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Abstract
Polycaprolactone (PCL) scaffolds that are produced through additive manufacturing are one of the most researched bone
tissue engineering structures in the field. Due to the intrinsic limitations of PCL, carbon nanomaterials are often investigated
to reinforce the PCL scaffolds. Despite several studies that have been conducted on carbon nanomaterials, such as graphene
(G) and graphene oxide (GO), certain challenges remain in terms of the precise design of the biological and nonbiological
properties of the scaffolds. This paper addresses this limitation by investigating both the nonbiological (element composition,
surface, degradation, and thermal andmechanical properties) and biological characteristics of carbon nanomaterial-reinforced
PCL scaffolds for bone tissue engineering applications. Results showed that the incorporation of G and GO increased sur-
face properties (reduced modulus and wettability), material crystallinity, crystallization temperature, and degradation rate.
However, the variations in compressive modulus, strength, surface hardness, and cell metabolic activity strongly depended
on the type of reinforcement. Finally, a series of phenomenological models were developed based on experimental results to
describe the variations of scaffold’s weight, fiber diameter, porosity, and mechanical properties as functions of degradation
time and carbon nanomaterial concentrations. The results presented in this paper enable the design of three-dimensional (3D)
bone scaffolds with tuned properties by adjusting the type and concentration of different functional fillers.
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Introduction

Advanced manufacturing technologies and novel materi-
als have facilitated the development of new scaffold-based
strategies in tissue engineering. The main design require-
ments of bone tissue engineering scaffolds are related to
their mechanical properties (ability to withstand physio-
logical loads), surface properties (ability to bond with the
surrounding tissues, allowing cell ingrowth), degradability
(degradation rate must match bone regeneration and must
degrade into nontoxic products), and biocompatibility [1–3].

Material extrusion additive manufacturing presents
unique advantages in the fabrication of biocompatible and
biodegradable polymeric bone tissue engineering scaffolds.
Using a layer-by-layer fabrication approach, this process can
selectively deposit a wide range of materials, with high cus-
tomization, high accuracy, high repeatability, and relatively
low fabrication costs [4–8]. Besides, different polymeric or
ceramic materials have been considered for bone scaffold
fabrication [9]. However, the use of these materials alone
presents several limitations, making it difficult for scaffolds
to meet the design requirements. Ceramic materials exhibit
limited biomechanical properties due to intrinsic brittleness,
difficulty in controlling degradation and resorption rates,
being also difficult to process [10–12], whereas commonly
used polymers tend to cause inflammatory effects due to
acid degradation products, the lack of cell recognition sites,
and limited mechanical properties and bioactivity [13–15].
Therefore, a variety of functional fillers, particularly car-
bon nanomaterials, such as graphene (G), graphene oxide
(GO), reduced graphene oxide (rGO), and carbon nanotubes
(CNTs), have been investigated to enhance various proper-
ties, such as mechanical properties, electrical conductivity,
degradability, and biological behaviors [16–18].

Among these carbon nanomaterials, the unique signifi-
cance of two-dimensional (2D) carbon nanomaterials, G and
GO, lies in their ability to simultaneously enhance various
critical scaffold properties, such as electrical conductivity,
degradability, and surface, thermal, mechanical, and bio-
logical properties. With superior electrical conductivity, G
presents a promising trend in engineering electrically active
tissue engineering scaffolds [19]. It has been reported that
electrical conductivity improved from 6.13 × 10−8 S/m
to 13 S/m by adding 5% (volume fraction) of G into bio-
glass [20]. Promoted in vivo new bone regeneration was also
observed by using three-dimensional (3D)-printed electroac-
tive bone scaffolds containing G as the functional filler [21].
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In order to modify the electrical conductivity of tissue engi-
neering scaffolds, GO, which exhibits electrical conductivity
significantly lower thanG (primarily dependent on the oxida-
tion degree ofGO) [22], has also beenwidely used.By adding
GO, the electrical conductivity can be improved from 1.63×
10−3 S/m to 0.134 S/m, hence enhancing cell viability [23].
Moreover, G has been reported to improve the mechanical
properties of scaffolds, such as Young’s modulus, compres-
sive strength, fracture toughness, and hardness [24, 25]. G
can also increase piezoelectric efficacy, hydrophilicity, and
protein adsorption, contributing to better biological perfor-
mance [26, 27].Moreover, several in vitro studies have shown
that the addition of G improves cell adhesion, proliferation,
and differentiation [26–28]. Scaffolds containing G were
also successfully used to deliver antibiotics and anticancer
drugs for eradicating Escherichia coli and Staphylococcus
aureus in vitro [29]. Promising in vivo results on ablating
MG-63 osteosarcoma cancer cells and promoting new bone
regeneration have also been reported [29]. Similarly, several
other studies have shown improved crystallization, mechan-
ical properties (e.g., the load to failure, stiffness, and tensile
and compressive modulus and strength), piezoelectric per-
formance, hydrophilicity, and degradability (attributed to the
abundant hydrophilic functional groups) upon the addition
of GO to polyvinylidene fluoride, poly-l-lactic acid, and
platelet-rich plasma gels [30–32]. Additionally, the addition
of GO increases protein adsorption, promoting cell adhesion,
viability, differentiation, andmineralization, by upregulating
osteogenic-related gene expression [31–33]. Similar results
were observed through in vivo studies usingmouse and rabbit
models [32, 34].Other carbon nanomaterials such as rGOand
CNTs have also been investigated as functional fillers. rGO
has been reported to enhance the elastic modulus, compres-
sive strength, ductility, wettability, and the degradation rate
of scaffolds due to the presence of oxygen-containing func-
tional groups, grain refinement, and micro-galvanic effects
[35–37]. Enhanced cell adhesion, proliferation, osteogenic
differentiation, and faster bone repair were observed both
in vitro [37] and in vivo [38, 39]. The addition of CNTs
increases mechanical properties due to bridging mechanisms
and increased crystallinity, accelerating the scaffold’s degra-
dation kinetics, increasing hydrophilicity, and enhancing
scaffold’s biological performance [40–43].

However, the abovementioned studies are limited, and
the effects of adding these carbon nanomaterials and their
concentrations are not systematically compared. Moreover,
scaffolds are designed according to predefined properties
to be achieved once printed, but these properties are sig-
nificantly affected by the degradation process, which may
compromise their long-term performance. Thus, it is crucial
to understand the impacts of these fillers on the degrada-
tion kinetics and their corresponding effects on other relevant
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properties. Furthermore, the development of phenomenolog-
ical models that describe the effects of different fillers and
their concentrations is of extreme importance in designing
more suitable scaffolds with tuned properties, considering
their long-term behaviors. This can reduce the research cost
and accelerate the development process.

In this research, two types of carbon nanomaterials, G and
GO, were considered as functional fillers, and incorporated
into polycaprolactone (PCL) scaffolds at different concen-
trations (1%, 3%, 5%, and 7%, mass fraction). Although
these are highly relevant fillers for bone tissue engineering
applications, limited information has been presented in com-
paring both fillers. Therefore, in-depth investigations were
conducted to study and compare the impacts of these car-
bon nanomaterials on 3D-printed PCL scaffolds, especially
in terms of surface properties, element composition, degra-
dation kinetics, crystallinity, and mechanical and biological
properties. Phenomenological models that can be used to
design scaffolds with ideal properties were also generated
based on the experimental results.

Materials andmethods

Scaffold design and fabrication

PCL pellets Capa 6500 (Perstorp, UK) and GO nanosheets
(Sigma-Aldrich, UK) were used as received from the suppli-
ers. G nanosheets were synthesized through water-assisted
liquid-phase exfoliation of graphite, as previously reported
[26]. Briefly,N-methyl-2-pyrotanone (99%extra pure,Acros
Organics, USA) containing 20% (mass fraction) of water
was used to impregnate 50 mg of microcrystalline graphite
powder (325 mesh, 99.995% pure, Alfa Aesar, UK). The
materials were sonicated and hung overnight, followed by
centrifugation. The upper 75% (volume fraction) of the col-
loidal supernatant was collected and dried to obtain the G
nanosheets. Next, the PCL/G and PCL/GO composite mate-
rialswere prepared through amelt blendingmethod at desired
concentrations (1%, 3%, 5%, and 7%, mass fraction, corre-
sponding to G1, G3, G5, G7, GO1, GO3, GO5, and GO7)
as previously reported [44, 45]. The designed scaffolds with
a fiber diameter of 330 μm, pore size of 350 μm from the
top view, pore size of 210 μm from the side view, and 0°/90°
lay-down pattern were fabricated using a pellet-based screw-
assistedmaterial-extrusion 3D printing system 3DDiscovery
(regenHU, Switzerland) at room temperature (controlled at
22 °C by air conditioning) following previously reported
optimized processing parameters [44, 45]. The cost of each
fabricated scaffold is approximately $3, including energy and
material costs, which is significantly lower than that of com-
mercial products. All scaffolds were produced in the size of

32.0 mm × 32.0 mm × 3.2 mm and cut into the desired
dimensions for different characterization tests.

Material composition

Fourier-transform infrared spectroscopy (FTIR) analysis

FTIRanalysiswas conducted to confirm the presence of func-
tional groups on the obtained G and received GO. A Vertex
70 FTIR spectrometer (Bruker, USA) was used, and the tests
were run in a range of 400 to 4000 cm−1 in transmittance
mode.

Raman spectroscopy analysis

Raman spectroscopy analysis was carried out to verify the
presence of G and GO in the scaffolds using a Renishaw
inVia confocal Raman microscope (Renishaw, UK) with a
laser (432 nm) at an intensity of 10 and the exposure of 10 s,
with a grating of 1200 g/mm in regular mode and under 50×
magnification.

Energy dispersive X-ray spectroscopy (EDX) analysis

The element composition of the scaffolds, particularly the
concentrations of carbon (C) and oxygen (O), was analyzed
through EDX on a TESCAN MIRA3 system (TESCAN,
Czech). The scaffolds were cut into the size of 4.0 mm ×
4.0mm× 3.2mmand coatedwith gold–palladium (4:1,mass
ratio, 6 nm thick) using a Q150T ES sputter coater (Quorum
Technologies, UK). The element composition was analyzed
using the Oxford AZtec software (Oxford Instruments, UK)
based on the acquired images.

Surface properties

Laser scanning confocal analysis

The surface roughness of the scaffolds was evaluated by
laser scanning confocal microscopy using a KEYENCE
VK-X200K shape measurement laser microscope (Keyence,
Japan). The images of the scaffolds’ top surface were cap-
tured under laser mode at 150× magnification. The Gwyd-
dion software (Czech Metrology Institute, Czech) was used
for surface profile analysis and surface roughness calcula-
tion.

Nanoindentation analysis

The surface hardness and reduced modulus of the scaffolds
were determined by conducting nanoindentation tests on a
HYSITRONTI950TriboIndentor (Bruker,USA),whichwas
equipped with a Berkovich tip (three-sided pyramidal). The
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nanoindentation tests were conducted using a 5 mN load cell
(given approximately 2 μm depth) with a load profile of 5 s
load at a rate of 0.8μN/s, 2 s hold at peak load (Pmax), and 5 s
unload at a rate of 0.8μN/s. The force and displacement were
recorded during the test, and the hardness (H) was calculated
based onPmax and contact area (A) according to the following
equation:

H = Pmax
A . (1)

The reduced modulus (E) was calculated using the Oliv-
er–Pharr model, using the contact stiffness (S) and A as
follows:

E = S×√
π

2×√
A
. (2)

Water contact angle analysis

The scaffold’s surface wettability was assessed bymeasuring
the water contact angle using a DSA100E drop shape ana-
lyzer (Krüss, Germany). Briefly, 1 mL of deionized water
was dropped on the scaffold, and the droplet profiles were
recorded at 0 s and 15 s. These were then analyzed using the
Drop Shape Analysis software (Krüss, Germany) according
to the sessile drop technique.

In vitro degradation characterization

Due to the long-termdegradation of PCLunder physiological
conditions, accelerated degradation studies were conducted
until the scaffolds lost their structural stability, as this is a
useful tool to rapidly provide data on how different materials
behave. Moreover, PCL in vitro and in vivo degrades in the
initial stages, at high molecular weights, through hydrolytic
random scission [46, 47]. By using an alkali such as sodium
hydroxide, hydrolysis is accelerated due to the high concen-
tration of OH−. Thus, accelerated degradation maintains a
hydrolytic degradation pathway, providing relevant informa-
tion to understand the in vivo degradation kinetics of the
scaffolds.

In this case, the scaffolds were cut to approximately 0.5 g
weight, after which they were rinsed and air-dried overnight.
The initial mass of each scaffold was measured before degra-
dation (D0). The scaffolds were placed in glass vials, added
with 2 mL of 5 mol/L sodium hydroxide solution, and incu-
bated under standard conditions (37 °C, 95% humidity, and
5% CO2). At each time point, the scaffolds were washed,
air-dried, and weighed again. The mass change is presented
as the percentage of the initial weight before degradation, as
follows:

Mass(t) = M(t)
M0

× 100%, (3)

where M(t) represents the scaffold weight after degradation
time t (expressed in hours) and M0 represents the original
scaffold weight. The pH value was maintained at approxi-
mately 13.5 during the degradation characterization.

Morphological characterization

The morphology of the scaffolds before and during degrada-
tionwas characterized through scanning electronmicroscopy
(SEM) imaging, using a TESCAN MIRA3 system (TES-
CAN, Czech). The scaffolds were cut into the size of 4.0 mm
× 4.0 mm × 3.2 mm and gold–palladium coated. The top
surface, cross-section, and close-up view were imaged con-
sidering an accelerating voltage of 2 kV. The captured images
were analyzed using the ImageJ software (NIH, USA).

Thermal analysis

Thermogravimetric analysis

The concentrations of G and GO in the scaffolds and the
scaffolds’ thermal stability were determined by conducting
thermogravimetric analysis using a Thermal Analysis Q500
analyzer (TA Instrument, USA). The scaffolds were cut into
the weight of approximately 10 mg and placed in platinum
pans. The scans were conducted in a nitrogen atmosphere
with a flow rate of 90 mL/min, with the temperature ranging
from 30 to 555 °C at 10 °C/min. The obtained results were
analyzed using the Universal Analysis software (TA Instru-
ment, USA).

Differential scanning calorimetry (DSC) analysis

The crystallinity (χc) and thermal transitions [e.g., glass tran-
sition temperature (Tg), crystallization temperature (Tc), and
melting temperature (Tm)] were determined by performing
differential scanning calorimetry analysis using a Q100 dif-
ferential scanning calorimeter (TA Instrument, USA). The
scaffolds were cut into approximately 10 mg, sealed in
aluminum pans and lids, and then subjected to a nitrogen
atmosphere at a flow rate of 50 mL/min. The scaffolds were
first heated from−90 to 100 °C at 10 °C/min, and then cooled
down from 100 to −90 °C at 10 °C /min. The temperature
was maintained for 2 min, after which the scaffolds were
heated up again from −90 to 100 °C at 10 °C /min. The
first heating cycle represented the thermal characteristics of
the scaffold after the printing process. After removing the
previous thermal history, the second heating cycle presents
the intrinsic thermal properties of the material. The first and
second heating curves helped to determine Tg, Tm, melting
enthalpy (�Hm), and χc, while the cooling curve provided
Tc, crystallization enthalpy (�Hc), and χc. In particular, χc
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is determined as follows:

χc = �Hm/�Hc
�H0

m
× 100

w
, (4)

where �Hm/�Hc is the experimental melting or crystalliza-
tion enthalpy, �H0

m (139.5 J/g) is the melting enthalpy of
100% crystalline PCL, and w is the weight fraction of PCL.

Mechanical characterization

Compressive modulus and compressive strength were deter-
mined through uniaxial mechanical compression tests using
an INSTRON X testing system (High Wycombe, UK),
according to the American Society for Testing and Mate-
rials (ASTM) standards [48, 49]. The scaffolds were cut into
3.0 mm × 3.0 mm × 3.2 mm and then compressed from the
strain of 0 to 0.3 mm/mm (30%) at a compression rate of
0.5 mm/min using a 100 N load cell. The strain and stress
were recorded during the test and the compressive modu-
lus and compressive strength were analyzed using the Origin
software (OriginLab, USA).

In vitro biological characterization

Human adipose-derived stem cells (hADSCs, passages 6 to
8, Invitrogen, USA) were used for in vitro cell prolifera-
tion tests, which were conducted after 1, 3, 5, and 7 d of
cell seeding using the Alamar Blue assay. Before cell seed-
ing, cells were cultured with MesenPRO RS Basal medium
(Thermo Fisher Scientific, USA). After the scaffolds were
sterilized, washed, and air-dried, approximately 25,000 cells
were seeded on each scaffold and then incubated under stan-
dard conditions, following the supplier’s instructions.At each
time point, 0.5 mL of medium containing 0.001% (0.01 g/L)
resazurin sodium salt (Sigma-Aldrich, UK) was added to the
cell-seeded scaffolds. After incubated under standard con-
ditions for 4 h, 150 μL of medium from each well was
transferred into a 96-well plate (Corning, USA) and the
fluorescence intensity was measured using a CLARIOstar
microplate reader (BMG LABTECH, Germany) at an exci-
tation wavelength of 540 nm and emission wavelength of
590 nm.

The morphology of the cells on the scaffolds was ana-
lyzed using confocal imaging. The cell-seeded scaffolds,
which were previously fixed using 10% (volume fraction)
formalin, were washed and 0.1% (volume fraction) Triton
X-100 (Sigma-Aldrich, UK) was added. Then phosphate-
buffered saline (PBS) containing 5% (volume fraction) fetal
bovine serum (Sigma-Aldrich, UK) was added to the cell-
seeded scaffolds and then stood for 1 h. After washing the
cell-seeded scaffolds, they were stained with Alexa Fluor
488 phalloidin (Thermo Fisher Scientific, USA) and 4′,6-
diamidino-2-phenylindole (DAPI; Thermo Fisher Scientific,

USA) according to the manufacturer’s instructions. The con-
focal images were obtained using a Leica SP8 LIGHTNING
confocal microscope (Leica, Germany).

Data analysis

All experiments were conducted with at least three scientific
repetitions (n ≥ 3), and the results were reported as mean
± standard deviation. All results were statistically analyzed
via one-way analysis of variance (ANOVA) with Tukey post
hoc tests using the Origin software (OriginLab, USA). The
significance levels were set at *P < 0.05, **P < 0.01, and ***P
< 0.001 compared with PCL; #P < 0.05, ##P < 0.01, and ###P
< 0.001 compared among the same material with different
concentrations; and &P < 0.05, &&P < 0.01, and &&&P <
0.001 compared between different materials with the same
concentration. All curve-fitted results were fitted using linear
and polynomial fitting.

Results and discussion

Material and scaffolds characterization

Material incorporation verification

Figure 1a shows the FTIR spectra of G and GO. The results
shown in the figure indicated the presence of functional
groups, particularly the C≡C (2029 and 2159 cm−1) group
in G, and O–H (3177 cm−1), C–H (2873 cm−1), C=O
(1731 cm−1), C=C (1621 cm−1), and C–O (1279, 1139,
and 1039 cm−1) groups in GO. Figure 1b shows the Raman
spectra of the PCL, G, and GO scaffolds at different concen-
trations. The results revealed two typical features of carbon
nanomaterials: D and G bands. The D band was observed at
approximately 1350 cm−1, corresponding to scattering from
local defects or disorders present in carbon [50, 51], whereas
the G band was observed at approximately 1580 cm−1, cor-
responding to the in-plane tangential stretching of the C–C
bonds in the graphitic structure [50, 51]. These features indi-
cate that G and GO were successfully incorporated into the
PCL scaffolds.

Surface roughness analysis

The laser scanning confocal microscopy results showed that
the addition of G and GO significantly altered the surface
topography of the scaffolds. As observed from Figs. 1c and
1d, the incorporation of G and GO eliminated the deep val-
leys observed on the surface of the PCL scaffolds. Scaffolds
containingG andGO exhibited lower arithmeticmean height
(Sa) and root mean square height (Sq) than PCL scaffolds,
following a similar trend previously reported for the addition
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Fig. 1 a Fourier-transform infrared spectroscopy (FTIR) spectra of
graphene (G) and graphene oxide (GO). bRaman spectra of polycapro-
lactone (PCL) scaffolds and different (b1) G and (b2) GO scaffolds.
c Surface roughness and d surface profiles of PCL scaffolds and differ-
ent G and GO scaffolds. c1Root mean square height (Sq); c2 arithmetic
mean height (Sa); c3 maximum height (Sz). d1 PCL; d2–d5 G1, G3,

G5, and G7; d6–d9 GO1, GO3, GO5, and GO7. 1, 3, 5, and 7: 1%,
3%, 5%, and 7% (mass fraction). The results were reported as mean ±
standard deviation, n = 5. **P < 0.01 and ***P < 0.001: compared with
PCL; ##P < 0.01 and ###P < 0.001: compared among the same material
with different concentrations; &P < 0.05 and &&P < 0.01: compared
between different materials with the same concentration
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of GO into poly(vinylidene fluoride) membranes [52]. How-
ever, this observation differed from other reported studies
that used linear measurements (Ra and Rq) [53, 54]. Com-
pared with areal measurements (Sa and Sq), the use of linear
measurements may result in the loss of the valley profile.
Thus, Sa and Sq seem to be more suitable for the description
of surface roughness. Furthermore, the increase in Sa and
Sq was proportional to G and GO concentrations, which can
be attributed to changes in the material’s rheological prop-
erties (viscosity, viscoelastic properties, and shear-thinning).
These changes made G and GO more difficult to align dur-
ing the material preparation and scaffold fabrication process.
Similar results were observed when incorporating GO [54,
55], rGO [56], and CNTs [41] into PCL scaffolds. However,
all G and GO scaffolds exhibited similar maximum heights
(Sz) that were significantly lower than that of PCL scaffolds.

Surface mechanical properties analysis

Figure 2a presents the surface hardness and surface reduced
modulus of the scaffolds before degradation. The results
showed that the addition of G only had minor effects on the
hardness of the scaffolds, whereas the addition of GO exhib-
ited considerably enhanced effects. The hardness increased
by increasing G and GO concentrations, with the highest
value of (0.0513 ± 0.0015) GPa (GO7). However, this value
is still lower than the hardness of wet adult human bone
(approximately 0.5 GPa) [57, 58]. Regarding the reduced
modulus, both G and GO exhibited significant enhancement
effects, with the reduced modulus increasing by increasing
the G and GO concentrations, clearly indicating the rein-
forcement effects of G and GO on the PCL matrix.

Surface wettability analysis

As shown in Figs. 2b–2d, the water contact angle decreased
with the addition of G and GO. Scaffolds with higher G and
GOconcentrations presented lowerwater contact angles, cor-
responding to typical hydrophobic surfaces [59, 60]. The
results also showed that the incorporation of GO had a
slightly higher impact on the water contact angle than G,
but no statistical differences were observed. The change
in the water contact angle can be attributed to the surface
roughness change caused by the addition of carbon nanoma-
terials [52], as well as oxygen-containing hydrophilic groups
(e.g., O, OH, and COOH) [61, 62], which have a negative
charge, forming hydrogen bonds, leading to the increase in
hydrophilicity [63, 64]. Moreover, the results revealed that
the water contact angle slightly decreased after 15 s, indicat-
ing that the water was absorbed by the scaffolds.

In vitro degradation

Variations in scaffold element compositions with time

The EDX results are presented in Fig. 3a, showing that the
weight ratio of carbon (C) on the scaffolds slightly increased
by increasingGandGOconcentrations.Moreover, compared
with the scaffolds before degradation, the weight ratios of C
on all G and GO scaffolds slightly increased right after start-
ing the degradation process. These slight increases can be
attributed to the released G and GO reattached on the fiber
surface, which was not completely washed from the scaf-
folds during scaffold collection. However, the weight ratio
of C remained relatively stable throughout the degradation
time, indicating that the degradation process did not affect
the composition of the scaffolds.

Variations in filler concentrations with time

Thermogravimetric results showed that both G and GO
were effectively incorporated into the scaffolds at designed
concentrations (Fig. 3b), without significant mass loss or
decomposition during both material preparation and scaffold
fabrication. Moreover, it was possible to observe a minor
increase in the filler weight ratio throughout degradation,
but without significant statistical differences. This minor
increase confirms the EDX results and can be attributed to
the G and GO left on the scaffolds. Moreover, no significant
filler concentration change was observed during the degra-
dation of all scaffolds, indicating that both G and GO were
released into the medium, with a relatively constant release
rate throughout the degradation process.

Variations in thermal properties with time

The DSC results showed that the addition of G and GO sig-
nificantly increased χc of the PCL scaffolds (Fig. 3c). It is
also possible to observe that χc increases by increasing both
G and GO concentrations, but statistically significant differ-
ences can only be observed at relatively high concentrations
(G5,G7,GO5, andGO7). The increase inχc can be attributed
to the nucleating actions of G and GO in the PCLmatrix [65,
66]. Previous studies have shown that the incorporation of G
increases the number of crystallization nucleation sites, con-
sequently changing the size, number, and dispersion of the
spherulite crystalline regions in the PCLmatrix [66–68]. Fur-
thermore, Tc increased due to the increase in the G and GO
content (Fig. 3c), which can be attributed to the nucleating
effect of the exfoliated structure of G and GOwithin the PCL
matrix [68, 69]. However, the addition of G and GO seems
to have negligible impacts on Tm (Supplementary Informa-
tion). These results are consistent with previously reported
findings [70–72]. Moreover, no statistical differences were
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Fig. 2 a1Hardness and a2 reducedmodulus of polycaprolactone (PCL)
and different graphene (G) and graphene oxide (GO) scaffolds. bWater
contact angle and (c, d) droplet profiles at c 0 s and d 15 s of PCL scaf-
folds and different G and GO scaffolds. (c1, d1) PCL; (c2–c5, d2–d5)
G1, G3, G5, andG7; (c6–c9, d6–d9) GO1,GO3,GO5, andGO7. 1, 3, 5,
and 7: 1%, 3%, 5%, and 7% (mass fraction). The results were reported

as mean ± standard deviation, n = 5. *P < 0.05, **P < 0.01, and ***P
< 0.001: compared with PCL; #P < 0.05, ##P < 0.01, and ###P < 0.001:
compared among the same material with different concentrations; &&P
< 0.01 and &&&P < 0.001: compared between different materials with
the same concentration

observed on Tg, Tm, Tc, or χc comparing all scaffolds before
and during degradation (Supplementary Information), indi-
cating that both crystalline and amorphous regions degraded
simultaneously.

Variations in mass with time

As shown in Fig. 4, themass variation of all scaffolds exhibits
a linear relation with the degradation time, according to the
following equation:

Mass(t) = α − βm × t , (5)

whereα is a constant,βm is themass loss rate of the scaffolds,
and t is the degradation time expressed in hours.

As shown inTable 1, the incorporation ofG andGOsignif-
icantly increased the degradation rate, βm, of the scaffolds,
and the mass loss acceleration effect of G and GO appeared
to be proportional to the filler concentrations. This effect can
be attributed to several reasons. First, PCL, a biodegradable
polymer, mainly undergoes hydrolytic degradation, through
which ester bonds are broken by water [73]. As discussed in
“Surface wettability analysis” section, the mass loss accel-
eration effects of G and GO can be initially attributed to the
improved hydrophilicity due to the incorporation of G and
GO. This is conducive to liquid intrusion into the scaffolds,

Table 1 Mass loss curve fitting parameters of polycaprolactone (PCL)
scaffolds and different graphene (G) and graphene oxide (GO) scaffolds

Scaffold α βm R2

PCL 102.0293 0.1634 0.9783

G1 102.1959 0.3710 0.9864

G3 101.2945 0.9541 0.9967

G5 101.2729 1.4781 0.9871

G7 102.6528 2.0698 0.9740

GO1 102.0173 0.2705 0.9953

GO3 100.6343 0.3776 0.9982

GO5 100.0891 0.5710 0.9986

GO7 100.3936 0.7350 0.9965

which promotes the hydrolysis of ester bonds and subse-
quently accelerates the degradation rate [74]. Second, both
G and GO are in the form of nanosheets, which can form dif-
ferent interfaces with the PCL matrix [75]. These interfaces
function as microchannels that accelerate the degradation
rate by allowing liquid intrusion into scaffolds [75]. Finally,
the oxygen-containing functional groups on the surface could
form hydrogen bonds, which would interact with the ester
bonds, deflecting them toward the interface andmaking them
more susceptible to be attacked by water molecules [3, 75].
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Fig. 3 a Element weight ratio variation with degradation time for poly-
caprolactone (PCL) and different graphene (G) and graphene oxide
(GO) scaffolds. b1 G and b2 GO concentration (mass fraction) varia-
tions with degradation time for PCL and different G and GO scaffolds.
c1 Crystallinity (χc) and c2 crystallization temperatures (T c) of PCL
scaffolds and different G and GO scaffolds. 1, 3, 5, and 7: 1%, 3%, 5%,

and 7% (mass fraction). The results were reported as mean ± standard
deviation, n = 5. *P < 0.05, **P < 0.01, and ***P < 0.001: compared
with PCL; #P < 0.05, ##P < 0.01, and ###P < 0.001: compared among
the same material with different concentrations; &P < 0.05: compared
between different materials with the same concentration

These effects superimpose on each other and further accel-
erate the degradation. Several studies have reported similar
results [56, 75, 76].

Variations in mechanical properties with time

The results of evaluating compressivemodulus and compres-
sive strength variation as functions of degradation time are
presented in Fig. 4. As observed, printed scaffolds exhib-
ited compressive modulus and strength similar to those of
human trabecular bone (compressive modulus ranging from
50 to 1500 MPa with an average of 194 MPa, and com-
pressive strength ranging from 1 to 30 MPa with an average
of 3.55 MPa) [77–79]. The results further showed that the
addition of G significantly increased compressive modulus
while slightly increasing compressive strength (Fig. 5). Only

G7 showed slightly lower compressive strength but with-
out any statistical difference. In contrast, the addition of GO
decreased compressive modulus and compressive strength,
indicating a different trend when compared with the reduced
modulus. These results can be firstly attributed to the fact that
during the extrusion process, materials closer to the surface
have a longer time to make contact with the screw, causing
better filler alignment and homogeneous dispersion of fillers
in the matrix, which ultimately leads to a strong bonding
effect [80]. Secondly, particularly in the case of mechanical
compression tests, by increasing the GO concentration, GO
tends to stack together due to van der Waals forces, mak-
ing GO more difficult to disperse, and consequently limiting
load transfer [81]. These results showed that the filler is less
evenly distributed in the mixture of inner material than in the
material near the surface, leading to a more significant effect
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Fig. 4 Variations of mass, compressive modulus, and compressive
strength as functions of degradation time for polycaprolactone (PCL)
and different graphene (G) and graphene oxide (GO) scaffolds. a PCL;

b–e G1, G3, G5, and G7; f–i GO1, GO3, GO5, and GO7. 1, 3, 5, and
7: 1%, 3%, 5%, and 7% (mass fraction). The results were reported as
mean ± standard deviation, n = 5
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Fig. 5 a Compressive modulus
and b compressive strength of
polycaprolactone (PCL) and
different graphene (G) and
graphene oxide (GO) scaffolds.
1, 3, 5, and 7: 1%, 3%, 5%, and
7% (mass fraction). The results
were reported as mean ±
standard deviation, n = 5. *P <
0.05, **P < 0.01, and ***P <
0.001: compared with PCL; #P <
0.05 and ###P < 0.001: compared
among the same material with
different concentrations; &&&P <
0.001: compared between
different materials with the same
concentration

of the van der Waals forces. Notably, GO7 showed a higher
compressive modulus, which can be attributed to GO7 scaf-
folds presenting larger fiber diameters and smaller pore sizes
than GO5 scaffolds.

The results also show that compressive modulus and com-
pressive strength both decrease with the degradation time in
a nonlinear manner:

Compressive modulus (t) = cm0 − βcm × t + γcm×t2,
(6)

Compressive strength (t) = cs0 − βcs × t + γcs×t2, (7)

where cm0 and cs0 correspond to the compressive modulus
and compressive strength before degradation, respectively;
βcm and γcm are the change coefficients of compressive mod-
ulus; βcs and γcs are the change coefficients of compressive

strength; and t is the degradation time expressed in hours. The
curve fitting parameters in Table 2 show that the coefficients
βcm, γcm, βcs, and γcs proportionally increase by increasing
G and GO concentrations.

Variations in morphological parameters with time

Figure 6 shows SEM images of the top surface and cross-
section of the scaffolds, and the zoomed-up fiber surface in
themiddle. Prior to degradation, the printed scaffolds present
geometries close to the designed values (fiber diameter of
330 μm, top view pore size of 350 μm, and side view pore
size of 210 μm), indicating that the extrusion-based additive
manufacturing allows the fabrication of designed scaffolds
in a reproducible way while considering optimized process-
ing parameters. The minor variations can be attributed to
the rheological properties (viscosity, viscoelastic properties,
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Table 2 Compressive modulus
and compressive strength curve
fitting parameters of
polycaprolactone (PCL) and
different graphene (G) and
graphene oxide (GO) scaffolds

Scaffold Compressive modulus Compressive strength

cm0 βcm γcm R2 cs0 βcs γcs R2

PCL 103.3012 0.4313 0.0009 0.9939 3.1160 0.0158 4.32E−5 0.9961

G1 124.2670 0.8823 0.0023 0.9971 2.9967 0.0115 − 3.32E−5 0.9947

G3 129.7487 3.8102 0.0330 0.9832 3.1824 0.1119 0.0013 0.9831

G5 136.5509 6.3605 0.0767 0.9998 3.3104 0.1697 0.0024 0.9989

G7 145.2411 11.8361 0.2590 0.9951 3.0712 0.1920 0.0031 0.9994

GO1 115.3854 0.5431 0.0007 0.9964 3.0443 0.0120 1.45E−5 0.9982

GO3 102.3466 0.9194 0.0021 0.9996 2.4691 0.0196 3.46E−5 0.9973

GO5 96.8076 2.4897 0.0182 0.9994 2.4341 0.0521 0.0003 0.9978

GO7 114.8881 2.8996 0.0191 0.9975 2.3626 0.0574 0.0004 0.9992

Fig. 6 Scanning electron microscopy (SEM) images of polycaprolac-
tone (PCL) and different graphene (G) and graphene oxide (GO)
scaffolds at the beginning of degradation (0 h) and before the
loss of structural integrity (different time points corresponding to

different scaffolds). For each time point, the left, right, and middle
images represent the top surface, cross-section, and zoomed-up fiber
surface, respectively

and shear-thinning) associated with different filler concen-
trations.

Figure 7 presents the changes in the average fiber diam-
eter and pore size during degradation. As observed, for all
scaffolds, both fiber diameter and pore size exhibit linear
relationships with the degradation time:

Fiber diameter (t) = f0 − βf × t , (8)

Top pore size (t) = tp0 + β tp × t , (9)

Side pore size (t) = sp0 + βsp × t , (10)

where f0 is the filament diameter before degradation; tp0 is
the top pore size before degradation; sp0 is the side pore
size before degradation; βf, βtp, and βsp are the change
coefficients of fiber diameter, and top and side pore sizes,
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Fig. 7 Variations of both fiber diameter and pore sizes (top view and
side view) as functions of degradation time for polycaprolactone (PCL)
and different graphene (G) and graphene oxide (GO) scaffolds. a PCL;

b–e G1, G3, G5, and G7; f–i GO1, GO3, GO5, and GO7. 1, 3, 5, and
7: 1%, 3%, 5%, and 7% (mass fraction). The results were reported as
mean ± standard deviation, n = 5
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Table 3 Fiber diameter and pore size curve fitting parameters of polycaprolactone (PCL) and different graphene (G) and graphene oxide (GO)
scaffolds

Scaffold Fiber diameter Top pore size Side pore size

f0 βf R2 tp0 βtp R2 sp0 βsp R2

PCL 342.5682 0.3369 0.9890 336.5913 0.3078 0.9968 156.1341 0.5285 0.9983

G1 359.2048 0.7452 0.9979 305.3062 0.7739 0.9835 203.4594 0.6624 0.9908

G3 360.4829 1.7191 0.9960 318.1934 1.2811 0.9779 152.3966 2.0332 0.9971

G5 380.8883 3.0349 0.9960 301.9042 2.1334 0.9870 141.9017 2.8615 0.9963

G7 372.1201 3.2075 0.9875 315.6349 4.7693 0.9905 149.3066 2.9584 0.9856

GO1 383.5115 0.6947 0.9791 308.6998 0.5959 0.9957 224.9536 0.5630 0.9670

GO3 340.4034 0.7633 0.9988 330.8974 0.6362 0.9896 187.6838 0.6114 0.9948

GO5 357.1174 0.9192 0.9983 357.1272 0.8212 0.9981 183.0559 1.7477 0.9922

GO7 359.4570 1.1684 0.9994 335.8283 1.3459 0.9986 178.5676 2.0459 0.9960

respectively; and t is the degradation time expressed in hours.
The fitted linear relationships indicated that the scaffolds
homogeneously degraded in terms of both fiber diameter and
pore size. Furthermore, as shown in Table 3, the addition of
G and GO increased the change coefficients βf, βtp, and βsp,
which also increased proportionally with G and GO concen-
trations.

In vitro biological characterization

Figure 8a shows the cell attachment and distribution on the
scaffolds after 7 d of cell seeding, whereas Fig. 8b presents
the fluorescence intensity (proportional to the amount of
metabolically active cells), showing the cell proliferation on
scaffolds. In all cases, the cell metabolic activity increased
with time, indicating that all scaffoldswere able to support the
proliferation of hADSCs. At each time point, the cell viabil-
ity became inversely proportional to the filler concentration.
Moreover, both G1 and GO1 showed statistically higher cell
viability than PCL, especially on Day 7, suggesting that the
incorporation of relatively small amounts of G and GO pro-
motes cell proliferation. This could be associated with the
impacts ofG andGOon the surface hardness, wettability, and
roughness of the scaffolds. The increased surface stiffness
promotes cellular responses, affecting cell–surface interac-
tions [82–85]. The increased surfacewettability improves the
adsorption of serum proteins, which leads to a higher density
of adhesion molecules available for cell attachment [85–87].
The increased surface roughness increases the adsorption of
proteins and the release of local osteogenesis growth fac-
tors [85, 88, 89], all of which increase cell proliferation. In
contrast, both G7 and GO7 showed statistically lowest cell
viability throughout time, indicating the potential cytotoxi-
city effects of high concentrations of carbon nanomaterials.

This phenomenon may be attributed to the increase in reac-
tive oxygen species (ROS) resulting from the addition of
carbon nanomaterials [90–92]. Moreover, in all cases, GO
scaffolds exhibited lower cell viability than G scaffolds, sug-
gesting higher cytotoxicity effects. This may be attributed
to the fact that the interaction with GO generates more
ROS than reduced GOmaterials (lower oxygen content) [93,
94], leading to intracellular protein inactivation (oxidation
and nitration), lipid peroxidation, dysfunction of the mito-
chondria (permeabilization and release of cytochrome c),
affecting nucleic acids, and eventually apoptosis or necro-
sis [95–98].

Conclusions

This research provides a comprehensive study on the effects
of incorporating two different carbon nanomaterials, G and
GO, into PCL scaffolds at different concentrations. A screw-
assisted material-extrusion additive manufacturing was used
to successfully fabricate 3D bone scaffolds with uniform
morphologies using different composite materials.

The addition of G and GO increased the surface reduced
modulus, surface hydrophilicity, scaffold crystallinity, crys-
tallization temperature, and degradation rate, while decreas-
ing the scaffolds’ surface roughness. However, some differ-
ences were observed between G and GO. For instance, the
addition of GO increased the surface hardness, whereas G
only exhibited minor effects without statistical differences.
Moreover, results showed that the maximum filler concen-
tration required to achieve the highest compressive modulus
and strength depended on the type of filler. In particular, the
highest compressive modulus corresponded to G7 and GO7,
whereasG5andGO1scaffolds exhibited the highest strength.
The results also revealed that increasing the concentrations
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Fig. 8 a Confocal microscopy images of human adipose-derived stem
cells (hADSCs) after 7 d of cell proliferation and b hADSCviability and
proliferation results on polycaprolactone (PCL) and different graphene
(G) and graphene oxide (GO) scaffolds. Alexa Fluor 488 (green) for F-
actin and 4′,6-diamidino-2-phenylindole (DAPI) (blue) for nuclei. a1
PCL; a2–a5 G1, G3, G5, and G7; a6–a9 GO1, GO3, GO5, and GO7.

1, 3, 5, and 7: 1%, 3%, 5%, and 7% (mass fraction). The results were
reported as mean ± standard deviation, n = 5. *P < 0.05, **P < 0.01,
and ***P < 0.001: compared with PCL; #P < 0.05, ##P < 0.01, and
###P < 0.001: compared among the same material with different con-
centrations; &P < 0.05 and &&&P < 0.001: compared between different
materials with the same concentration
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of these fillers increased surface hardness, surface reduced
modulus, surface wettability, material crystallinity, crystal-
lization temperature, and degradation rate in a proportional
manner. In addition, GO exhibited higher cell toxicity than
G at relatively high concentrations.

These results were correlated with the degradation time,
and a range of phenomenological models describing the
variations in fiber diameter, porosity, mechanical properties,
and mass loss as functions of time and carbon nanomaterial
concentrations were established. However, further investiga-
tion is required to understand the mechanism of how G and
GO affect the biological behaviors of the scaffolds through
different pathways, such as the G/GO-induced ROS and
G/GO-enhanced electrical conductivity.

The findings presented in this paper, combined with
previously reported results from our group [99], and the
development of simulation tools, will allow us to perform
computer-aided design and engineering of scaffolds to facil-
itate the prediction of scaffold performance after a certain
period of implantation. This can be achieved by considering
material parameters (functional fillers and their concentra-
tions), topological parameters (macro- andmicro-structures),
and fabrication parameters (fabrication methods and pro-
cessing parameters). Such an approach can help minimize
the need for extensive experimental tests and improve the
design of scaffolds based on their long-term performance,
thus reducing the research cost and accelerating the develop-
ment process.

Supplementary Information The online version contains supplemen-
tarymaterial available at https://doi.org/10.1007/s42242-024-00280-8.
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