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In the eleventh and twelfth centuries in England, Wales and Normandy,
Royal Acta were legal documents in which witnesses were listed in order of
social status. Any bishops present were listed as a group. For our purposes,
each witness-list is an ordered permutation of bishop names with a known
date or date-range. Changes over time in the order bishops are listed may
reflect changes in their authority. Historians would like to detect and quantify
these changes. There is no reason to assume that the underlying social order
which constrains bishop-order within lists is a complete order. We therefore
model the evolving social order as an evolving partial ordered set or poset.

We construct a Hidden Markov Model for these data. The hidden state
is an evolving poset (the evolving social hierarchy) and the emitted data are
random total orders (dated lists) respecting the poset present at the time the
order was observed. This generalises existing models for rank-order data
such as Mallows and Plackett-Luce. We account for noise via a random
“queue-jumping” process. Our latent-variable prior for the random process of
posets is marginally consistent. A parameter controls poset depth and actor-
covariates inform the position of actors in the hierarchy. We fit the model,
estimate posets and find evidence for changes in status over time. We inter-
pret our results in terms of court politics. Simpler models, based on Bucket
Orders and vertex-series-parallel orders, are rejected. We compare our results
with a time-series extension of the Plackett-Luce model. Our software is pub-
licly available.

1. Introduction. In rank-order data we are presented with a collection of lists ranking
a common set of items from best to worst or first to last. A list might order items according
to the preferences of an assessor, or the outcome of a multiplayer game, and may rank all
elements in the set or just some subset presented to an assessor.

In this paper we analyse a time series of 371 lists recording the order in which 67 different
bishops are named as witnesses to legal documents called Royal Acta. The data are available
online (Sharpe et al., 2014). These documents date from the eleventh and twelfth century
(see Supp A.2 for example lists). Just a small subset of the bishops are named in any given
list but each bishop is present in many lists. In a list the bishops’ names were written down
by a clerk in an order that is known to reflect status (henceforth status in the context of
witnessing, which might differ from status in other social contexts). The status of a bishop
was partly determined by seniority and diocese. The first canon of the Council of London
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FIG 1. A poset represented as a transitively closed DAG. In Sec. 7 we find evidence that this suborder contains
all precedence relations between (54) Algar, Bishop of Coutances, (57) Adelulf, Bishop of Carlisle, (47) Simon,
Bishop of Worcester and (58) Richard, de Beaufeu, Bishop of Avranches in 1136 (numbering as Fig 24).

in 1075 concerns ecclesiastical precedence: “...each man shall sit according to his date of
ordination, except for those who have more honourable seats by ancient custom or by the
privileges of their churches” (Clover and Gibson, 1979). However, political standing may
have contributed to status, and if it did, then the position of a bishop in the status-hierarchy
would not be fully explained by time-in-office and diocese. Russell (1937) writes “The names
of Eustace, bishop of Ely, and John, bishop of Norwich, frequently appear at the head of the
list of bishops, before the names of the bishops of London and Winchester and of bishops who
were consecrated before them... [however] ...they were very close friends of the king during
most of his reign and were frequently at court”. The dioceses of London and Winchester were
nominally above Ely and Norwich so here is a case where some political element seems to
count for more than seniority or “honourable seats”. This analysis was contested by Haskins
(1938) wrote “the precedence of witnesses to private grants is too erratic to serve as an index
to their respective station”. The question is still open. See Supp A.5 for a review of recent
literature written by historians on this topic.

The set of precedence relations we reconstruct determine a social hierarchy. This follows
the definition given in van Wietmarschen (2022), as the “socially expected behavior” for
the clerk is to “value” by status. Precedence relations are transitive inequalities. This holds
on social and historical grounds. Precedence is a social dominance relation and transitivity
is fundamental to human and animal understanding of dominance (Gazes et al., 2017; Vas-
concelos, 2008). Shizuka and McDonald (2012) find evidence for transitivity in 84 of 101
published animal dominance data tables, and it is the norm in models for social and organ-
isational hierarchies (Friedell, 1967; Roberts, 1990), in early models for general preference
relations (Bogart, 1973b) and in all analyses which assume an underlying complete order.

Gathering these observations, we represent the social hierarchy of bishops using a Di-
rected Acyclic Graph (DAG). Nodes correspond to bishops and a directed edge indicates
precedence. The DAG is transitively closed, so it defines a partially ordered set or “poset”
(see Sec. 3.1.1, the terms are interchangeable). This is more general than assuming the social
hierarchy is a total order, as would be the case if we fit a Mallows model. Some pairs of
bishops may simply be unordered. The poset will be our parameter, the thing we want to esti-
mate. Fig 1 gives an example of a poset extracted from a larger set of relations reconstructed
in Sec. 6.3. The witness lists are our data. The poset constrains the data: bishop B shouldn’t
appear before bishop A in a witness list if B was ordered below A in the poset. In Sec. 3.1.3
we define an observation model which allows the lists to contradict the order relations in the
reconstructed poset. However, we view this as as noise. The underlying structure of the social
hierarchy of bishops in the context of witnessing is assumed to be a poset.

The first statistical work to model social networks using posets is Mogapi (2009) who
writes “the application of partial orders in Social Network data has not been studied in the
past”. Martin (2002) used DAGs (which need not be transitively closed) in a similar set-
ting without statistical inference. Friedell (1967) used semilattices, a subclass of posets in
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which each pair of actors has a unique upper bound, to model organisational hierarchies.
Their example, the "Cornerville S & A Club" hierarchy was a poset which only became a
semilattice on dropping selected actors. Bogart (1973b) uses partial orders to express prefer-
ence relations. They outline a model for evolving posets and remark “it would be extremely
worthwhile to develop a theory of statistical inference for partial orderings”. Fishburn and
Gehrlein (1975) mention social dominance relations as a potential application in their work
on posets. However, there seems to have been no statistical development of posets as models
for social relations prior to Mogapi (2009) and no other precedent for posets to be used in the
way we do. Some of our methods (excluding time series, covariates, and the theory in Sec. 4)
were outlined in (Nicholls and Muir Watt, 2011) by two of the present authors and Muir Watt
(2015) gives a continuous-time analysis without covariates. However, despite careful design
of the particle filtering Monte Carlo, this approach does not seem promising from modelling
and computational perspectives. Recent non-parametric work by Jiang and Nicholls (2024)
shows how the dimension of the latent space parameterisation of posets may be estimated.

1.1. Alternative Approaches. Analysis of rank-order data (ie, our lists) often seeks a to-
tal order or actor-ranking which is “central” to the lists in the data, so that many lists are
summarised by one complete actor ranking. Mallows models (Mallows, 1957) have a loca-
tion parameter which is a ranking of the actor labels. In our setting this parameter would
be interpreted as the unknown true bishop order. A dispersion parameter controls the distri-
bution of the distance between realised lists and this centre-order. In Generalised Mallows
models (Fligner and Verducci, 1986) the dispersion parameter can vary across rank posi-
tions. There is freedom in the choice of distance measure between ranking lists. Diaconis
(1988) points to Kendall’s-tau as having many good properties. Vitelli et al. (2018) adopt the
foot-rule distance on modeling grounds and they and Irurozki et al. (2019) give methods and
software (Irurozki et al., 2016; Sgrensen et al., 2020) for computing the dispersion-dependent
likelihood normalisation. Bayesian methods which allow for variability in the quality of the
assessors providing the rankings (Deng et al., 2014) have been given. Mixture-model analysis
(Meila and Chen, 2010; Tkachenko and Lauw, 2016; Vitelli et al., 2018; Lu and Boutilier,
2014) can be used when there is a latent group structure in the population from which the
lists are drawn, Meila and Chen (2016) gives Bayesian methods for analysing non-parametric
mixtures of generalised Mallows models and Vitelli et al. (2018) gives unsupervised cluster-
ing and treats incomplete lists. Asfaw et al. (2017) give time-series Mallows models.

The actor skill-vector in Plackett-Luce models (Luce, 1959; Plackett, 1975), which we
discuss further in Supp J, determines a rank-order parameter which plays a similar role to
the Mallows location parameter. Dispersion in the observation space of lists is controlled by
the scale of the skill scores. Hunter (2004) gave an EM algorithm (see Caron and Doucet
(2012)) for parameter estimation and much useful background theory. Bayesian methods
Guiver and Snelson (2009), mixture models (Mollica and Tardella, 2017, 2020), time-series
models (Caron and Teh, 2012; Glickman and Hennessy, 2015) and non-parametric Dirich-
let process mixture models for clustering (Caron and Teh, 2012; Caron et al., 2014) have
been developed. Caron and Doucet (2012) give efficient Monte Carlo methods exploiting
data augmentation and conjugate priors. The Contextual Repeated Selection (CRS) model
(Seshadri et al., 2020) generalises Plackett-Luce to handle non-transitive relations. This gen-
erality comes at a price. If we had ten lists of length two in which bishop A precedes B and
ten in which B precedes C then A probably precedes C when they appear in the same list in
our poset-based analysis. In the simplest CRS model at least, the twenty lists would provide
no information about the ordering of A and C in a list containing only A and C.

Our poset-based parameterisation has strengths and weaknesses when compared to these
models. Among the weaknesses, our likelihood evaluation does not scale to data with ordered
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lists of actors longer than about 20 (though scaling with the number of lists is linear). This
is discussed further in Sec. 3.1.2. In response, Jiang et al. (2023) restrict fitted posets to
be Vertex-Series-Parallel posets (VSP, Valdes (1978)). These orders and Bucket Orders (in
which unordered groups of actors are arranged in a total order) admit likelihood evaluation
at a cost which is linear in the list length. Our model comparisons in Sec. 7 generally favor
posets over VSPs and Bucket Orders. In other respects, our approach is closest to Placket-
Luce as our latent variables play a similar role its skill scores. Our poset-model inherits
some of the strengths of Placket Luce: while some Mallows and all Placket-Luce (and our
poset) models handle top-% data straightforwardly (where the assessor just ranks their top &
preferences, see Sec. 3.1.3), fitting subset-data (where assessors are presented with different
subsets for ranking) is more challenging for Mallows models, as the missing ranks have to be
treated as missing data (Vitelli et al., 2018). This is not necessary in poset or Plackett-Luce
models. On the other hand, Placket-Luce models are “context independent”: the probability
for actor A to be listed above actor B is independent of the presence or absence of any other
actor. Mallows, CRS and our poset-based models are in general context dependent. This
property of the observation model defined in Sec. 3.1.2 is discussed further in Supp B.1.
Why is a qualitatively new ranking model needed, given the extensive range of models
in the literature? First, we saw above that we have reason to believe the underlying social
hierarchy is a partial order; we cannot estimate it reliably without fitting a model in which
the parameter is a partial order. The alternative models described above impose a total order
structure on the hierarchy; this is not justified and not needed. Secondly, we divide rank-order
analyses into two classes: those which aim to reconstruct an underlying true or “physical”
order and those in which the fitted order is understood as a heuristic summary of the lists.
We work in the former setting. However, the models cited in Sec. 1.1 can be adapted to make
heuristic models for our data. In Supp J.1 we specify and fit a Plackett-Luce time-series
model with covariates. Glickman and Hennessy (2015); McKeough and Glickman (2024)
define a Plackett-Luce model with many of the same features. Some conclusions from our
poset-analysis can be obtained by fitting this relatively simpler model. However, our poset-
model is simply a better model for our data, in the sense of goodness of fit. In Supp J.2 we
estimate the Expected Pointwise Log Posterior Predictive (ELPD) model-selection measure
(Vehtari et al., 2017) using Leave-One-Out Cross Validation (LOOCYV) for our model and a
Plackett-Luce mixture model (Mollica and Tardella, 2017). Our model is preferred.

1.2. Statistical work with Partial Orders. The first statistical methods inferring partial
orders from list data were given in Mannila and Meek (2000) and Gionis et al. (2006). They
treat problems of seriation in archaeology and biochronology in palacontology and work
with the VSP and Bucket Order sub-classes of posets for rapid evaluation of the “noise free”
likelihood (see Sec. 3.1.2). Mannila (2008) gives a Bayesian analysis for Bucket Orders. In
other important early work Beerenwinkel et al. (2007) define maximum likelihood posets
and give a Bayesian analysis in Sakoparnig and Beerenwinkel (2012). They fit a probabilistic
graphical model in which genetic mutations accumulate in a total order constrained by a
poset. In related work Froehlich et al. (2007) model signaling pathways for gene expression
and fit their models using simulated annealing.

In these archaeological and genetic settings there is an unknown true underlying poset and
the data are total orders respecting that poset so we have the same data type and similar infer-
ential goals. Our new contributions are as follows. In Sec. 3.1.3 we give a generative model
for lists which allows for noise in the realised lists. We idealise the list-observation model as
a snapshot of a “queue”. In Sec. 3.2, building on work by Winkler (1985), we give marginally
consistent priors with a hyper-parameter controlling the “depth” of a random poset. Depth is
a quantity of historical interest, so our prior should be non-informative with respect to depth.
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This rules out the uniform prior over posets, taken by Sakoparnig and Beerenwinkel (2012),
as it is strongly informative of depth (see Supp D). In Sec. 3.2.3 we bring covariates into
our model. We have a “linear predictor” which determines an actor’s position in the poset.
Finally, our list-data are a time series, so the generative model in Sec. 3.3 is a Hidden Markov
Model (HMM) with a latent process of posets and “emitted data” which are lists of actors
respecting the poset at the time each list was formed.

Posets appear in a range of data-analytic settings. In Mogapi (2009) the data are edges in
a directed graph. The edges are noisy observations of the relations in an underlying poset
representing information flow in a company, and a prior controls the number of relations in
the order, like our focus on prior depth. This prior is not marginally consistent. Gionis et al.
(2006) encode list data as a precedence matrix giving the proportion of times any pair of items
appear in a given order. A poset has a corresponding precedence matrix, estimated using
random linear extensions (lists which are total orders respecting the poset). The “distance”
between lists and a poset is the distance between their precedence matrices. The estimated
poset is a Bucket Order minimising this distance. Arcagni et al. (2022) has poset data and a
wider range of otherwise similar loss functions. They fit both posets and Bucket Orders.

In Rising (2021) the poset is a summary statistic, displaying order relations between pa-
rameter estimates. Posets are also used for structure discovery in Bayesian Networks (Niin-
imiki et al., 2016; Kangas et al., 2016), where Bucket Orders support evaluation of marginal
likelihoods. The likelihood is written as a sum over total orders respecting a Bucket Order
and samples are reweighted by the order-count of the poset in an importance-sampling setup.
The same count appears in our likelihood and we evaluate it using the same lecount() pack-
age (Kangas et al., 2019). However, in our setting the poset is a parameter of interest, not a
supporting structure in the computation.

1.3. Contributions and plan. Our main contribution is our analysis in Sec. 6.3 of the
bishop-list data. Our reconstruction of the evolving social hierarchy in Sec. 6 is the first sta-
tistical analysis of this kind of data. We answer some longstanding questions. How important
was seniority in determining precedent? Did court politics play a role? Our poset models are
also new (extending Mannila (2008) and Sakoparnig and Beerenwinkel (2012) as detailed
above). Although our methodology was motivated by one particular data set, we nevertheless
propose our poset-based ranking models as potentially useful for the analysis of rank data
more broadly, to stand alongside Mallows, Plackett-Luce and other models for rank data.

In Sec. 2 we describe the list data, their associated dates and a seniority covariate on the
bishops which informs their position in the hierarchy. Sec. 3 begins by setting out notation
and defining partial orders and how they constrain the lists we actually observe. We motivate
and define the observation model for lists in Sec. 3.1 and then in Sec. 3.2 give the prior. This is
where we define “status” and how status is mapped to preference. The generative model and
posterior are given Sec. 3.3. In Sec. 4 we show that our priors are marginally consistent and
have support on every poset. We give a brief outline of our MCMC and define some useful
summary statistics in Sec. 5, relegating the detail to Supp E. In Sec. 6 we present the results
of our Bayesian-MCMC analysis. We begin in Sec. 6.2 with a sanity-check: we drop an order
constraint on the seniority covariate-effects which historians expect to hold and show the
order is recovered. In Sec. 6.3 we present our main results with the constraint now imposed.
Results are discussed from a historical perspective in Sec. 6.4. In Sec. 7 we make model
comparisons with other methods (fitting VSP and Bucket-Order models). Further comparison
with variants of Plackett-Luce are given in Supp J. These favor our poset-model, though VSP
and Bucket-Order models do quite well. We summarise our contribution in Sec. 8 and point
to future work. A supplement discusses data registration, properties of the observation model
and prior, MCMC, further results, model comparisons and results on synthetic data.



2. Introduction to the data.

2.1. Context. This study draws on an accumulated dataset, accessed through the database
made for ‘The Charters of William II and Henry I’ project by the late Professor Richard
Sharpe and Dr Nicholas Karn (Sharpe et al., 2014). Some historical background on the data
is given in Supp A.1. Each witness list in the data is an ordered list of names of individual
witnesses taken from a single legal document or “act” (collectively “acta”). A typical example
(with List id 2364) is given in Supp A.2.

We have 1610 witness lists dated between 1066 CE and about 1166 CE involving 1760
individuals. A witness list is a “snapshot” created at a single event on a single day. We assume
distinct lists are generated independently (for example, we see no evidence for a pair of Acta
created at the same time with identical lists). Acta are witnessed in order of social rank from
the king or queen, archbishop, bishops (as a group), earls (as a group, may precede bishops)
and so on down through society. Historians ask if the order in which bishops appear within the
their sub-list reflects their evolving personal authority. As we focus on the bishop-hierarchy
we extract from the data the sub-lists of bishops. Many of the resulting lists contain less
than two bishops and these are discarded as not informing relations between bishops. Data
processing is set out in detail in Supp A.2.

We take time as discrete by year as the data gives dates rounded to the year. Further coars-
ening would mask recoverable structural change. Outside the range [B = 1080, £ = 1155]
CE the lists are sparse so we focus on this interval, covering the reigns of William II, Henry
I and Stephen and T'=E — B 4+ 1 = 76 years. The period is long enough for us to witness
changes in the status of individual bishops, but short enough for there to be some hope of
temporal homogeneity in the social conventions mapping status to witness list.

Data registration is detailed in Supp A.4. It leaves us with N = 371 lists, dated between
1080 and 1155, and containing two or more bishops. We refer to this as the “full data” (we
look at shorter time intervals in our goodness-of-fit). Each of the M = 67 bishops in at least
two lists is assigned a numerical index from 1 to M in Fig 24 in Supp G.2.

2.2. Datanotation. LetZ ={1,...,N}and M = {1,..., M } be the sets of list and bishop
labels respectively. Each list y; = (i1, ..., Yin, ), ¢ € Z is an ordered list of n; bishops, so that
y; C M, with bishop-y; 1 firstin the list, y; 2 second and so on. Not all bishops appear in every
list so the list is conditioned on “attendance”. Let 0; = {y; 1, ..., Yin, } be the unordered list
of bishops in list i. Let y = {1, ...,yn } and 0 = {01, ...,on }.

We suppose the lists were generated by a process running over an interval of time [B, F] =
{B,B+1,...,E}.ForieTlett; € B, FE] give the time at which list ¢ was created. This is
sometimes uncertain. However, bounds 7;” < 7; < TZ»+ are available. We estimate the missing

list dates, taking a uniform prior on 7; € [7,",7;"]. Let 7 = (1,...,7n), 7" = (7,7, 7;") and
+_ (- 1
T = (11, TN )-

Bishops enter the social hierarchy when consecrated and leave when they die. For j € M
we have (FEA, 2022) dates of consecration b; < F and death e; > B for each bishop. The
distribution of these intervals can be seen in Supp A in Fig 16 at left. The intervals match
the list date-ranges (T;,Tf) so that no bishop appears in a list when not in post. At any
given time some dioceses may be empty. Fig 2 shows the presence and absence of bishops
by diocese. For t € [B, E] let M, = {j € M :b; <t <e;} give the set of bishops active at
time ¢, let m; = | M| give the number of active bishops at time ¢ and let
(D) D = max my

te[B,E|
give the greatest number active at any time (D = 22, in 1133). This quantity plays a role in
bounding the required dimension of the model parameter space.
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FIG 2. Left axis gives dioceses. Right axis gives the number of lists in which each diocese appears. The x-axis
gives the date in years. In each year a diocese may have a bishop in-post (dark cell) or be unoccupied (light).

2.3. Witness list data. Bishops from thirty one dioceses appear in the data (including
one, Tusculum, from Italy, dropped from the data). They are listed in Supp A.3 and can be
seen at the left side of Fig 2. The dates of [{i € Z: 7, — ;7 > 1}| = 212 lists are uncertain
(the mean interval length is 4 years, and 90% span less than 10 years). Date intervals [7; Ti+]
are plotted in Supp A in Fig 16 at right. Fig 3 plots lists and their lengths againt their dates
(using the midpoint of [7;", 7;7], i € Z). We include a list if at least half its interval falls within
the 76-year interval [B, E|; most of the lists in our analysis fall entirely within it.

Our information about a bishop’s status is limited by the number of lists in which a bishop
appears. Longer lists are more informative as they inform relations between many pairs of
bishops. Fig 4 shows the distribution of the number of lists a bishop appears in and the
distribution of list lengths. Most bishops appear in a small number of lists and most lists are
relatively short. However, lists “link together”. If two bishops j1, j2 do not appear in any list
together, but j; comes before j3 in some list and j3 before js in another, then this is evidence
for 71 having higher status than jo. This evidence accumulates over lists.
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FIG 3. List lengths and dates. Dashed vertical lines are coronation dates of Kings, bar heights are longest lists at
that date, with a (jittered) cross for each list plotted at (date,length).
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FIG 5. Seniority rank covariate s defined in Eqn 2. Rank sy ; is plotted against “years in post”, t — bj, for each
bishop j € M (Left). The frequency of seniority-rank r in lists is plotted against r from 1 to S (Right).

2.4. Seniority covariates. A bishop’s “seniority” may have contributed to their overall
status (Clover and Gibson, 1979) so it is a covariate in our model for the hierarchy of bishops.
In year ¢ the longest serving bishop has seniority-rank one and the last appointed bishop has
rank at most m;. Denote by s; ; € {1,...,m;} the seniority-rank of bishop j € M, in year
t e {b;,b; +1,...,e;}. We define seniority-rank as

2) st = ) Iysy

keM,

Bishops have equal seniority if there are ties in the start dates b;, j € M. The greatest se-
niority observed, S = maxy ; s¢,;, is less than or equal D, the most bishops active. This is a
second quantity which informs the dimension of the model we fit.

Fig 5 shows (at left) seniority-rank traces for each bishop from their first to last year in post.
Bishops progress in rank by about one place every one or two years, more rapidly at first, as
there are more bishops ahead of them. Our estimates of the effect of possessing seniority-rank
r € {1,...,5} depends for precision on a bishop with seniority r appearing in a reasonable
number of lists, so we plot (Fig 5, right) the occurrence frequency f, =>,c7 > jeo Lsy, s=r
against r to see which levels of the covariate are well represented in the data. Some dioceses
were more peaceful and wealthy than others, so we considered taking diocese label as a
second covariate for status. However, diocese would be colinear with bishop label, as each
bishop only occupies one diocese in the period of study. An effect due to diocese would not
be identifiable with the effects due to the bishops in that diocese.
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2.5. Key questions. The key question is whether the status of bishop j € M in year
t € [B, E] was determined by their seniority s; ; in that year and their diocese or whether the
personal authority or position in court of bishop j played a role. In terms of the list data ,
are the positions of bishops in a list determined by seniority and diocese, with any variation
away from this order just unstructured noise, or are the variations away from precedence
rules structured by some kind of latent authority? The status of a bishop determines their
place in the hierarchy, so what did the hierarchy look like in any given year? We answer
these questions by building a statistical model for the bishop-list data.

3. Models and Inference. Our model, in which lists gathered in year ¢ respect a social
hierarchy which is known and respected by all but subject to occasional change, expresses
the evolving social hierarchy. We present our model as a description of relations between
actors, in the usual terminology of social network analysis. However, it can be applied to the
analysis of any ranking list data, with or without time-series structure: Jiang et al. (2023)
shows that a related fixed-time model is a good fit for Formula 1 race outcomes.

3.1. Parameters and observation model.

3.1.1. Partial orders and linear extensions. In this section we define precedence rela-
tions using posets. We drop the time dependence and consider a single generic observation.
Suppose we have m actors with labels in [m] = {1,...m}. We represent the unknown true or-
der relations between actors as a poset on [m]. Brightwell (1993) gives an overview of models
for random posets and is the source for much of what follows. A strong partial order >z on
the ground set [m] is a set of acyclic, transitively closed relations i > j on the elements of
i,j € [m]. Ties i ~p j are excluded. The relations in H are transitively closed if 7 > 7 and
J >m k implies ¢ > k. The order is only partial as some elements are not ordered. A poset
is a total order if ¢ > j or j > i for every pair i, j € [m].

Partial orders on [m] are one to one with transitively closed directed acyclic graphs (DAGs)
with vertex labels 1,...,m, one vertex for each of the m actors, so > is represented by a
DAG (H,[m]) with edge set

H={(i,j) €[m] x[m]:i>nuj}

See the example in Fig 6. We refer to transitively closed DAGs as if they were posets, as
they correspond one to one. We can identify a poset by its edge set H as the edge set will
be random while the vertex labels [m] which define the ground set are always fixed. Since
posets are edge sets we can take intersections of posets. This gives the poset with all relations
shared by the intersected posets. The dimension of a poset H € Hj;, is the smallest number
of total orders which intersect to give H.

Let H,,,) be the set of all transitively closed DAGs on [m] and let H € H,,) be a generic
poset. For plotting purposes the transitive reduction is convenient. This is the unique DAG
obtained from H by removing all edges implied by transitivity. The depth of a social hierar-
chy is of interest in many applications. The depth d(H) of > is the length of the longest
path on the DAG H, so d : H,,) — [m]. The poset in Fig 6 has d(H) = 4.

Let P}, be the set of all permutations of [m]. A linear extension of H is any list £ =
(1,..p,), L€ P in which lesser entries come after greater entries, so £; > () is not
allowed if k < j. For example, if H is the poset displayed in Fig 6 then H has three linear
extensions, (1,2,3,4,5),(1,2,4,3,5) and (1,4,2,3,5). Denote by

ﬁ[H] = {EG’P[m} : <£g;€k> gHforalll<k<j Sm}

the set of all linear extensions of H € H .
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5
Closure 5 Reduction 5
Suborder

FIG 6. Poset H = {(17 2>7 <17 3)7 <174>7 <1a 5>a <27 3>7 <27 5)7 <37 5>a <4a 5>}7 He H[m] on [m] = (15 2,3,4, 5)
represented by its transitively closed directed acyclic graph (left) and transitive reduction (centre). Suborder
H|O] for O ={2,4,5} (right). The longest path on H is 1 — 2 — 3 — 5 so the depth is d(H) = 4.

If we start with a social hierarchy H € H,, over all actors then the hierarchy constraining
any given subset O C [m] of the actors is the suborder

(3) H[O] = {{j1,J2) € H : {j1,J2} € O}

obtained by retaining edges between vertices in O. If H is a poset then so is H[O]. For
example, in Fig 6, if O = {2,4, 5} then suborder H[O)] is the three-vertex DAG at right.

3.1.2. Lists as randomly ordered queues. A single generic list Y = (Y7, ...,Y},) is mod-
eled as a random linear extension of H. Let C(H) = |L[H]| be the number of linear exten-
sions of poset H € H,,,. The “noise free” likelihood for H is simply

4) p(Y|H)=C(H) 'Iyecim.

All lists which respect the social hierarchy are equally likely. This “context dependent” obser-
vation model (see Supp B.1) is motivated by thinking of each list as a realisation of a random
queue process in which actors not ordered by H randomly swap places. The equilibrium of
this process is the uniform distribution on linear extensions of H (Karzanov and Khachiyan,
1991; Jiang and Nicholls, 2024), so if Y is a snapshot of this queue at equilibrium then
Y ~ Unif(L[H]). Witness lists were written down by a royal scribe with (we assume) perfect
knowledge of the hierarchy H, so the queue model is an idealisation. However, we arrive at
the same model if we assume the clerks regarded all orders not conflicting the hierarchy as
equally likely.

Computation of C'(H) is #P-complete (Brightwell and Winkler, 1991) so no polynomial
time algorithm for computing C(H ) is available, or is likely to exist, and evaluating p(Y'|H)
is prohibitive at large m. However, in our data m is small enough to allow likelihood eval-
uation in reasonable time. For j € [m] let £;[H| = {¢ € L[H]: {1 = j} be the set of linear
extensions with j first in the list and let C;(H) = |£;[H]|. Partitioning on the first entry,

j=1

which Knuth and Szwarcfiter (1974) compute using the suborder recursion in Supp B.2.

3.1.3. Queue-jumping observation model for suborders. In this section we define the
observation model we use in our analyses. We modify the likelihood in Eqn 4 in three ways:
lists may be “noisy”’; just a subset of actors are in any given list; lists are observed over time.

We allow for noise in the observation model by allowing individuals to “jump the queue”.
A list Y is formed by taking individuals from the top of a queue which continues to mix
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rapidly, constrained by the suborder on those remaining. Before the j’th actor is chosen,
there are m — j + 1 individuals (with labels Y}.,,,) yet to be placed. With probability p the
next actor (ie Y;) is chosen at random, ignoring any order constraints. Otherwise, Y is chosen
as the first actor in a random linear extension of the suborder H[Yj.y,] for those remaining.

The fraction of lists headed by Y; is Cy, (H [Yj.n]) /C(H [Y}.m]). Working from the top down,
py(Y|H,p) Hp (Y| H[Yjm], D)
n Cy, (H[Yjum)
5 =1I ——+ (1 —p) =]
( ) YGP[m]jl;[l<m_j+1+( p) C(H[ijm)

Noise allows any list to appear with non-zero probability. This is a “repeated selection” model
(Seshadri et al., 2020) in which the next actor is chosen sequentially from those that remain.
It follows that the correct likelihood for top-%£ data (where an assessor sees all m actors but
just ranks their top k < m actors) simply stops the product in Eqn 5 at j = &.

We take p ~ Beta(1,0) as our family of priors for the queue-jumping probability p. The
prior hyperparameter § > 1 is fixed (for example, in Sec. 6 we take § =9, so the prior prob-
ability for a queue-jumping event is about ten percent), expressing the belief that if order
relations are present then they are respected.

In Egn 5 individuals are promoted up the queue. We can also model random “demotion”.
In this case the list is filled from the bottom up: with probability p the next actor is chosen at
random, ignoring any order constraints; otherwise, they are the last entry in a random linear
extension of the suborder for the remaining individuals. The likelihood becomes

" (p Cy, (H[Y1])
(6) v)(Y[H,p) =lyep,, 31_11 <] +(1 _p)cw> 7

where C'yj (H) is the number of linear extensions of H which end with Y;. Jiang et al. (2023)
extend these models to allow random promotion and demotion in a single realised list. The
likelihood is tractable, but evaluation is time consuming so we do not fit that model here.

The noise free case is obtained from both Eqns 5 and 6 at p = 0. One consequence is that
the noise-free model is also a repeated selection model. See Supp B.3 for the proof.

PROPOSITION 1. The noise-free and noisy models (Eqns 4, 5 and 6) all coincide at p = 0.

We now consider what happens when just a subset of actors are present. Relations are
given by their suborder and the observation model applies for lists realised on suborders.
Suppose that, when Y was realised, a subset O = {O4q,...,O,}, O C [m] of actors entered
the queue. Since they were constrained by the suborder H[O], the noise free observation
model is Y ~ Unif(L[H[O]]): the list is a random draw from the linear extensions of the
suborder. For example, for H in Fig 6, if O = {2,4, 5}, the linear extensions are L|H[O]] =
{(2,4,5),(4,2,5)} and Y is chosen at random from this set. The queue-jumping likelihoods
P(D), P(v) are obtained by replacing H — H[O], [m] — O and m — n in Eqns 5 and 6.

3.1.4. Time series of lists. Finally, we restore time and give the full likelihood. This
observation model is illustrated in Fig 7. At each time ¢ € [B, E] the actors indexed in M,
were active and had precedence relations given by some poset A1) € M, - The sequence of
partial orders from B to F is

(7) h = (h(B)’ h(B+1)’ A h(E))’
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Yi: Yi: Yi: Yi:
T,=B ,=B+1 7,=B+2 ,=F
A A A A
@
p(B) ———————» p(B+1) —————p 1, (B+2) > ,(E)

FIG 7. The observation model. The distribution of lists {y; : 1 € Z, T; =t} observed at time t is parameterised
by a poset hY) and noise parameter p. A stochastic process realising h(t), t € [B, E] is given in Sec. 3.2.

where h € H(B:E) with

8) ’H(B’E):/H/\/(B><'H/\/(B+1 X...XHME.

The model for & in Sec. 3.2 will define a poset process with poset time-series realisations.
For i € Z, list y; was formed under constraints imposed by the suborder h(")[0;], so in the
noise-free model y; € L[h(™)[0;]]. Allowing for noise, the likelihood is

) plylh,7,p) = pr\h(“ 1,p),

where p(y;|h(™)[0;],p) is given by P(p) or pr) in Eqns 5 or 6 (depending on our choice of
model) with the replacements Y — y;, m — n; and H — h(™) [0:].

3.2. Latent variables and covariates in a prior for partial orders. We derive prior models
for posets from k-dimensional random orders (Winkler, 1985). We modify this setup as we
would like to have some control over the prior depth distribution. The depth of the social
hierarchy of bishops is meaningful to historians so a prior which is non-informative with
respect to depth will be useful. The uniform prior on posets certainly wouldn’t be appropriate
as it is strongly informative of depth: it concentrates on posets of depth three as m — oo
(Kleitman and Rothschild, 1975). The effect is illustrated in Supp D.

3.2.1. Latent variable parameterisation. In this section we define status and how it is
mapped to precendence order relations. We use feature vectors, one for each actor, to deter-
mine actor-placing in the social hierarchy. See Fig 8 for illustration. These “status-features”
do not correspond to any identifiable physical attributes. Following Winkler (1985), we asso-
ciate with each actor j € My, at atime t € [b,e;], a 1 x K latent vector Z ](t) € RE, Z](.t) =
(Z](.fl), ey Z(t) 2) of K > 1 status-features. Let Z() = (Zj(t))jeMt be an m; x K status matrix,
with one row for each actor active at time ¢ and one column for each status feature 1, ..., K.

The partial-order h(® at time ¢ is a function of Z(®). At time ¢ actor j € M, is above actor
j' € M, if all status variables of j are greater than those of 5/, that is, h(Y) = h(Z(t)) with

(10) WZO) = {(i, ) e My x My: Z) > Z) forall k=1,..., K }.

The setup is illustrated in Fig 8 at centre, where the Z-matrix has m; = 5 rows and K =4
columns. The rows of Z(*) are “paths” in the space [K] x R: the relation (3, 5") € h® holds
when the path (k, Z%)kﬁl lies above the path through (%, Z](.?k)f:l; if the paths cross then

the actors are unordered. In Fig 8, the Z-path for actor 4 intersects the paths for 2 and 3 so
4 is unordered with respect to 2 and 3. The other paths do not intersect so 1, 2, 3, 5 have a
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FIG 8. Latent variable representation of the poset H in Fig 6: (left) U-matrix defined in Sec. 3.2.2; (centre)
Z-matrix and (right) poset h(Z) defined in Sec. 3.2.2. The paths in Z are shifted by the effects 3.

total order. This is a latent feature representation of the poset at right. In Winkler (1985) the
columns of Z(*) are independent and paths are likely to cross. By contrast, the priors we give
in Sec. 3.2.3 correlate columns and give us some control over the prior depth distribution.

Our mapping from Z® to h(®) is equivalent to intersecting the K total orders given by
ranking the entries in each column of Z (), See Supp C.2 for a discussion of this point. As
we take a fixed value of K, the dimension of A(*) is at most /. However, using results from
(Hiraguchi, 1951; Bogart, 1973a), it may be shown that if K > |m;/2] then any poset h(*) €
M, can be represented by some m; x K matrix Z*), This is discussed in a modelling context
in Muir Watt (2015) and proven in Sec. 4.2. Since h(t), t € [B, E] has at most D vertices (see
Eqn 1), a model with K > | D /2| can represent any partial order process h € H(B-2),

Taking K as large as |D/2] is conservative as the true h-process may live in a lower
dimensional space. In recent work Jiang and Nicholls (2024) estimates K, using a non-
parametric prior for the U-process and sampling K using reversible jump MCMC. They
considered smaller data sets with fewer lists all gathered at a single fixed time. In that setting
the best fitting values of K were often much smaller than | D/2]. In earlier work Durante
et al. (2017b) used a similar approach to estimate the dimension of a latent space param-
eterisation of a population of networks. In both cases graph structures are modeled using
latent continuous variables. Our approach is more like Durante et al. (2017a) and Gwee et al.
(2023): the dimension of the latent space is chosen so that some kind of representation prop-
erty holds (like our Proposition 3); shrinkage (Rousseau and Mengersen, 2011) effectively
removes unwanted components. In our setting p controls this shrinkage. When it is larger the
columns of Z tend to have the same order, so the dimension of the poset is smaller.

3.2.2. Covariate effects for partial orders.

In Sec. 2.2 we introduced an actor-specific covariate informing status relations among
bishops. In the following s, ; € {1,2,...,S5} is a single categorical or ordinal variable with
levels from 1 to S. More general covariates are easily accommodated. Let 3 € R® be the

vector of level effects. We split the status-vector Z](t) of actor j € M; into an additive effect

fs, , due to s; ; and an authority-vector U ](t) € R¥, which captures all aspects of status which

are not attributable to the covariate. Our additive model is, for j € M; and t € [B, EJ,
(11) 20 =U + 15,

where 1f is a row vector of K ones. Higher f3, ;-values lift all components of U ](t) by a

constant, raising the status features in Z ](-t). This moves the path (k, Zj(t,z)f:l above other

paths and gives a higher position for actor j in the poset ("), See Fig 8 for an example.
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In our application the covariate is ordinal with a greater effect expected for lower values
of s so we will be interested in testing for 3; > 2 > ... > 5. Let By = R® and

(12) Bs={Be€By:p1>pP2>..>PBs}.

We carry out analyses under models with 5 € By (to check our prior expectation that 8 € Bg)
and then again with 5 € Bg (for best estimation with a well supported subjective prior).

Let Z = (ZM)E , and U = (UM)E_; and write Z = Z(U, B; 5) for the function defined
in Eqn 11. The parameters U and f3 replace h in the likelihood via h = h(Z(U, (3; s)).

3.2.3. Prior probability distributions. We model the K-dimensional authority-process

Uj=(U ](t))f’ b, for actor j € M as a vector autoregression of order one with times-series

correlation 6 and covariance ¥.(”). In our model latent authority-features are correlated from
one time step to another with a drift towards zero. The setup is illustrated in Fig 9.

Our prior for the process U; is independent over j € M with correlation parameters 0 <

f<1land0<p<1.Let (") bea K x K covariance matrix with diagonal elements Eép ,)c =1

and off diagonal ng Il, = pfor k, k' € [K]. Let O be a vector of K zeros. For j € M let

(p)
(b5) 2
o) 8 (053 )

(®)

and for € iid for t € [b; + 1, ;] and each j,
(13) U =gu!™D 4D N(0,20)).

Write Uj ~ VAR%’/’%) (1), j € M for the vector auto-regression with density

) 11 N (U000 50

t=b;+1

(14) m(Ujlp,0) = N <Uj(bj);0K,

The parameter p controls the prior depth-distribution. When p ~ 1 paths (k, U;f,z),le are
relatively flat as entries are strongly correlated. Flat paths don’t intersect, so there are more
order relations and d(h(t)) is larger. When p is close to zero the paths are more jagged so there
are few order relations and d(h(")) is smaller. We take as our prior p ~ Beta(y1,72,73) with
non-centrality parameter 3 and v = (71,72,73) fixed. Prior simulation (Supp D, Fig 17, left)
showed K = | D/2] and v = (1,1/3,8) gave a prior on posets which is acceptably uniform
on depth. Our prior on @ is uniform, # ~ Unif(0, 1).

Our prior density for 3 is m3(5) = N(f3;0,Is). The variation between levels of a covariate
equals the variation in authority over one time step: 3; — [3;; has the same variance as the
components of U; — (Y G Eqgn 13. We set ng ,1 =1 as we can scale p and the variance

of 3 to get the same distribution for h. It is necessary to take proper priors for U and 3. We
discuss these priors further in Sec. 5.2 in relation to identifiability.

3.3. Prior summary and Posterior distribution. We now summarise our generative
model for the data. The model is depicted in Figs 7 and 9. The data are the lists y. We
condition on knowledge of the uncertainty ranges 7=, the covariate data s, the actor activities
M, t € [B, E] and the prior hyper-parameters ,0 > 0 and K > 1. The generative model is,

p ~ Beta(y), with v = (1,1/3,8) unless stated,
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h(zB)) h(z(B+D) h(z(B+2) h(z(E)
0 W W | W

FIG 9. Hidden layer of HMM: a latent process U®) determines a sequence of posets Rt = h(Z(U(t),B, s)
for t € [B, E]. The U-prior has hyperparameters p and 0, and double lines indicate implication =. This figure

connects with Fig 7 at the top row of nodes Rt = h(Z (t)) to give the generative model for the data.

6 ~ Unif(0, 1),
Uj~ VAR%{’%)(U, with K = | D/2] unless stated, and U in Eqn 13,
U](t) iid for j € M and defined for ¢ : j € M, and
B~ N(0,Ig), either 8 € By or constrained 5 € Bg per Eqn 12.
These collectively determine the partial-order prior via
Z=27U,PB;s), from Eqn 11, giving Z = (Z®)E  and
(15)  h=h(Z(U,B;s)), from Eqn 10, giving h = (h))E _;
Priors for the remaining observation model parameters are

T~ U{r 7} independently fori =1, ..., N, and
p~ Beta(1,6); with 6 > 1 and § = 9 by default.

Finally the data are realised

(16) yi ~p(-|h")[0],p), independently for i € Z,

using the distribution for y; given in Eqn 5 or 6. The joint posterior distribution is

(17) m(p.0,U, B,7,ply) < (p,0, 8,7, p)w(Ulp,)p(ylU, B,7,p) ,

where p(y|U, B8,7,p) = p(y|n(Z(U, B; 5)),7,p) in Eqn 9 and 7(U|p,0) = [[;c pq 7(Ujlp, 0)

with 7(Uj|p,0) given in Eqn 14. The model without covariates or time is set out in Supp L.

4. Properties of priors. Our partial order prior is marginally consistent and expresses
any partial-order time series in H(BE), Supp D explores the prior using simulation.

4.1. Marginal consistency. Marginal consistency is a relationship between members of
a family of distributions. Dropping time, suppose that for each non-empty O C [m] we write
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down a prior 3, (G) on G € Ho. These priors are marginally consistent if for each O and
H ~ 7y, we have H[O] ~ 3, for the distribution of the suborder, that is,

(18) o (G) = D T (H)lg—mjo)-
HeHim

The point here is that we define 73, for each O C [m] and then verify Eqn 18. It can fail to
hold if we write down a distribution 7y, for each O without care. For example, the uniform
distributions Unif(#o), O C [m] are not marginally consistent. There are three partial orders
for m = 2 and nineteen for m = 3, so if H ~ Unif(#3) then we won’t have H[(1,2)] ~
Unif(H[)) as we can’t group nineteen posets into three equal-sized groups.

Winkler (1985) shows marginal consistency when the columns of Z () are independent.
We extend this to our more general setting. We take 5 = Og, so no covariates, as we cannot
expect marginal consistency when we have covariate information which explicitly breaks it.
Let my 5.5 (h|8 = 0g) be the marginal prior for h € H(5-¥) when 5 = 0g (see Eqn 24 in

Supp C.1). Let ’H(_]?’E)

heHEE) let h_ ; be the suborder obtained by removing j.

be the set of all partial order time-series with j € M removed and for

PROPOSITION 2. Letg € H(E-’E) be given. Our priors are marginally consistent, that is

Tyyem (916 =0s) = > Tgen_,mpee (h]B=0g).
heH (B E)

for each j € M. [See Supp C.1 for proof]

Proposition 2 establishes marginal consistency for removing one element of M. Consis-
tency for more general marginals follows by removing elements one at a time. See Supp C.1
for remarks on settings where marginal consistency holds with covariate effects retained.

4.2. Universal representation. We claimed in Sec. 3.2.1 that, if K > |D/2| with D
defined in Eqn 1 then any poset h(Y) € 1 M, can be represented by some m; X K matrix Z @,
We restore (3 € By or Bg and covariate effects. Let

(19) muoe ()= [ o (b]8)(B) d5
RS
be the full marginal prior with variable 5, extended from Eqn 24.

PROPOSITION 3.  Suppose mine(p g1 > 4. The probability 7.z (h) in Eqn 19,
given by the generative model Eqn 15 with K > | D/2], assigns a positive probability mass
Ty (h) > 0 to every time-series h € H(5-F)_ [See Supp C.2 for proof.]

5. Computational methods.

5.1. Markov Chain Monte Carlo. We implemented an MCMC algorithm targeting
w(p,0,U, 3, 7,ply) in Eqn 17. Each update is a simple Metropolis-Hastings MCMC step.
The updates are summarised in Supp E. We tested the software evaluating the likelihood by
simulating synthetic data and checking list proportions matched their probability in the likeli-
hood. We also recover the true parameters of synthetic data (see Fig K.1). We run the MCMC
producing L samples (after burn-in and thinning) p¥, ), U®D = (U;t’l))jeMt, g O

and p¥) for { =1, ..., L. This determines samples for Z(*!) = (Z;t’l))jeMt, with

Z{" = U 1)
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and similarly h(t) = h(Z(t’l)), fort=0B,...,Fandl=1,...,L.

The likelihood is not differentiable in U and f ruling out Hamiltonian MCMC. We tried
updating sections of the time series in parallel (exploiting the Markov structure), halving the
runtime at best. The bottleneck is ultimately the likelihood evaluation which is # P-complete
in list length. When lists are short the method scales well in the number of actors and the
number of lists. The latent-parameter dimension dim(U) = K x ), m; becomes the limiting
factor (in Sec. 6.3, dim(U) = 13,453). These challenges motivated work on VSP-models in
(Jiang et al., 2023) which scale to lists with hundreds of actors.

5.2. Posterior summaries. Besides plotting marginals for individual parameters p, 8, p
and 3, we report selected summary statistics computed on the MCMC output. These are the
consensus poset (which displays relations with posterior support greater than one half, see
Supp F) and the Bayes factor for the first S’ of the S covariate effects to be ordered, Bg =
{Be€By:p1>pP2>..>Pg} and given by Bs o = p(y|5 € Bs')/p(y|B € By). Formulae
for estimating these quantities are given in Supp F.

5.2.1. Non-identifiability of authority and seniority effects. We are interested in sepa-
rating the relative authority U ](t) of a actor from the status Z j(-t). There are two sources of
non-identifiability. The latent variables U have a label swapping symmetry: the posterior is
invariant under permutation of the columns of U(") if the same permutation is applied at
each t € [B, E]. One simple summary which is invariant under column permutation is the
row-average. This gives the estimated average posterior authority for actor j at time ¢,

K

L
) 1 1 (t.)
(20) U; _EE:EE:UM .
=1 k=1

A plot of U j(t) against ¢t shows j’s changing authority. Average status Zj(-t) is defined similarly.
The second source of non-identifiability is shift invariance of h(*) under

1) U - U" +15u, te [B,E], je M,
(22) Br— Br+c, re[S],

where u® € R is a common shift applied to each actor, which may vary over ¢, and ¢ € R
is common shift applied to all effects. The proper U and § priors shrink these shifts towards

zero. We project these degrees of freedom out by subtracting the averages, U J@ — U;t) —

My ! > j U;t) and B, — B, — S™1Y" , B+, before computing the summary statistics and
plotting. A similar issue arises in the Plackett-Luce time-series model in Supp J.1.

6. Results.

6.1. Fitted models. Prior distributions are summarised in Sec. 3.3. Unless otherwise in-
dicated we present results for the likelihood p(p) in Eqn 5 as clerks wrote lists from top
down. Results are near-identical with p() in Eqn 6. Experiments showed fractionally lower
estimated noise probabilities p for p(¢y) than p(p) (see Fig 21). This suggests the p(;r) model
is a slightly better fit, but there is little difference. The greatest number of active bishops
is D =22 so we take K = 11 (see end of Sec. 3.2.1) for the dimension of the latent sta-
tus feature vectors Zj(-t), j € M,t € [B, E] in our main analyses in Secs. 6.2 and 6.3. We
check robustness by taking K = 2 and K = 22 in Sec. G.3 of Supp G. The S-dimension is
S =21 (less than D as there is a tie at seniority-rank 21 in 1133, the year with the most active
bishops).
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FI1G 11. (Left) Marginal posterior distributions of seniority effect parameters from the unconstrained seniority
effects analysis in Sec. 6.2 with likelihood P(D) in Eqn 5. (Right) As left with likelihood pw) in Eqn 6. See Fig 30
in Supp J.1 for the corresponding plot for the Plackett-Luce time-series model comparison.

6.2. Analysis with unconstrained seniority effects. We begin by presenting our results
for the full data set defined in Sec. 2.3. We first check that we see declining seniority effect
at lower seniority, so we do not constrain the seniority effects to be ordered and take 5 € By.

Traces in Fig 22 in Supp G.1 for MCMC targeting the posterior in Sec. 3.3 show conver-
gence. Marginal posterior densities from two independent runs are shown in Fig 10 and are

near-identical. The correlation p of features in U;t), Jj € M at each fixed time ¢ € [b;, e;]
is close to one, supporting relatively deeper posets. The time-series correlation parameter

is close to one, indicating strong serial correlation between U ](t) and U;Hl), and therefore

also A®) and h(*+1)_ Finally, the error probability p, which controls the extent to which lists
y; may depart from the linear extensions £[h(ﬂ')], is small, as we would expect if the poset
model captures the variation in lists. The prior for p has § = 9, favoring small p. We checked
robustness to this choice: Fig 10 superimposes the posterior density when § = 1 (uniform,
estimated by importance sampling); the shift from the § = 9 posterior is barely discernible.
In Fig 11 we plot marginal posterior 3 distributions in the posterior with likelihood p(p)
(noise is random upward displacement) and p(;;) (random downward displacement) respec-
tively. There is a clear downward trend with i 1ncreasmg seniority-rank value (ie, lower senior-
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[1134] [1135] [1136]
52

FI1G 12. (constrained seniority effects analysis of Sec. 6.3) Three of seventy-six years from one MCMC-sampled
state, h(t’L), t € {1134,1135,1136}. Vertex numbers correspond to bishops names in Fig 24 in Supp G.2.

ity) as we expect. When the rank is large (18-21) we have few instances of bishops with that
rank (see Fig 5), and distributions trend back to the prior. Under both observation models
p) and p(p), the effect 511 is “out of order”. This is because several bishops who spent sev-
eral years at seniority-rank 11 (William Giffard, bishop of Winchester, Richard de Belmeis
I, bishop of London and Henry de Blois, Bishop of Winchester) were connected with roy-
alty, so it was their authority and not their seniority which pushed them up the lists. This is
best modeled by imposing the seniority-effect order constraint 3 € Bg as we do in the next
section. In Sec. F.2 we test § € Bg against the unconstrained model 8 € By by estimating
the Bayes factor, using a Savage-Dickey estimator. We find clear evidence in favor of the
constraint. In summary we see in this first analysis the structures we anticipated.

6.3. Analysis with constrained seniority effects. The assumption of decreasing seniority
effect with decreasing seniority rank is supported on historical and statistical grounds so
we now impose the constraint 5 € Bg. We omit the p,0 and p posterior densities as they
are essentially unchanged from Fig 10. Marginal posterior distributions for the unknown list
dates 7;, ¢ € Z are given in Fig 26 in Supp G.2.

In Fig 12 we plot posets R t e [1134,1136] from one MCMC sample state (the final
sample in the MCMC sample output (h(“))te[ B,E]> | € [L]). These three years bracket 1135
when Stephen became king. The number and length of lists in this period is relatively large
(see Fig 3). In Fig 13 we plot posterior consensus posets A(!) estimated at the same years
(transitive reductions for ease of viewing, see Supp G.2 for all years). The transtive closures in
Fig 23 in Supp G.2 have many more strongly supported edges as a chain of weakly supported
relations give strongly supported relations from chain head to tail.

In Fig 25 in Supp G.2 we plot the evolving mean status values Z ](t) for each bishop as a
function of time. Bishops are grouped by diocese. These curves have a “sawtooth” pattern, as
the “status” measure Z trends up through the tenure of a bishop as their seniority increases. It
drops down when a new bishop enters the diocese with low seniority. By contrast the curves in
Fig 14 show the evolving mean authority values T for each bishop. These curves are flatter
as the effect of seniority is removed. Nigel, bishop of Ely is revealing. His status in Fig 25 is

fairly flat. This is because his mean authority U J@ declined as his seniority increased.

The continuity in authority (but not status) of bishops over time within a diocese in Fig 14
is noteworthy. There are some exceptions. For example, Henry de Blois started with higher
authority than might be expected based only on the diocese. Some dioceses seem to be bet-
ter (Winchester, London, Lincoln) than others (Chichester, Rochester, the dioceses in Nor-
mandy). The bishops of London and Winchester had gained precedence over their colleagues
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[1134] [1135] [1136]

FIG 13. (constrained-effects model Sec. 6.3) Consensus posets for 1134-1136 (transitive reductions). For closures
see Supp G.2 Fig 23. Dashed/solid edges have posterior support greater than 0.5/0.9. Numbering as Fig 12.

at the Council of London in 1075 and Lincoln came in the later middle ages to rank after
Winchester. However, there is uncertain evidence from as early as 1138 that the bishop of
Lincoln might assume the role of London or Winchester in their absence and consequently
that Lincoln already enjoyed a degree of precedence (Johnson, 2013).

6.4. Discussion of results. From a historical perspective, there are three significant out-
comes. The first is the strong emphasis on the seniority and precedence of individual bishops
in the witness lists. Historians often link the relative position of witnesses to an assessment of
their political significance, but the analysis here shows that royal scribes were strongly influ-
enced by the rules on seniority and precedence expressed at the Council of London, held by
the English church in 1075 (Council of London, 1075, clause 1, Clover and Gibson (1979)).

The second is the position of Normandy within the Anglo-Norman realm. Fig 14 shows
that early in this period (before about 1100) Norman bishoprics enjoyed high status, but
that this declined from the early twelfth century. This change is particularly marked for
Avranches, Bayeux and Evreux, whilst no English bishoprics show a comparable trend. This
should inform the ongoing debate about the relationship between England and Normandy
(Bates (2013), chapter 5). This change might represent a principled decision by royal scribes
to rank Norman bishops lower in precedence than their English counterparts, or it might be
explained politically. The smaller Norman dioceses may have been less attractive to ambi-
tious clergymen, and there were periods when Normandy and England were ruled separately
(most notably, 1144-54), so that Norman bishops were external to the English kingdom.

The third concerns how far the behaviour of individual bishops could change their status.
Bishops were active politically and could fall into disgrace. Thus, Bishop Nigel of Ely had
high status for a junior bishop in the 1130s, but from his disgrace in 1139 his status fell,
contrary to the usual pattern. Nigel’s pattern is unique; it is not replicated by that for other
disgraced bishops, such as Ranulf Flambard of Durham after 1100 and Alexander of Lin-
coln after 1139. These differences presumably reflect the nature of the disgrace itself. The
estimated poset relations accord with known political favour. For example, Henry of Blois
and Odo of Bayeux, who were related to the royal house (Odo was William the Conqueror’s
half-brother, and Henry was Stephen’s brother), are highly ranked. Referring to Fig 27 in
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with uncertainty at
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Supp G.2, although Henry (52) did well from the start, until 1134 he shares top spot in con-
sensus orders with Roger of Salisbury (29). From this date he is promoted ahead of anyone
else. This suggests that his brother becoming king in 1135 had an impact on his position.

Referring to Fig 27, reconstructed orders seem relatively shallow, typically one (1097) or
two (1124) groups of middle-ranked bishops and a few above or below. We may be concerned
that this reflects an overly informative prior and differences in how often bishops witness.
We tested this by simulating synthetic data in which the true posets were total orders (see
Supp K.2), but with the same list memberships as the real data. We reconstructed the true
total orders well. If the true orders were total orders we would see this in our analysis.

7. Comparisons with other models. In this section we define models over Bucket Or-
ders and VSP orders. Calculation of |L[H]| for H € H4, A={1,...,m} is linear in m on
these subspaces (Wells, 1971), so if these models were preferred then we would use them.
We find they are not adequate to represent a time-evolving hierarchy over long periods of
time but can give a good fit over short time periods. Jiang et al. (2023) applies a fixed-time
VSP model to all the witness list data (not just bishops). Some orders have over 200 actors,
with lists exceeding 50 in length, and are out of reach for our full poset analysis.

In Supp J.1 and J.2 we compare our model with Plackett-Luce models. Bayesian analysis
of time-series Plackett-Luce in Supp J.1 gives similar results for a parameter function corre-
sponding to the average authority in Eqn 20. Analysis of a Plackett-Luce mixture model in
Supp J.2 on short time intervals shows our model is preferred.

7.1. Bucket Orders and Vertex-Series-Parallel partial orders. VSP orders (Valdes, 1978;
Valdes et al., 1982) are built recursively from the ground set by taking series and parallel
combinations of posets. We give this intuitive definition in Supp 1. Valdes et al. (1982) gives
a concise characterisation. For any set .4, the class of all VSPs V4 is identical to the set of
posets H € H_4 which do not contain a set of vertices A" = {j1, ..., j4} with sub-graph H' =
H N (A x A") isomorphic to the “forbidden subgraph” F' = {(1,2),(3,2),(3,4)} shown in
Fig 29 at right. After vertex relabelling, F' and H' must be identical, so edges absent in F' are
absent in H'. This makes it straightforward to test if a poset H is a VSP-order.

A sub-class of VSPs called “Bucket Orders” has a particularly simple closed form for
|L[H]|. Actors are grouped into “buckets”. Actors in the same bucket are unordered and a
complete order holds over buckets. Formally, if C 4 is the class of Bucket Orders on A then
b € K 4 iff there is a partition Ay, ..., Ap of A into P buckets such that for each k£ € [P] and all
Ji,J2 € A we have (j1,j2) € b and for all pairs 1 < k; < ko < P of buckets and all j; € Ay,
and jo € A, we have (j1,j2) € b. VSPs and Bucket Orders are a small subset of partial
orders. For example, if |A| = 18 (the largest for which OEIS Foundation Inc (2022) gives
cardinalities) we have | M| ~ 2 x 10°°, [V15)| /| Hpis) ~ 10~ and | Kpig| /| H gy | ~ 10717

7.2. Bucket and VSP-order models. Suppose we are interested in learning about order
relations over a period [t1,t2] with B < t; <ty < E.If we could justify restricting the process
of fitted posets h € H(t1:t2) to a VSP-order-process h € V(1:12) with

tits) _
V(l 2)_VMH XVMt1+1 X...XVMtQ,
or a bucket-order process h € K(t+:2) with
thts)
’C(l 2)—ICMt1XICMt1+1X"‘XICMt27

then likelihood evaluation would be fast. However, this is not well-evidenced in our setting:
the consensus order from 1136 in Fig 13 contains the poset H' = {(54,57), (47,57), (47,58) }
in Fig 1, with each included edge having posterior probability 0.8 or above and absent edges
below 0.5, so the true poset is probably not a VSP as it contains a suborder ismorphic to F.
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7.3. Test results. Bayes Factors By, 3 and By 3, measuring the evidence for VSP poset-
models and Bucket-Order models are defined in Sec. [.2. We estimate these on the same
twelve short (five-year) time intervals we used for the Plackett-Luce analysis in Supp J.2 for
accurate estimation. The seniority covariate is a near-constant in these short time intervals so
seniority effects were setto 8, =0, r=1,...,.S in the fitted poset model. The likelihood p

in Eqn 6 was used. For analysis in interval [t1,?2], we take K, the dimension of U ;t), to be
E maxye(s, +,) M¢|. The prior for p is Beta(1,1/6) and otherwise as Sec. 3.3.

3.0

2.0

Bayes Factor

1.0

0.0

1080 1090 1100 1110 1120 1130 1140 1150

Year

FIG 15. Bayes Factors for VSP orders (dashed lines) and Bucket Orders (solid) fitted over the year intervals in
Table 2. A value less than one is evidence against VSP or Bucket Orders. The x-axis value for each bar is the
centre of the corresponding interval, (t1 + to)/2. Error bars are two standard deviations.

Results are given in Table 2 in Supp I and plotted in Fig 15. Each pair of points is an in-
dependent MCMC run. The prior probabilities 7(h € V(*#2)) and 7 (h € B(*12)) in Table 2
are surprisingly large given the sparsity of VSPs and Bucket Orders, so our prior for posets
must favor VSPs and Bucket Orders. The rules forming VSP-orders and Bucket Orders com-
pare groups rather than actors in a socially plausible way, so this may be a good thing. As
Fig 15 shows, the data favour partial orders or are neutral, except for 1118-1122, so Bucket
Orders and VSPs may be acceptable over some short time intervals. In some intervals VSPs
and Bucket Orders are rejected (1080-1084 and around 1132-1134). The evidence for posets
visible in Fig 15 will accumulate over longer time series.

8. Conclusions. A new class of poset-models for time-series rank-data is summarised
in Sec. 3.3. The latent variable poset-parameterisation in Eqn 15 made it straightforward to
introduce a parameter controlling poset depth and incorporate actor-covariates informing the
position of actors in the hierarchy. We fit the model to witness-list data in which the actors are
eleventh and twelfth century bishops. In Sec. 6.2 we saw that the model recovered structure
in the data which was anticipated by historians. In particular, the dependence of the status of a
bishop on their seniority is clear in Fig 11. We checked for evidence that the depth parameter
p, correlation # and error probability p varied over time by looking at short time intervals (see
Supp H) and found no evidence against our assumption of constant values over time. Further
support comes from model comparison against a Placket-Luce mixture in Supp J.2 which
favoured our model. The time-series extension of the Plackett-Luce model in Supp J.1 gave
similar results for seniority effects and evolving authority, showing that the data overwhelm
these model variations and conclusions are robust. The times-series Plackett-Luce model is
fairly time consuming to fit so there was no great gain in efficiency over posets on our data.
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We gave our main analysis in Sec. 6.3. This is the first quantitative analysis of these data
and gave insights which historians find interesting. With few exceptions, witness-lists reflect
precedence by diocese and seniority more than changing royal favour. We separated the ef-
fects of authority and seniority on status and confirmed (Johnson, 2013) that the bishops of
London, Winchester and Lincoln had high authority and that Rochester had no special sta-
tus. Personal authority changes in a few cases: the high status originally given to Nigel of
Ely unwound, and Roger of Salisbury bucked the trend. This was known to historians. The
apparent decline in authority of Norman bishops (as expressed in the lists) was unknown.
Consensus partial orders (see Fig 13) gave an interpretable visualisation of the underlying
social hierarchy in each year. The problem treated here appears in other guises: there is an
extensive literature estimating animal dominance hierarchies with many similarities. For ex-
ample, Foerster et al. (2016) studies a time-series of pairwise chimpanzee interactions and
finds a role for seniority and evolution of status.

There is work to be done in computation and methodology to make these models more
broadly applicable. First, our MCMC is time consuming (the experiments in this paper add
up to about two years of MCMC if run as a single serial process). Whilst a careful analysis
minimising any approximation of the target distribution is justified (there will never be any
more for this period), scalable methods would be welcome, and VSP-orders may be an ac-
ceptable compromise from a modelling perspective. This may allow us to fit more complex
noise models and treat “top-k” preference orders. Analysis of lists including lay witnesses
(Jiang et al., 2023) required scalable methods in order to count linear extensions in partial
orders over hundreds of elements. Application of our methods to general preference orders
on thousands of items and thousands of lists is not presently feasible.

Second, many applications of poset-based models will require substantial model-building,
paralleling the evolution of Mallows and Plackett-Luce models and including hierarchical
models and mixture models for structured populations and clustering. The clerks who made
the lists may have differed on status assessment so unrepresented group structure may be
present. Some developments are given in Jiang and Nicholls (2024) (hereafter JN24). We
worked with strong partial orders. Models for weak partial orders with ties are given in JN24.
Also, our statistical model for “noise” in realised lists assumes errors occur in one direction
only (queue jumping up or down, but not both). Noise models with bi-directional errors
are explored in Jiang et al. (2023) and JN24. Statistical tools for selecting the number of
features K in the status vector of a bishop would remove the need for robustness checks (our
Supp G.3). This is addressed for fixed-time data in JN24 using reversible-jump MCMC.

Third, a small number of other covariates beside seniority are available in the data and
might be explored in model elaboration. Covariates might enter the noise model also, to in-
form the probability and magnitude of displacements. One unexplored weakness of our error
model is apparent in lists of length two: if the two bishops are ordered in a deep poset then
the noise model assigns the same probability for the “wrong” order whether the two bish-
ops are at each end of the poset (very different status) or adjacent in its transitive reduction
(near-equal status). Displacements are probably “over-dispersed” in the noise-model.

From a historical perspective this study raises several questions. Complex precedence
structures seem to have existed, but how were they known? Was there some kind of prece-
dence handbook, or other means of transmission? Comparisons between patterns of prece-
dence relations in pre-conquest lists and lists from later periods might be revealing. Later
documents are more accurately dated and so a more fine-grained analysis may be possible.
Finally, there are forgeries among acta of this period. Cases that go against the usual pattern
may be an indicator of forgery.

Software used to carry out the analysis presented in this paper are available at

https://github.com/gknicholls/Partial-order—-HMM-public.git.
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