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ABSTRACT The quality-of-service (QoS) provided by wireless communication networks can be upgraded
by the technique of non-orthogonal multiple-access (NOMA) in tandem with widely linear beamforming
(WLB), which uses a pair of beamformers for each information symbol. Conventionally, rate-fairness
among the users is achieved by maximizing the users’ minimal throughput (max-min throughput
optimization). However, this is computationally challenging, as each iteration requires solving a high-
dimensional convex optimization problem, even for small networks. We circumvent this by maximizing
the geometric mean (GM) of the users’ throughput (GM-throughput maximization) and design novel
algorithms based on iterating closed-form expressions are developed, which are shown to be hundreds
of times more computationally efficient than the existing algorithms that are based on convex-solvers.
The proposed algorithms are developed for both conventional wireless networks and networks requiring
ultra-reliable and low-latency communications (URLLC).

INDEX TERMS Widely linear beamforming, non-orthogonal multiple access, ultra-reliable and low-latency
communication, geometric mean maximization.

I. INTRODUCTION

NON-ORTHOGONAL multiple access (NOMA) [1] has
been recognized as a flexible and efficient technology

to improve the quality-of-service (QoS) provided by wireless
communication networks [2]. A key principle of NOMA
is that the users (UEs) of interest also decode messages
intended for other UEs for interference mitigation. More
specifically, NOMA enables UEs of the same cluster to
successively decode all the messages destined to all UEs to
mitigate intra-cluster interference. This is in a sharp contrast
to the conventional coordinated signaling (CoSig) [3], [4],
where each UE decodes its intended message while treating
interference from other UEs as noise.1

1Technically, CoSig is also a form of NOMA because all users share the
same communication bandwidth.

The most popular approach to implement NOMA is to
pair UEs so that each of the paired UEs decodes the entire
message destined for the paired UE. However, this NOMA
scheme has been demonstrated to outperform CoSig in terms
of the worst-case UE throughput only when the channel
conditions of the paired UEs are sufficiently different [5].
Recently, a new-NOMA (n-NOMA) scheme was proposed
in [6], which takes advantage of the Han-Kobayashi (HK)
strategy [7], [8], [9], [10], wherein only a portion of the
message intended for one UE is designated as a common
message to be decoded by both paired UEs. Traditional
NOMA is thus a particular case of n-NOMA when the
common message is the entire message for the two paired
UEs. Likewise, CoSig can be viewed as another particular
case of n-NOMA when there is no common message. It is
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shown in [6] that n-NOMA readily outperforms both NOMA
and CoSig under diverse channel conditions.
Exploring transmit beamforming at the base station (BS)

is essential to take full advantage of NOMA for improving
the QoS in terms of the UEs’ throughput [5], [11], [12].
However, transmit beamforming design problems are often
high-dimensional nonconvex optimization tasks, even for
small networks, and hence difficult to solve. The solution
algorithms developed in [5], [11] invoke convex quadratic
problems of the same size at each iteration to generate
a better feasible point. The computational complexity of
these convex problems is polynomial in their size, and
thus is still high even for small-size networks. The authors
of [13] adopted the same beamformer for UEs in the same
cluster and used convex relaxation at each iteration, which
not only causes an increase in the dimension (size) of the
problem but may also fail to output a feasible point. On
the other hand, the authors of [14] and [6] have shown that
the UEs’ throughput thresholds in NOMA and n-NOMA
networks can be increased by performing widely linear
beamforming (WLB), which uses two beamformers for each
information symbol [15]. WLB enables improper Gaussian
signaling (IGS) by relaxing signal properness, allowing
correlation with complex conjugates and yielding additional
signaling degrees of freedom. IGS signals are generated
from proper Gaussian sources using WLB [15], [16], [17],
[18], [19]. Since the problem size in WLB design is twice
that in linear beamforming (LB) design, the former is more
computationally demanding than the latter [20], [21].
In other relevant research, NOMA has recently been

exploited for minimizing either the transmission power [22]
or probability of error [23] in ultra-reliable and low-latency
communications (URLLC) [24]. The solutions in [22], [23]
are, however, restricted to simple single-input single-output
(SISO) systems, and hence do not use beamforming.
In general, enhancing the QoS for all UEs is hard. It

has been recently shown that by employing geometric-mean
(GM)-throughput optimization [25], [26], which optimizes
the GM of the UEs’ throughputs, one can naturally achieve
fair throughput distribution, resulting in a low standard
deviation among the UEs’ throughputs, without enforcing
specific QoS constraints. Thus, GM-throughput optimization
has a potential to offer computationally tractable solutions for
resource allocation problems and can be exploited for WLB
designs in multiple-input-multiple-output (MIMO)-NOMA
networks.
Against the above background, this paper aims to exploit

both n-NOMA as well as WLB and obtain computationally-
efficient beamforming solutions to enhance the QoS in
large wireless networks. We also provide a computationally
efficient WLB solution for enhancing the QoS of URLLC
networks. Here, we would like to emphasize that this
work is significantly different from [25], [26], as it is non-
trivial to apply the concepts of GM-throughput optimization
introduced in [25], [26] to an n-NOMA network under the
proposed WLB framework. Moreover, additional novelty

TABLE 1. Comparison of this paper and relevant literature.

arises from extending the proposed WLB design to URLLC
networks. Our contributions are contrasted to the state-of-
the-art in Table 1 and are elaborated on further below.

• We propose a computationally efficient WLB design
for both n-NOMA and NOMA networks, based on
maximizing the geometric mean (GM) of the UEs’
throughputs under a sum transmit power constraint.
While the GM-throughput is a smooth function of
the individual throughputs, the throughputs themselves
are non-smooth with respect to the beamforming
variables, making the optimization challenging. To
address this, we develop novel algorithms that iterate
over closed-form expressions, offering a computational
efficiency that is hundreds of times greater than existing
convex-solver-based methods. We also demonstrate
that GM-throughput maximization not only leads to
a fairer distribution of throughput among UEs, but
also promotes more balanced power allocation across
antennas—even without enforcing per-antenna power
constraints. Compared to LB, the proposed WLB
approach more than doubles the users’ throughput and
reduces the standard deviation of users’ throughputs by
over 50%. Additionally, we show that n-NOMA outper-
forms both CoSig and conventional NOMA schemes.

• The proposed WLB design is also extended to URLLC,
which presents an even more challenging optimization
problem due to the additional impact of channel
dispersion on the throughput function. Nevertheless,
we successfully develop a computationally efficient
iterative procedure, based on closed-form expressions,
for WLB computation in such wireless networks as
well.

The remainder of the paper is structured as follows.
Section II describes the system model and formulates the
WLB design problem for GM-throughput maximization. The
algorithm proposed for efficiently solving the problem is
presented in Section III. Section IV extends the proposed
algorithm for URLLC networks. Simulation results are
provided in Section V. Finally, Section VI concludes the
paper.
Notation: Design (decision) variables subject to

optimization are represented in boldface. In denotes the

5396 VOLUME 6, 2025



identity matrix of dimension n × n. The expressions XT ,
XH , X∗, 〈X〉, and |X| correspond to the transpose, conjugate
transpose, complex conjugate, trace, and determinant of
matrix X, respectively, and [X]2 = XXH . The inner product
〈X,Y〉 for real matrices X and Y is given by trace(XHY).
The notation | · | refers to the Frobenius norm for matrices
and the Euclidean norm for vectors. �x extracts the real
part of a complex number x. The expression x ∼ CN (0,Z)

indicates that x is a circularly symmetric complex Gaussian
random vector with zero mean and covariance matrix Z.
A matrix A � 0 signifies that A is positive definite. The
operator E· denotes statistical expectation.

(n
k

) = n!
k!(n−k)!

is the combination formula to choose k items out of n
items. The list of commonly used symbols is provided in
Table 2.
Ingredient: According to [27, p. 366], a function f̃ is

called a minorant (or majorant, respectively) of the function
f over the domain dom(f ) if f̃ (x) ≤ f (x) ∀x ∈ dom(f )
(f̃ (x) ≥ f (x) ∀x ∈ dom(f ), resp.). In addition, if f̃ (x̄) =
f (x̄) for some x̄ ∈ dom(f ) then the former is called a tight
minorant (tight majorant, resp.) of the latter at x̄. Let xopt =
argmaxx∈dom(f ) f̃ (x), where f̃ is a tight minorant of f at x̄.
Then f (xopt) ≥ f̃ (xopt) > f̃ (x̄) = f (x̄) whenever f̃ (xopt) 
=
f̃ (x̄), i.e., xopt is a superior feasible point compared to x̄ for
maximizing f . This property does not hold when f̃ is only
a minorant of f .

II. SYSTEM MODEL AND PROBLEM FORMULATION
Consider downlink transmission in a wireless network, which
consists of a base station equipped with Nt transmit antennas
(TAs) to serve N UEs n ∈ N � {1, 2, . . . ,N}, each having
Nr receive antennas. The UEs are grouped into two distinct
subsets N1 � {1, 2, . . . ,N/2} and N2 � {N/2 + 1, . . . ,N}.
Let UE n ∈ N1 be paired with UE π(n) ∈ N2 to create a
virtual cluster. For ease of notation, the pairing is selected
such that π(n) = n+N/2. We also define NE � {1, . . . ,N+
N/2}. The joint optimization of user-pairing, decoding order,
and beamforming is computationally intractable, especially
for MIMO-NOMA networks [28], [29].2 It is beyond the
scope of this work, which focuses on the design of low-
complexity and widely linear beamforming solution for
MIMO-NOMA networks.
We adopt the following common strategy for user-

pairing [30], [31]. First, the UEs are ordered in terms of
their distances from the BS. Then we pair the first ordered
UE with the (N/2+1)-th ordered UE. Similarly, the second
ordered UE is paired with the (N/2+2)-th ordered UE, and
so on. This strategy relies on the distances of users from
the BSs, which ensures minimal overhead when updating
users about their pairing strategy. Similarly, within the paired
users, we assume that the decoding order is based on the

2There are 1
(N/2)!

∏N/2−1
i=0

(N−2i
2

)
possible user-pairings and 2N/2

decoding order options [29]. For example, for N = 18 UEs, we need to
choose from 34459425 user-pairing and 512 decoding order options.

TABLE 2. List of commonly used symbols.

ascending order of users’ channel strength [13], [28], [29],
[32], which is determined mainly by the users’ distances
from the BSs [5], [6], [14], [33]. It is very likely for our
adopted user-pairing strategy, because the distance between
the paired users is as large as possible. As a result, their
channel strength is reflected mainly by their distances from
the BS owing to the considerable difference in their path
losses.
Under n-NOMA [6], in addition to a private message

sn ∼ CN (0, INr ), n = 1, . . . ,N that is decoded by the
individual UE n’s receiver, there is a common message
sN+n ∼ CN (0, INr ), n = 1, . . . ,N/2, intended for UE π(n),
but it is decoded by both UE n’s and UE π(n)’s receiver.
This is demonstrated in the system model of Fig. 1 and
further elaborated on and contrasted to both NOMA and
CoSig in Table 3.3 We know that UEs {N/2 + 1, . . . ,N},
which are far from the BS, experience higher path-loss and
poorer throughput compared to the other UEs. In contrast
to both NOMA and CoSig, n-NOMA serves these UEs
{N/2+1, . . . ,N} using both private and common messages,
thus holds the promise of enhancing both the users’ minimal
throughput and the GM of the users’ throughput.

3Our description assumes that N is even. In case of odd N, one UE will
be left unpaired and will be served with its private message alone.
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FIGURE 1. A system model illustration for n-NOMA scheme, where abbreviations
“Dec” and “Info conv th” stand for “decodes” and “information is conveyed through”,
respectively.

TABLE 3. Overview of how the information is conveyed.

With WLB, each sn′ , n′ = 1, . . . ,N+N/2 is processed as

xn′ = W1,n′sn′ + W2,n′s∗n′ , (1)

where Wi,n′ ∈ C
Nt×Nr , i = 1, 2. Note that the above

processing is different from the conventional LB, which
applies a single beamformer for each information symbol.
In other words, LB is a special case of WLB along with
W2,n ≡ 0. The received signal at UE n when employing
WLB can be expressed as

yn = Hn
∑

n′∈NE

xn′ + nn (2)

= Hn
∑

n′∈NE

(
W1,n′sn′ + W2,n′s∗n′

) + nn, (3)

where Hn ∈ C
Nr×Nt is the channel matrix from the BS to UE

n, which is assumed to be known, and nn ∼ CN (0, σ INr ) is
additive white Gaussian noise (AWGN).
Define W � {Wn′, n′ ∈ NE}, Wn′ � {Wi,n′ , i = 1, 2}, and

the real-valued variables:

H̄n �
[�{Hn} −�{Hn}
�{Hn} �{Hn}

]
∈ R

(2Nr)×(2Nt),

s̄n′ �
[�{sn′ }
�{sn′ }

]
∈ R

2Nr , ȳn �
[�{yn}
�{yn}

]
∈ R

2Nr ,

n̄n �
[�{nn}
�{nn}

]
∈ R

2Nr . (4)

Then (3) can be rewritten using real-valued variables as:

ȳn = H̄n
∑

n′∈NE

Vn′ s̄n′ + n̄n, (5)

where we have:

Vn′ �
[
Vij
n′
]

(i,j)∈{1,2}

=
[�{W1,n′ + W2,n′ } −�{W1,n′ − W2,n′ }
�{W1,n′ + W2,n′ } �{W1,n′ − W2,n′ }

]
, (6)

with

‖Vn′ ‖2 = 2
(
‖W1,n′ ‖2 + ‖W2,n′ ‖2

)
. (7)

The decoding order is enforced as follows. First, both
UEs n and π(n) decode the common message sN+n, which
is intended for UE π(n) ∈ N2, treating other messages sn′ ,
n′ 
= N + n as interferences. By writing (5) as

ȳn = H̄nVN+ns̄N+n +
∑

n′∈NE\{N+n}
H̄nVn′ s̄n′ + n̄n, (8)

the rate of decoding sN+n by UE n is 1
2ρ1,N+n(V) with [34]

ρ1,N+n(V) � ln
∣∣∣I2Nr + [

H̄nVN+n
]2

�−1
1,N+n(V)

∣∣∣, (9)

with �1,N+n(V) �
∑

n′∈NE\{N+n} [H̄nVn′ ]2 + σ I2Nr , which
represents the covariance of interference-plus-noise signal.
Analogously, by writing (5) as

ȳπ(n) = H̄π(n)VN+ns̄N+n +
∑

n′∈NE\{N+n}
H̄π(n)Vn′ s̄n′

+ n̄π(n), (10)

the rate of decoding sN+n by UE π(n) is 1
2ρ2,N+n(V) with

[34]

ρ2,N+n(V) � ln
∣∣∣I2Nr + [

H̄π(n)VN+n
]2

�−1
2,N+n(V)

∣∣∣, (11)

along with �2,N+n(V) �
∑

n′∈NE\{N+n} [H̄π(n)Vn′ ]2 +σ I2Nr .
Denote the throughput in decoding the common message

sN+n by both UEs n and π(n) as rN+n, which we refer
to as the “common-throughput”. Based on information
theory [34], we have:

rN+n ≤ 1

2
ρi,N+n(V), i = 1, 2, (12)

or equivalently,

rN+n ≤ 1

2
ρN+n(V), (13)

along with

ρN+n(V) � min
i=1,2

ρi,N+n(V). (14)

Next, after decoding sN+n, the UEs n ∈ N1 and π(n) ∈ N2
subtract it from their received signals ȳn and ȳπ(n) before
decoding their private messages sn and sπ(n). By (5), the
equations of the signals received at UEs n and π(n) after
subtracting sN+n become:

ȳn − H̄nVN+ns̄N+n = H̄nVnsn

+
∑

n′∈NE\{N+n,n}
H̄nVn′ s̄n′

+ n̄n, (15)
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and

ȳπ(n) − H̄π(n)VN+ns̄N+n = H̄π(n)Vπ(n)sπ(n)

+
∑

n′∈NE\{N+n,π(n)}
H̄π(n)Vn′ s̄n′

+ n̄π(n), (16)

respectively. It follows from (15) that the throughput in
decoding sn by UE n, while treating the other messages sn′ ,
n′ ∈ NE \ {N + n, n} as interference is 1

2ρn(V), where

ρn(V) � ln
∣∣∣I2Nr + [

H̄nVn
]2

�−1
n (V)

∣∣∣, (17)

along with

�n(V) �
∑

n′∈NE\{n,N+n}

[
H̄nVn′

]2 + σ I2Nr . (18)

Analogously, it follows from (16) that the throughput in
decoding sπ(n) by UE π(n), while treating other messages
sn′ , n′ ∈ NE \ {N + n, π(n)} as interference is 1

2ρπ(n)(V),
where we have

ρπ(n)(V) � ln
∣∣∣I2Nr + [

H̄π(n)Vπ(n)
]2

�−1
π(n)(V)

∣∣∣, (19)

with

�π(n)(V) �
∑

n′∈NE\{π(n),N+n}

[
H̄π(n)Vn′

]2 + σ I2Nr . (20)

Since the information of the UE π(n) ∈ N2 is conveyed
through both the private message sπ(n) and common message
sN+n, its throughput, based on (13) and (19), is given by

1

2
ρπ(n)(V) + rN+n, (21)

where rN+n is subject to the constraint (13).
Our objective is to maximize the GM of the UEs’

throughputs while satisfying the total power constraint.
From (7), (19), and (21), such a problem is formulated as4

max
V,rN+n

⎡

⎣
∏

n∈N1

(
1

2
ρn(V)

(1

2
ρπ(n)(V) + rN+n

))
⎤

⎦

1/N

(22a)

s.t. (13), (22b)∑

n′∈NE

‖Vn′ ‖2 ≤ 2P, (22c)

where P is the power budget. The advantage of considering
GM-throughput maximization in (22) is that it ensures a fair
distribution of throughput among UEs. This is due to the
structure of GM, where the throughput functions of all UEs
are multiplied together, preventing any individual UE from
experiencing very low throughput. As a result, there is no
need to impose additional computationally intractable QoS
constraints, such as

1

2
ρn(V) ≥ r̄, n ∈ N1

4The objective in (22a) is the GM of N users’ throughput.

and

1

2
ρπ(n)(V) + rN+n ≥ r̄, n ∈ N1,

where r̄ is the throughput threshold, set for all users.
We would like to add that there is no need to impose
any constraint on the common throughput rN+n, because
a zero or nearly zero common throughput implies that the
common message sN+n is allocated zero power, i.e., it is
effectively not included in the transmit signal. Later, we
will demonstrate through simulations that non-zero common-
throughput results in the superior performance of n-NOMA
compared to CoSig.
We consider a single sum-power constraint in (22c) instead

of considering Nt individual per-antenna power constraints,
although the latter is helpful for achieving transmit-power
balance across the transmit antennas, which may be required
owing to physical antenna limitations. However, by solving
the proposed GM-throughput optimization problem with a
single sum-power constraint, we observe another advantage
of achieving even power distribution across the transmit
antennas without enforcing per-antenna power constraints.
These advantages will be demonstrated in Section V through
simulation results.
Since the optimal solution of (22) is attained at the equality

sign of the constraint (13), the problem (22) is equivalent to

max
V

⎡

⎣
∏

n∈N1

(
1

2
ρn(V)

(1

2
ρπ(n)(V) + 1

2
ρN+n(V)

))
⎤

⎦

1/N

(23a)

s.t. (22c), (23b)

with ρN+n(V) defined from (14). It can be readily checked
that

1

2

(
ρπ(n)(V) + ρN+n(V)

) = min{ρ1,π(n)(V), ρ2,π(n)(V)}
2

(24)

with

ρi,π(n)(V) � ρπ(n)(V) + ρi,N+n(V), i = 1, 2.

Therefore, the problem (23a) can be written as:

max
V

gGM(V) � 1

2

⎡

⎣
∏

n∈N1

(
ρn(V) min

i=1,2
ρi,π(n)(V)

)⎤

⎦

1/N

(25a)

s.t. (22c). (25b)

As discussed before, NOMA is a particular case of n-
NOMA with

Vπ(n) ≡ 0, n ∈ N1, (26)

because both UE n and UE π(n) fully decode the information
message designated for UE π(n). The throughput at UE π(n)
is defined accordingly as (1/2) mini=1,2 ρi,N+n(V). The GM-
throughput maximization problem corresponding to NOMA
is thus the following particular case of (25):

VOLUME 6, 2025 5399
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max
V

gGM(V) � 1

2

⎛

⎝
∏

n∈N1

(
ρn(V) min

i=1,2
ρi,N+n(V)

)⎞

⎠

1/N

s.t. (22c), (26). (27)

Conversely, CoSig, where every UE decodes only its
designated information message and regards the others as
interference, represents a special scenario of the aforemen-
tioned n-NOMA framework with

VN+n ≡ 0, n ∈ N . (28)

The corresponding GM-throughput maximization problem
is the following particular case of (25):

max
V

g(V) � 1

2

(
∏

n∈N
ρn(V)

)1/N

s.t. (22c), (28), (29)

with ρn(V) = ln |I2Nr + [H̄nVn]2(
∑

n′∈N \{n} [H̄nVn′ ]2 +
σ I2Nr )

−1|.

III. PROPOSED SOLUTION
The non-smooth function mini=1,2 ρi,π(n)(V) in (25) presents
a challenge for solving the problem in (25) with a compu-
tation procedure that is based on closed-form expressions.
This challenge shall be tackled in this section.
By the arithmetic-geometric mean inequality, it follows

that

ρ1,π(n)(V) + ρ2,π(n)(V)

2
≥ √

ρ1,π(n)(V)ρ2,π(n)(V), (30)

with equality holding at ρ1,π(n)(V) = ρ2,π(n)(V). This
means that maximizing the left-hand side of (30) results in
unequal values of ρ1,π(n)(V) and ρ2,π(n)(V), thereby reduces
their minimum. By contrast, maximizing the right-hand side
(RHS) of (30) ensure balanced values of ρ1,π(n)(V) and
ρ2,π(n)(V) and thus improves their minimum. Therefore, we
choose the RHS of (30) as a surrogate for mini=1,2 ρi,π(n)(V)

in (25). Accordingly, we solve (25) by addressing the
following surrogate problem:

max
V

g(ρ(V)) s.t. (22c), (31)

where g(ρ(V)) is the composite of the function

g(ρ) �

⎛

⎝
∏

n∈N1

(
ρn

√
ρ1,π(n)ρ2,π(n)

)
⎞

⎠

1/N

(32)

of N + N/2 variables and of the mapping

ρ(V) �
(
ρ1(V), ρ1,π(1)(V), ρ2,π(1)(V), . . . ,

ρN/2(V), ρ1,π(N/2)(V), ρ2,π(N/2)(V)
)
. (33)

We will now propose a low-complexity iterative method to
compute (31). Starting with the feasible point V(0), for p =
1, . . . , pmax, let V(p) be its feasible point obtained from the
(p−1)-st iteration, and ρ(p) � ρ(V(p)). At the p-th iteration,

we seek for a steep ascent by considering the following
problem of nonlinear function optimization

max
V

K∑

k=1

(
∂g

(
ρ(p)

)

∂ρn
ρn(V) +

2∑

i=1

∂g
(
ρ(p)

)

∂ρi,π(n)
ρi,π(n)(V)

)

s.t. (22c). (34)

Since ∂g(ρ(p))
∂ρn

= g(ρ(p))

Nρn(V(p))
and ∂g(ρ(p))

∂ρi,π(n)
= g(ρ(p))

2Nρi,π(n)(V(p) , i =
1, 2, with g(ρ(p)) > 0, the problem (34) is in fact the
following problem

max
V

g(p)(V) �
∑

n∈N1

[
γ (p)
n ρn(V) +

2∑

i=1

γ
(p)
i,π(n)ρi,π(n)(V)

]

s.t. (22c), (35)

where we have:

γ (p)
n = ρ

(p)
max

ρn
(
V(p)

) , n ∈ N1,

γ
(p)
i,π(n) = ρ

(p)
max

2ρi,π(n)
(
V(p)

) , i = 1, 2; n ∈ N1, (36)

for

ρ
(p)
max � max

n∈N1

max
{
ρn

(
V(p)

)
, ρ1,π(n)

(
V(p)

)
, ρ2,π(n)

(
V(p)

)}
.

(37)

The problem (35) is non-convex because of the non-
concave nature of the objective function. By using the
inequality (91) in the Appendix for X = H̄nVn, Y =
�−1
n (V), X̄ = H̄nV(p), and Ȳ = �−1

n (V(p)) leads to the
following tight concave quadratic minorant of ρn(V) at V(p):

ρ(p)
n (V) � ρn

(
V(p)

)

−
〈[
H̄nV

(p)
n

]2
�−1
n

(
V(p)

)〉
+ 2

〈
B(p)
n ,Vn

〉

−
〈

C(p)
n ,

∑

n′∈N \{N+n}

[
H̄nVn′

]2 + σ I2Nr

〉

(38)

= a(p)
n + 2

〈
B(p)
n ,Vn

〉
−

∑

n′∈NE

〈
C(p)
n,n′, [Vn′ ]2

〉
, (39)

where

a(p)
n � ρn

(
V(p)

)
− 〈

[
H̄nV

(p)
n

]2
�−1
n

(
V(p)

)
〉 − σ 〈C(p)

n 〉,
B(p)
n � H̄H

n �−1
n

(
V(p)

)
H̄nV

(p)
n ,

C(p)
n � �−1

n

(
V(p)

)
−

(
�n

(
V(p)

)
+

[
H̄nV

(p)
n

]2
)−1

,

C(p)
n,n′ =

{
02Nr×2Nr for n′ = N + n

H̄H
n C

(p)
n H̄n otherwise.

(40)

We can observe from (39) that ρn(V) ≥ ρ
(p)
n (V) for all

V and ρn(V(p)) = ρ
(p)
n (V(p)), i.e., the inequality becomes
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equality at V = V(p). Analogously, we derive the following
tight concave quadratic minorant of ρi,N+n(V) at V(p):

ρ
(p)
i,N+n(V) � a(p)

i,N+n + 2〈B(p)
i,N+n,VN+n〉

−
∑

n′∈NE

〈C(p)
i,N+n,n′ , [Vn′ ]2〉, (41)

where

a(p)
i,N+n � ρi,N+n

(
V(p)

)
− σ

〈
C(p)
i,N+n

〉

−
〈[
H̄i,nV

(p)
N+n

]2
�−1
i,N+n

(
V(p)

)〉
,

B(p)
i,N+n � H̄H

i,n�
−1
i,N+n

(
V(p)

)
H̄i,nV

(p)
N+n,

C(p)
i,N+n � �−1

i,N+n
(
V(p)

)

−
(

�i,N+n
(
V(p)

)
+

[
H̄i,nV

(p)
N+n

]2
)−1

,

C(p)
i,N+n,n′ ≡ H̄H

i,nC
(p)
i,N+nH̄i,n, n′ ∈ NE, (42)

for i = 1, 2. From (39) and (41), a tight concave quadratic
minorant of ρi,π(n) at V(p) is given by

ρ
(p)
i,π(n)(V) � ρ

(p)
π(n)(V) + ρ

(p)
i,N+n(V)

= a(p)
i,π(n) + 2

〈
B(p)

π(n),Vπ(n)

〉
+ 2

〈
B(p)
i,N+n,VN+n

〉

−
∑

n′∈NE

〈
C(p)
i,π(n),n′, [Vn′ ]2

〉
, (43)

where a(p)
i,π(n) � a(p)

π(n) + a(p)
i,N+n, and C(p)

i,π(n),n′ = C(p)
π(n),n′ +

C(p)
i,N+n,n′ , for i = 1, 2. In summary, a tight concave quadratic

minorant of g(p)(V) at V(p) is

g̃(p)(V) �
∑

n∈N1

[

γ (p)
n ρ(p)

n (V) +
2∑

i=1

γ
(p)
i,π(n)ρ

(p)
i,π(n)(V)

]

= a(p) + 2
∑

n∈NE

〈
B̃(p)
n ,Vn

〉
−

∑

n∈NE

〈
C̃(p)
n , [Vn]2

〉
, (44)

for

a(p) �
∑

n∈N1

(

γ (p)
n a(p)

n +
2∑

i=1

γ
(p)
i,π(n)a

(p)
i,π(n)

)

,

B̃(p)
n �

⎧
⎪⎪⎨

⎪⎪⎩

γ
(p)
n B(p)

n for n ∈ N1(∑2
i=1 γ

(p)
i,π(n−N/2)

)
B(p)

π(n−N/2) for n ∈ N2
∑2

i=1 γ
(p)
i,π(n−N)B

(p)
i,n for n > N,

C̃(p)
n �

∑

n′∈N1

(

γ
(p)
n′ C(p)

n′,n +
2∑

i=1

γ
(p)
i,π(n′)C

(p)
i,π(n′),n

)

,

n ∈ NE. (45)

Hence, we address the following tight minorant
maximization problem to compute the next iterative point
V(p+1)

Algorithm 1 GM Throughput Maximization Algorithm for
Computing (31)

1: Initialization: Initialize a random feasible V(0) for (22c).
Set p = 0.

2: Repeat the following until the objective function in (31)
converges:

Update γ
(p)
n and γ

(p)
i,π(n) by (36). Update B̃(p)

n and

C̃(p)
n by (45). Generate V(p+1)

n by (47). Reset p: = p+1.
3: Output V(p).

max
V

g̃(p)(V) s.t. (22c), (46)

which has a closed-form solution5

V(p+1)
n =

⎧
⎪⎨

⎪⎩

(
C̃(p)
n

)−1
B̃(p)
n if �(p) ≤ 2P,

(
C̃(p)
n + λI2Nt

)−1
B̃(p)
n otherwise,

(47)

where �(p) �
∑

n∈NE
||(C̃(p)

n )−1B̃(p)
n ||2 and λ > 0 is found

by bisection such that
∑

n∈NE
||(C̃(p)

n +λI2Nt)
−1B̃(p)

n ||2 = 2P.
The solution obtained in (47) can be explained as follows.
If the power constraint (22c) is satisfied, we can obtain
V(p+1)
n = (C̃(p)

n )−1B̃(p)
n by computing the partial derivative

of g̃(p)(V) with respect to Vn and setting it with zero. If the
power constraint (22c) is violated, we can obtain V(p+1)

n by
using the following Lagrangian function:

L(V, λ) = a(p) + 2
∑

n∈NE

〈B̃(p)
n ,Vn〉 −

∑

n∈NE

〈C̃(p)
n , [Vn]2〉

− λ

⎛

⎝
∑

n∈NE

‖Vn‖2 − 2P

⎞

⎠ (48)

and taking its derivative with respect to Vn, i.e.,

∂L(V, λ)

∂Vn
= 2B̃(p)

n − 2C̃(p)
n Vn − 2λVn. (49)

Finally, we can obtain V(p+1)
n = (C̃(p)

n + λI2Nt)
−1B̃(p)

n by
solving ∂L(V,λ)

∂Vn
= 0. The computational complexity of the

closed-form based solution in (47) is O(3Nt log2(2Nt)N).
The average number of iterations needed for convergence
is reported later in the simulation results section, while its
convergence is analyzed below:
Proposition 1: Algorithm 1 produces a sequence {V(p+1)}

of progressively improved points of (31), which converges
to a Karush-Kuhn-Tucker (KKT) point.
Proof: Since g̃(p)(V) is a tight concave quadratic minorant

of g(p)(V) at V(p), we have

g(p)(V) ≥ g̃(p)(V)

g(p)
(
V(p)

)
= g̃(p)

(
V(p)

)
,

5(C̃(p)
n )−1 is understood as the pseudo-inverse of C̃(p)

n , when we have
C̃(p)
n � 0.
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Therefore,

g(p)
(
V(p+1)

)
≥ g̃(p)

(
V(p+1)

)

> g̃(p)
(
V(p)

)

= g(p)
(
V(p)

)
, (50)

where the second inequality arises from the fact that V(p+1)

and V(p) are the optimal solution and a feasible point for (35),
respectively. This demonstrates that V(p+1) is a better
feasible point than V(p+1) for the problem (35). Moreover,
the sequence {V(p)} is bounded by the constraints (22c).
By Cauchy’s theorem,6 there is a convergent subsequence
{V(pν )} with a limit point V̄ , i.e.,

lim
ν→+∞

[
g(p)

(
V(pν )

)
− g(p)(V̄

)] = 0.

For every p, there is a ν such that pν ≤ p ≤ pν+1, so

0 = lim
ν→+∞

[
g(p)

(
V(pν )

)
− g(p)(V̄

)]

≤ lim
p→+∞

[
g(p)

(
V(p)

)
− g(p)(V̄

)]

≤ lim
ν→+∞

[
g(p)

(
V(pν+1)

)
− g(p)(V̄

)]

= 0,

which demonstrates that limp→+∞ g(p)(V(p)) = g(p)(V̄).
Each accumulation point {V̄} of the sequence {V(p)} is a
KKT-point, as stated in [35, Th. 1].
Since both (31) and (34)/(35) share the same first-

order optimality condition, it can be easily shown that
Algorithm 1 converges to a local solution that satisfies
the first-order optimality condition of (31). Additionally,
simulations consistently show that g(V(p+1)) > g(V(p)).
Since Algorithm 1 is in fact a path-following algorithm
generating progressively better feasible points, it often yields
a global solution of (31) [36].
Remark 1: For completeness, we develop a path-following

algorithm below that uses a convex-solver to solve (25). This
can serve as a benchmark for the aforementioned Algorithm 1,
which is based on closed-form expressions for solving the
surrogate problem (31). By introducing the slack variables
λ � (λ1, . . . , λN) satisfying the constraints

λi > 0, i = 1, . . . ,N, (51)

we can express the problem (25) as

max
V,λ

1

2

(
N∏

n=1

λn

)1/N

(52a)

s.t. (22c), (51), (52b)

ρn(V) ≥ λn, n ∈ N1, (52c)

ρπ(n)(V) + ρi,N+n(V) ≥ λπ(n), n ∈ N1, i = 1, 2.

(52d)

6From a bounded (compact) sequence, there exists a convergent subse-
quence

Initialized by a point V(0) feasible for (22c), let V(p) be
a point feasible for (25) that is obtained from the (p −
1)-th iteration. For the tight concave quadratic minorants
ρ

(p)
n (V) and ρ

(p)
i,N+n(V) defined from (39) and (41), we

solve the following convex problem at the p-th iteration,
which provides a tight inner approximation of the nonconvex
problem (52d), to generate the next feasible point V(p+1):

max
V,λ

1

2

(
N∏

n=1

λn

)1/N

(53a)

s.t. (22c), (51), (53b)

ρ(p)
n (V) ≥ λn, n ∈ N1, (53c)

ρ
(p)
π(n)(V) + ρ

(p)
i,N+n(V) ≥ λπ(n), n ∈ N1, i = 1, 2.

(53d)

As long as gGM(V(p+1)) 
= gGM(V(p)), we have
gGM(V(p+1)) > gGM(V(p)), indicating that the algorithm
based on (53d) produces a path-following sequence of
successively improved feasible points. This sequence is
guaranteed to converge to at least a locally optimal solu-
tion [35], which in many cases has been observed to
coincide with the global optimum [36]. Therefore, the
path-following algorithm based on (53d) can serve as a
benchmark for Algorithm 1 that is based on closed-form
expressions. This is because the path-following algorithm
directly addresses the original GM-throughput optimization
problem (25) by solving the convex problem (53d), which
is a tight inner approximation of (52d), or indirectly (25).
On the other hand, Algorithm 1 addresses (25) by solving
the surrogate problem (31). Therefore, we can expect some
performance disadvantage by solving Algorithm 1 compared
to the solution of the path-following algorithm. However, the
former promises huge computational advantages as explained
in the following paragraph.
The computational complexity of (53d) is O((6NtNrN +

N)3N) [37], which is huge compared to the computational
complexity of the closed-form based solution in (47), which
is as low as O(3Nt log2(2Nt)N).

A general-purpose projective gradient method for max-
imizing GM-throughput (see, for example, [38], which
focuses on power allocation rather than beamforming)
is excessively computationally complex. This is primar-
ily because GM-throughput is a high-degree function of
the decision variables, making it difficult to estimate the
Lipschitz constant of its gradient–an essential parameter
for ensuring convergence. Additionally, applying the Armijo
rule for line search to adjust the step size presents further
implementation challenges.
Remark 2: The conventional LB corresponds to W2,n′ ≡

0 in (3), so Vn′ in (5) is structured as Vn′ =[�{W1,n′ } − �{W1,n′ }
�{W1,n′ } �{W1,n′ }

]
. Therefore, LB cannot be imple-

mented as a particular case of Algorithm 1, which is based
on a structure-free Vn′ in (5) to derive the closed-form
expression (47) for the optimal solution of the problem (46).
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To overcome this, we introduce the real-composite form of
Wn′ :

V1,n′ �
[
V11
n′

V21
n′

]
=

[�{W1,n′ }
�{W1,n′ }

]
, n′ ∈ NE. (54)

By partitioning B̃(p)
n and C̃(p)

n defined from (45) as B̃(p)
n =

[B̃(p)
n,ij](i,j)∈{1,2}, B̃(p)

n,ij ∈ R
Nt×Nr , C̃(p)

n = [C̃(p)
n,ij](i,j)∈{1,2}, C̃(p)

n,ij ∈
R
Nt×Nt , i, j = 1, 2, we can express g̃(p)(V) in (44) by

g̃(p)(V1) = a(p) + 2
∑

n∈NE

〈B̃(p)
1,n,V1,n〉

−
∑

n∈NE

〈C̃(p)
1,n,

[
V1,n

]2〉, (55)

for V1 � {V1,n, n ∈ NE}, and

B̃(p)
1,n =

[
B̃(p)
n,11 + B̃(p)

n,22

B̃(p)
n,21 − B̃(p)

n,12

]

,

C̃(p)
1,n =

⎡

⎢
⎣

C̃(p)
n,11 + C̃(p)

n,22 C̃(p)
n,12 −

(
C̃(p)
n,12

)T

(
C̃(p)
n,12

)T − C̃(p)
n,12 C̃(p)

n,11 + C̃(p)
n,22

⎤

⎥
⎦, n ∈ NE.

(56)

In place of (22c), we address the following problem, which
maximizes a tight minorant, to obtain the next iterative point
V(p+1)

1

max
V1

g̃(p)(V1) s.t.
∑

n∈NE

||V1,n||2 ≤ P. (57)

This admits the closed-form solution

V(p+1)

1,n =

⎧
⎪⎨

⎪⎩

(
C̃(p)

1,n

)−1
B̃(p)

1,n if �̃(p) ≤ P,
(
C̃(p)

1,n + λI2Nt
)−1

B̃(p)
1,n otherwise,

(58)

for �̃(p) �
∑

n∈NE
||(C̃(p)

1,n)
−1B̃(p)

1,n||2, where λ > 0 is found

by bisection such that
∑

n∈NE
||(C̃(p)

1,n +λI2Nt)
−1B̃(p)

1,n||2 = P.
Algorithm 2 provides a procedure for computing (31) under
LB. The computational complexity of the closed-form based
solution in (58) is O(3Nt log2(2Nt)N). The average number
of iterations required before convergence is reported later in
the simulation results section.

IV. EXTENSION TO URLLC NETWORKS
In this section, by assuming that all UEs are equipped with
single antennas, the proposed WLB design for maximizing
the GM-throughput is extended to URLLC networks. With
ρi,N+n(V) defined from (9), the URLLC throughputs of
decoding the message sN+n by UEs n and π(n) are
1
2ρU

1,N+n(V) and 1
2ρU

2,N+n(V) for [39]

ρU
i,N+n(V) � ρi,N+n(V) − q

√
νi,N+n(V), (59)

where q � 2√Btt Q
−1
G (εc), B is the communication bandwidth,

tt denotes the URLLC transmission duration, Q−1
G (·) rep-

resents the inverse of the Gaussian Q-function, defined as

Algorithm 2 GM Throughput Maximization Algorithm for
Computing (31) Under LB

1: Initialization: Initialize a feasible V(0)
1,n =

[
V11,(0)
n

V21,(0)
n

]

, n ∈
NE for the sum power constraint

∑
n∈NE

||V1,n||2 ≤ P.

Define V(0)
n �

[
V11,(0)
n −V21,(0)

n

V21,(0)
n V11,(0)

n

]

, n ∈ NE. Set p = 0.

2: Repeat the following until the objective function in (31)
converges: Update γ

(p)
n and γ

(p)
i,π(n), for all n ∈ N1, i =

1, 2 by (36). Update B̃(p)
n and C̃(p)

n by (45) and then B̃(p)
1,n

and C̃(p)
1,n by (56). Generate V(p+1)

1,n =
[
V11,(p+1)
n

V21,(p+1)
n

]

by

(58) and then define V(p+1)
n �

[
V11,(p+1)
n −V21,(p+1)

n

V21,(p+1)
n V11,(p+1)

n

]

.

Reset p: = p+ 1.
3: Output V(p)

1 .

QG(x) = ∫ ∞
x

1√
2π

exp(−t2/2)dt, εc is the target decoding
error probability, and νi,N+n(V) is the channel dispersion [39,
eq. (27)] given by

νi,N+n(V) � 2
ϕi,n+N(V)

1 + ϕi,n+N(V)
(60)

under the signal-to-interference-plus-noise ratio (SINR),
ϕi,n+N(V), formulated as

ϕi,n+N(V) = (1/2)‖Hi,nVN+n‖2
∑

n′∈NE\{N+n}(1/2)‖Hi,nVn′ ‖2 + σ
. (61)

The achievable URLLC throughput of decoding the
message sN+n is 1

2ρU
N+n(V) for

ρU
N+n(V) � min

i=1,2
ρU
i,N+n(V). (62)

Similarly, the achievable URLLC throughput of decoding
the message sχ , for χ ∈ {n, π(n)}, is given by 1

2ρU
χ (V), with

ρU
χ (V) � ρχ(V) − q

√
νχ (V), (63)

where we have

νχ (V) � 2
ϕχ(V)

1 + ϕχ(V)
(64)

under the SINR of

ϕχ(V) = (1/2)‖H̄χVχ‖2

∑
n′∈NE\{χ,N+n}(1/2)‖H̄χVn′ ‖2 + σ

(65)

Thus, the URLLC throughput at UE π(n) is
(1/2) min{ρ1,π(n)(V), ρ2,π(n)(V)} with

ρU
i,π(n)(V) � ρU

π(n)(V) + ρU
i,N+n(V), i = 1, 2. (66)
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Similar to (25), the maximizing of the n-NOMA GM-
throughput under URLLC constraints is cast as the following
problem:

max
V

1

2

⎡

⎣
∏

n∈N1

(
ρU
n (V) min

i=1,2
ρU
i,π(n)(V)

)⎤

⎦

1/N

(67a)

s.t. (22c). (67b)

Note that the problem (67) is more challenging to solve
compared to (25) because of the additional term q

√
νn(V)

in the definition of the throughput function e.g., (63), which
is a complex function of the beamformers. Recently, we
proposed a convex-solver based computational procedure for
LB design under URLLC [40]. However, a computationally
efficient design based on the closed-form expressions of both
LB and WLB is still open, which we now develop.
Like (31), we tackle (67) by considering the following

surrogate formulation:

max
V

g
(
ρU(V)

)
s.t. (22c), (68)

where g(.) is defined from (32) and ρU(V) �
(ρU

1 (V), ρU
1,π(1)(V), ρU

2,π(1)(V), . . . , ρU
N/2(V), ρU

1,π(N/2)(V),
ρU

2,π(N/2)(V)).
We now proceed to design an iterative method for

solving (68). Initialized by its feasible point V(0), for p =
1, . . . , let V(p) be its feasible point that is obtained from
the (p− 1)-st iteration, ρU,(p) � ρU(V(p)). Like (35), at the
p-th iteration, we seek for a steep ascent by considering the
following problem:

max
V

gU,(p)(V) �
∑

n∈N1

[
γU,(p)
n ρU

n (V) + γ
U,(p)
1,π(n)ρ

U
1,π(n)(V)

+ γ
U,(p)
2,π(n)ρ

U
2,π(n)(V)

]
(69a)

s.t. (22c). (69b)

where

γU,(p)
n = ρ

U,(p)
max

ρU
n

(
V(p)

) , n ∈ N1,

γ
U,(p)
i,π(n) = ρ

U,(p)
max

2ρU
i,π(n)

(
V(p)

) , i = 1, 2; n ∈ N1, (70)

for ρ
U,(p)
max � maxn∈N1 max{ρU

n (V(p)), ρU
1,π(n)(V

(p)),

ρU
2,π(n)(V

(p))}. Having ρ
(p)
n (V) defined in (39), as a tight

concave quadratic minorant of ρn(V), we have to derive
a tight convex quadratic majorant of q

√
νn(V), which is a

complicated function of the beamformers V. To this end, we
use (64) and (65) to express νn(V) as νn(V) = 2(1− αn(V)

βn(V)
),

for αn(V) �
∑

n′∈NE\{n,N+n} ‖H̄nVn′ ‖2 + 2σ and βn(V) �∑
n′∈NE\{N+n} ‖H̄nVn′ ‖2 +2σ . Then a tight convex quadratic

majorant of q
√

νn(V) is obtained as

q
√

νn(V) ≤ q

√
νn

(
V(p)

)

2

(

1 + 2

νn
(
V(p)

)

)

− q
√

νn
(
V(p)

)
αn(V)

βn(V)
(71)

≤ q

√
νn

(
V(p)

)

2

(

1 + 2

νn
(
V(p)

)

)

− q
√

νn
(
V(p)

)

×
[

α
(p)
n

β
(p)
n

(
2ξn(V) + 4σ

α
(p)
n

− βn(V)

β
(p)
n

)]

(72)

= ã(p)
n − 2

∑

n′∈NE

〈
B̃(p)
n,n′ ,Vn′

〉

−
∑

n′∈NE

〈
C̃(p)
n,n′ , [Vn′ ]2

〉
, (73)

� f(p)(V), (74)

where

ξn(V) �
∑

n′∈NE\{n,N+n}

〈(
V(p)
n

)H
H̄H
n H̄nVn′

〉

ã(p)
n �

q
√

νn
(
V(p)

)

2

(

1 + 2

νn
(
V(p)

)

)

+ (2σ)
qα(p)

n

β
(p)
n

√
νn

(
V(p)

)

(

− 2

α
(p)
n

+ 1

β
(p)
n

)

B̃(p)
n,n′ �

⎧
⎨

⎩

qH̄H
n H̄nV

(p)
n′

β
(p)
n

√
νn(V(p))

for n′ ∈ NE 
= {n,N + n},
02Nt×2Nr otherwise

C̃(p)
n,n′ �

⎧
⎨

⎩

02Nr×2Nr for n′ = N + n,
q α

(p)
n(

β
(p)
n

)2√
νn(V(p))

H̄H
n H̄n otherwise

α(p)
n �

∑

n′∈NE\{n,N+n}

∥∥
∥H̄χV

(p)
n′

∥∥
∥

2 + 2σ

β(p)
n �

∑

n′∈NE\{N+n}

∥∥∥H̄χV
(p)
n′

∥∥∥
2 + 2σ, (75)

where the inequality (71) is obtained by applying the
inequality (92) in the Appendix for x = νn(V) and x̄ =
νn(V(p)). Next, we obtain the inequality (72) from (71) by
applying the inequality (93) in the Appendix. Note that
the inequalities (71) and (72) become equalities at V =
V(p), which implies that f(p)(V) in (74) matches q

√
νn(V)

at V = V(p), so the former provides a tight majornat of
the latter [27]. By combining (39) and (73), we achieve the
following tight concave quadratic minorant of ρU

n (V):

ρU,(p)
n (V) � aU,(p)

n + 2
∑

n′∈NE

〈
BU,(p)
n,n′ ,Vn′

〉

−
∑

n′∈NE

〈
CU,(p)
n,n′ , [Vn′ ]2

〉
, (76)
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where

aU,(p)
n � a(p)

n − ã(p)
n ,

BU,(p)
n,n′ �

⎧
⎪⎪⎨

⎪⎪⎩

qH̄H
n H̄nV

(p)
n′

β
(p)
n

√
νn(V(p))

for n′ ∈ NE 
= {n,N + n},
B(p)
n for n′ = n

02Nt×2Nr otherwise

CU,(p)
n,n′ �

{
02Nr×2Nr for n′ = N + n

H̄H
n

(
C(p)
n + ϒ

(p)
n

)
H̄n otherwise

(77)

with ϒ
(p)
n � qα(p)

n

(β
(p)
n )2

√
νn(V(p))

I2Nr . Similarly, the following

tight concave minorant of ρU
i,N+n(V) is obtained:

ρ
U,(p)
i,N+n(V) � aU,(p)

i,N+n + 2
∑

n′∈NE

〈
BU,(p)
i,N+n,n′ ,Vn′

〉

−
∑

n′∈NE

〈
CU,(p)
i,N+n,n′ , [Vn′ ]2

〉
, (78)

where

aU,(p)
i,N+n � a(p)

i,N+n − ã(p)
i,N+n

ã(p)
i,N+n �

q
√

νi,N+n
(
V(p)

)

2

(

1 + 2

νi,N+n
(
V(p)

)

)

+ (2σ)
qα(p)

i,N+n
β

(p)
i,N+n

√
νi,N+n

(
V(p)

)

×
(

− 2

α
(p)
i,N+n

+ 1

β
(p)
i,N+n

)

BU,(p)
i,n+N,n′ �

⎧
⎨

⎩

qHH
i,nHi,nV

(p)
n′

β
(p)
i,n+N

√
νi,n+N(V(p))

n′ ∈ NE 
= {n+ N},
B(p)
i,n+N n′ = n+ N

CU,(p)
i,n+N,n′ �

{
02Nr×2Nr n′ = N + n

HH
i,nϒ

(p)
i,n+NHi,n otherwise

α
(p)
i,N+n �

∑

n′∈NE\{N+n}

∥
∥∥Hi,nV

(p)
n′

∥
∥∥

2 + 2σ

β
(p)
i,N+n �

∑

n′∈NE

∥∥∥Hi,nV
(p)
n′

∥∥∥
2 + 2σ (79)

with ϒ
(p)
i,n+N � C(p)

i,N+n + qα(p)
i,N+n

(β
(p)
i,N+n)2

√
νi,N+n(V(p))

I2Nr . Therefore,

a tight concave quadratic minorant of ρU
i,π(n)(V) defined

from (66) is given by

ρ
U,(p)
i,π(n)(V) � aU,(p)

i,π(n) + 2
∑

n′∈NE

〈BU,(p)
i,π(n),n′ ,Vn′ 〉

−
∑

n′∈NE

〈CU,(p)
i,π(n),n′, [Vn′ ]2〉〉, (80)

where aU,(p)
i,π(n) � aU,(p)

π(n) + aU,(p)
i,N+n, B

U,(p)
i,π(n),n′ = BU,(p)

π(n),n′ +
BU,(p)
i,N+n,n′ , and CU,(p)

i,π(n),n′ = CU,(p)
π(n),n′ + CU,(p)

i,N+n,n′ , for i = 1, 2.

Algorithm 3 URLLC Throughput Maximization Algorithm
for Computing (68)

1: Initialization: Initialize a random feasible V(0) for (22c).
Set p = 0.

2: Repeat the following until the objective function in (68)
converges:

Update γ
U,(p)
n and γ

U,(p)
i,π(n), for all n ∈ N1, i = 1, 2,

using (70). Update B̃U,(p)
n and C̃U,(p)

n , for all n ∈ NE, by
(82). Generate V(p+1) by (84). Reset p: = p+ 1.

3: Output V(p).

Using (76) and (80), a tight concave minorant of the objective
function in (69a) is

g̃U,(p)(V) � aU,(p) + 2
∑

n∈NE

〈B̃U,(p)
n ,Vn〉

−
∑

n∈NE

〈C̃U,(p)
n , [Vn]2〉, (81)

where

aU,(p) �
∑

n∈N1

(

γU,(p)
n aU,(p)

n +
2∑

i=1

γ
U,(p)
i,π(n)a

U,(p)
i,π(n)

)

,

B̃U,(p)
n �

∑

n′∈N1

(

γ
U,(p)
n′ BU,(p)

n′,n +
2∑

i=1

γ
U,(p)
i,π(n′)B

U,(p)
i,π(n′),n

)

,

C̃U,(p)
n �

∑

n′∈N1

(

γ
U,(p)
n′ CU,(p)

n′,n +
2∑

i=1

γ
U,(p)
i,π(n′)C

U,(p)
i,π(n′),n

)

, (82)

for n ∈ NE. Therefore, we solve the following convex
quadratic problem that maximizes the tight minorant, in order
to determine the next feasible point V(p+1) for (67):

max
V

g̃U,(p)(V) s.t. (22c), (83)

for which a closed-form solution can be derived as follows:

V(p+1)
n =

⎧
⎪⎨

⎪⎩

(
C̃U,(p)
n

)−1
B̃U,(p)
n if �U,(p) ≤ 2P,

(
C̃U,(p)
n + λI2Nt

)−1
B̃U,(p)
n otherwise,

(84)

where �U,(p) �
∑

n∈NE
||(C̃U,(p)

n )−1B̃U,(p)
n ||2 and λ >

0 is found by bisection such that
∑

n∈NE
||(C̃U,(p)

n +
λI2Nt)

−1B̃U,(p)
n ||2 = 2P.

Algorithm 3 provides a procedure for addressing the
problem (67). Similar to Algorithm 1, it guarantees conver-
gence to at least a local optimum that fulfills the first-order
optimality condition. The computational complexity of the
closed-form based solution in (84) is O(3Nt log2(2Nt)N).
Remark 3: By introducing the slack variables λ, satisfying

the constraints (51) we can express the problem (67) as
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Algorithm 4 GM Throughput Maximization Algorithm for
Computing (68) Under LB

1: Initialization: Initialize a feasible V(0)
1,n =

[
V11,(0)
n

V21,(0)
n

]

, n ∈
NE for the sum power constraint

∑
n∈NE

||V1,n||2 ≤ P.

Define V(0)
n �

[
V11,(0)
n −V21,(0)

n

V21,(0)
n V11,(0)

n

]

, n ∈ NE. Set p = 0.

2: Repeat until the objective function in (68) converges:
Update γ

(p)
n and γ

(p)
i,π(n) by (70). Update B̃U,(p)

n and

C̃U,(p)
n by (82) and then B̃U,(p)

1,n and C̃U,(p)
1,n by (88).

Generate V(p+1)

1,n =
[
V11,(p+1)
n

V21,(p+1)
n

]

by (90) and then define

V(p+1)
n �

[
V11,(p+1)
n −V21,(p+1)

n

V21,(p+1)
n V11,(p+1)

n

]

. Reset p: = p+ 1.

3: Output V(p)
1 .

max
V,λ

1

2

(
N∏

n=1

λn

)1/N

(85a)

s.t. (22c), (51), (85b)

ρU
n (V) ≥ λn, n ∈ N1, (85c)

ρU
π(n)(V) + ρU

i,N+n(V) ≥ λπ(n), n ∈ N1, i = 1, 2.

(85d)

Initialized by a point V(0) feasible for (22c), let V(p) be a
point feasible for (25) that is obtained from the (p − 1)-st
iteration. For ρ

U,(p)
n (V) and ρ

U,(p)
i,N+n(V) defined from (76) and

(78), at the p-th iteration, we solve the following convex
optimization problem to obtain the subsequent feasible point
V(p+1):

max
V,λ

1

2

(
N∏

n=1

λn

)1/N

(86a)

s.t. (22c), (51), (86b)

ρU,(p)
n (V) ≥ λn, n ∈ N1, (86c)

ρ
U,(p)
π(n) (V) + ρ

U,(p)
i,N+n(V) ≥ λπ(n), n ∈ N1, i = 1, 2,

(86d)

which is a tight inner approximation for (85d). Its com-
putational complexity is O((6NtNrN + N)3N) [37], which
is huge compared to the computational complexity of
the closed-form based solution in (84), which is just
O(3Nt log2(2Nt)N).
Remark 4: Recall that under W2,n′ ≡ 0 for LB we

introduce the real-composite form (54) of W1,n′ . By par-
titioning B̃U,(p)

n and C̃U,(p)
n defined from (82) as B̃U,(p)

n =
[B̃U,(p)

n,11 ](i,j)∈{1,2}, B̃U,(p)
n,ij ∈ R

Nt×Nr , C̃U,(p)
n = [C̃U,(p)

n,ij ](i,j)∈{1,2},

C̃U,(p)
n,ij ∈ R

Nt×Nt , i, j = 1, 2, we can express g̃U,(p) in (81) as

g̃U,(p)(V1) = aU,(p) + 2
∑

n∈NE

〈B̃U,(p)
1,n ,V1,n〉

−
∑

n∈NE

〈C̃U,(p)
1,n ,

[
V1,n

]2〉, (87)

for V1 � {V1,n, n ∈ NE}, and

B̃U,(p)
1,n =

[
B̃U,(p)
n,11 + B̃U,(p)

n,22

B̃U,(p)
n,21 − B̃U,(p)

n,12

]

,

C̃U,(p)
1,n =

⎡

⎢
⎣

C̃U,(p)
n,11 + C̃U,(p)

n,22 C̃U,(p)
n,12 −

(
C̃U,(p)
n,12

)T

(
C̃U,(p)
n,12

)T − C̃U,(p)
n,12 C̃U,(p)

n,11 + C̃U,(p)
n,22

⎤

⎥
⎦ (88)

for n ∈ NE. Instead of (83), we solve the following
optimization problem of tight minorant maximization to
determine the next point V(p+1)

1 in the iteration sequence:

max
V1

g̃U,(p)(V1) s.t.
∑

n∈NE

||V1,n||2 ≤ P, (89)

which admits the closed-form solution

V(p+1)

1,n =

⎧
⎪⎨

⎪⎩

(
C̃U,(p)

1,n

)−1
B̃U,(p)

1,n if �̃U,(p) ≤ P,
(
C̃U,(p)

1,n + λI2Nt
)−1

B̃U,(p)
1,n otherwise,

(90)

where �̃U,(p) �
∑

n∈NE
||(C̃U,(p)

1,n )−1B̃U,(p)
1,n ||2 and λ >

0 is found by bisection such that
∑

n∈NE
||(C̃U,(p)

1,n +
λI2Nt)

−1B̃U,(p)
1,n ||2 = P. Algorithm 4 provides a procedure for

computing (68) under LB. The computational complexity of
the closed-form based solution in (90) is O(3Nt log2(2Nt)N).
Remark 5: We assume that the channel Hn spanning from

the BS to UE n is quasi-static over a given coherent
time interval (CTI). Accordingly, we design a widely linear
beamforming (WLB) solution for each CTI, which must
be updated as the channel changes in subsequent intervals.
However, updating the WLB design for every CTI is not
challenging with the aid of our proposed algorithm. This is
because the solution from the previous CTI provides a good
initialization, and more importantly, our method relies on
solving computationally efficient closed-form expressions.

V. SIMULATION RESULTS
For simulation, we consider a cell-radius of 300 meters. The
channel Hn spanning from the BS to any UE n located at a
distance d meters is modeled as Hn = √

10−σPL/10H̃n, where
σPL = 38.46+10β log10(d) dB represents the path loss, and
H̃n denotes the normalized channel gain. The normalized
channel H̃n follows a Rayleigh fading model, with entries
independently drawn from a complex Gaussian distribution.
Here, 38.46 dB represents the free-space path loss at a
reference distance of 1 meter and a carrier frequency of
2 GHz, while β = 3.1 denotes the path-loss exponent. The
UEs are distributed randomly within the cell area. The noise
power spectral density is configured as σ

B = −174 dBm/Hz
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with the bandwidth B = 1 MHz. For the URLLC network,
the decoding error probability εc is set to 10−5 and the
transmission duration is set to tt = 0.1 ms. Unless stated
otherwise, the transmission power limit is assumed to be
P = 30 dBm, the BS is equipped with Nt = 13 transmit
antennas, while each UE is assigned Nr = 2 receive antennas,
and the number of UEs in the system is N = 18. The
convergence threshold for all algorithms is fixed at 10−3, and
the maximum number of iterations is limited to pmax = 1000.
In presenting our simulation results, we use the phrase

“n-NOMA-WLB” to refer to our proposed GM-throughput
maximization Algorithms 1 and 3, where Algorithm 3
is the extension of Algorithm 1 for URLLC network.
We use the phrases “NOMA-WLB” and “CoSig-WLB” to
refer to the results of NOMA and CoSig implementation
under WLB, which are obtained by tailoring the proposed
algorithms to solve (27) and (29), respectively. We also
simulate both the LB Algorithms 2 and 4 for comparison.
The corresponding results will be referred by “n-NOMA-
LB”, “NOMA-LB”, and “CoSig-LB”.
In the following three sub-sections, we shall first compare

the performance of the proposed closed-form expressions
based algorithms to that of the convex-solver based imple-
mentation. Next, we will present detailed results for
the proposed algorithms. Finally, we will compare the
performance of the proposed GM-throughput maximization
algorithms to the existing max-min throughput and sum-
throughput optimization algorithms of [6].

A. PERFORMANCE COMPARISON WITH ALGORITHMS
BASED ON CONVEX-SOLVER
In this subsection, we compare the performance of the
proposed closed-form expressions-based algorithm with that
of the convex-solver-based approach. Due to the high
computational complexity of the convex-solver approach, we
use a small-scale network with Nt = 6, N = 8, and Nr = 1
in this subsection.
Fig. 2 compares the achievable GM-throughput under

n-NOMA between the proposed algorithm (Algorithm 1),
which solves the tractable surrogate problem (31), and
the convex-solver based algorithm (see Remark 1), which
solves the GM rate optimization problem (25). First, we
can observe from Fig. 2 that WLB clearly outperforms
LB in terms of the achievable GM-throughput and the
performance gap increases upon increasing the power budget
P. The performance gain of the WLB design stems from
the additional degrees of freedom provided by using a pair
of beamformers for each information symbol, i.e., W1,n

and W2,n for the message sn. By contrast, the conventional
LB approach applies a single beamformer, W1,n, for each
information symbol sn.
Secondly, we observe that the performance of the proposed

closed-form-based solution is close to that of the convex-
solver-based solution, particularly under the proposed WLB.
Specifically, the performance gap is less than 1 dB, meaning
that Algorithm 1 achieves comparable performance to the

FIGURE 2. Comparison of the closed-form and convex-solver based solutions.

FIGURE 3. Comparison of the closed-form and convex-solver based solutions
under URLLC.

FIGURE 4. Closed-form and convex-solver based solution for CoSig scheme.

convex-solver-based approach with less than a 1 dB increase
in power budget. Same conclusions can be drawn for
the URLLC network, where the results are presented in
Fig. 3 (obtained with Algorithm 3 and as outlined in
Remark 2). Similarly, our performance comparisons between
the proposed closed-form based solution with convex-solver
based solution under CoSig and NOMA are shown in
Figures 4 and 5, respectively. We can observe that the two
solution approaches perform similarly under CoSig, but there
is a noticeable performance gap under NOMA. Particularly,
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TABLE 4. Average computational time (CPU processing time in seconds) required by the proposed closed-form and convex-solver based solutions for Nt = 6, N = 8, and
Nr = 1.

FIGURE 5. Closed-form and convex-solver based solution for NOMA scheme.

FIGURE 6. Achievable minimum UE throughput versus the transmit power budget P.

we observe from Figures 2 and 5 that for n-NOMA-
LB, NOMA-WLB, and NOMA-LB, the performance gap
between the closed-form and convex-solver based solutions
increases with the increase in P. This is because the
convex-solver based solution is capable of taking advantage
of the increase in the power, since it directly addresses
the GM-throughput optimization problem (25), while the
closed-form based solution is obtained by solving the
surrogate problem (31). However, it is noteworthy from
Fig. 2 that n-NOMA-WLB is capable of maintaining a
constant performance gap between the closed-form and
convex-solver based solution. This is because n-NOMA-
WLB simultaneously offers throughput enhancements for
the UEs by using both private and common messages for

FIGURE 7. Achievable common-throughput versus the transmit power budget P.

the distant UEs and degree of freedom by using pair of
beamformers.
The better performance achieved by the algorithm based

on convex-solver over the proposed algorithm under both n-
NOMA and NOMA (as seen in Figures 2 and 5) is expected
because the proposed algorithm relies on the solution of the
surrogate problem (31). However, the main advantage of the
proposed algorithm based on closed-form expressions is its
significantly lower computational complexity. Specifically,
it is nearly 450 times more computationally efficient than
the convex-solver-based algorithm. Detailed comparisons are
provided in Table 4 for both Algorithm 1 and Algorithm 3.
Note that the general computational complexity comparison
is discussed at the end of Remarks 1 and 2.

B. DETAILED RESULTS FOR THE PROPOSED
ALGORITHMS
In this subsection, we provide detailed results for our
proposed closed-form based solution over varying values of
transmit power budget P, transmit antennas Nt, UEs N, and
receive antennas Nr. Unless specified otherwise, we set P =
10 dBm, Nt = 6, N = 8, and Nr = 3.

Fig. 6 plots the achievable minimum UE throughput
versus the transmit power budget P, which clearly shows
the advantage of employing WLB over LB. Fig. 6 also
shows that the performance gain of n-NOMA-WLB and
CoSig-WLB over the counterpart schemes increases upon
increasing P.
Fig. 7 plots the achievable common-throughput, defined

by rN+n in (12), versus the transmit power budget P.
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FIGURE 8. Achievable minimum UE throughput versus the number of antennas at
the UEs’ receiver, Nr .

FIGURE 9. Achievable sum throughput versus the number of transmit antennas at
the BS, Nt .

While employing n-NOMA-WLB and n-NOMA-LB, Fig. 7
plots the minimum and maximum common-throughput.
For example, the minimum common-throughput by n-
NOMA-WLB is around 0.2 bps/Hz, while the maximum
common-throughput is around 1 bps/Hz. Fig. 7 shows that
the common-throughput by n-NOMA-LB is larger than that
by n-NOMA-WLB. However, the total achievable throughput
of the former is outperformed by the latter. This can be
verified by referring to Fig. 6, which illustrates that the
minimum UE throughput of n-NOMA-WLB is nearly double
that of n-NOMA-LB. The presence of non-zero common-
throughput in Fig. 7 reinforces the notion that the achievable
throughput of n-NOMA exceeds that of CoSig, and it can
be verified from Fig. 6.

Fig. 8 plots the achievable minimum UE throughput
versus the number of antennas Nr at the UEs’ receiver.
As expected, the minimum UE throughput improves upon
increasing Nr due to the increase in the resources. Fig. 8 also
shows that “n-NOMA-WLB” and “CoSig-WLB” clearly out-
perform the counterpart schemes in terms of the achievable
minimum UE throughput.
Fig. 9 illustrates how the achievable sum throughput varies

with the number of transmit antennas Nt. As Nt increases,

FIGURE 10. Convergence of proposed algorithms.

FIGURE 11. Transmit-power at different TAs.

the sum throughput also increases, owing to the greater
availability of spatial resources. Fig. 9 shows the supremacy
of n-NOMA-WLB over both the NOMA-WLB and CoSig-
WLB implementations at different values of Nt and P and
this performance gain by n-NOMA-WLB improves upon
increasing Nt or P.
Fig. 10 presents the convergence behavior of the proposed

algorithms, clearly demonstrating the advantage of using
WLB over LB in terms of the achieved GM-throughput.
Notably, the WLB-based algorithms converge efficiently,
typically within 25 to 30 iterations. The average iteration
counts required for convergence are summarized in Table 5.
Fig. 11 plots the transmit-power at different transmit

antennas, while employing n-NOMA-WLB and n-NOMA-
LB. Fig. 11 demonstrates that, even though we impose a
single sum-power constraint in (22c) instead of individual
power constraints for each transmit antenna, the transmit
power is still distributed effectively across all the antennas.
Observe that the variance of among the transmit-power at
different TAs is 0.04 and 0.08 under n-NOMA-WLB and
n-NOMA-LB, respectively.
Fig. 12 illustrates the impact of imperfect CSI on the

minimum achievable throughput of UEs. To model this
effect, we introduce random channel estimation errors, with
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TABLE 5. Average number of iterations required by the proposed algorithms for convergence, under the simulation parameters Nt = 6, N = 8, Nr = 3, and P = 10 dBm.

FIGURE 12. Achievable minimum UE throughput versus relative CSI uncertainty, δ.

FIGURE 13. Achievable minimum UE throughput and SD among the UEs’
throughput versus number of UEs N .

their magnitudes bounded by a factor of δ relative to the
corresponding estimated channel coefficients. Explicitly, δ

denotes the level of relative CSI uncertainty [41]. As antic-
ipated, increasing the CSI uncertainty leads to a decrease
in the minimum UE throughput. However, this decline is
relatively modest. Specifically, even under a high uncertainty
level of δ = 0.2, the worst-case throughput of the n-
NOMA-WLB scheme only drops by about 30%, highlighting
the robustness of our proposed algorithms against CSI
imperfections.
Figure 13 examines a dense user deployment scenario,

where, unlike the previous results that considered up to
8 UEs, we now randomly deploy up to N = 24 UEs in
the network. The figure shows the achievable minimum UE
throughput on the left y-axis and the standard deviation
(SD) of UE throughputs on the right y-axis. The results
clearly demonstrate the superior performance of the WLB
scheme over LB, both in terms of the achievable minimum

FIGURE 14. Achievable minimum UE throughput based on Shannon and URLLC
rates versus P.

FIGURE 15. Achievable minimum UE throughput based on Shanon and URLLC
rates versus tt .

UE throughput and the fairness (measured by SD) among
UEs. Notably, under dense user deployment (i.e., N ≥ 16),
WLB achieves approximately a seven-fold improvement in
the minimum UE throughput and over a five-fold reduction
in throughput SD compared to LB. Interestingly, while the
SD of UE throughputs increases with the number of UEs in
the LB scheme, it remains nearly constant–or even slightly
decreases—for the WLB scheme as N increases.
Figures 14-16 plot the achievable minimum thorughput

for a URLLC network, which is obtained with the proposed
Algorithm 3 and Nr = 1 receive antenna. The results are
plotted with respect to the power budget P in Fig. 14, the
URLLC transmission duration tt in Fig. 15, and the decoding
error probability εc in Fig. 16. For comparison, we also
plot the throughput obtained by the proposed Algorithm 1.
As expected, the achievable GM-throughput of Algorithm 1
(based on Shannon rate expression) is higher than that of
Algorithm 3 (based on URLLC rate expression). This is due
to the channel dispersion factor, which is the second factor
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TABLE 6. Computational complexity comparison of the proposed and existing algorithms for n-NOMA-WLB implementation, under the simulation parameters Nt = 3, N = 4,
and Nr = 1.

FIGURE 16. Achievable minimum UE throughput based on Shanon and URLLC
rates versus εc .

FIGURE 17. Achievable minimum UE throughput versus the transmit power budget
P under WLB.

in the URLLC rate expression (59) and it is subtracted from
the Shannon rate. It is noteworthy that although the original
optimization problem (67) constructed for a URLLC network
is non-convex and the second factor in (59) makes the
problem (67) more challenging, our proposed Algorithm 3,
which employs n-NOMA-WLB, achieves an increase in
the minimum throughput upon increasing P. Figures 14-16
shows a huge performance gap between WLB and LB, which
also manifests the advantage of employing the proposed
WLB over conventional LB in URLLC networks.

C. COMPARISON WITH EXISTING RESULTS
In this section, we evaluate the performance of the proposed
GM-throughput maximization algorithms in comparison to
the existing max-min throughput optimization and sum-
throughput maximization algorithms in [6]. We consider a

FIGURE 18. Achievable sum-throughput versus the transmit power budget P under
WLB.

small-scale network as that is considered in [6] with Nt = 3
antennas, N = 4 UEs, and Nr = 1 antenna. This is because
the optimization algorithms of [6] rely on convex-solver
based iterations, which are computationally complex.
Table 6 lists the computational complexities and average

computational times (CPU processing times) required by
the proposed and existing algorithms for convergence. The
computation time is measured on a machine equipped with a
2.3 GHz Intel Core i9 processor and 16 GB of RAM. Table 6
also shows that the proposed GM-throughput maximization
algorithms are almost 400 times more computationally effi-
cient than the max-min throughput optimization algorithms
in [6]. This huge computational saving is the benefit of the
closed-form expressions we developed for implementing the
proposed algorithms, which is in a sharp contrast to the use of
the complicated convex-solver for the algorithms in [6]. Note
that while Table 6 specifically mentions the computational
complexity of the convex-solver-based approach in [6], other
relevant existing works, such as [5] and [14], also propose
convex-solver-based methods with the same computational
complexity of O((3NtN)3) when applied to a single-cell
network.
Figs. 17 and 18 plot the achievable minimum-throughput

and achievable sum-throughput, respectively, for all the algo-
rithms (with WLB) under comparison versus P. As expected,
the max-min throughput optimization algorithms in [6]
achieve the highest minimum UE throughput (see Fig. 17),
whereas the sum-throughput maximization algorithms in [6]
achieve the highest sum-throughput (see Fig. 18). On the
other hand, the proposed GM-throughput maximization algo-
rithms (especially implemented with n-NOMA), although
not explicitly targeting the max-min throughput optimization
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FIGURE 19. Individual user-throughput distribution by GM-rate max. and max-min
rate opt. in [6].

nor the sum-throughput maximization, are able to deliver
a throughput that is not very far from the best achievable
max-min throughput and the best achievable sum-throughput.
Finally, in Fig. 19, we plot the individual user-rate distribu-
tion of the proposed Algorithm 1 and that of the max-min
throughput optimization algorithm in [6] for the n-NOMA-
WLB implementation at P = 18 dBm. We can observe
that the individual user rate of the proposed Algorithm 1 is
only marginally compromised compared to that by the max-
min throughput optimization in [6]. On the other hand, the
former is almost 400 times more computationally efficient
compared to the latter. Considering the modest performance
erosion in terms of both the achievable minimum UE-
throughput and the achievable sum-throughput and the
huge computational saving, the proposed GM-throughput
maximization algorithms are very attractive alternatives to
the existing algorithms of [6].

VI. CONCLUSION
Aiming for enhancing the QoS provided by large multi-
user networks, this paper has proposed novel algorithms for
designing WLB in conjunction with NOMA to maximize
the geometric mean of the UEs’ throughput subject to a
sum transmit power constraint. The core in our proposed
algorithms is a set of closed-form expressions, which can
be conveniently and efficiently used in the iterations of the
proposed algorithms. Compared to existing algorithms that
are based on convex-solver in their iterations, the proposed
algorithms are hundreds of times more computationally
efficient, which makes them very attractive for WLB design
in large multi-user NOMA networks. Extensive simulation
results shown that n-NOMA clearly outperforms the popular
NOMA and the traditional CoSig. Furthermore, WLB is
clearly superior to LB. Moreover, the WLB design based
on GM-throughput maximization not only results in fair
throughput distribution among UEs, but also in even power
distribution across transmit antennas without enforcing any
per-antenna power constraints. The proposed WLB designs
were developed for both conventional and URLLC networks.
This work has assumed single-antenna UEs to develop WLB

design for URLLC networks and its extension to multiple-
antenna UEs could be the subject of our future research.

APPENDIX
FUNDAMENTAL INEQUALITIES
The following inequality holds for all real matrices X and
X̄ of dimensions n × m, and real positive definite matrices
Y and Ȳ of dimensions m × m [42], [8, Th. 1]

ln
∣∣∣In + [X]2Y−1

∣∣∣ ≥ ln
∣∣∣In + [

X̄
]2
Ȳ−1

∣∣∣ −
〈[
X̄
]2

, Ȳ−1
〉

+2
〈
Ȳ−1X̄,X

〉

−
〈
Ȳ−1 −

(
Ȳ + [

X̄
]2
)−1

, [X]2 + Y

〉
. (91)

Using the concavity of
√
x, the following inequality holds

for all x > 0 and x̄ > 0

√
x ≤

√
x̄

2

(
1 + x

x̄

)
. (92)

Using the convexity of the function x2/y the following
inequality is obtained for the matrices X and X̄ of the same
size, and positive scalars y and ȳ:

‖X‖2

y
≥ 2〈X̄HX〉

ȳ
− ‖X̄‖2

ȳ2
y. (93)
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