque nature, providing restricted in-
terpretability and necessitating substantial quantities of high-quality labelled data. Their 
performance may deteriorate when utilised beyond their training domain, a process re-
ferred to as dataset shift. 

Hybrid prognostic methodologies have garnered attention to address the limitations 
of standalone techniques. These methods aim to merge the clear understanding and broad 
applicability of physics-based models with the flexibility and learning power of data-
driven algorithms. This integration, however, poses issues in reconciling disparate repre-
sentations, regulating uncertainty propagation, and assuring computational viability. 

This work offers an extensive elaboration of a hybrid prognostic model, as presented 
in Section 5.2 below. The authors focus on how to combine physics-based models with 
machine learning, particularly using a hyperbolic tangent boosted neural network 
(HTBNN), to create a unified system for predicting the RUL of aircraft systems. The meth-
odology encompasses enhanced feature modelling, residual adjustments, temporal inte-
gration, and Bayesian updating algorithms. The authors illustrate its effectiveness, utilis-
ing a benchmark turbofan engine dataset (NASA N-CMAPSS) and empirical data from an 
aircraft fuel system test rig [2]. 

This paper offers a reliable method for predicting maintenance needs in aviation by 
thoroughly discussing the basic theories, design, and testing of this combined approach. 
Additionally, the methods described here can be used in other important industries that 
need accurate, understandable, and flexible health monitoring solutions. 

Despite the growing interest in hybrid prognostics, most existing approaches rely on 
either fixed model fusion rules or heuristics that do not adapt effectively to changing op-
erating conditions. This paper addresses this gap by introducing a dynamic, confidence-
weighted fusion mechanism within a hybrid framework that integrates physics-based 
modelling with a HTBNN. The model is designed to balance interpretability and adapta-
bility while remaining robust to sensor noise and system variability. Furthermore, we 
demonstrate the model’s generalizability not just through synthetic benchmarks but also 
by validating it across multiple aircraft subsystems. 

2. Literature Review 
The estimation of RUL has progressed in tandem with improvements in modelling 

methodologies and computing capabilities. Throughout the years, three predominant 
methodologies have been extensively utilised within the PHM community: physics-based 
models, data-driven techniques, and, more recently, hybrid frameworks that integrate the 
advantages of both. This section examines the cutting-edge approaches, their constraints, 
and the rationale for their inclusion. 

2.1. Physics-Informed Prognostic Models 

Physics-based models, also known as first principles or white box models, are based on 
fundamental scientific laws that dictate system behaviour. Aerospace systems frequently uti-
lise models based on thermodynamics, fluid mechanics, structural fatigue, or heat transport 
to mimic degradation processes. Crack propagation in rotating machinery is commonly mod-
elled with fracture mechanics equations like Paris’ law, whereas flow degradation in fuel sys-
tems is typically characterised by Bernoulli’s equation or Darcy–Weisbach formulations. 
These models are particularly advantageous in situations where failure mechanisms are com-
prehensively understood and operational conditions are rather steady [3]. 
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Aircraft systems often experience degradation from thermal cycling, particulate clog-
ging, hydraulic leaks, and fatigue-induced microcracks. For example, thermal stress can 
affect valve seals and pump impellers, while cavitation and corrosion can damage internal 
surfaces of fuel lines and filters. Several recent studies have investigated such phenomena 
using physics-informed diagnostics and sensor fusion techniques [4–6]. 

The principal benefit of physics-based models is their interpretability and ability to 
extrapolate. They furnish engineers with an understanding of the causal relationships un-
derlying degradation, rendering them especially appropriate for regulatory contexts that 
necessitate transparency. Nonetheless, these models possess certain limits. They generally 
necessitate comprehensive system understanding and precise parameter estimation and 
are frequently susceptible to modelling assumptions. Furthermore, they may find it chal-
lenging to accommodate stochastic fluctuations in usage, manufacturing tolerances, or in-
tricate relationships across subsystems, rendering them less successful in real-world op-
erating contexts characterised by high uncertainty. 

2.2. Data-Driven Models in Aerospace Prognostics 

Conversely, data-driven methodologies regard RUL estimation as a supervised learning 
challenge, utilising past data to train algorithms that discern relationships between observed 
variables and failure outcomes. The methods include a variety of techniques, such as linear 
regression, support vector machines (SVMs), decision trees, random forests, and more re-
cently, deep learning models like convolutional neural networks (CNNs), recurrent neural 
networks (RNNs), and long short-term memory (LSTM) networks [7]. 

These models provide intrinsic flexibility and are adept at identifying non-linear cor-
relations and concealed patterns within extensive sensor data. In aircraft use, data-driven 
methods have proven effective in predicting RUL by using flight details, environmental 
factors, and system health information collected from onboard sensors. However, these 
methodologies face significant challenges related to data quality, representativeness, and 
interpretability. Training datasets may not adequately reflect the distinct or changing set-
tings that numerous aircraft systems function under. Moreover, machine learning models 
may exhibit erratic behaviours when operating beyond their training distributions, and 
their opaque nature can hinder their implementation in safety-critical applications. 

2.3. Hybrid Prognostic Methodologies 

Hybrid techniques have emerged as a viable solution to address the limitations of 
both physics-based and data-driven models. These models aim to integrate the predictive 
capabilities and flexibility of machine learning with the structural insights and dependa-
bility of physical modelling. Initial hybrid models employed residual fusion techniques, 
utilising disparities between sensor data and physics-based forecasts to train data-driven 
correction models. Recent endeavours have investigated co-simulation, model augmenta-
tion, and physics-informed machine learning, wherein physical constraints are explicitly 
included in the learning algorithm. 

Numerous significant works have progressed the hybrid modelling paradigm. For 
instance, physics-informed neural networks (PINNs) integrate differential equations into 
neural networks to impose constraints on the learning process [8]. Alternative frameworks 
amalgamate results from both model types at the decision level using weighted voting 
mechanisms or Bayesian belief networks. Notwithstanding advancements, a deficiency 
persists in generalised, tested frameworks capable of accommodating varied system be-
haviours, managing uncertainty, and functioning efficiently in real-time contexts. Recent 
advancements in PINNs have introduced techniques for embedding partial differential 
equations (PDEs) directly into neural network loss functions. This improves generaliza-
tion while preserving physical laws during training. Recent efforts, such as those by Zhao 
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et al. [9], have explored advanced dual-model fusion strategies for RUL estimation using 
real-time reliability adjustments and multi-objective learning. Notable contributions in-
clude Raissi et al. (2019), Guo et al. (2023), and Zhang et al. (2024) [4,6,8]. 

2.4. Rationale for the Current Study 

A hybrid approach is crucial for systems such as aviation engines and fuel systems, 
which function under extremely changeable and mission-critical conditions due to the in-
herent trade-offs between physical modelling and data-driven inference. The method 
shown in this study builds on earlier efforts, giving a deeper look at how to combine dif-
ferent strategies, especially in areas like linking features, timing alignment, and handling 
uncertainty. This study aims to provide a practical and flexible solution for real-world 
PHM problems by carefully looking at these features and testing the model on both sim-
ulated and real data [9]. 

3. Mathematical Overview 
The creation of a hybrid prognostic model necessitates a robust mathematical frame-

work that facilitates the amalgamation of fundamentally distinct modelling paradigms. 
This section outlines the key parts needed for the proposed method: building the physics-
based degradation model, understanding the structure and learning process of the 
HTBNN, and determining how both models work together to provide a clear prediction 
of RUL. Collectively, these elements create an extensive framework that effectively tackles 
the difficulties of interpretation and adaptability in aircraft health monitoring. 

3.1. Formulation of Physics-Based Models 

The physics-based component is fundamentally comprised of a series of determinis-
tic equations that delineate the physical behaviour of system degradation over time. In 
fluid-driven subsystems like fuel lines and pumps, degradation typically presents as al-
terations in pressure drop, flow rate, or temperature gradients [10]. These are regulated 
by the principles of classical fluid dynamics, encompassing Bernoulli’s equation and the 
Darcy–Weisbach relation. 

The pressure drops (Δ𝑃𝑃) over a segment of pipeline resulting from internal friction 
and flow resistance may be articulated as follows: 

∆𝑃𝑃 = 𝑓𝑓 ⋅
𝐿𝐿
𝐷𝐷
⋅
𝜌𝜌𝑣𝑣2

2
 (1) 

where 
• Δ𝑃𝑃 denotes pressure differential; 
• 𝑓𝑓 represents the friction factor, contingent upon the pipe’s roughness and the flow 

regime (laminar or turbulent); 
• 𝐿𝐿 denotes the length of the pipe; 
• 𝐷𝐷 represents the diameter of the pipe; 
• 𝜌𝜌 and 𝑣𝑣 denote the density and velocity of the fluid, respectively. 

As the system deteriorates (e.g., due to obstruction or erosion), the friction factor 𝑓𝑓 and 
effective diameter 𝐷𝐷 fluctuate over time, leading to quantifiable variations in pressure and 
flow. These physical signals are monitored and analysed to deduce the deterioration condition 
and estimate the RUL. Paris’ Law and its extensions represent fatigue propagation in crack-
growth applications, providing an alternative method for physics-based estimation. 

These models are fundamentally constrained in their ability to account for external 
factors such as abrupt load variations, temporary abnormalities, or unpredictable envi-
ronmental conditions [11]. A learning-based corrective system is implemented to solve 
these issues. 
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3.2. Data-Driven Model: Hyperbolic Tangent Boosted Neural Network (HTBNN) 

The HTBNN functions as the data-driven equivalent of the physical model. The purpose 
of the HTBNN is to detect high-frequency anomalies and nonlinear trends in the sensor data, 
which the physics-based model fails to account for. The model architecture comprises a series 
of neural network layers utilising hyperbolic tangent (tanh) activation functions, integrated 
with an ensemble of weak learners and enhanced by an adaptive algorithm. 

The forward pass of the HTBNN is represented as follows: 

𝑦𝑦� = �𝑎𝑎𝑖𝑖 ⋅ tanh (𝑊𝑊𝑖𝑖𝑥𝑥 + 𝑏𝑏𝑖𝑖)
𝑁𝑁

𝑖𝑖=1

 (2) 

where 
• 𝑥𝑥 represents the input feature vector obtained from sensor measurements and resid-

uals; 
• 𝑊𝑊𝑖𝑖 and 𝑏𝑏𝑖𝑖 denote the weights and biases of the 𝑖𝑖th hidden unit; 
• 𝛼𝛼𝑖𝑖 signifies the adaptive boosting coefficients for each weak learner; 
• 𝑦𝑦� indicates the predicted degradation state or RUL. 

Gradient descent with backpropagation trains the model, and a loss function like 
mean squared error (MSE) or Huber loss optimises it. Regularisation methods, such as 
dropout and early stopping, are utilised to mitigate overfitting, particularly in scenarios 
with constrained training data. 

The application of tanh activations offers a constrained, symmetric nonlinearity that 
enhances the learning of minor variations while ensuring numerical stability. The boost-
ing process promotes robustness by enabling the model to iteratively rectify its residual 
mistakes [12]. 

3.3. Fusion Strategy for Hybrid RUL Estimation 

The paramount element of the hybrid framework is the amalgamation of outputs 
from the physics-based and data-driven components. This fusion is not merely an aver-
aging; it entails context-sensitive weighting informed by model confidence, operational 
conditions, and temporal alignment. 

The hybrid model computes the final RUL prediction as a weighted combination of 
outputs from the physics-based model and the HTBNN. This fusion is defined in Equation 
(3) as follows: 

𝑅𝑅𝑅𝑅𝑅𝑅ℎ𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦(𝑡𝑡) = 𝛼𝛼(𝑡𝑡) ∙ 𝑅𝑅𝑅𝑅𝑅𝑅𝑝𝑝ℎ𝑦𝑦𝑦𝑦(𝑡𝑡) + 𝛽𝛽(𝑡𝑡) ∙ 𝑅𝑅𝑅𝑅𝑅𝑅𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑡𝑡) (3) 

where 
• 𝑅𝑅𝑅𝑅𝑅𝑅ℎ𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦𝑦  (𝑡𝑡): Final estimated remaining useful life at time 𝑡𝑡; 
• 𝑅𝑅𝑅𝑅𝑅𝑅𝑝𝑝ℎ𝑦𝑦𝑦𝑦 (𝑡𝑡): Prediction from the physics-based model; 
• 𝑅𝑅𝑅𝑅𝑅𝑅𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 (𝑡𝑡): Prediction from the HTBNN; 
• 𝛼𝛼(𝑡𝑡): Weight assigned to the physics-based model, dynamically updated; 
• 𝛽𝛽(𝑡𝑡): Weight assigned to the data-driven model, ensuring 𝛼𝛼(𝑡𝑡) + 𝛽𝛽(𝑡𝑡) = 1. 

The adaptive weights are determined by evaluating the normalized confidence 
scores of each model, computed using Equation (4): 

𝛼𝛼(𝑡𝑡) = 1 − 𝜎𝜎𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑡𝑡)
𝜎𝜎𝑝𝑝ℎ𝑦𝑦𝑦𝑦(𝑡𝑡)+𝜎𝜎𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑡𝑡)

 and 𝛽𝛽(𝑡𝑡) = 1 − 𝜎𝜎𝑝𝑝ℎ𝑦𝑦𝑦𝑦(𝑡𝑡)

𝜎𝜎𝑝𝑝ℎ𝑦𝑦𝑦𝑦(𝑡𝑡)+𝜎𝜎𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑡𝑡)
 (4) 

where 𝜎𝜎𝑝𝑝ℎ𝑦𝑦𝑦𝑦(𝑡𝑡) and 𝜎𝜎𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑡𝑡) denote the predictive uncertainty (standard deviation of re-
siduals) for each respective model. Equation (4) implements a soft inverse-variance 
weighting scheme based on rolling residuals. Although inspired by Bayesian fusion, this 
is not a strict probabilistic posterior. The weights 𝛼𝛼(𝑡𝑡) and 𝛽𝛽(𝑡𝑡) are normalised to sum to 
1 and reflect relative model confidence in real time. Authors compute 𝜎𝜎𝑝𝑝ℎ𝑦𝑦𝑦𝑦(𝑡𝑡)  and 
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𝜎𝜎𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑡𝑡) over a sliding window of 20 cycles and invert them to prioritise lower-uncer-
tainty models. This approach provides a practical yet interpretable fusion strategy. This 
formulation ensures that higher weight is assigned to the model with lower uncertainty 
at each time step. The weights 𝛼𝛼(𝑡𝑡) and 𝛽𝛽(𝑡𝑡) are dynamically adapted based on model 
confidence levels, which may be derived from prediction intervals, recent error metrics, 
or entropy-based uncertainty measures. Bayesian inference allows the model to change 
the weights over time as new data comes in, helping it adjust how much it relies on dif-
ferent parts as needed. Authors avoid assuming strict Gaussianity or prior/posterior for-
mulations; instead, the strategy balances model contributions proportionally to recent 
predictive consistency. 

Furthermore, the discrepancies between projected and actual values from the phys-
ics-based model are included in the HTBNN to establish a closed learning loop. This re-
sidual learning allows the data-driven model to identify systematic disparities and adjust 
the physics-based model in real time. Figure 1 visually underscores the design and pro-
vides readers with an immediate understanding of the integration pattern. 

 

Figure 1. Hybrid prognostic framework. 
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4. Feature Integration into Physics-Based Models 
The primary challenge in hybrid prognostic modelling is not merely the simultane-

ous execution of physics-based and data-driven models but rather the establishment of 
significant and interpretable interactions between the two. This section elucidates the stra-
tegic integration of empirical features obtained from sensor data into the physics-based 
component, augmenting its adaptability and practical relevance. The methods explained 
below form the working basis of the hybrid approach, which includes adding features, 
learning from differences, breaking down time-related data, updating with Bayesian 
methods, and connecting real-world data with theoretical models [12,13]. 

4.1. Enhancement of Features in Physical Models 

Traditionally, physics-based models function with a restricted set of regulated varia-
bles and parameters. In practical situations, aviation systems encounter varying operational 
conditions, rendering fixed-parameter models less dependable. By adding sensor data like 
temperature, vibration, fuel flow, or pressure differences to the physical model, the authors 
make it more adaptable to changing conditions while still keeping it understandable [12]. 

The wear and tear of a fuel system part can be influenced by how fast the fuel flows 
and the pressure, according to Bernoulli’s calculations, along with changes in tempera-
ture, different mission types, or outside vibrations. Feature mappings integrate these var-
iables by either adjusting model coefficients or introducing correction terms. Mathemati-
cally, the deterioration parameter 𝜃𝜃(𝑡𝑡) can be expressed as follows: 

𝜃𝜃(𝑡𝑡) = 𝜃𝜃0 + �𝛾𝛾𝑖𝑖 ∙ ∅𝑖𝑖(𝑡𝑡)
𝑛𝑛

𝑖𝑖=1

 (5) 

where 
• 𝜃𝜃0 represents the baseline deterioration parameter; 
• ∅𝑖𝑖(𝑡𝑡) denotes time-dependent empirical features; 
• 𝛾𝛾𝑖𝑖 signifies the learnt influence coefficients. 

This flexible setup allows the physics-based model to effectively show real-time op-
erating conditions, improving its responsiveness and realism, while including specific 
sensor features (like pressure, flow, vibration, etc.) as listed in Table 1. Details of feature 
selection and tuning can be found in Appendices B and C. 

Table 1. Sensor feature contributions and their relevance to physical degradation mechanisms. 

Sensor Feature Role in Prognostic Model 
Flow rate Indicates obstruction in fuel lines and filters 

Pressure drop Reflects pump degradation or fluidic resistance 
Temperature gradient Tracks thermal wear and operational anomalies 

Vibration Captures mechanical imbalance and turbulence 

4.2. Temporal Decomposition and Multi-Resolution Modelling 

Degradation processes transpire across many temporal scales. Prolonged wear pat-
terns, including component fatigue and material erosion, develop gradually and are ide-
ally suited for physics-based modelling. On the other hand, short-term issues—like sensor 
changes caused by turbulence or temporary sticking of valves—are better handled by ma-
chine learning models that can understand small changes over time [10]. 

The hybrid methodology employs the temporal breakdown of sensor signals into high- 
and low-frequency components using wavelet transforms or moving average filters. The 
physics-based model is utilised for the smoothed, long-term trend data, whereas the HTBNN 
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is trained on the residual or high-frequency signal. The ultimate RUL forecast is generated by 
integrating the outputs, establishing a multi-resolution prognostic framework. 

4.3. Residual Learning for Model Rectification 

Despite enhancements and decompositions of features, physics-based models remain 
susceptible to systematic biases stemming from model simplifications or unaccounted dy-
namics. Residual learning is utilised to tackle this issue. The residual 𝑟𝑟(𝑡𝑡) is defined as 
the discrepancy between the observed sensor measurement 𝑦𝑦(𝑡𝑡) and the physics-based 
model prediction 𝑦𝑦�𝑝𝑝ℎ𝑦𝑦𝑦𝑦(𝑡𝑡) as follows: 

𝑟𝑟(𝑡𝑡) = 𝑦𝑦(𝑡𝑡)  −  𝑦𝑦�𝑝𝑝ℎ𝑦𝑦𝑦𝑦(𝑡𝑡) (6) 

The HTBNN is subsequently trained not on unprocessed sensor data but on this residual, 
allowing it to concentrate solely on understanding the divergence between theory and reality. 
This targeted learning diminishes model complexity and improves robustness. 

4.4. Bayesian Updating of Degradation States 

After integrating features and residuals into the physical model, the subsequent stage 
is to adaptively revise its internal state in response to fresh data. Bayesian updating pro-
vides a systematic method for revising deterioration state estimations based on real-time 
observations. The posterior distribution 𝑃𝑃(𝜃𝜃|𝑦𝑦) is derived from the prior 𝑃𝑃(𝜃𝜃) and the 
probability 𝑃𝑃(𝑦𝑦|𝜃𝜃) as indicated by the data-driven model: 

𝑃𝑃(𝜃𝜃|𝑦𝑦) ∝  𝑃𝑃(𝑦𝑦|𝜃𝜃) ∙ 𝑃𝑃(𝜃𝜃) (7) 

This Bayesian framework allows the hybrid model to change its internal settings as 
operational data changes, leading to more accurate and reliable RUL predictions over 
time. Additionally, it offers an integrated system for uncertainty measurement, essential 
for maintenance planning and risk evaluation. 

4.5. Constraints on Empirical-Theoretical Coupling 

To maintain the physical significance of the hybrid model, limitations based on phys-
ical rules are applied to the data-driven elements. These encompass monotonicity (e.g., 
deterioration must not reverse), boundedness (e.g., flow rates cannot be negative), and 
rules of conservation. The HTBNN integrates these limitations into its loss function or 
model architecture to guide its learning pathway. 

In the training of the neural network, a physics-regularised loss function is used: 

ℒ𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑡 = ℒ𝑀𝑀𝑀𝑀𝑀𝑀 + 𝜆𝜆 ∙ ℒ𝑝𝑝ℎ𝑦𝑦𝑦𝑦 (8) 

where ℒ𝑀𝑀𝑀𝑀𝑀𝑀   represents the data loss, ℒ𝑝𝑝ℎ𝑦𝑦𝑦𝑦  imposes penalties for breaches of physical 
constraints, and 𝜆𝜆 is an adjustable hyperparameter. This empirical-theoretical integration 
guarantees that the model’s adaptability does not compromise physical plausibility. 

5. Case Study: Aviation Fuel System 
A complete case study utilising an aviation fuel system was performed to validate 

the efficacy and practical significance of the suggested hybrid prognostic technique. This 
subsystem was selected because of its essential function in engine performance and its 
vulnerability to deterioration mechanisms, including clogging, cavitation, and pump in-
efficiency. The research uses computer simulations along with real experimental data to 
evaluate how well the hybrid model predicts RUL in different working conditions. 
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5.1. Description of Experimental Setup and Test Rig 

The test rig was created at the Integrated Vehicle Health Management (IVHM) Centre 
at Cranfield University. It replicates a system for distributing aircraft fuel, utilising a net-
work of flow control valves, filters, pumps, and sensors. The system incorporates pressure 
transducers, flow meters, temperature sensors, and vibration pickups to collect high-res-
olution operational data in both fault-free and degraded conditions. 

The sensor setup includes a flow meter (accuracy ±1.5%, range 0–60 L/min), pressure 
transducer (±0.25% FS, range 0–1000 kPa), and thermocouple (type K, ±1.1 °C). Each sen-
sor was sampled at 1 Hz with time-synchronized logging. Prior to modelling, raw data 
were smoothed using a three-point moving average filter, normalized to zero mean and 
unit variance, and outliers beyond 3σ were excluded. Calibration was conducted weekly 
using a reference standard per ISO 17025 [14] procedures. Detailed sensor specifications 
are provided in Appendix C. 

Experiments were conducted using the Cranfield IVHM fuel system testbed under 
controlled lab conditions. Ambient temperature was maintained at 25 ± 2 °C, with con-
trolled relative humidity of 50 ± 5%. Each test was repeated across three different flow 
scenarios, with degradation simulated using controlled valve obstructions. Sensor speci-
fications are summarised in Appendix C, including flow range (0–60 L/min), pressure 
range (0–1000 kPa), and sampling rates. 

Controlled degradation was achieved by progressively limiting fuel flow using ad-
justable valves and filters to simulate actual obstruction and pump deterioration scenar-
ios. Furthermore, temperature variations and flow turbulence were used to replicate the 
environmental variability observed during flight. The resultant sensor data yield a com-
prehensive dataset for model training, validation, and benchmarking. 

5.2. Deployment and Configuration of the Model 

In this research, both elements of the hybrid framework were configured as follows: 
• A physics-based model utilising a simplified fluid dynamics framework, grounded 

in the Darcy–Weisbach and Bernoulli equations, was employed to estimate antici-
pated pressure declines and flow rates under nominal conditions. Critical character-
istics, including friction factor and pipe diameter, were modelled as time-dependent 
to represent degradation. 

• The HTBNN component was trained using the residuals between observed sensor 
values and those predicted by physics. The characteristics comprised lagged time-
series data from pressure, flow, and temperature sensors, in addition to engineering 
features including rate of change and entropy. 

• Fusion mechanism: Dynamic weighting was utilised based on real-time error metrics 
and signal variation. Bayesian updating was employed to recalibrate degradation 
state probability as new sensor data were obtained. 

5.3. Results and Performance Evaluation 

The hybrid model exhibited enhanced prediction efficacy relative to independent 
physics-based and data-driven approaches. The test scenarios include three degradation 
modes: (1) partial valve obstruction, (2) complete blockage, and (3) simulated pump wear. 
Each scenario was repeated under varying flow rate profiles. Mean absolute error (MAE) 
is defined as the average of the absolute differences between predicted and actual RUL 
values. Prediction interval coverage probability (PICP) is calculated as the percentage of 
ground truth values that fall within the predicted confidence interval. Principal discover-
ies encompass the following: 
• The hybrid model enhanced accuracy, decreasing the MAE in RUL prediction by roughly 

15% relative to the data-only HTBNN and by 22% compared to the physics-only model. 
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• The hybrid model generated 95% prediction intervals that were shorter and more con-
sistent, indicating improved calibration across diverse situations and reduced uncer-
tainty. 

• Early fault detection: The incorporation of residual-based learning enabled the model 
to recognise initial indicators of degradation, predicting fault start an average of 12 
operating cycles earlier than conventional methods. 

Table 2 shows the average performance results from different test scenarios, suggest-
ing that the hybrid model is more in line with the actual results over the period of degra-
dation. 

Table 2. Quantitative assessment of prognostic models of a fuel system dataset. 

Model MAE (Cycles) RMSE PICP (95%) 
Physics only 19.4 25.7 0.83 

Data only (HTBNN) 16.2 21.8 0.87 
Hybrid (proposed) 13.8 18.6 0.91 

The results underscore the hybrid model’s capacity to sustain high accuracy, adapt-
ability, and robustness across many operational contexts. The reported 15% improvement 
in prediction accuracy was validated using paired t-tests comparing the hybrid model’s 
performance against standalone models. Across 10 repeated trials, improvements were 
statistically significant with 𝑝𝑝 < 0.01 and 95% confidence intervals. 

5.4. Qualitative Observations 

In addition to quantitative metrics, other practical advantages were noted: 
• The hybrid model exhibited greater resilience to absent or erratic sensor readings, 

attributable to the redundancy afforded by the physics-based layer. 
• Maintenance engineers deemed the output of the hybrid model more interpretable, 

especially when supplemented by physical model confidence intervals. 
• The Bayesian updating mechanism enabled the model to perpetually learn and adapt 

without the need for retraining, rendering it appropriate for real-time implementation. 

6. Evaluation and Discourse 
A strong predictive model should not only provide accurate predictions but also per-

form well in uncertain situations, adapt to changing conditions, and give clear results to 
help with decision-making. This section assesses the hybrid model on multiple dimen-
sions, contrasting it with baseline approaches and examining its practical applicability. 

6.1. Accuracy and Error Metrics 

Section 5 shows that the hybrid model is much better than both the physics-only and 
data-only methods when it comes to predicting RUL accuracy. Residual learning in 
HTBNN helps fix mistakes in the physics model, and the dynamic weighting process en-
sures that the final result matches the real decline pattern closely. 

The model attained a 15–20% reduction in MAE across test conditions. The root mean 
square error (RMSE) also decreased due to improved management of edge cases and out-
liers. These improvements validate that the hybrid model can monitor degradation trends 
with greater accuracy than its separate components. Table 3 provides a comparative per-
formance evaluation of our model alongside two recent baselines: a deep LSTM model 
and a PINN-inspired fusion model. Metrics include RMSE, MAE, and PICP. Our model 
demonstrated statistically significant improvements across all measures. 
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Table 3. Advantages of the proposed method over existing approaches. 

Method RMSE (Cycles) MAE (Cycles) PICP (%) 
LSTM baseline 16.5 ± 1.4 13.8 ± 1.2 87.2% 

PINN fusion model 14.7 ± 1.1 12.3 ± 1.0 89.1% 
Proposed Hybrid 12.2 ± 0.9 9.4 ± 0.8 93.5% 

The distribution of residuals 𝑟𝑟(𝑡𝑡) = 𝑦𝑦(𝑡𝑡)  −  𝑦𝑦�𝑝𝑝ℎ𝑦𝑦𝑦𝑦(𝑡𝑡) was analysed for normality and 
autocorrelation. A Shapiro–Wilk test yielded p = 0.08, indicating approximate normality. 
Autocorrelation analysis using the Durbin–Watson statistic (DW = 1.95) suggested mini-
mal serial correlation. Although slight skew was observed, the HTBNN performed ro-
bustly, indicating insensitivity to mild deviations from Gaussian assumptions. Histogram 
and ACF plots are included in Appendix B. 

6.2. Resilience to Noise and Data Anomalies 

A major drawback of only using data-driven methods is that they can be affected by 
sensor errors, missing data, or unexpected issues that were not encountered during train-
ing. Conversely, physics-based models, although occasionally inflexible, offer a reliable 
foundation that accurately represents fundamental system behaviours. 

The hybrid method leverages this complementarity. The fusion process autono-
mously adjusted the weighting in favour of the physics-based forecast when the HTBNN 
model encountered anomalous data, such as abrupt spikes in sensor values caused by 
turbulence. In contrast, when the physical model faltered under varying environmental 
stresses, the HTBNN adjusted using acquired adjustments. 

6.3. Sensitivity to Parameter Variation 

Prognostic models are frequently assessed for their sensitivity to minor variations in 
model or environmental parameters. Authors performed a series of simulations using ±10% 
fluctuations in parameters like friction factor, fuel viscosity, and sensor calibration offsets. 

The physics-based model showed a big difference in the expected RUL when the param-
eters changed, particularly in cases with moving fluids. The HTBNN, when used alone, 
showed less sensitivity but more variation. The HTBNN, when used in isolation, demon-
strated reduced sensitivity but increased variance. The hybrid model demonstrated the least 
error propagation, ensuring consistent accuracy through its dual correction mechanisms. 

This resilience facilitates the model’s implementation in unpredictable, real-world envi-
ronments, encompassing operational variability among aircraft fleets or seasonal fluctuations. 

6.4. Quantification of Uncertainty 

Precise RUL predictions are only beneficial when paired with calibrated uncertainty 
assessments. Maintenance decisions are contingent not only on the anticipated failure of 
a component but also on the reliability of the predictive model. 

The hybrid model integrates uncertainty via Bayesian updating within the fusion 
layer. At each prediction step, a confidence score is calculated based on residual variance 
and previous model error. The scores are utilised to compute 95% prediction intervals, 
which indicate the system’s operational conditions and model reliability levels. PICP re-
fers to the proportion of true values that fall within the predicted confidence intervals. It 
is computed by comparing prediction bands with ground truth labels and reflects the re-
liability of uncertainty estimates. The PICP increased from 0.83 (physics-only) and 0.87 
(data-only) to 0.91 for the hybrid model, signifying well-calibrated uncertainty bounds. 
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6.5. Generalisation Across Systems 

Ultimately, the authors evaluated the generalisation capability of the hybrid model. 
The primary validation concentrated on the aviation fuel system; however, initial assessments 
of the NASA N-CMAPSS dataset (simulated turbofan engine deterioration) indicated compa-
rable performance trends. The physics-based element was modified for turbine dynamics, 
whilst the HTBNN acquired operating patterns from multivariate sensor data. 

The cross-domain applicability highlights a fundamental characteristic of the hybrid 
methodology: its design’s modularity. The physical model can be modified for additional 
subsystems, while the data-driven component recalibrates using localised sensor data 
while maintaining the fundamental integration and fusion architecture. The hybrid model 
was evaluated on the DS01 and DS02 subset of the NASA N-CMAPSS dataset. The model 
achieved an RMSE of 14.2 and a PICP of 91.4%, outperforming the baseline LSTM (RMSE 
17.3, PICP 86.8%). This confirms generalizability across engine-based systems. 

6.6. Model Complexity and Runtime Performance 

To evaluate the feasibility of deploying the proposed hybrid framework in real-time 
PHM environments, we assess its computational characteristics and runtime performance. 

Model Size: The HTBNN component contains approximately 8300 trainable param-
eters, distributed over three hidden layers (32–16–8 neurons respectively), each with tanh 
activation. Dropout layers and batch normalization are used to regulate complexity. 

Computational Complexity: We estimate the floating-point operations (GFLOPs) us-
ing the total multiplications and additions per inference cycle. The physics-based compo-
nent is analytically computed with negligible computational load. The full hybrid model 
requires approximately 0.0012 GFLOPs per prediction cycle. 

Runtime Analysis: Inference speed was benchmarked on a standard desktop CPU 
(Intel i7) and a Jetson Nano embedded device. The hybrid model achieves an average in-
ference time of 3.7 ms on desktop and 9.4 ms on Jetson Nano, confirming suitability for 
real-time operation. 

Embedded Deployment Feasibility: The model’s compact size, modular design, and 
low inference latency make it suitable for embedded deployment in platforms such as 
NVIDIA Jetson Nano and FPGA-based PHM systems. Quantisation and pruning strate-
gies can further reduce resource consumption. 

Model inference time was 3.7 ms on a CPU and 9.4 ms on an embedded Jetson Nano, 
confirming its suitability for real-time PHM. Appendix B has been updated with sensitiv-
ity analysis of dropout rate, learning rate, and neuron count, showing stability in MAE 
within a ±2% range. 

6.7. Ablation Study of Model Components 
To validate the individual contributions of the hybrid model components, we con-

ducted a series of ablation experiments under identical training conditions. The following 
configurations were tested, and related results are shown in Table 4: 
• Baseline HTBNN: Data-driven neural network with tanh activation, trained on raw in-

puts. 
• Residual Learning: HTBNN trained on residuals from the physics model. 
• Physics-Regularized Loss: Incorporates penalty terms for physical constraint violations. 
• Bayesian Fusion: Final hybrid model with dynamic weighting between physics and 

HTBNN components. 
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Table 4. Performance metrics for the ablation study. 

Configuration RMSE (Cycles) MAE (Cycles) PICP (95%) 
Baseline HTBNN 17.4 14.2 85.1% 
Residual learning 14.8 11.5 99.3% 

Physics-regularised loss 13.1 10.2 98.7% 
Bayesian fusion 12.2 9.4 93.5% 

Figure 2 illustrates the RUL prediction trajectories for these configurations on a rep-
resentative test case. Each enhancement leads to notable gains in predictive stability and 
accuracy, confirming the synergistic benefits of hybridization. 

 

Figure 2. Predicted RUL curves for model variants in the ablation study. 

7. Conclusions 
This study presented a thorough and tested mixed method to improve RUL predic-

tions for complex aircraft systems. The proposed method combines physics-based models 
with a data-driven neural network design, offering a balanced mix of understanding, flex-
ibility, and accurate predictions. 

The method goes beyond standard ensemble models by adding real-world features 
straight into the physical model, fixing leftover errors with machine learning, and com-
bining results in a flexible way using a Bayesian framework. This framework enables the 
hybrid model to adjust to fluctuating operational conditions, address unforeseen anoma-
lies, and uphold physical plausibility in its forecasts. 

Experimental validation using both data from empirical aviation fuel systems and 
benchmark datasets such as NASA N-CMAPSS exhibited significant enhancements in 
predictive accuracy, resilience to noise, and confidence calibration. The hybrid model suc-
cessfully surpassed solo techniques in all test scenarios, providing both reduced error 
margins and more dependable prediction intervals. 

The hybrid model offers numerous practical advantages for real-world implementation: 
• It facilitates real-time operation through incremental updates. 
• It can be customised for various subsystems with minimal redesign. 
• It enhances trust and transparency by preserving connections to known physical laws. 
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This method shows a major shift in predicting outcomes—from using separate mod-
elling techniques to combining them into unified, smart systems. As aircraft systems be-
come more intricate and data-intensive, these hybrid frameworks are expected to be vital 
instruments for maintenance optimisation and safety assurance. The hybrid model can 
serve as a functional module in future digital twin architectures by operating as the pre-
diction engine for asset degradation. It can be integrated with real-time data streams, sim-
ulate system states under different what-if conditions, and support predictive dashboard 
visualizations for maintenance teams. 

This work reveals multiple prospects for future investigation: 
1. Digital Twin Integration: Incorporating the hybrid model into a comprehensive dig-

ital twin framework to facilitate real-time diagnostics and RUL forecasts. 
2. Cross-Fleet Learning: Examining Transfer learning methodologies to implement 

trained models across analogous aircraft or components. 
3. Autonomous Uncertainty Management: Improving the model’s capacity to identify, 

measure, and react to uncertain or adversarial inputs. 
4. End-User Interpretability: Creating visual dashboards and explainable artificial in-

telligence (AI) tools to facilitate engineering decision-making. 

This research presented a scalable, interpretable, and high-performing hybrid prog-
nostic technique that offers distinct advantages for aircraft health monitoring. Its general-
isable framework and verified efficacy render it a formidable contender for integration 
into next-generation PHM systems. 

Author Contributions: Conceptualisation, S.F. and N.P.A.; methodology, S.F.; software, S.F.; vali-
dation, S.F.; formal analysis, S.F.; writing—original draft preparation, S.F.; writing—review and ed-
iting, S.F., N.P.A. and A.P.; supervision, N.P.A.; All authors have read and agreed to the published 
version of the manuscript. 

Funding: This research has received funding from the European Commission under the Marie 
Skłodowska Curie program through the H2020 ETN MOIRA project (GA 955681). 

Data Availability Statement: The data are publicly available from the NASA prognostics data re-
pository and mirrored on the Prognostics Health Management Society website. 

Acknowledgments: The authors gratefully acknowledge the H2020-MSCA-ITN-2020 MOIRA pro-
ject and the research team at IVHM Centre, Cranfield University, UK, for supporting this research. 

Conflicts of Interest: The authors declare no conflicts of interest. 

Abbreviations 
The following abbreviations are used in this manuscript: 

CNN Convolutional neural networks 
HTBNN Hyper tangent boosted neural network 
IVHM Integrated vehicle health management 
LSTM Long short-term memory 
MSE Mean squared error 
PHM Prognostic and health management 
PICP Prediction interval coverage probability 
PINN Physics-informed neural network 
RMSE Root mean square error 
RNN Recurrent neural network 
RUL Remaining useful life 
SVM Support vector machine 
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Appendix A. Derivation of Key Equations 
Appendix A.1. Pressure Drop Estimation—Darcy–Weisbach Equation 

The pressure drops across a pipe due to internal resistance is given as follows: 

∆𝑃𝑃 = 𝑓𝑓 ⋅
𝐿𝐿
𝐷𝐷
⋅
𝜌𝜌𝑣𝑣2

2
  

where 
• 𝛥𝛥𝛥𝛥: pressure drop (Pa); 
• 𝑓𝑓: Darcy friction factor (dimensionless); 
• 𝐿𝐿: length of the pipe (m); 
• 𝐷𝐷: diameter of the pipe (m); 
• 𝜌𝜌: fluid density (kg/m3); 
• 𝑣𝑣: average velocity of the fluid (m/s). 

Appendix A.2. Crack Propagation—Paris’ Law 

The following equation is used to model fatigue crack growth: 
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= ∁(∆𝐾𝐾)𝑚𝑚  

where 
• 𝑎𝑎: crack length (m); 
• 𝑁𝑁: number of load cycles; 
• ∆𝐾𝐾: stress intensity factor range (MPa√𝑚𝑚); 
• 𝐶𝐶, 𝑚𝑚: material constants. 

Appendix B. HTBNN Hyperparameter Tuning 
To optimise HTBNN performance, the following hyperparameters were tuned using 

a grid search. 

Hyperparameter Range Tested Optimal Value 
Number of hidden layers 2 to 5 3 

Neurons per layer 16 to 64 32 
Activation function ReLU, tanh, sigmoid tanh 

Learning rate 0.001 to 0.01 0.005 
Boosting rounds 50 to 200 100 

Dropout rate 0.1 to 0.5 0.2 

 

Figure A1. Histogram of residuals. 
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Figure A2. Autocorrelation of residuals. 

Appendix C. Initial Conditional Parameters 
The initial circumstances and parameters of the simulated aircraft fuel delivery 

model are as follows. 

Components Parameters Specs 

Initial conditions 
Temperature 25 ± 2 °C 

Pressure 0.1 MPa 

Fuel tank 
Pressurisation 0.1 MPa 

Minimum fuel volume 0.09463525 m3 

Wing tank 
Initial volume 10 m3 

Maximum capacity 12 m3 

Centre tank 
Pressurisation 0.1 MPa 
Initial volume 5 m3 

Maximum capacity 284 m3 

Pumps 

Reference density 920.027 kg/m3 
Reference angular velocity 120 rev/s 
Angular velocity threshold 10 rad/s 

Operational ranges for angu-
lar velocity 

0 to 200 rev/s 

Mover time constant 0.2 s 

Valves 

Maximum opening area π/4 × (0.03048)2 m2 
Leakage area 1 × 10⁻¹⁰ m2 

Cut-off time constant 0.1 s 
Maximum valve opening (2-

Way directional valves) 
5.1 ×10-3 m 

Fuel line piping 

Length 5m 
Hydraulic diameter 3.05 × 10-2 m 

Aggregate equivalent length 
for local resistances 

2.56 m 
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