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Relieving Scale Disparity in Binary Black Hole Simulations
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Worldtube excision is a method of reducing computational burden in numerical relativity simulations of
binary black holes in situations where there is a good analytical model of the geometry around (one or both
of) the objects. Two such scenarios of relevance in gravitational-wave astronomy are (1) the case of mass-
disparate systems, and (2) the early inspiral when the separation is still large. Here we illustrate the utility
and flexibility of this technique with simulations of the fully self-consistent radiative evolution in the model
problem of a scalar charge orbiting a Schwarzschild black hole under the effect of scalar-field radiation
reaction. We explore a range of orbital configurations, including inspirals with large eccentricity (which we
follow through to the final plunge and ringdown) and hyperbolic scattering.
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Introduction—The LIGO-Virgo-KAGRA (LVK) public
catalog of gravitational-wave transients lists around a
hundred candidate events from merging compact binaries
consisting primarily of black holes (BHs) [1]. Over 200
events are expected to have been observed by the end of the
fourth observing run in 2025 [2]. These observations begin
to reveal a population of compact binaries with a large mass
asymmetry. The most extreme example so far is candidate
event GWI191219_163120, with inferred component
masses of 31.1733My and 1.177097M, suggestive of
BH and neutron star progenitors [1]. The LVK analysis
notes that the source’s mass ratio of ~1:26 “is extremely
challenging for waveform modeling, ... with the bulk of
the posterior probability distribution [lying] outside the
range of calibration of the waveforms,” and cautions about
systematic uncertainties in results for this candidate.
Indeed, we are reaching a situation where the quality of
data extractable from gravitational-wave measurements
is in some scenarios dictated by the limited accuracy
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of waveform models [3], diminishing the return from
technological advance. The problem will inevitably
become increasingly more acute as detector sensitivity
improves and as we probe deeper into poorly modeled
regions of the binary parameter space [4-9]. The problem
of modelling mass-asymmetric mergers stands out as
particularly urgent [10,11].

Numerical relativity (NR) simulations of mass-
asymmetric binaries are challenging due to the scale
disparity inherent in the problem: one has to resolve
small-scale features associated with the lighter object
concurrently with features whose length scale is set by
the larger (or total) mass—Iike gravitational waves near
merger. This leads to a stringent demand on the time
resolution of the simulation, dictated by the Courant-
Friedrichs-Lewy (CFL) condition. To make matters worse,
the number of observable radiative inspiral cycles increases
with mass asymmetry, necessitating a longer evolution
time. In terms of the mass ratio ¢ < 1, the combined effect
is a computing cost that scales approximately like g2 [12],
in practice making full simulations prohibitive for ¢ much
smaller than ~1/10. The most ambitious simulation so far
tracked the last 13 orbital cycles prior to merger of a system
with ¢ = 1/128 [13,14], with even smaller mass ratios
attempted in head-on collision scenarios [15,16]. However,
the computational cost of such simulations remains
extremely high, and they are yet to be developed for long

Published by the American Physical Society


https://orcid.org/0000-0001-8575-5450
https://orcid.org/0000-0003-4742-9413
https://orcid.org/0000-0001-9288-519X
https://orcid.org/0000-0001-9446-0638
https://orcid.org/0000-0001-5392-7342
https://orcid.org/0009-0001-7671-6377
https://orcid.org/0000-0003-2426-8768
https://orcid.org/0000-0001-5059-4378
https://orcid.org/0000-0002-5767-3949
https://ror.org/03sry2h30
https://ror.org/01ryk1543
https://ror.org/05bnh6r87
https://ror.org/05bnh6r87
https://ror.org/05bnh6r87
https://ror.org/02avqqw26
https://ror.org/05dxps055
https://crossmark.crossref.org/dialog/?doi=10.1103/kskl-8dcj&domain=pdf&date_stamp=2025-06-27
https://doi.org/10.1103/kskl-8dcj
https://doi.org/10.1103/kskl-8dcj
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

PHYSICAL REVIEW LETTERS 134, 251402 (2025)

inspirals or to include essential astrophysical features such
as spin and orbital eccentricity.

Gravitational self-force theory [17] does offer an alter-
native tailored to the small-q regime, and it can potentially
cover a large part of the parameter space that is beyond the
reach of current NR methods [18]. However, state-of-the-
art “postadiabatic” self-force waveforms that achieve high
accuracy are currently only available in the special case of
quasicircular orbits of a small compact object around a
slowly spinning large black hole [19,20]. Extensions to
eccentric, precessing orbits, rapid spin, and through the
final merger-ringdown phase will likely require a decade of
development. The accuracy such waveforms will achieve in
these less specialized scenarios is also unknown.

Our worldtube excision approach aims to provide a
systematic mitigation of the small-g problem, by directly
alleviating scale disparity in NR binary simulations. The
basic idea is simple: a large region around the smaller
object is excised from the numerical domain, and the
spacetime metric inside it is replaced with an approximate
analytical expression (e.g., one representing a tidally
perturbed BH geometry). The smallest length scale is
now that of the excised sphere (a “worldtube” in space-
time), instead of the scale of the smaller body. The CFL
stability limit on the time step of the numerical simulation
is relaxed, allowing a commensurate reduction in run-time.
In principle, worldtube excision can be usefully applied in
any situation where a good analytical approximation for the
metric around the smaller (or both) objects is available,
including the early inspiral stage where the gravitational
interaction is relatively weak. In this Letter, however, we
maintain focus on the case of near-merger binaries with a
large mass disparity, which provides our main motivation.

The basic construction is illustrated in Fig. 1, displaying
actual results from one of our NR simulations, as detailed
below. The spacetime diagram shows the eccentric inspiral
orbit of the small object (red trajectory) around the
worldtube of the larger object (a BH, in black), with the
blue region representing the excised worldtube, whose
radius is dynamically adjusted in accordance with a certain
algorithm to be explained below. This simulation tracks the
inspiral all through to the final merger, enlarged in the
right panel.

Initial development of the worldtube excision technique
began in Ref. [12] and was later implemented and tested
using simple configurations in Refs. [21,22]. Here we
report a culmination of this program, in the form of a
versatile NR implementation on the SpECTRE platform
[23], whose utility and flexibility we illustrate with fully
self-consistent evolution simulations for a range of orbital
configurations. These include inspirals with eccentricity as
high as e ~ 0.9, which we follow through to merger and
ringdown, as well as hyperbolic scattering with large
scattering angles—a scenario of much recent interest,
e.g., [24-36].

space

FIG. 1. [Illustration of worldtube excision. The left shows a
space-time diagram of an eccentric inspiral. The red line
represents the trajectory of the small object orbiting a black hole
represented by the black cylinder. The cyan region around the
trajectory represents the worldtube, within which a perturbative
analytical solution is employed. The field equations outside the
worldtube are solved with full 3 4 1 dimensional NR, extending
through the BH horizon to an inner excision boundary shown in
gray. The right shows an enlargement of the last few orbits and
merger.

As in [12,21,22], our binary system is made up of a
Schwarzschild BH (the “large object”) and a pointlike,
nonspinning scalar charge of negligible gravitational mass.
The particle is assumed to source a massless, minimally
coupled scalar field, and the backreaction from the scalar
field onto the charge drives the radiative inspiral; gravita-
tional backreaction is ignored for simplicity. This setting
retains many of the pertinent challenges of the astrophysi-
cal compact binary problem, while postponing the need to
tackle the fully nonlinear Einstein field equations. At the
end of this Letter we preview initial work toward the final
step of replacing the scalar charge with a small BH, our
ultimate goal.

Even within the scalar problem, our implementation
provides a vital benchmark for traditional self-force cal-
culations. We present the first (to our knowledge) fully
self-consistent solutions of the BH-scalar-charge inspiral-
merger problem with eccentricity (extending the special
case of quasicircular inspirals in [22]). They are fully self-
consistent in that, unlike the standard waveform-generation
frameworks used in self-force theory [37-45], they do not
rely on a two-timescale expansion (which breaks down
prior to merger), nor do they rely on an expansion around a
reference geodesic (which cannot capture large qualitative
changes in behavior). Our method does incur error from the
finite accuracy of the analytical model applied inside the
worldtube, but this error is readily controlled by extending
the analytical approximation to higher order or reducing the
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worldtube radius [21,22]. We expect these dual advantages
of flexibility and controllable error to persist in the fully
nonlinear gravitational case.

Binary model—We consider a Schwarzschild BH of
mass M, orbited by a pointlike particle carrying a charge Q
and mass y < M. The particle sources a test scalar field ¥,
assumed to satisfy the massless Klein-Gordon equation

#V, 9, = —4nQ / 5 — x9()](=g)"V2dz. (1)

with boundary conditions corresponding to no radiation
coming out of the BH or in from infinity. The background
geometry is represented by the Schwarzschild metric g,,,
with inverse ¢"¥, determinant g, and compatible covariant
derivative V,. The particle’s worldline x%(z) is parame-
trized by proper time 7, and throughout this Letter we use
units in which G = 1 = c. In this setup, the dimensionless
small parameter is € := Q%/(uM) < 1, analogous to g < 1
in the binary BH problem. In the limit ¢ — 0 (with
#/Q — constant), x%(z) describes a geodesic orbit in the
Schwarzschild geometry of the BH, whereas for finite e,
the particle experiences a weak self-force due to back-
reaction from W, which slowly accelerates it away from
geodesic motion. Concretely, the particle’s equation of
motion reads [46-48]

PV 5 (uu®) = QVYR, (2)

where u® := dx%/dr, and ¥® is the Detweiler-Whiting
regular piece of W [49] (a certain smooth function satisfy-
ing ¢V, V,¥" = 0), whose gradient here is evaluated at
the particle. Note Eq. (2) implies du/dr = Q(d¥™"/dr),
with variation in the particle’s rest mass representing
exchange of energy with the scalar field.

To obtain the binary evolution and scalar-wave emission,
one’s task is to solve the coupled equations (1) and (2), with
the above boundary conditions for ¥ and given initial
values for x{ and u”.

Worldtube excision method—Introducing standard Kerr-
Schild (KS) coordinates on the Schwarzschild background,
we define the worldtube I" as a KS coordinate sphere
centered on the charge on each hypersurface of constant KS
time 7. In Ref. [22] we constructed an approximate
analytical solution to (1), valid in the vicinity of the charge
inside I, for a generic x%(7). The approximation has
the form W7 + W=, where the “puncture field” W7 is an
approximate particular solution of the inhomogeneous
equation (1), given explicitly in [22] as a truncated
expansion of the Detweiler-Whiting singular field [49] in
powers of coordinate distance from the charge; analo-
gously, we approximate the smooth field Y* with a
truncated Taylor expansion. Our analytical approximant
thus contains a set of a priori unknown coefficients coming

from the Taylor expansion of Y™ and its time derivative at
the charge. An NR evolution in KS time ¢ is then set up (see
below), which matches the numerical solution outside I" to
the analytical field on I' mode by mode in a multipole
expansion around the particle. The matching fixes the
unknown coefficients in the analytical field, and hence
also the value of V,,‘PR at the charge. This, in turn,
determines the self-forcing term in (2), allowing us
to evolve the worldline in time, as well as providing
boundary data to the NR evolution outside the worldtube.
See Ref. [22] for full detail.

A complication is that W7 itself depends on the charge’s
self-acceleration, which is a priori unknown, leading to
implicit matching conditions. We resolve this by applying
an iteration procedure using the small magnitude of the
self-acceleration as a perturbative parameter [22]. This
introduces additional error, but one that is easily control-
lable and made subdominant in practice.

NR method—Our method is implemented in SpPECTRE
[23], which employs a discontinuous Galerkin (DG)
method to evolve Eq. (1). In standard black hole excision
[50-53], the motion of the excision spheres in the computa-
tional domain is controlled using a series of time-dependent
maps, which track the apparent horizons. We use this
infrastructure to adjust the time-dependent maps at each
time step according to the acceleration of the pointlike
particle obtained from Eq. (2).

The choice of worldtube radius trades off between
computational saving (larger R) and accuracy of the
analytical approximation (smaller R). In the case of
quasicircular orbits, the choice R(f) « ry/*(r) [where
r,(t) is the KS orbital radius at time #] is motivated from
an examination of how the estimated error in our local
approximation to ¥ on I' depends on r, [22]. Once the
worldtube radius becomes so large that the CFL limit is set
by a different part of the computational domain (like the
vicinity of the BH of size ~M), there is no benefit from
increasing it further. Therefore, for the eccentric and
scattering orbits considered in this Letter, we introduce
an upper bound R, for the worldtube radius by taking

R = R (20) (1 )

ro

For A > 0, this transits smoothly between R(t) ~ rf,/ (1)
for r, < ry and R(t) ~const= R, for r,> r, The
simulations presented here use R, =3M and a
transition parameter A = 0.05; r( is chosen to achieve a
worldtube radius Ry, at the distance r, = 6M, typically
R¢y = 0.2-0.8M. Adjustments were made also to the DG
domain itself by tuning the fixed polynomial order of the
elements to accommodate large changes in grid spacing for
highly eccentric orbits and hyperbolic encounters.
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Simulations of eccentric orbits—We begin each evolu-
tion with a “burn-in” stage, where the motion of the scalar
charge is fixed to a geodesic. After ~4 orbits, the impact
of the initial conditions (arbitrarily chosen to be zero)
has decayed and we turn on the self-force term smoothly
(during an apoapsis passage, where the self-force term is
relatively small). Subsequently, the system is evolved self-
consistently as described above.

The left panel of Fig. 2 shows the orbit of a typical
evolution, with ¢ = 0.02 and initial apoapsis and periapsis
at r, = 100M and r ~ 5.26M, respectively, corresponding
to initial eccentricity e :== (r, —r_)/(r, + r_) = 0.9. The
particle traces out 27 orbits before it plunges into the central
black hole. Both periapsis distance and periapsis advance
change throughout the simulation, creating an irregular
pattern. The worldtube radius of the depicted simulation
was set according to Rgy; = 0.2M. We additionally ran an
evolution with Rgy; = 0.4M, from which we estimate
a total accumulated phase error of 0.24 radians up to the
light ring crossing at r, = 3M (out of ~170 radians). In
Supplemental Material [54], we present convergence tests
using different numerical resolutions of the DG scheme,
which show that we are accurately resolving the error
induced by the worldtube. The right panel displays a few
multipole modes of the corresponding scalar-field wave-
form during the final stage of evolution, plotted against
retarded KS time; we use notation whereby ¥,,, represents
the real part of the (I/,m) spherical-harmonic mode of
r¥/Q, here extracted at r = 800M. The monopole ¥
oscillates around a constant value with the radial frequency.
Higher modes show more complex behavior due to strong
precession and other relativistic effects. The waveforms
shown in Fig. 2 are extracted at a finite radius r = 800M
and will therefore not exactly match the waveform at null
infinity. An analysis of the incurred error is given in

Supplemental Material [54]. Waveform extrapolation to
null infinity is already available for the full gravitational
case [55,56], so the absence of similar techniques for the
results presented here does not affect the ultimate goal of
our research.

The simulation used 2.3 million grid points distributed
over 560 computational cores. Between simulation start
and event-horizon crossing, it ran for 41, 000M with a wall
time of 27 hours. While the scalar wave equation solved
here is less computationally demanding than the full
Einstein equations, these speeds provide a good indication
of the power inherent in the worldtube excision method
combined with a modern, scalable NR code.

Figure 3 shows the evolution of the two principal orbital
elements—eccentricity e and semi-latus rectum p :=
2r,r_/(ry + r_)—in a series of simulations with different
values of the inspiral parameter €. All simulations start
on the same initial geodesic with ¢ = 0.5 and p = 10M
(corresponding to apoapsis 20M and periapsis ~6.66M)
and end at the innermost stable orbit, p/M = 6 + 2e
(beyond which the p, e parametrization ceases to be valid).
The radiative evolution decreases p monotonically and
generally circularizes the orbit—except very near the
plunge, where e picks up again (a phenomenon familiar
from previous calculations in black-hole perturbation
theory [57,58]). The inset shows the evolution of periapsis
advance 6 (radians per radial period) for the same inspiral
orbits. Once the self-consistent evolution begins (after the
burn-in), the rate of periapsis advance increases monoton-
ically. Just before the plunge, more than 5z radians of
azimuthal phase can be traversed each radial period.

Simulations of hyperbolic encounters—With modest
adaptation, we can also apply our worldtube technique
and code to unbound binaries, where the incident particle
starts at infinite separation with velocity v, > 0, and then
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FIG. 2. Simulation of an eccentric binary. Left: orbital trajectory for the simulation starting from the point at which the self-force is
turned on. Right: some important waveform modes. Highlighted in orange is one radial period in both panels. The ringdown is shown
enlarged in the rightmost panel. This simulation starts with initial eccentricity e = 0.9 at apoapsis, r = 100M, and uses ¢ = 0.02.
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o . particle to follow an incoming geodesic from its initial
0-301 X separation r, = 200M. Around r, = 100M, we smoothly
0.484 turn on the self-force terms and subsequently proceed with
o the self-consistent evolution. In the simulations presented
0.461 | 4 here, the outer boundary of the numerical domain is placed

) at r = 1200M.
0-441 Figure 4 displays a few representative simulations, all
0.421 f e=0.01 with v, = 0.1 and impact parameter b = 40.21M, corre-
v €=0.02 sponding to a scattering geodesic with parameters near
0.407 5/ —— €=0.04 the region where geodesics are captured by the BH. The
S — =006 simulations differ only in the value of ¢, i.e., the strength of
03— s 90 95 100 self-acceleration experienced by the particle. For reference,
p/M we show also the geodesic case, with no self-force (¢ = 0),
which completes almost two full revolutions before scatter-
FIG. 3. Eccentric inspirals for different strength-parameter e of ing off to infinity (“zoom-whirl” behavior). For ¢ > 0, the

the self-force. The main panel plots eccentricity e vs. semi-latus
rectum p, where each system starts in the top right corner and
moves toward smaller p. All simulations oscillate about approx-
imately the same line in the pe plane, with systems at larger €
exhibiting fewer oscillations of a larger amplitude during their
faster inspiral. The pe tracks end at the separatrix (dashed black)
where geodesic orbits transition to trajectories plunging into the
black hole. The inset shows the periastron advance 6 of the
simulations, measured in radians per radial cycle. The initial four
gray points represent the burn-in stage where the particle’s
trajectory is fixed to a geodesic.

either scatters back to infinity or gets captured by the black
hole. For unbound trajectories, we modify our burn-in
stage. The particle’s large initial separation from the BH
means that we can initialize the scalar field with the
leading-order expression for W7 (the “1/distance,”
Coulomb-like field of an isolated scalar charge). We
then evolve the scalar field by Eq. (1) while forcing the

particle loses energy and angular momentum through
scalar-wave emission and the scattering angle increases.
The scattering angles in the simulations shown are approx-
imately 12.29 radians in the geodesic case, 13.08 radians
for € = 0.01, and 14.85 radians for ¢ = 0.02. Particularly
interesting is the simulation with € = 0.03, in which the
particle loses enough energy to be captured by the BH. The
inset enlarges the region around the central hole, showing
how the four worldlines are almost identical as they
approach (counterclockwise) but begin to separate as they
lose energy at different rates.

The worldtube radius of the simulations shown here is
set as Rgy = 0.4M. We repeated each simulation with a
larger worldtube radius of Rgy, = 0.8M, allowing us to
make error estimates. We find this changes the scattering
angle by 0.1% and 0.6% for ¢ =0.01 and e = 0.02,
respectively, indicating increased sensitivity near the
threshold to capture. The error in the dissipated energy
is more stable at 2.3% and 2.9%, respectively.

80
S
601 =l
40' —
BT 1 —— geodesic
= | N T e €=0.01
= 20; =051 002
) 0.00+ €=0.03
N
01 desi > _0.031
I geodaesic
S P €=0.01 0.21
=201 i e €=0.02 a L /N N WA AT
i - 0.01
| €=0.03 =
—40 . . . - . . . -0.2 . . 4 ~ T
-60 —-40 -20 0 20 40 60 1100 1150 1200 1250 1300
x/M (t—r)/M

FIG. 4. Scattering/capture of a scalar charge around a black hole. Left: trajectories approaching from the positive x axis, and separating
near periapsis, marked by the black triangle. For ¢ = 0.01 and e¢ = 0.02, the self-force significantly increases the scattering angle
compared to the geodesic. For ¢ = 0.03, radiation removes enough energy for the particle to become bound and merge with the black
hole. Right: plot of important waveform modes illustrating the qualitatively different behavior between scatter and capture. All
simulations start on a geodesic with v, = 0.1 and impact parameter b = 40.21M.
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The right panel of Fig. 4 shows the corresponding
waveform modes, as extracted at r = 950M. For ¢ = 0.03,
the scattering signal is replaced with a rapid ringdown.
These waveforms provide a stark illustration of sensitivity
near the capture threshold and the qualitative different
outcomes on either side.

Summary and outlook—We have presented a highly
versatile implementation of the worldtube excision method
for compact binary systems with disparate scales, show-
casing its computational efficiency and flexibility with very
long simulations in computationally challenging setups
including highly eccentric binaries and scattering orbits.
Although we have confined ourselves to a model problem,
there are encouraging conclusions to be drawn about the
efficacy of the method in resolving scale disparity in actual
BH binary simulations: replacing the scalar charge with a
small black hole (at fixed ¢ = ¢) would incur additional
computational overhead from having to solve the full
Einstein equations, but hardly more beyond that.

Our code also represents the first means of simulating
generic, fully self-consistent self-forced binary evolutions.
This can provide powerful benchmarking for perturbative
approaches based on expansions in € or on separations of
timescales, such as the multiscale method underpinning
current self-force waveform generation frameworks for
bound inspirals [10] (as applied to scalar-field evolutions
in Ref. [59]), the self-force method of Ref. [60] for
scattering orbits, or the multiple-scale transition-to-plunge
analysis methods of Refs. [61,62]. We intend to use our
code to pursue such analyses in forthcoming work.

We have also begun work to implement worldtube
excision in binary BH simulations, our ultimate goal. In
this pure-gravity case, we solve the full Einstein equations
in vacuum, with an excised worldtube inside which the
metric is prescribed analytically using a model of a tidally
perturbed black hole [63—-69]. The key step is the matching
of the metric on the surface of the worldtube at each time
step. Two approaches are being explored. One involves
matching both the gauge and the a priori unknown tidal
deformation parameters of the internal BH. Another, more
elegant approach is based on matching a suitable set of
curvature invariants. These methods will be fleshed out and
numerically implemented in forthcoming work.

Acknowledgments—A. P. acknowledges the support
of a Royal Society University Research Fellowship and
the ERC Consolidator/UKRI Frontier Research Grant
GWDModels (selected by the ERC and funded by UKRI
[Grant No. EP/Y008251/1]). This material is based on
work supported by the National Science Foundation under
Grants No. PHY-2407742, No. PHY-2207342, and
No. OAC-2209655 at Cornell. This work was supported
by the Sherman Fairchild Foundation at Cornell. This work
was supported in part by the Sherman Fairchild Foundation
and by NSF Grants No. PHY-2309211, No. PHY-2309231,

and No. OAC-2209656 at Caltech. This work was sup-
ported in part by NSF Awards No. PHY-2208014 and
No. AST-2219109, the Dan Black Family Trust, and
Nicholas and Lee Begovich at Cal State Fullerton.
Computations were performed on the Urania HPC system
at the Max Planck Computing and Data Facility. SpECTRE
uses CHARM++/Converse [70,71], which was developed
by the Parallel Programming Laboratory in the Department
of Computer Science at the University of Illinois at Urbana-
Champaign. SpECTRE uses Blaze [72,73], HDF5 [74],
the GNU Scientific Library (GSL) [75], yaml-cpp [76],
pybindl1l [77], 1libsharp [78], and LIBXSMM [79].
The figures were produced with MATPLOTLIB[80,81],
NUMPY [82], and ParaView [83,84].

Any opinions, findings, and conclusions or recommen-
dations expressed in this material are those of the author(s)
and do not necessarily reflect the views of the National
Science Foundation.

[1] R. Abbott er al. (KAGRA, VIRGO, LIGO Scientific
Collaborations), GWTC-3: Compact binary coalescences
observed by LIGO and Virgo during the second part of the
third observing run, Phys. Rev. X 13, 041039 (2023).

[2] B.P. Abbott et al. (KAGRA, LIGO Scientific, Virgo
Collaborations), Prospects for observing and localizing
gravitational-wave transients with Advanced LIGO, Ad-
vanced Virgo and KAGRA, Living Rev. Relativity 23, 3
(2020).

[3] A.Dhani, S. Volkel, A. Buonanno, H. Estelles, J. Gair, H. P.
Pfeiffer, L. Pompili, and A. Toubiana, Systematic biases in
estimating the properties of black holes due to inaccurate
gravitational-wave models, arXiv:2404.05811.

[4] M. Piirrer and C.-J. Haster, Gravitational waveform accu-
racy requirements for future ground-based detectors, Phys.
Rev. Res. 2, 023151 (2020).

[5] Q. HuandJ. Veitch, Assessing the model waveform accuracy
of gravitational waves, Phys. Rev. D 106, 044042 (2022).

[6] Q. Hu and J. Veitch, Accumulating errors in tests of general
relativity with gravitational waves: Overlapping signals and
inaccurate waveforms, Astrophys. J. 945, 103 (2023).

[7] A. Jan, D. Ferguson, J. Lange, D. Shoemaker, and A.
Zimmerman, Accuracy limitations of existing numerical
relativity waveforms on the data analysis of current and
future ground-based detectors, Phys. Rev. D 110, 024023
(2024).

[8] C.B. Owen, C.-J. Haster, S. Perkins, N. J. Cornish, and N.
Yunes, Waveform accuracy and systematic uncertainties in
current gravitational wave observations, Phys. Rev. D 108,
044018 (2023).

[9] V. Kapil, L. Reali, R. Cotesta, and E. Berti, Systematic bias
from waveform modeling for binary black hole populations
in next-generation gravitational wave detectors, Phys. Rev.
D 109, 104043 (2024).

[10] N. Afshordi et al. (LISA Consortium Waveform Working
Group), Waveform modelling for the laser interferometer
space antenna, arXiv:2311.01300.

251402-6


https://doi.org/10.1103/PhysRevX.13.041039
https://doi.org/10.1007/s41114-020-00026-9
https://doi.org/10.1007/s41114-020-00026-9
https://arXiv.org/abs/2404.05811
https://doi.org/10.1103/PhysRevResearch.2.023151
https://doi.org/10.1103/PhysRevResearch.2.023151
https://doi.org/10.1103/PhysRevD.106.044042
https://doi.org/10.3847/1538-4357/acbc18
https://doi.org/10.1103/PhysRevD.110.024023
https://doi.org/10.1103/PhysRevD.110.024023
https://doi.org/10.1103/PhysRevD.108.044018
https://doi.org/10.1103/PhysRevD.108.044018
https://doi.org/10.1103/PhysRevD.109.104043
https://doi.org/10.1103/PhysRevD.109.104043
https://arXiv.org/abs/2311.01300

PHYSICAL REVIEW LETTERS 134, 251402 (2025)

[11] L. Pompili et al., Laying the foundation of the effective-one-
body waveform models SEOBNRvS: Improved accuracy
and efficiency for spinning nonprecessing binary black
holes, Phys. Rev. D 108, 124035 (2023).

[12] M. Dhesi, H.R. Riiter, A. Pound, L. Barack, and H.P.
Pfeiffer, Worldtube excision method for intermediate-mass-
ratio inspirals: Scalar-field toy model, Phys. Rev. D 104,
124002 (2021).

[13] C.O. Lousto and J. Healy, Exploring the small mass ratio
binary black hole merger via Zeno’s Dichotomy Approach,
Phys. Rev. Lett. 125, 191102 (2020).

[14] N. Rosato, J. Healy, and C. O. Lousto, Adapted gauge to
small mass ratio binary black hole evolutions, Phys. Rev. D
103, 104068 (2021).

[15] U. Sperhake, V. Cardoso, C.D. Ott, E. Schnetter, and
H. Witek, Extreme black hole simulations: Collisions of
unequal mass black holes and the point particle limit, Phys.
Rev. D 84, 084038 (2011).

[16] C.O. Lousto and J. Healy, Study of the intermediate mass
ratio black hole binary merger up to 1000: 1 with numerical
relativity, Classical Quantum Gravity 40, 09LTO1 (2023).

[17] L. Barack and A. Pound, Self-force and radiation reaction in
general relativity, Rep. Prog. Phys. 82, 016904 (2019).

[18] A. Albertini, A. Nagar, A. Pound, N. Warburton, B. Wardell,
L. Durkan, and J. Miller, Comparing second-order
gravitational self-force, numerical relativity, and effective
one body waveforms from inspiralling, quasicircular, and
nonspinning black hole binaries, Phys. Rev. D 106,
084061 (2022).

[19] B. Wardell, A. Pound, N. Warburton, J. Miller, L. Durkan,
and A. Le Tiec, Gravitational waveforms for compact
binaries from second-order self-force theory, Phys. Rev.
Lett. 130, 241402 (2023).

[20] J. Mathews, A. Pound, B. Warburton, and B. Wardell, Post-
adiabatic self-force waveforms: Slowly spinning primary
and precessing secondary (to be published).

[21] N. A. Wittek et al., Worldtube excision method for inter-
mediate-mass-ratio inspirals: Scalar-field model in 3 + 1
dimensions, Phys. Rev. D 108, 024041 (2023).

[22] N. A. Wittek, A. Pound, H.P. Pfeiffer, and L. Barack,
Worldtube excision method for intermediate-mass-ratio
inspirals: Self-consistent evolution in a scalar-charge model,
Phys. Rev. D 110, 084023 (2024).

[23] N. Deppe, W. Throwe, L. E. Kidder, N. L. Vu, K. C. Nelli,
C. Armaza, M. S. Bonilla, F. Hébert, Y. Kim, P. Kumar,
G. Lovelace, A. Macedo, J. Moxon, E. O’Shea, H.P.
Pfeiffer, M. A. Scheel, S.A. Teukolsky, N.A. Wittek
et al., SPECTRE v2024.09.29 (2024) 10.5281/zenodo
.13858965.

[24] T. Damour, Gravitational scattering, post-Minkowskian
approximation and effective one-body theory, Phys. Rev.
D 94, 104015 (2016).

[25] Z. Bern, C. Cheung, R. Roiban, C.-H. Shen, M. P. Solon,
and M. Zeng, Scattering amplitudes and the conservative
Hamiltonian for binary systems at third post-Minkowskian
order, Phys. Rev. Lett. 122, 201603 (2019).

[26] G. Kilin and R. A. Porto, From boundary data to bound
states, J. High Energy Phys. 01 (2020) 072.

[27] G. Kilin, Z. Liu, and R. A. Porto, Conservative dynamics of
binary systems to third post-Minkowskian order from the

effective field theory approach, Phys. Rev. Lett. 125,
261103 (2020).

[28] M. Khalil, A. Buonanno, J. Steinhoff, and J. Vines,
Energetics and scattering of gravitational two-body systems
at fourth post-Minkowskian order, Phys. Rev. D 106,
024042 (2022).

[29] P. Rettegno, G. Pratten, L. M. Thomas, P. Schmidt, and T.
Damour, Strong-field scattering of two spinning black
holes: Numerical relativity versus post-Minkowskian grav-
ity, Phys. Rev. D 108, 124016 (2023).

[30] T. Adamo, R. Gonzo, and A. Ilderton, Gravitational bound
waveforms from amplitudes, J. High Energy Phys. 05
(2024) 034.

[31] J. Fontbuté, T. Andrade, R. Luna, J. C. Bustillo, G. Morris,
S. Jaraba, J. Garcia-Bellido, and G. L. Izquierdo, A numeri-
cal-relativity surrogate model for hyperbolic encounters of
black holes: Challenges in parameter estimation, Phys. Rev.
D 111, 044024 (2025).

[32] G.U. Jakobsen, G. Mogull, J. Plefka, B. Sauer, and Y. Xu,
Conservative scattering of spinning black holes at fourth
post-Minkowskian order, Phys. Rev. Lett. 131, 151401
(2023).

[33] L. Barack et al., Comparison of post-Minkowskian and self-
force expansions: Scattering in a scalar charge toy model,
Phys. Rev. D 108, 024025 (2023).

[34] R. Gonzo, J. Lewis, and A. Pound, The first law of binary
black hole scattering, arXiv:2409.03437.

[35] M. Driesse, G. U. Jakobsen, G. Mogull, J. Plefka, B. Sauer,
and J. Usovitsch, Conservative black hole scattering at fifth
post-Minkowskian and first self-force order, Phys. Rev. Lett.
132, 241402 (2024).

[36] O. Long, C. Whittall, and L. Barack, Black hole scattering
near the transition to plunge: Self-force and resummation of
post-Minkowskian theory, Phys. Rev. D 110, 044039
(2024).

[37] A.J. K. Chua, M. L. Katz, N. Warburton, and S. A. Hughes,
Rapid generation of fully relativistic extreme-mass-ratio-
inspiral waveform templates for LISA data analysis, Phys.
Rev. Lett. 126, 051102 (2021).

[38] J. Miller and A. Pound, Two-timescale evolution of ex-
treme-mass-ratio inspirals: Waveform generation scheme
for quasicircular orbits in Schwarzschild spacetime, Phys.
Rev. D 103, 064048 (2021).

[39] S. A. Hughes, N. Warburton, G. Khanna, A. J. K. Chua, and
M. L. Katz, Adiabatic waveforms for extreme mass-ratio
inspirals via multivoice decomposition in time and fre-
quency, Phys. Rev. D 103, 104014 (2021).

[40] M. L. Katz, A.J. K. Chua, L. Speri, N. Warburton, and S. A.
Hughes, Fast extreme-mass-ratio-inspiral waveforms: New
tools for millihertz gravitational-wave data analysis, Phys.
Rev. D 104, 064047 (2021).

[41] S. Isoyama, R. Fujita, A.J. K. Chua, H. Nakano, A. Pound,
and N. Sago, Adiabatic waveforms from extreme-mass-ratio
inspirals: An analytical approach, Phys. Rev. Lett. 128,
231101 (2022).

[42] A. Pound and B. Wardell, Black hole perturbation theory
and gravitational self-force, in Handbook of Gravitational
Wave Astronomy, edited by C. Bambi, S. Katsanevas, and
K.D. Kokkotas (Springer Nature Singapore, Singapore,
2022), pp. 1411-1529.

251402-7


https://doi.org/10.1103/PhysRevD.108.124035
https://doi.org/10.1103/PhysRevD.104.124002
https://doi.org/10.1103/PhysRevD.104.124002
https://doi.org/10.1103/PhysRevLett.125.191102
https://doi.org/10.1103/PhysRevD.103.104068
https://doi.org/10.1103/PhysRevD.103.104068
https://doi.org/10.1103/PhysRevD.84.084038
https://doi.org/10.1103/PhysRevD.84.084038
https://doi.org/10.1088/1361-6382/acc7ef
https://doi.org/10.1088/1361-6633/aae552
https://doi.org/10.1103/PhysRevD.106.084061
https://doi.org/10.1103/PhysRevD.106.084061
https://doi.org/10.1103/PhysRevLett.130.241402
https://doi.org/10.1103/PhysRevLett.130.241402
https://doi.org/10.1103/PhysRevD.108.024041
https://doi.org/10.1103/PhysRevD.110.084023
https://doi.org/10.5281/zenodo.13858965
https://doi.org/10.5281/zenodo.13858965
https://doi.org/10.1103/PhysRevD.94.104015
https://doi.org/10.1103/PhysRevD.94.104015
https://doi.org/10.1103/PhysRevLett.122.201603
https://doi.org/10.1007/JHEP01(2020)072
https://doi.org/10.1103/PhysRevLett.125.261103
https://doi.org/10.1103/PhysRevLett.125.261103
https://doi.org/10.1103/PhysRevD.106.024042
https://doi.org/10.1103/PhysRevD.106.024042
https://doi.org/10.1103/PhysRevD.108.124016
https://doi.org/10.1007/JHEP05(2024)034
https://doi.org/10.1007/JHEP05(2024)034
https://doi.org/10.1103/PhysRevD.111.044024
https://doi.org/10.1103/PhysRevD.111.044024
https://doi.org/10.1103/PhysRevLett.131.151401
https://doi.org/10.1103/PhysRevLett.131.151401
https://doi.org/10.1103/PhysRevD.108.024025
https://arXiv.org/abs/2409.03437
https://doi.org/10.1103/PhysRevLett.132.241402
https://doi.org/10.1103/PhysRevLett.132.241402
https://doi.org/10.1103/PhysRevD.110.044039
https://doi.org/10.1103/PhysRevD.110.044039
https://doi.org/10.1103/PhysRevLett.126.051102
https://doi.org/10.1103/PhysRevLett.126.051102
https://doi.org/10.1103/PhysRevD.103.064048
https://doi.org/10.1103/PhysRevD.103.064048
https://doi.org/10.1103/PhysRevD.103.104014
https://doi.org/10.1103/PhysRevD.104.064047
https://doi.org/10.1103/PhysRevD.104.064047
https://doi.org/10.1103/PhysRevLett.128.231101
https://doi.org/10.1103/PhysRevLett.128.231101

PHYSICAL REVIEW LETTERS 134, 251402 (2025)

[43] J. McCart, T. Osburn, and J. Y.J. Burton, Highly eccentric
extreme-mass-ratio-inspiral waveforms via fast self-forced
inspirals, Phys. Rev. D 104, 084050 (2021).

[44] L. V. Drummond, P. Lynch, A. G. Hanselman, D. R. Becker,
and S. A. Hughes, Extreme mass-ratio inspiral and wave-
forms for a spinning body into a Kerr black hole via
osculating geodesics and near-identity transformations,
Phys. Rev. D 109, 064030 (2024).

[45] Z. Nasipak, Adiabatic gravitational waveform model for
compact objects undergoing quasicircular inspirals into
rotating massive black holes, Phys. Rev. D 109, 044020
(2024).

[46] T.C. Quinn, Axiomatic approach to radiation reaction of
scalar point particles in curved spacetime, Phys. Rev. D 62,
064029 (2000).

[47] E. Poisson, A. Pound, and I. Vega, The motion of point
particles in curved spacetime, Living Rev. Relativity 14, 7
(2011).

[48] A.1. Harte, Motion in classical field theories and the
foundations of the self-force problem, Fund. Theor. Phys.
179, 327 (2015).

[49] S. L. Detweiler and B. F. Whiting, Selfforce via a Green’s
function decomposition, Phys. Rev. D 67, 024025 (2003).

[50] M. A. Scheel, H. P. Pfeiffer, L. Lindblom, L. E. Kidder, O.
Rinne, and S. A. Teukolsky, Solving Einstein’s equations
with dual coordinate frames, Phys. Rev. D 74, 104006
(20006).

[51] D. A. Hemberger, M. A. Scheel, L. E. Kidder, B. Szilagyi,
G. Lovelace, N. W. Taylor, and S. A. Teukolsky, Dynamical
excision boundaries in spectral evolutions of binary black
hole spacetimes, Classical Quantum Gravity 30, 115001
(2013).

[52] M. A. Scheel, M. Giesler, D. A. Hemberger, G. Lovelace, K.
Kuper, M. Boyle, B. Szildgyi, and L. E. Kidder, Improved
methods for simulating nearly extremal binary black holes,
Classical Quantum Gravity 32, 105009 (2015).

[53] G. Lovelace et al., Simulating binary black hole mergers
using discontinuous Galerkin methods, Classical Quantum
Gravity 42, 035001 (2025).

[54] See  Supplemental Material at http:/link.aps.org/
supplemental/10.1103/kskl-8dcj for numerical convergence
tests.

[55] M. Boyle et al., The SXS Collaboration catalog of binary
black hole simulations, Classical Quantum Gravity 36,
195006 (2019).

[56] J. Moxon, M. A. Scheel, S. A. Teukolsky, N. Deppe, N. Vu,
F. Hébert, L. E. Kidder, and W. Throwe, SpECTRE Cauchy-
characteristic evolution system for rapid, precise waveform
extraction, Phys. Rev. D 107, 064013 (2023).

[57] N. Warburton, S. Akcay, L. Barack, J. R. Gair, and N. Sago,
Evolution of inspiral orbits around a Schwarzschild black
hole, Phys. Rev. D 85, 061501(R) (2012).

[58] M. Van De Meent and N. Warburton, Fast self-forced
inspirals, Classical Quantum Gravity 35, 144003 (2018).

[59] L. Speri, S. Barsanti, A. Maselli, T.P. Sotiriou, N.
Warburton, M. van de Meent, A.J. K. Chua, O. Burke,
and J. Gair, Probing fundamental physics with extreme mass
ratio inspirals: A full Bayesian inference for scalar charge,
arXiv:2406.07607.

[60] L. Barack and O. Long, Self-force correction to the
deflection angle in black-hole scattering: A scalar charge
toy model, Phys. Rev. D 106, 104031 (2022).

[61] L. Kiichler, G. Compere, L. Durkan, and A. Pound,
Self-force framework for transition-to-plunge waveforms,
SciPost Phys. 17, 056 (2024).

[62] D.R. Becker and S. A. Hughes, Transition from adiabatic
inspiral to plunge for eccentric binaries, Phys. Rev. D 111,
064003 (2025).

[63] E. Poisson, Metric of a tidally distorted, nonrotating black
hole, Phys. Rev. Lett. 94, 161103 (2005).

[64] E. Poisson and I. Vlasov, Geometry and dynamics of a
tidally deformed black hole, Phys. Rev. D 81, 024029
(2010).

[65] E. Poisson and E. Corrigan, Nonrotating black hole in a
post-Newtonian tidal environment II, Phys. Rev. D 97,
124048 (2018).

[66] N. Yunes and J. Gonzalez, Metric of a tidally perturbed
spinning black hole, Phys. Rev. D 73, 024010 (2006); 89,
089902(E) (2014).

[67] K. Chatziioannou, E. Poisson, and N. Yunes, Improved
next-to-leading order tidal heating and torquing of a Kerr
black hole, Phys. Rev. D 94, 084043 (2016).

[68] P. Pani, L. Gualtieri, A. Maselli, and V. Ferrari, Tidal
deformations of a spinning compact object, Phys. Rev. D
92, 024010 (2015).

[69] A. Le Tiec, M. Casals, and E. Franzin, Tidal love
numbers of Kerr black holes, Phys. Rev. D 103, 084021
(2021).

[70] L. Kale et al., UIUC-PPL/charm: CHARM++ version 7.0.0
(2021).

[71] L. V. Kale and S. Krishnan, CHARM++: Parallel program-
ming with message-driven objects, in Parallel Program-
ming using c++, edited by G. V. Wilson and P. Lu (The MIT
Press, Cambridge, MA, 1996), pp. 175-213.

[72] K. Iglberger, G. Hager, J. Treibig, and U. Riide, High
performance smart expression template math libraries,
in Proceedings of the 2012 International Conference on
High Performance Computing & Simulation (HPCS)
(IEEE, New York, 2012), pp. 367-373.

[73] K. Iglberger, G. Hager, J. Treibig, and U. Riide, Expression
templates revisited: A performance analysis of current
methodologies, SIAM J. Sci. Comput. 34, C42 (2012).

[74] The HDF Group, Hierarchical Data Format, version 5
(1997-2023), https://www.hdfgroup.org/HDF5/.

[75] M. Galassi et al., GNU Scientific Library Reference
Manual, 3rd ed. (Network Theory Ltd., Surrey, United
Kingdom, 2009).

[76] J. Beder et al., yaml-cpp (2009), 10.11578/dc.20220817.13.

[77] W. Jakob, J. Rhinelander, and D. Moldovan, PYBINDII:
Seamless operability between c++11 and PYTHON (2017),
https://github.com/pybind/pybind11.

[78] M. Reinecke and D.S. Seljebotn, Libsharp: Spherical
harmonic transforms revisited, Astron. Astrophys. 554,
A112 (2013).

[79] A. Heinecke, G. Henry, M. Hutchinson, and H. Pabst,
LIBXSMM: Accelerating small matrix multiplications
by runtime code generation, in Proceedings of the
International ~ Conference  for  High  Performance

251402-8


https://doi.org/10.1103/PhysRevD.104.084050
https://doi.org/10.1103/PhysRevD.109.064030
https://doi.org/10.1103/PhysRevD.109.044020
https://doi.org/10.1103/PhysRevD.109.044020
https://doi.org/10.1103/PhysRevD.62.064029
https://doi.org/10.1103/PhysRevD.62.064029
https://doi.org/10.12942/lrr-2011-7
https://doi.org/10.12942/lrr-2011-7
https://doi.org/10.1007/978-3-319-18335-0_12
https://doi.org/10.1007/978-3-319-18335-0_12
https://doi.org/10.1103/PhysRevD.67.024025
https://doi.org/10.1103/PhysRevD.74.104006
https://doi.org/10.1103/PhysRevD.74.104006
https://doi.org/10.1088/0264-9381/30/11/115001
https://doi.org/10.1088/0264-9381/30/11/115001
https://doi.org/10.1088/0264-9381/32/10/105009
https://doi.org/10.1088/1361-6382/ad9f19
https://doi.org/10.1088/1361-6382/ad9f19
http://link.aps.org/supplemental/10.1103/kskl-8dcj
http://link.aps.org/supplemental/10.1103/kskl-8dcj
http://link.aps.org/supplemental/10.1103/kskl-8dcj
http://link.aps.org/supplemental/10.1103/kskl-8dcj
http://link.aps.org/supplemental/10.1103/kskl-8dcj
https://doi.org/10.1088/1361-6382/ab34e2
https://doi.org/10.1088/1361-6382/ab34e2
https://doi.org/10.1103/PhysRevD.107.064013
https://doi.org/10.1103/PhysRevD.85.061501
https://doi.org/10.1088/1361-6382/aac8ce
https://arXiv.org/abs/2406.07607
https://doi.org/10.1103/PhysRevD.106.104031
https://doi.org/10.21468/SciPostPhys.17.2.056
https://doi.org/10.1103/PhysRevD.111.064003
https://doi.org/10.1103/PhysRevD.111.064003
https://doi.org/10.1103/PhysRevLett.94.161103
https://doi.org/10.1103/PhysRevD.81.024029
https://doi.org/10.1103/PhysRevD.81.024029
https://doi.org/10.1103/PhysRevD.97.124048
https://doi.org/10.1103/PhysRevD.97.124048
https://doi.org/10.1103/PhysRevD.73.024010
https://doi.org/10.1103/PhysRevD.89.089902
https://doi.org/10.1103/PhysRevD.89.089902
https://doi.org/10.1103/PhysRevD.94.084043
https://doi.org/10.1103/PhysRevD.92.024010
https://doi.org/10.1103/PhysRevD.92.024010
https://doi.org/10.1103/PhysRevD.103.084021
https://doi.org/10.1103/PhysRevD.103.084021
https://doi.org/10.1137/110830125
https://www.hdfgroup.org/HDF5/
https://www.hdfgroup.org/HDF5/
https://www.hdfgroup.org/HDF5/
https://doi.org/10.11578/dc.20220817.13
https://github.com/pybind/pybind11
https://github.com/pybind/pybind11
https://doi.org/10.1051/0004-6361/201321494
https://doi.org/10.1051/0004-6361/201321494

PHYSICAL REVIEW LETTERS 134, 251402 (2025)

Computing, Networking, Storage and Analysis, SC ’16 [82] C.R. Harris et al., Array programming with NUMPY, Nature

(IEEE Press, New York, 2016), pp. 1-11. (London) 585, 357 (2020).
[80] J.D. Hunter, MATPLOTLIB: A 2d graphics environment, [83] U. Ayachit, The ParaView Guide: A Parallel Visualization
Comput. Sci. Eng. 9, 90 (2007). Application (Kitware, Inc., Clifton Park, NY, USA, 2015).
[81] T. A. Caswell et al., matplotlib/matplotlib: REL: v3.3.0 [84] J. Ahrens, B. Geveci, and C. Law, ParaView: An End-User
(2020). Tool for Large-Data Visualization (Elsevier, New York, 2005).

251402-9


https://doi.org/10.1109/MCSE.2007.55
https://doi.org/10.1038/s41586-020-2649-2
https://doi.org/10.1038/s41586-020-2649-2

	Relieving Scale Disparity in Binary Black Hole Simulations
	Introduction
	Binary model
	Worldtube excision method
	NR method
	Simulations of eccentric orbits
	Simulations of hyperbolic encounters
	Summary and outlook
	Acknowledgments
	References


