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Sensor Fusion of Visual Odometry and High-Gain
Observer for Application to Vehicle Localization

W. Jacques1, H. Bessafa2, A. Zemouche2, and R. Rajamani3, Z. Belkhatir1,∗

Abstract—This paper investigates the integration of visual
odometry with a state-space observer, as an integral part of
a Simultaneous localization and Mapping (SLAM) system, for
robust vehicle localization. SLAM is a key part of many Advanced
Driver Assistance Systems (ADASs), and plays a crucial role in
the increasing number of autonomous driving systems. A novel
fusion algorithm that relies on already integrated vehicle sensors
with the additional cost-effective visual data is proposed. The
proposed system enables a correction of the vehicle’s path from
monocular visual SLAM system using a theoretically-proven non-
linear high-gain observer. Moreover, an Extended Kalman Filter
(EKF) enhances the vehicle’s path localization by integrating
GNSS data with the visual odometry and the high-gain observer.
The proposed system accurately and quickly provides the vehicle
with its position on the road, and a mapping of the world it
is in. The performance of the integrated localization system is
shown through different simulated scenarios, which mimic real-
life occurrences, using data from the CARLA simulator. The
system is shown to leverage the presence of visual odometry and
the nonlinear observer to accurately localize the vehicle even
when the GNSS or RTK base station signal is lost.

I. INTRODUCTION

FOR the past thirty years, automotive safety has been
steadily increasing, due to developments in advanced

driver assistance systems (ADAS). These systems take control
from the driver, therefore mitigating risks due to human
error [1]. Examples include anti-lock braking, traction control,
electronic stability programs, and more advanced systems like
automatic braking and lane-assist systems [2]. Recently, there
has been vast development in self-driving automotive systems,
eliminating human error altogether, leading to reduced crashes,
congestion, and harmful emissions [3], [4]. As automotive
ADASs and autonomous driving systems become more ad-
vanced, it is increasingly required that the vehicle constructs
a map of the surrounding environment, as well as recognise its
position within this map. This process is much like a human
driver does, and allows the vehicle’s safety systems to respond
to developing hazards around the vehicle. This is given the
term simultaneous localization and mapping (SLAM) [5].
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Techniques for both localization and mapping have de-
veloped as requirements change; systems have grown from
mono-sensor solutions like Global Network Satellite System
(GNSS), also referred to as Global Positioning System (GPS),
or wheeled odometry [6], to multi-sensor systems where a
collection of sensors are fused together to improve the output
[7], [8]. The authors in [6] compared different SLAM methods
for autonomous race cars. This shows the downside of using
wheeled-odometry techniques, due to speed differentials be-
tween the wheels and the vehicle. Our system improves upon
[6] by fusing the kinematic model in the high-gain observer
to correct for any drift introduced by the other sensors. While
our current study does not focus on aggressive driving like
[6], the automotive environment is still extremely harsh for
sensors, and it is common for issues to arise. For example, this
could be temporary sensor failure; obscured GNSS data behind
buildings, trees, or bridges could cause failure to provide a
position. The satellite signals are also affected by atmospheric
conditions and reflections, meaning the received data may be
inaccurate. Our proposed system can avoid bad sensor data
corrupting the system by fusing data from different sensors
to allow redundancy. An example of visual-sensor fusion is
the technique proposed in [8], taking a visual-inertial fusion
approach, which uses a technique called Inverse Perspective
Mapping to turn the 3D camera view into a bird’s-eye view
image. Following this, feature-detection of the road markings
provide a useful output of just the centre line, from which the
vehicle’s lateral velocity can be calculated. This data is fused
with an Inertial Measurement Unit (IMU) using a Kalman
Filter. Our paper integrates an advancement in the form of
resilience, whereby it can cope with sensor failure. The system
in [8] is also only aimed at use in two wheeled vehicles and
not applied on four-wheeled vehicles. Furthermore, our system
produces an absolute position output, which allows further
applicability to connected vehicle networks, where absolute
position knowledge is needed for cooperative localization [9].

The recent study [7] proposes a solution for detection and
positioning of other vehicles, specifically to be mounted on
an electronic scooter. The system uses data from a two-
dimensional light detection and range (LIDAR) sensor com-
bined with data from a monocular camera. Despite the aim
of achieving a cost-effective approach, the LIDAR sensor
used costs $650, which is still comparatively more expen-
sive than other sensors. The automotive industry works with
low profit margins, and sensors are only added when their
requirement outweighs their cost. This also extends to using
cheaper sensors to replace more costly ones and using complex
techniques to lessens the sensor’s disadvantages. One research



2

solution is the use of soft sensors like observers. Nonlinear
observers have found multiple uses in the automotive field with
many applications, e.g., estimation of complex internal vehicle
parameters such as side slip angle [10], vehicle tracking [11]
[12] [13], and cyber-physical attacks detection [14].

This cost-saving is further seen in industry applications;
a recent controversy arose when Tesla [15] began removing
radar systems in favour of “Tesla Vision", an advanced camera
system. This reduction in sensing capability is for a good
reason, due to the relatively low cost of cameras in comparison
to LIDAR; cameras are as much as 100 times cheaper than
the cheapest LIDAR systems [16], [7]. Fully autonomous taxis
are currently in use in America, to mixed reviews [17], some
praising the quickly progressing technology, others unwilling
to accept small imperfections in the final product. Unlike
Tesla, these taxis contain many additional sensors atop the
roof: LIDAR, cameras and additional radar sensors. The fact
that both these solutions struggle to produce “perfect" results
suggests that autonomous capability is not limited by sensors,
but by how they are used.

In this paper, an observer-based sensor fusion design system
is proposed to address the aforementioned challenges. A by-
product of the proposed fusion framework is a reduction
in sensor and system cost, a quality of utmost importance
for the automotive sector. Moreover, the fusion combination
of the nonlinear observer and visual odometry system is
built upon a modular form, allowing sensing systems to be
interchanged if the sensor requirements change; for example,
the observer-based orientation sensor is interchangeable with
a compass-based sensor. This allows a wide applicability in
the automotive sector, with the possibility to use different,
or additional sensors with little change to the design. The
proposed system’s absolute position output gives it another
advantage, where its output can be used as part of a connected
vehicle network to provide the network with data on the
absolute positioning of each vehicle. This connectivity can
provide many benefits, as the sharing of a vehicle’s position
can improve the accuracy, resilience, and robustness of the
whole network’s SLAM [9]. The main contributions of the
paper can be summarised as follows:

• Cheap fusion framework relying on affordable sensors.
• Novel combination of nonlinear observers, namely high-

gain observer, and visual SLAM for more accurate and
resilient vehicle tracking.

• Robust estimation of the absolute position of the vehicle
even during GNSS sensor failure, which is a very useful
property for cooperative localization in connected-car
networks.

• Extensive experimental tests using automotive-specific
simulation software, namely CARLA.

The remainder of the paper is organized as follows. Sec-
tion II introduces the problems faced by traditional techniques,
and provides background to the modular blocks used by the
proposed system. Section III proposes the novel techniques
introduced, including combination of the modular blocks, as
well as providing a visualisation of the flow and processing of
sensor data through the entire system. Finally, Section IV anal-

yses the numerical implementation and CARLA experimental
results to conclude the paper and outline potential future works
in Section V.

II. PROBLEM STATEMENT

This section provides necessary background details about
the selected sensors and technologies along with the challenges
that are faced during the implementation of a SLAM system,
all of which are essential to the proposed fusion localization
solution to be provided in the next section.

A. Sensor Selection

One seemingly trivial element of the system is the selection
of suitable sensors. As discussed earlier, there are tight cost
constraints in the automotive sector, leading to the selection
of sensor solutions which are either already implemented, or
inexpensive to integrate additionally. Another consideration
that we account for is about the number of sensors. More-
over, fusion of multiple sensors may require an additional
complexity in either software or hardware, which may also
increase cost. From this, a trade-off between cost, accuracy,
and reliability must be made.

In this study, four sensors have been selected to be used
in the vehicle localization system. The first is the wheel
speed sensor that provides each wheel’s rotational velocity,
and hence, by using a vehicle kinematic model similar to
that in [18], an indirect relative position can be provided. The
second sensor is the steering angle sensor, which measures the
angle of the front wheels relative to the car body. This can be
combined with the knowledge of the wheel speed to improve
the accuracy of localization. Both of these sensors have been
chosen since they are usually already implemented on the
vehicle for use in stability control systems like [19], making
the system very cost-effective. Accuracy over short distances
is good, due to both sensor’s relatively precise outputs. Despite
this, a system like this is very prone to drift, due to wheel slip,
lateral movement, and in general, aggressive driving [6].

The third sensor used is GNSS, a system that uses the trian-
gulation of satellites to obtain a position on the Earth. This sen-
sor was chosen since it is one of the only sensors that provide a
direct, absolute measurement of the vehicle’s position, making
it essential for applications related to connected vehicle net-
works. This triangulation can provide accuracy of 1.5m in the
best case using sensors such as in [20]. The technique using
only satellite measurements is henceforth referred to as local
GNSS. If a navigation system is fitted, a lower-accuracy local
GNSS sensor will likely already be integrated into the vehicle,
reducing the cost. Furthermore, local GNSS can be improved
using a technique called Real Time Kinematics (RTK) [21].
RTK uses transmitted signals from a reference base station
to improve the accuracy of measurement. This allows sub-1m
accuracy in sensors like the ones from [22], down to 1cm
accuracy in sensors from [23]. Although this usually comes
with a higher cost over regular local-only GNSS, this cost is
justified for high-accuracy applications. The only major issue
facing GNSS systems is the requirement for satellite visibility.
If the satellites are hidden from view, for example when going
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under bridges or in tree cover, less accurate, or no GNSS
position data will be outputted. In addition, RTK sensors face
the additional requirement for visibility to the stationary base
stations. Without these, the accuracy will reduce to local-
only GNSS, or no position output. Furthermore, start-up times
vary drastically, with some modules taking multiple minutes
to lock onto satellites. Due to these unreliable characteristics,
the fusion with the other sensors is essential and required to
provide a solution resilient to these challenges.

The last sensor selected is a monocular RGB camera.
Cameras can convey significant amounts of information, which
coupled with their ever-falling cost, makes them a cost-
effective choice. Despite this, the sheer amount of data output
by the camera requires the use of complex computer-vision
techniques and high performance computing hardware to ex-
tract useful data. While this does go against the low-cost ethos,
the extractable data far outweighs the cost outlay. A monocular
camera has been chosen over stereoscopic to lower cost and
complexity. Due to the low cost of the only additional sensor,
the camera, the proposed system opens the door to wider
applicability, offering large possibility for little outlay.

The following section investigates the required mono-sensor
systems in more detail: the High-Gain Observer, and Visual
SLAM algorithm.

B. High-Gain Observer

The role of the high-gain observer is to estimate the internal
states of the vehicle, by using knowledge of the vehicle’s
dynamics, and measurements from external sensors. Since
these internal states are not directly measured, this is called
a soft sensing approach. In this case, the orientation of the
vehicle is estimated, which will later be used to offset any
bias and drift of the entire system’s estimated path. This,
in essence, will correct the relative orientation of the visual
odometry’s path to an absolute orientation, which allows the
proposed system to maintain an accurately oriented path even
when losing absolute sensor data, i.e., GNSS.

The model-based observer used in this study relies on the
vehicle kinematic model in [13]. Its variables are portrayed in
Figure 1.

Y

X

Fig. 1. Vehicle Kinematic Model. Reproduced from [13].

These dynamics are described by the following vehicle kine-

matic equations:
Ẋ

Ẏ

ϕ̇

δ̇f

 =


v cos(ϕ+ β)
v sin(ϕ+ β)

v
lf+lr

tan(δf ) cos(β)

0

 , (1)

where
X,Y is the vehicle’s relative position in the coordinate

space.
ϕ is the vehicle’s orientation with respect to the x axis.
v is the vehicle’s longitudinal speed.
β is the slip angle. The derivative of this is assumed to

be 0.
δf is the steering angle. The derivative of this is as-

sumed to be 0.
lf , lr are the distances from each axle to the centre of

gravity of the vehicle, front and rear respectively.
When added together, they define the wheelbase.

We use the following relationship between the slip and steering
angles :

β = tan−1

(
lr

lf + lr
tan(δf )

)
, (2)

where the vehicle slip angle β is assumed to be slowly varying,
hence its rate (β̇) is assumed to be zero. We can rewrite (2)
as follows:

tan(β)

lr
=

tan(δf )

lr + lf
, (3)

and substituting in (1) we get:

ϕ̇ =
v

lr
sinβ. (4)

The vehicle’s position is measured, and used as the output
equation of the observer:

y =

[
X
Y

]
, (5)

where y is the measurement output.
The used observer is a high-gain observer designed and

proposed in [11], where it is shown to have applications
to vehicle tracking, which makes it a relevant fit for this
study. The implemented observer leverages the second design
outlined in [11]. To make this observer design applicable, the
kinematic model must be transformed into a triangular system
z ∈ R6 using the following change in variable:

z1 = y1 = X,

z2 = ż1 = Ẋ = v cos (ϕ+ β),

z3 = ż2 = Ẍ = −v sin (ϕ+ β)ϕ̇ = −ϕ̇× z5,
z4 = y2 = Y,

z5 = ż4 = Ẏ = v sin (ϕ+ β),

z6 = ż5 = Ÿ = v cos (ϕ+ β)ϕ̇ = ϕ̇× z2,

(6)

where ϕ̇ is defined in (1). The transformed nonlinear system
in (6) can be written in a triangular form as follows:

ż = Asysz +Bsysf(z)

y = Csysz

ω = h(z)

(7)
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where

Asys =

[
a 03×3

03×3 a

]
, Bsys =

[
b 03×1

03×1 b

]
,

Csys =

[
c 01×3

01×3 c

]
, and f(z) =

[
f1(z)
f2(z)

]
, (8)

0n×m denotes the zero matrix of n rows and m columns,

a =

0 1 0
0 0 1
0 0 0

 , b =
00
1

 , c = [
1 0 0

]
, and

f1(z) = −z2 × ϕ̇2, f2(z) = −z5 × ϕ̇2, (9)

f, h : Rn → R satisfy the Lipschitz property formulated under
the form

|f (x′1, . . . , x′n)− f (x1, . . . , xn)| ≤ γf
n∑

j=1

∣∣x′j − xj∣∣ (10)

where h is defined similarly, and ϕ̇ is related to the new state
as follows:

ϕ̇ =
v

lr
sinβ =

z2z6 − z3z5
z22 + z25

(11)

The high-gain observer proposed in [11] takes into account
the presence of an additional measurement ω. It is given by
the following dynamics 1:

˙̂z = Asysẑ+Bsysf(ẑ)+L(y−Csysẑ)+M(ω−h(ẑ)), (12)

where ẑ is the transformed state estimate, ω denotes the
additional measurement alongside with the output measure-
ment vector y. In this case, the additional measurement is the
velocity of the car, found from the wheel speed. The velocity
of the car, v, can be calculated using (1) simply by the distance
travelled by the car, and mapped into the triangular system:

v2 = Ẋ2 + Ẏ 2 = z2
2 + z5

2, (13)

which can be taken as an additional geometric constraint on
the system. The additional constraint can thus be defined as
follows:

h(z) = v =
√
z22 + z52. (14)

Consequently, since the high-gain observer estimates the states
in the triangular system (6), the non-transformed state ϕ of the
system (1) does not exist in the transformed system. It follows
that the estimates ϕ̂ and v̂ can be computed as follows:

ϕ̂(t) = tan−1

(
ẑ5(t)

ẑ2(t)

)
− β, v̂(t) =

√
ẑ22(t) + ẑ25(t) , (15)

where β is calculated as in (2), using δf as measured by the
steering angle sensor. More details about the used LPV and
LMI techniques along with the convexity principle to prove
the observer’s convergence and compute the observer’s gains
can be found in [11].

Remark 1: The additional measurement ω is used to ensure
the transformed triangular system z is fully defined. Moreover,
without the additional wheel speed measurement, the kine-
matic model (1) allows the orientation of the car to converge to

1Some of the used notations has been slightly changed from [11], to
improve clarity and avoid confusion with variables defined later in this paper.

two possible values, 180° apart, represented by either positive
or negative wheel speed.

Remark 2: Since the steering angle δf is typically small, β,
as defined in (2), is minimal. In tracking problems, obtaining
another vehicle’s steering angle is difficult, so this term may
be omitted.

C. Visual SLAM

The visual odometry algorithm uses a feature-based ex-
traction, following the structure of [24] and [25]. Oriented
FAST and rotated BRIEF (ORB) feature detection [26] is
used to effectively find tracking features. It will compare
the image from the current and past frame, before using
feature-tracking to match the images. The relative movement
of these tracked-features allows the VO algorithm to output the
estimated position of the vehicle, which is the output of the
VO block. ORB features allows more data to be portrayed
by each feature descriptor, with the added bonus of being
invariant to scale, rotation and translation. This in turn allows
a greater feature matching ability, and hence more accurate
path tracking. The process of using ORB features to underpin
the visual SLAM algorithm is called ORB-SLAM. In order
to provide an accurate output, the ORB-SLAM algorithm
requires significant parameterization. For example, an accurate
model of the camera is required to match and triangulate the
extracted features. Similarly, the feature extractor requires a set
of parameters to reliably extract features, balancing computa-
tion time with accurate feature detection. Camera intrinsics
define the type of image captured, and allow extraction of
vital coordinate space translations during processes such as
triangulation. More details regarding camera’s intrinsic and
extrinsic parameters can be found in [27].

The algorithm begins by extracting the ORB features from
the first two frames, before attempting to match the set of
features between the two images. If successful, the matched
points can be triangulated using knowledge of the camera’s
parameters to map these matched points from 2D camera space
into the 3D world coordinates. Following triangulation, the two
initialisation frames are stored, along with their corresponding
map points in memory, in the keyframe storage. In order to
improve future path predictions, retrospective frames (views)
and their corresponding features are stored in memory. This
memory set is henceforth referred to as “Keyframe Storage”.
The connections between any linked keyframes, by pose
and feature matches, are stored in the keyframe storage too.
Figure 2 shows the structure of this storage graphically.

A similar storage system is also created for the 3D world
coordinates of matched and triangulated features, called map
points. Equally, like keyframe connections, the keyframe
features that correspond to the map points are saved too,
at least two correspondences per map point. The storage
is schematically described in Figure 3. Once the number
of keyframes, and hence map points have been found, the
map point set is put through the bundle adjustment algo-
rithm. This algorithm compares and matches features and map
points between the current and past keyframes, including non-
consecutive keyframes. An example could be a signpost; the
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Fig. 2. Diagram portraying the keyframe storage. There is one view entry
per keyframe, but there can be more connections than keyframes, due to non-
consecutive frame connections found during bundle adjustment.

feature, and hence triangulated world point can be detected in
multiple keyframes, so the matched map points are stored in
the map point set, like entry three in Figure 3. Consequently,
using the map point connections that the bundle adjustment has
found, the algorithm will also create new connections between
keyframes in the keyframe storage.

Fig. 3. Diagram portraying the map point set. There is one world point entry
per detected, triangulated feature, but each point can hold more than two
keyframe IDs, if that feature is detected in more than two keyframes, again
found during bundle adjustment.

Following initialization, the main loop of the VO algorithm
is similar to the map initialisation workflow, although the
keyframe storage and the set of map points are used to improve
our pose estimate. The flow begins as normal by extracting
ORB features, before estimating the camera pose from the
previous keyframe. This transformation is then applied to

the previous map points, and features re-matched from these
newly adapted map points. The matching of these map points
can be iteratively improved; as the estimated pose improves,
the map points come closer to the extracted features, aiding
in matching them. In order to further improve this estimated
position, bundle adjustment can be used to refine the map
points further. After this process has completed, the algorithm
will decide whether the current frame is a keyframe. This
decision is characterized by two parameters that ensure a rel-
atively constant stream of keyframes with respect to distance,
not time. This attempts to create an optimal usage of storage.
If a frame is not considered a keyframe, the algorithm will
continue to the next frame.

Finally, each keyframe, or more specifically, each translation
from one keyframe to the next, is collated into the set of 3D
transformations, which contains a rotation and translation in
3D space. This is the output of the Visual Odometry algorithm.

III. PROPOSED SENSORS FUSION DESIGN FOR COMPLETE
SYSTEM

The previous section described the mono-systems used in
this study. The main contribution of this paper consists in
the design of a novel combination of these blocks for more
robust and accurate vehicle tracking. The system uses novel
sensor fusion techniques to correct a visual odometry path,
before further fusing GNSS data to provide a reliable, low-
cost, error-correcting system. This system is able to overcome
the challenges described in Section I including the challenge
of modularity, lending its design to customisability dependant
on the required hardware topology. A high-level overview of
the proposed fusion system is provided in Figure 4.

Fig. 4. High level overview of the proposed fusion framework. The three
steps are mentioned at the bottom on the diagram, and follow from left to
right.

This section provides details about the design of the com-
plete fusion framework, following the three steps in Figure 4:
Sensing, Mono-model Estimation, and Multi-model Fusion &
Correction.
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A. Sensing

The system’s selected sensors were outlined in Section II.
The GNSS data, as well as wheel speed and steering angle
data, are input to the high-gain observer. One issue that arises
due to the high-gain nature of the observer is commonly known
as the peaking phenomenon. Because there is a high amplifica-
tion of the error between output and the true value, any input
noise causes high output noise, particularly shown at start-up
in the transient phase, when this error is large. This means
that any noise in the output vector y is propagated through
the system. Since y is measured solely using the GNSS
sensor, the precision of the sensor is directly proportional
to the performance of the observer’s estimation. Moreover,
if the implemented GNSS sensor is a low-cost local sensor,
its precision is relatively low, and the peaking phenomenon
could degrade the output signal. To tame this response, a filter
can be added to the GNSS data path ahead of the observer.
When using higher-precision sensors such as RTK GNSS, this
additional filtering is not required and can be disabled.

Remark 3: Alternatively, another method of providing fil-
tered GNSS data to the observer would be using the estimated
position from the system’s main EKF, denoted x̂k in Figure 4,
as a feedback signal y into the high-gain observer provided
in (12). The GNSS block has been separated in this paper
for clarity, and to enable the calculation of each subsystem’s
output open-loop, for modularity, and ease of mono-model
verification.

B. Mono-model Estimation

During the mono-model estimation, the high-gain observer
takes in the current GNSS position of the vehicle, y, and the
current velocity from the wheel speed sensors as an additional
input. This estimates and outputs the current estimated orien-
tation and velocity of the car, which is passed to the final EKF
as shown in Figure 4. These output estimates are in triangular
form, z, as shown in (15), and hence must be transformed
back to values of orientation and velocity acceptable by
the EKF. This transformation includes the calculation of β
using the steering angle data. These transformations can be
completed after the observer has finished, saving unnecessary
computation if the values are not needed instantaneously.
Furthermore, the high-gain block does not require any other
inputs from other blocks and hence is fully modular from the
system, meaning it could be swapped with another similar
system if the application requires it. Another benefit of the
modularity is the potential for parallel computation. Moreover,
the VO and high-gain observer are distinct blocks, and use
different input and output parameters, meaning they can be
processed in parallel.

The path estimated by the VO algorithm is taken from
the keyframe’s relative poses. These poses contain a set of
transformations, each containing a 3D rotation and translation,
and each pose relative to the previous one. Since the multi-
model EKF shown in Figure 4 requires the VO algorithm
to output a single translation, the rotation is applied to the
translation output by the VO system, transforming it into an
absolute translation. The process of this removal of relative VO

rotation is shown in Figure 5. The poses in Figure 5 are stored
in the keyframe data, using the notation Pose{n}.{T/R},
where n represents the particular keyframe and T/R are the
matrices which describe the pose’s translation and rotation
respectively. For simplicity, planar angles have been used to
portray the rotations R, although R usually describes a 3D
rotation.

Fig. 5. A figure showing part of the proposed orientation correction process.
Each keyframe in the Visual Odometery algorithm contains a relative pose.
The absolute predicted path can be extracted at any timestep k by multiplying
it, and all future pose’s by the rotation matrix at timestep k. These poses can
then be oriented to match those in the output system, as described in (16).

Before this translation can be used, it must be rotated
into the same coordinate space as the other measurements
in the EKF. Since the EKF state vector contains 2D planar
coordinates, this process consists of removing the camera’s
initial orientation and reapplying the initial orientation of the
new coordinate space. Furthermore, since the Z axis is known
to be the vertical axis, the VO algorithm can remove any
rotation in the Z axis before reapplying the initial orientation.
This is done to mimic the other mono-model system’s outputs.
The latter two rotations of (16) orient this transformation
into the same heading as the output system. Hence, the set
of planar-corrected translations at time step k, denoted as
Tpl_corr ∈ R3×1, can be found:

R = Keyframe.R[k]RT
camRout,

Tpl_corr[k] = Keyframe.T [k]R,
(16)

where Keyframe.T ∈ R3×1×n is the set of translation ma-
trices output by the VO algorithm. Similarly, Keyframe.R ∈
R3×3×n is the set of rotations (relative to the previous
pose) output by the VO algorithm. The rotation matrices
Rcam, Rout ∈ R3×3 describe the rotations that map from
the initial camera orientation to a heading in the positive
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X axis, and then from there to the initial output orientation
respectively. In other words, (16) transforms the keyframe
translations from the visual odometry’s coordinate system into
the coordinate system used by the rest of the system. For
example, if the visual odometry assumes the camera begins
facing the negative X axis, then Rcam will be a rotation 180°
in the z axis. Similarly, if the system is actually facing the
positive Y axis, Rout will be a rotation -90° in the Z axis.
These matrices could be combined into a single transforma-
tion, although have been separated to maintain the modularity
of the blocks. Rcam is defined fully by the visual odometry
algorithm, and Rout, in the proposed fusion framework, is
defined fully by the vehicle’s initial absolute heading. In future
systems, it may be the case that the output system does not
have an absolute heading, and so Rout can be changed to
match the coordinate system the new system uses.

Due to an unknown camera extrinsic matrix, as well as
the use of a monocular camera, the scale of the output can
only be estimated. Due to this, the scale is estimated by the
VO algorithm using the camera intrinsics determined by the
camera sensor modelled. The estimated scale is then applied
to each translation, and then later corrected using the velocity
estimated by the observer. Given the velocity and time between
keyframes, the corrected output distance in the direction of the
VO output can be found. However, to achieve this, the visual
odometry output data must be conveyed in a way to allow the
translation and time to be displayed. This way, it can be easily
interpreted by the Kalman filter system. Equation (17) shows
the concatenation of the planar-corrected translation Tpl_corr
computed by (16), with the frame time to give the final output
Tvo_out ∈ R4×1.

Tvo_out =

[
Tpl_corr

∆t[k−1]→[k]

]
, (17)

where ∆t[k−1]→[k] is the time between the latest keyframe
[k] and its predecessor [k − 1]. Algorithm 1 shows the steps
of the proposed post-processing to the VO output. Some of
the newly defined variables used in Algorithm 1 includes
KFStorage, the Keyframe Storage, defined earlier in Fig-
ure 2. Keyframe[k] is the kth entry in this storage. Each
keyframe contains a pose, which includes a translation T , rota-
tion R, and the time at which the keyframe was taken t. Tscaled
represents the VO output translation, which has been scaled
using the estimated camera scale, found from the camera
intrinsics. This can be used as an additional step before (16),
replacing Keyframe.T [k]. observer_ϕ_estimate_valid is
set if the observer has a correct orientation estimate, and
last_known_rotation is the last rotation before the ob-
server estimate became invalid. Furthermore, there are a few
functions specified, including RotationMatrix(7→ coordsx).
This function finds the rotation matrix which maps one coor-
dinate system (coordsx) to the positive X axis. It follows that
the transpose of this function will define the rotation matrix
which maps the positive X axis back to the coordinate system
(coordsx). The function len(store) returns the number of
elements contained in the storage store. Pose(k) finds the
kth pose in the keyframe storage. Lastly, EstCamScale()

finds the VO output scale, as estimated by the camera intrinsic
matrix.

Algorithm 1 Visual Odometry Output Processing
1: procedure VOOUTPUTPROCESS(KFStorage)
2: ▷ Keyframe Storage is input. ◁
3: Rcam ← RotationMatrix( 7→ coordscam)
4: ▷ Rotation matrix that maps the camera to +X . ◁
5: if OutputCoordinateSystemKnown() then
6: Rout ← RotationMatrix( 7→ coordsout)

T

7: ▷ If the system has knowledge of the output, find
rotation matrix that maps +X to the output. ◁

8: else
9: Rout ← I3

10: ▷ If unknown, assume output direction is +X . ◁
11: end if
12: Keyframe[0]← [T = 03×1, R = 03×3, t = 0]
13: ▷ Set initial pose equal to all zeros. ◁
14: for k ← 1 to len(KFStorage) do
15: Keyframe[k]← Pose(k) from KFStorage
16: Tscaled ← Keyframe.T [k]× EstCamScale()
17: ▷ Extract every transformation from storage, and

scale it using the camera intrinsics’ estimate. ◁
18: if observer_ϕ_estimate_valid then
19: R← Keyframe.R[k] ∗Rcam

T ∗Rout

20: last_known_rotation← Keyframe.R[k]
21: ▷ Apply equation (16). ◁
22: else
23: R← last_known_rotation ∗Rcam

T ∗Rout

24: end if
25: Tpl_corr[k]← Tscaled[k] ∗R
26: ∆t[k−1]→[k] ← Keyframe.t[k]

−Keyframe.t[k − 1]
27: ▷ Find frametime from frame k-1 to k... ◁
28: Tvo_out ← [Tpl_corr[k]; ∆t[k−1]→[k]]
29: return Tvo_out
30: ▷ ... and concatenate onto the output. ◁
31: end for
32: end procedure

If the initial compass heading, ϕ, is known, this can be
further applied to correct the relative VO path for orientation,
turning it into an absolute heading. However, this is unneces-
sary, since ϕ is estimated by the observer, the relativity of the
VO output is automatically corrected when it is combined with
the other data streams in the final EKF. Since this estimated
ϕ only describes the X and Y plane orientation, the observer
correction automatically removes any drift in the Z axis. This
correction process is further detailed in the next section.

C. Multi-model Fusion & Correction

As Figure 4 shows, the two mono-model systems compute
their individual outputs separately, then fuse their respective
outputs as they are combined during the multi-model EKF
fusion framework system. The proposed EKF-based fusion
algorithm takes in the estimated position from the visual
odometry, Tvo_out, and the transformed state estimates from
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the observer ẑ. The high-gain observer’s predicted velocity and
orientation are used to correct the visual odometry path’s scale
and orientation. This forms the "predict" half of the extended
Kalman filter, as shown in the top half of Figure 6. Once the
prediction stage of the Kalman filter has combined both sets
of data, it outputs a corrected path.

This output is further fused to the absolute position, courtesy
of the GNSS sensor, forming the "update" in the EKF, the
lower half of Figure 6. Since the "predicted" path is relative
to the unknown initial conditions, the update stage takes in
the corrected path, and steers it closer to the absolute position,
using the absolute GNSS data. Due to the fusion between the
GNSS and the visual odometry both providing independent
outputs, failure of either one allows the system to continue
working, providing short-term redundancy. Similarly, the fu-
sion will reduce drift introduced by any of the systems, due
to inadequate models, or incorrect accidental feature tracking.
These two halves combine together to form the novel EKF-
based fusion algorithm. A diagram of the proposed EKF-fusion
algorithm is shown in Figure 6.

Fig. 6. The EKF prediction and update steps following standard equations
with the extra preprocessing stages depicted. This diagram is representative
of the EKF block in Figure 4.

As discussed previously, both the exact scale of the extracted
VO path, and the initial orientation are unknown. Despite this,
using the observer’s predictions for the current velocity and
orientation, this knowledge can be calculated. We note that

before outputting the VO path, the VO algorithm uses the
inverse camera rotation to obtain a planar coordinate-corrected
translation. This translation can then be rotated, also planar,
using ϕ to re-orient the camera path such that the translation
faces in the correct direction. Assuming the observer’s output
has converged, using the orientation estimated by the high-
gain observer ϕ̂ at time step k, a planar rotation to correct the
orientation can be applied. The set of translations output by
the visual odometry which have been corrected for orientation
ϕ using (19) are denoted by Tϕ_corr ∈ R3×1×n.

Tϕ_corr[k] = Φ Tvo_out[k], (18)

where Φ is the rotation matrix:

Φ =


cos (ϕ̂[k]) − sin (ϕ̂[k]) 0 0

sin (ϕ̂[k]) cos (ϕ̂[k]) 0 0
0 0 0 0
0 0 0 0

 . (19)

Therefore, the estimated ϕ from the observer can be used
in the place of a compass, directly orienting the path. Unfor-
tunately, this does mean the path accuracy is proportional to
the observer’s accuracy, meaning if the observer is slow to
converge, the path may get worse. This is found to only be an
issue at velocities close to zero, as the noise from the sensors
outweighs the actual sensed value. Since the observer contains
constraints on the expected inputs and states, the point of
divergence can be easily quantified. As discussed previously in
Section III-A, the system can include an optional GNSS filter
to remove some of the noise input to the high-gain observer.
This can be used for the secondary benefit of reducing this
divergence point, since the effective noise floor of the sensor
is lowered.

A similar technique is used to correct for the unknown
scale output from the VO algorithm. The velocity of the car is
estimated through the high-gain observer, from the additional
wheel speed sensor measurement. This can be combined with
the time taken between keyframes, a multiple of the frame-
time, to find the distance covered in one translation. This
can be corrected for by normalising the translation, before
multiplying by the distance travelled, as follows:

Tv_corr[k] =
Tvo_out[k]

∥Tvo_out[k]∥2
× v̂[k]×∆t[k−1]→[k], (20)

where v̂ is the estimated velocity from the high-gain observer.
Since the orientation and scale correction are associative, by
correcting for both orientation using ϕ̂ given (18) and scale
using v̂ given (20):

Tcorrected[k] =
Φ Tvo_out[k]

∥Tvo_out[k]∥2
× v̂[k]×∆t[k−1]→[k]. (21)

Given that (21) is made from (18) and (20), this also means
the processes can be computed separately, or only one of them
computed at a time. For example, if orientation prediction is
not functioning, due to the lack of GNSS data, the scale can
still be corrected without affecting the orientation correction.
If this is the case, the last known orientation is still stored,
and applied to orient the entire future path, with the relative



9

orientations still providing path tracking during the transient
sensor-failure state.

To construct the EKF, the process is converted into a system
of equations in order to output the prediction. These build upon
the standard EKF equations, although contain additional terms
for each of the prediction methods. Even though the system’s
output only contains the estimated position output X̂, Ŷ , the
observer’s estimated state variables v̂ and ϕ̂ are also stored in
the EKF’s state vector estimate, as shown in (22). These two
extra terms are internally stored such that they are accessible to
correct the path, as provided in (21). The error of this system
is judged based upon the localization X̂, Ŷ accuracy, so the
systems output is defined as ŷ = Coutx̂ where

Cout =

[
1 0 0 0
0 1 0 0

]
, x̂ =

[
X̂ Ŷ v̂ ϕ̂

]T
. (22)

They are also optionally accessible at the output of the whole
system with a change in Cout matrix. This could be in order to
interface with other systems, or provide additional information
if desired.

The EKF predict and update equations gain extra terms for
the multiple systems being used for prediction: the observer
and the visual odometry. The notation x̂k is used to define
the value of the predicted EKF state at time step k. Equation
(23) describes the prediction equation of the next state of
the system, x̂k+1. The equation uses a weighted sum of the
previous estimate, as well as the combination of observer state
estimates and the visual odometry translations. The observer
state estimate only affects the lower two state variables, v̂
and ϕ̂. Conversely, the VO path prediction only affects the
positional states, X̂ and Ŷ . However, if the GNSS data is
not correct, then the observer will either fail to converge or
incorrectly affect the EKFs orientation state. For this reason,
the system will revert to uncorrected camera data using only
the VO path to maintain tracking, maintaining reliability.
The wheel-speed velocity correction also only happens if the
velocity prediction is correct. Similarly, the position estimation
depends on which systems are enabled. Equations (24) shows
these as piecewise functions. The function Diag(n, ..., m)
represents a diagonal matrix, where the elements on the
diagonal are given from n in the top left to m in the bottom
right, and all other elements are zero.

x̂k+1 = Fx̂k +Bx̂observer +BTcamera, (23)

where F = I4, B = Diag(ϵ, ϵ, 1, 1) and

Tcamera =

{
Tcorrected if observer estimate valid
Tuncorrected if observer estimate invalid

ϵ =


0.5 if both observer and camera enabled
1.0 if either observer and camera enabled
0.0 if neither enabled

(24)

Despite the VO keyframe transformations being completely
relative in translation and rotation, the uncorrected transfor-
mations Tuncorrected, computed as in (25), are not completely
relative translations. This is because the system always keeps

track of the last known correct absolute position and ori-
entation Tlast_orient of the vehicle. This means that while
future uncorrected transformations will be relative to the last
known absolute position, the system will still track in the
correct direction, deviating from the absolute path only as
far as the system drifts. The system also keeps track of the
current velocity, in order to be able to correct the path to the
same scale, Tlast_scale, as before the sensor failure. If both the
scale and orientation estimates are invalid, the system uses the
most recent scale and orientation estimates Tlast_SandO. Both
orientation and scale correction systems work independently,
allowing the system to use every working sensor at all times.

Tuncorrected =


Tlast_scale

observer estimate ϕ valid
and v invalid

Tlast_orient
observer estimate ϕ invalid

and v valid
Tlast_SandO all observer estimates invalid

(25)
The estimated covariance of the next time step, P̂k+1 is

calculated in (26), in accordance with the type of prediction
made. For example, the covariance should not increase if the
state variable has not been changed due to an incorrect or
ignored sensor reading.

P̂k+1 = FP̂kF
T +Qprocess+BQobserverB

T +ΦQcameraΦ
T

(26)
where Qprocess, Qobserver, and Qcamera are the covariance
matrices for each system, which can be tuned to provide
responses dependant on the weighting of each system.

Qprocess = σ2
processI4,

Qobserver = σ2
observerDiag(Oben, Oben, vcorr, ϕcorr),

Qcamera = σ2
cameraDiag(Camen, Camen, 0, 0),

(27)

where σ2
x refers to the variance weighting of each system,

including the process variance, Oben and Camen refer to
the observer and camera being enabled respectively, and the
vcorr and ϕcorr refer to the velocity and orientation of the
visual odometry being corrected respectively.

To provide a clear overview of the proposed EKF methods,
algorithmic outlines of both halves of the EKF flow are
detailed in Algorithms 2 and 3. The hierarchical structure of
these algorithms is that the main EKF function is listed as
EKFFUSION in Algorithm 3. This is the top level function,
and calls each of the PREDICT (through OUTPUTCORREC-
TION) and UPDATE functions in Algorithms 2 and 3 respec-
tively. Algorithm 2 contains a few newly defined variables:
new_keyframe_translation is set when a new keyframe
has been added. Moreover, since the addition of keyframes
is aperiodic, the system need only react when a new keyframe
has been added. observer_v_estimate_valid is set when the
observer’s estimate of v is correct. In reality this is only zero
when there is a sensed failure of the wheel speed sensors.
Φlast is the last known orientation correction value, in relation
to Tlast_orient. Lastly, the function atan2(y, x) defines the
four quadrant inverse tangent of y and x. It functions as the
MATLAB function atan2 does.
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Algorithm 2 Mono-model Correction & Prediction

1: procedure OUTPUTCORRECTION(k, x̂, P̂ , z, δf )
2: ▷ Current timestep, KF state, covariance, and ob-

server state is input. ◁
3: ▷ z is the 6x1 triangular system estimate. ◁
4: v̂[k]←

√
ẑ2[k]2 + ẑ5[k]2

5: β = tan−1(lr × tan(δf )/(lf + lr))
6: ϕ̂[k]← atan2(ẑ5[k], ẑ2[k])− β
7: ▷ Calculate ϕ̂, v̂ using (2) and (15). ◁
8: dx̂observer1 ← z1[k]− z1[k − 1]
9: dx̂observer2 ← z4[k]− z4[k − 1]

10: ▷ z1 and z4 are x̂ and ŷ. ◁
11: dx̂observer3 ← v̂[k]− v̂[k − 1]
12: dx̂observer4 ← ϕ̂[k]− ϕ̂[k − 1]
13: ▷ Change in observer output estimates ◁
14: if new_keyframe_translation then
15: ▷ If new keyframe, hence new translation. ◁
16: Tvo_out ← VOOUTPUTPROCESS(kf_str)
17: ▷ Defined in Algorithm 1. ◁
18: else
19: Tvo_out ← [0; 0; 0; 0]
20: end if
21: x̂[k + 1], P̂ [k + 1]←

PREDICT(x̂, P̂ , dx̂observer, Tvo_out)
22: end procedure
23: function PREDICT(x̂, P̂ , dx̂observer, Tvo_out, v̂)
24: ▷ Input previous state and covariance, current ob-

server and VO changes ◁
25: if observer_ϕ_estimate_valid then
26: Φlast ← Φ from (19), using ϕ̂[k] = dx̂observer4
27: end if
28: Tcamera[k]← ΦlastTpl_corr[k]
29: ▷ Orient the translation Tvo_out, in (17). If orienta-

tion unknown, use Φlast. ◁
30: if observer_v_estimate_correct then
31: s← v̂[k] ∗∆t[k−1]→[k]

32: ▷ Find distance, and correct vector magnitude. ◁
33: Tcamera[k]← Tcamera[k] / ∥Tcamera[k]∥ ∗ s
34: end if
35: x̂[k + 1]← Fx̂[k] +Bx̂observer +BTcamera (23)
36: P̂ [k+1]← FP̂ [k]FT +Qprocess +BQobserverB

T+
ΦlastQcameraΦ

T
last (26)

37: ▷ Update State Estimate and Covariance ◁
38: return x̂[k + 1], P̂ [k + 1]
39: end function

The update section of the EKF only contains one mea-
surement, the GNSS sensor, meaning the correction can be
performed using a similar structure to [10] or [6]. The update
function begins by calculating the Kalman gain.

Gkalman[k] = P̂ [k]HT (HP̂ [k]HT +R)−1, (28)

where H = I4 and R = Diag(σ2
GNSSx

, σ2
GNSSy

, 0, 0),
describing σ2

GNSSx
and σ2

GNSSy
as the variance of the GNSS

sensor in the X and Y directions respectively. Lastly, the
updates to the state variables, and the covariance matrix are

defined as follows:

x̂[k] = x̂[k] +Gkalman[k](U [k]−Hx̂[k]),
P̂ [k] = (I4 −Gkalman[k]H)P̂ [k],

(29)

where U [k] is the input sensor data being used to up-
date the system’s estimates. This data has been turned into
the form [UGNSSx [k], UGNSSy [k], x̂3[k], x̂4[k]]

T , where
UGNSSx

[k] and UGNSSy
[k] are the GNSS sensor’s position

measurements in X and Y respectively. This ensures that
the previous prediction measurements are unaffected by the
GNSS measurement. Algorithm 3 describes the full update
function programmatically, as well as shows the overall system
loop which completes the Kalman filter process. Line 6
shows the execution of the high-gain observer algorithm,
with its output being the non-transformed triangular system
z, as detailed in (6). Algorithm 3 contains the function
HighGainObserver(y, v), which returns the internal esti-
mated states of the transformed system z, (15), given the plant
output y and additional wheel speed measurement v. Its form
was defined in Section II-B.

Algorithm 3 Multi-Model Update & Fusion
1: procedure EKF FUSION(v, δf , UGNSS , F ramescam)
2: ▷ Wheel speed, GNSS data, and Camera Frames are

input. ◁
3: ▷ Begin with timestep generation. ◁
4: N ← No. Timesteps
5: y ← X,Y from UGNSS

6: z ← HighGainObserver(y, v)
7: ▷ GNSS and Observer run in advance. ◁
8: x̂[1], P̂ [1]← OUTPUTCORRECTION(0, x0, P0, z0)
9: ▷ Initial timestep estimation ◁

10: for k ← 1 : N − 1 do
11: x̂[k], P̂ [k]← UPDATE(x̂, P̂ , UGNSS [k])
12: ▷ Update at current timestep ... ◁
13: x̂[k + 1], P̂ [k + 1]←

OUTPUTCORRECTION(k, x̂, P̂ , z, δf )
14: ▷ ... before predicting at the next timestep. ◁
15: end for
16: end procedure
17: function UPDATE(x̂, P̂ , UGNSS [k])
18: ▷ Update takes in current state, covariance, and

GNSS Measurement. ◁
19: U [k]← [UGNSSx [k], UGNSSy [k], x̂3[k], x̂4[k]]

T

20: Gkalman[k]← P̂ [k]HT (HP̂ [k]HT +R)−1

21: ▷ Rearrange GNSS input, calculate Kalman gain. ◁
22: x̂[k]← x̂[k] +Gkalman[k](U [k]−Hx̂[k])
23: P̂ [k]← (I4 −Gkalman[k]H)P̂ [k]
24: ▷ Update state estimates and covariance matrix. ◁
25: return x̂[k], P̂ [k]
26: end function

IV. SIMULATION RESULTS USING CARLA

The system was comprehensively tested, with each part of
the full system tested individually before being combined, in
order to prove each component of the system. An overview
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of the software implementation is provided in Section IV-A.
Next, the comparison of each mono-model system is shown
in Section IV-B. Following that, the results of the full fusion
framework are shown in Section IV-C.

A. Software

Each component of the fusion system is implemented in
MATLAB. In order to provide realistic testing inputs, all
sensor data is collected from dedicated automotive software
CARLA. The simulated sensor’s parameters have been se-
lected to replicate their real-life counterparts, allowing for
accurate experimental results.

1) CARLA: is an open-source package created for simu-
lating real-world environments for testing and training au-
tonomous driving algorithms [28]. In this work, it is used
to model vehicles and sensors for gathering data, which are
passed into the fusion system. The system’s outputs, estimated
position, and other parameters will be compared to the ground
truth provided by the simulator in order to evaluate their
performance. Figure 7 shows a selection of sensor outputs
collected from inside the simulator. Each sensor has many
configurable parameters, including noise and offsets.

(a) An example of δf , v and ϕ data

(b) An example of the 1920 x 1080px RGB camera data

Fig. 7. Sensor data captured from CARLA.

The world, vehicles, and sensors are all controlled us-
ing Python scripts. These scripts act as clients which can
communicate with the central CARLA server. This makes
it possible to run multiple segregated scripts at the same
time, to produce multiple user-controlled vehicles, each with
individual sensors. This feature mimics real life, where each
vehicle is individually controlled, without having influence on
each another. In this implementation, a single instance of the
CARLA server and client program are run locally, collecting
data from a single vehicle. The path taken by the vehicle is
predetermined by the script, and the server is told to produce
deterministic results to provide repeatability of tests.

We modelled the vehicle as a Mercedes-Benz C-Class,
and represents an average-sized sedan. This choice affects

only the wheelbase. This is calculated by outputting each
wheel position using a Python script, before calculating the
vector magnitude between their positions. The four sensors
needed to test the proposed fusion system are simulated by
CARLA and modelled with parameters akin to their real-life
counterparts. For example, the simulated RTK GNSS sensor
is modelled from the u-blox ZED-X20P [23], a 25Hz RTK
GNSS with an RTK accuracy of 1cm. This RTK sensor was
used for all displayed simulations, without the use of the
additional Kalman Filter input to the observer, discussed in
Section III-A. As a low-cost alternative, the u-blox M8L
[20] is an automotive specification local-only GNSS module,
capable of running at 30Hz, with a measurement accuracy of
1.5m. This high accuracy is achieved using internal sensor
fusion with a rudimentary inertial measurement unit. This
local-only sensor can be bought for just over £25 and was
only used to provide comparative results in Table II. Since
the sensor has a lower precision than the RTK sensor, the
additional KF, detailed in Section III-A, was used to reduce
noise input to the observer. The camera used is modelled on
the monocular OV5647 [16] sensor, which outputs 30Hz RGB
frames of 1920x1080px. This camera was chosen due to its
high enough resolution, coupled with the low price of under
£10 per module. The wheel speed sensor is modelled as having
discrete possible values, and measuring at a rate of 120Hz with
an accuracy of 0.1kmph. Similarly, the steering angle sensor is
modelled as having a sample rate of 120Hz, and an accuracy of
1.5°. The ground truth and actual orientation are also extracted
from CARLA, but never given to the system.

2) MATLAB: All systems were implemented in MATLAB
[29], chosen for its useful features, such as debugging, as well
as good documentation and additional packages. YALMIP [30]
is used to compute the LMI needed to compute the high-gain
observer’s gains, with MOSEK used as the solver [31]. The
Matlab data structures imageviewset and worldpointset are
used for the keyframe storage and map point set respectively.

The whole system requires heavy parameterisation. Table I,
below, details some of these parameters, from the VO algo-
rithm, and their corresponding descriptions. Some of these
values are determined by the setup of the camera simulation in
CARLA, more specifically the parameters related to the lens
and camera sensor.

Name Value Description

fov 110 Camera Field of View (degrees)
image_size [1080,1920] Camera Sensor Size (px)

optical_centre [960,540] Point where lens does not
distort light (px)

focal_length 672.2 Camera Sensor to Lens Distance (px)
scale_factor 1.2 ORB Features
num_levels 8 ORB Levels
num_points 1000 Target ORB Features per Frame

min_parallax 3 Minimum Angle Between Frames in
First Keyframe Connection (degrees)

TABLE I
A BRIEF DESCRIPTION OF EACH PARAMETER IN THE VISUAL ODOMETRY

INITIALISATION.
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B. Mono-Model Accuracy and Efficiency

Before implementing the proposed fusion technique, each
system is individually simulated in their mono-model form.
The results of this, alongside the results achieved by fusion
of multiple techniques are detailed in Figure 8. The systems
presented are pure Visual Odometry (VO), the observer esti-
mated position (ẑ1, ẑ4), the corrected VO using the observer’s
orientation estimate ψ̂, and wheel speed v. Lastly, the proposed
solution shows the fusion of the corrected VO with RTK
GNSS. The initial state of the transformed system is chosen
to be zn(0) = 5, n = 1, ..., 6, making the initial position
of the original state vector x0 = [5, 5, 7.07, 0.79]. Following
this initialisation, the vehicle navigates a roundabout. This is
a 270° turn counter-clockwise, taking the furthest exit of the
roundabout. Each x-y graph in the results has a flipped y-axis
to show the path from a top-down view.
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Fig. 8. CARLA Roundabout input, Showing a comparison between the
mono-model estimations - Visual Odometry and High-Gain Observer, and
multi-model systems - Observer corrected Visual Odometry, and the Proposed
Fusion Framework. As shown by the lower position-time graphs, each system
begins at X = 5, Y = 5, before taking a counter-clockwise roundabout.

There are two performance metrics that are noteworthy,
namely the path replication, and the absolute error. The
path replication concerns the shape of the estimated path,
irrespective of orientation or scale. The absolute error is the
numerical distance between the estimated path and the ground
truth. The lower half of Figure 8 shows the temporal accuracy
of the estimated vehicle position. The visual odometry, after
overcoming its initial feature-matching transient stage, main-
tains a path tracking that replicates the true path well, implying
good path replication. However, this solution alone contains
a very large absolute error, not least due to its incorrectly
scaled, rotated nature. This is due to the unknown absolute
position, and hence the route is oriented and scaled incorrectly.

On the other hand, techniques like the stand-alone high-gain
observer match the absolute position much better, although
they propagate a lot of noise through the system, leading to a
lower path replication. The accuracy of the high-gain observer
is found to be quite good, although it is found to lag slightly
behind the true value, meaning the accuracy is not as good as
the proposed system, or GNSS alone.

System MRE (m) Processing Time (s)

GNSS Sensor (Local Only) [20] 1.608 0.092
GNSS Sensor (RTK) [23] 0.169 0.092
Visual Odometry [24] [25] 80.850 286.102 (60.54×)

High-Gain Observer (Local) [11] 5.301 4.916 (1.04×)
High-Gain Observer (RTK) [11] 4.007 4.726 (1.00×)
Proposed HG-Corr VO (Local) 16.264 286.555 (60.63×)
Proposed HG-Corr VO (RTK) 17.007 286.438 (60.61×)

Proposed Fusion System (Local) 0.877 286.480 (60.62×)
Proposed Fusion System (RTK) 0.143 286.530 (60.63×)

TABLE II
MEAN RELATIVE ERROR (MRE) AND COMPUTATION TIME FOR EACH

SENSOR SYSTEM.

Table II shows the mean relative error of each of the
techniques, calculated as the sum of the mean error between
the estimated position and the ground truth, for each time-
step. Using inbuilt MATLAB timing, the computation time
for each part of the system is calculated, and also displayed in
Table II. This metric’s data has been computed from the values
produced by the comparison of each of the different systems,
in Figure 8. In addition to these results, the same tests were
repeated using the local GNSS only[20], with an Extended
Kalman Filter (EKF) to filter the GNSS data ahead of the
observer. This significantly improves the state estimates of the
observer. The local-only system shows similar performance
trends to the RTK system, although with a lower overall
accuracy. In regard to computation time, as expected, the visual
odometry takes significantly longer, over 60 times longer than
the observer alone. Although there is most likely a lot of
processing time in the display of each frame and graphing
the result, the computation time still far exceeds any other
option. With more processing power, or optimisation, this
figure could drop drastically. Most importantly, the proposed
fusion framework does not take a significant amount more
computation time than the visual odometry alone.

C. Multi-Sensor Extended Kalman Filter Fusion Framework

Figure 9 shows the performance of the proposed fusion sys-
tem. The vehicle performs the same roundabout manoeuvrer
as in Figure 8, although the ground truth’s initial position has
been assumed to begin at the graph’s origin. The observer and
EKF’s initial states are still the same as x0 defined earlier.
We note that the fusion system gives very promising results,
proving that the integration of the four sensors is successful
and adds value to each individual estimator. The path retains
the correct orientation and shape, as well as self-correcting to
the absolute position via the RTK GNSS fusion. Accuracy
stays high, only slightly lowering during transient periods,
staying under 0.2m absolute error most of the time, remaining
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under 0.4m for the whole path. Convergence time is short, and
low error values are achieved in a near-instantaneous transient
phase.
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Fig. 9. CARLA Roundabout input, with Kalman filter fusion of RTK GNSS,
Wheel Speed Sensor, and Visual Odometry.

D. Multi-Sensor EKF with Temporary Sensor Failure

Figure 10 portrays the performance of the whole proposed
fusion system given the scenario where RTK GNSS readings
would become unusable, for example, under a bridge. The sys-
tem receives no signals from the RTK GNSS sensor between
times 4.25s ≤ t ≤ 33s, simulating a complete loss of both
base station and satellite signals. This time is chosen especially
to show resilience through a transient state; in this example,
for the entire roundabout there is no RTK GNSS signal. Since
the output vector for the observer is reliant on GNSS sensor
data, the case of no signal is recognised, and the observer
state estimates are consequently locked, until the RTK GNSS
recovers. This means the only sensor in use is the camera. The
performance of the camera provides enough data to fill in the
space, and the path is tracked closely. Convergence speed and
error initially is very good, and the path only drifts slightly
over the 28.75s outage, reaching just over 2m error at peak.
Immediately upon the GNSS return, the system re-converges
on sub-0.2m accuracy.

V. CONCLUSION

This paper proposed a novel technique describing the
combination of the high-gain nonlinear observer and visual
odometry. This combination has allowed the systems to work
independently, as modular blocks, while taking advantages
from both systems to provide an accurate and robust tracking

Fig. 10. CARLA Roundabout input, with complete RTK GNSS failure (no
data) at t = 4.25, and return at t = 33.

output. More specifically, the full fusion framework improved
the mean relative error with respect to all of the explored
mono-model techniques for little additional computing effort
upon the visual odometry. The speed of convergence proves
that the system is capable of retaining accuracy, and the
good performance of the system when the GNSS sensor goes
completely offline, with its data lost, proves the system’s
resilience.

By demonstrating resilience to sensor failure, the imple-
mented system provides a novel design, which adds value
to existing systems, as well as lays a path for future work
through modularity. The system provides an accurate solution,
which is not reliant on expensive radar equipment, but instead
extracting value from pre-existing sensors.

The system’s absolute position output would be beneficial
for connected-car networks, so seeing a development towards
a cooperative SLAM system would be a good future research
task. This could be simulated using CARLA’s multi-client
capability to simulate a full connected-car network, as dis-
cussed earlier. Applications to experimental datasets like Kitti
or NuScenes would be able to further prove the system’s
ability in a more focused application. Lastly, implementation
of a state-of-the-art Visual Odometry algorithm could show
large improvements in output performance, efficiency, and ease
of deployment on real hardware.
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