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Abstract: Malaria is one of the life-threatening diseases caused by the parasite known as Plasmodium
falciparum, affecting the human red blood cells. Therefore, it is an important to have an effective
computer-aided system in place for early detection and treatment. The visual heterogeneity of the
malaria dataset is highly complex and dynamic, therefore higher number of images are needed
to train the machine learning (ML) models effectively. However, hospitals as well as medical
institutions do not share the medical image data for collaboration due to general data protection
regulations (GDPR) and the data protection act (DPA). To overcome this collaborative challenge,
our research utilised real-time medical image data in the framework of federated learning (FL).
We have used state-of-the-art ML models that include the ResNet-50 and DenseNet in a federated
learning framework. We have experimented both models in different settings on a malaria dataset
constituting 27,560 publicly available images and our preliminary results showed that the DenseNet
model performed better in accuracy (75%) in contrast to ResNet-50 (72%) while considering eight
clients, while the trend was observed as common in four clients with the similar accuracy of 94%, and
six clients showed that the DenseNet model performed quite well with the accuracy of 92%, while
ResNet-50 achieved only 72%. The federated learning framework enhances the accuracy due to its
decentralised nature, continuous learning, and effective communication among clients, as well as the
efficient local adaptation. The use of federated learning architecture among the distinct clients for
ensuring the data privacy and following GDPR is the contribution of this research work.

Keywords: malaria images; machine learning; federated learning; privacy preserving; medical
image detection

1. Introduction

During study of related work, we have observed that, over recent years, advancements
in the field of artificial intelligence (AI) have brought a great revolution in the field of medical
sciences. It has been demonstrated as an effective way of deployment to detect diseases
through CXR, city scan, ultrasound, and other mediums. Researchers are using artificial
intelligence for diagnosis and detection. Improving computer vision in AI increases the
research interest in medical diagnosis. Regarding medical image detection, AI techniques
such as convolution neural networks (CNN) have been used to classify CXR, whether the
disease is present or not. While considering AI in the medical field, significant amounts
of research have been done that include abnormal pattern recognition [1,2], biometric
detection [3], trauma valuation [4], and diabetes detection [5]. The importance of medical
image detection has brought us to work in devising effective methods for detecting diseases
including pneumonia, malaria, and brain tumors. Malaria is one of the fatal diseases
known to be transmitted by mosquitoes. According to the World Malaria report, 241 million
malaria cases were reported in 2020, which is higher than 2019 when it was recorded as
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227 million. Over 600,000 individuals died due to malaria in 2020, where an 80% fatality
trend was observed among children below 5 years of age [6]. Therefore, it is important to
understand the severity of this disease, and devise solutions to tackle the disease.

1.1. Research Background

Medical image classification is quite a complex task in nature. The medical images
gathered from different sources that include chest X-ray, CT scan, or microscopic images
constitute higher dimension and are complex in nature. Medical images are higher in spatial
resolution as well as complex in patterns [7]. It is also quite challenging for researchers
to utilise the real-time image data as it constitutes patients’ bio-details. Moreover, the
class imbalance between the normal images and infected images is also one of the major
challenges in medical image classification. Different state-of-the-art techniques have
been used to enhance medical image detection that include deep learning, supervised
learning, unsupervised learning and reinforcement learning. However, the lack of data
availability has always been challenging to perform the machine learning modelling
effectively. Therefore, considering the complexity, as well as the data imbalance of the
medical images, it is important to access the real-time data to meet the requirements of data
availability. However, due to general data protection and regulation (GDPR), data cannot
be shared to the third party [8]. Our motivation and the scope of this research for malaria
image detection is inspired by employing the ML techniques in the privacy-preserving
framework of federated learning for utilising real-time data, while following GDPR rules
and regulations.

1.2. Problem Statement and Rationale of the Research

Considering the background of our research, the following are the problem statements:

• Medical images are highly heterogeneous compared to the normal images, therefore it is
quite challenging to perform ML modelling on the limited data available [9]. To compen-
sate this issue, we are required to form a collaborative framework that allows multiple
hospitals and medical institutions to share data in a privacy-preserving manner.

• Lab-based data or synthesized data are limited to perform effective ML modelling [10],
therefore we were required to have vast quantity of data that can be fulfilled by using
the live stream of real-time data.

• It can be possible to use the real-time data to fulfil the data availability problem,
however due to general data regulation and protection (GDPR), data sharing cannot be
possible. Therefore, our research is inspired to use the privacy-preserving framework
of federated learning (FL) to allow the data sharing while following GDPR.

Based on the above problem statements, the following research questions (RQs) can be
concluded:

1. Is it possible to utilise real-time malaria image data by collaboration of different
hospitals and medical institutes in a privacy-preserving manner?

2. What are state-of-the-art machine learning approaches for effective malaria image
detection?

The above research questions are further elaborated in the following section.

1.3. Significance of the Research

Considering the potential of the proposed research work, the medical imaging industry
has a huge need to alter the procedures for disease detection. The following are some of the
important points with regard to the significance of our research.

1. Improved security and compliance: The proposed research work provides huge
potential considering the privacy and security of medical imaging. The research
follows the guidelines as per GDPR and DPA for data security that will be a great
revolution in the medical industry.
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2. Enhanced diagnostic capacity: The research framework that constitutes the hybrid
model will ensure the security of data and the accuracy efficiency of disease detection
that will ultimately result in early diagnosis and treatment.

3. Facilitating collaboration: Research will promote an innovative culture that allows
the mutual collaboration of hospitals and medical institutes to achieve the improved
advancements.

4. Benchmark for potential innovation: Based on the study analysis, it will guide the
future scope of innovation in medical imaging for researchers. The proposed research
can be a benchmark for the future development of this idea that can be mutually
beneficial for medical institutes.

5. Scalable and flexible framework: The research illustrates the use of a CNN-based
pre-trained model on the federated learning framework that is highly scalable towards
the multiple types of medical images, and provides a robust and enhanced solution
for medical image detection.

6. Economic influence: Research will bring important changes to ease the economic
impact, such as early detection. It will ultimately bring about early disease detection,
saving costs and resources in the medical industry.

7. Global extent and convenience: Using the FL framework as in the proposed research
will ensure data privacy, allowing data from diverse sources to enhance machine
learning models’ learning capability.

It can be seen from the significance of the proposed research work that the industrial
implications are massive. It reflects the current situation in the medical field and the future
scope that will allow medical institutes to collaborate in a single platform for improved
diagnoses and early treatment. The research will also bring academic institutes together to
develop an innovative solution to medical image detection by collaborating with the image
data of the medical center in a privacy-preserving manner.

1.4. Contribution to Knowledge

Our research contribution involves the use of a hybrid approach of the federated
learning framework and CNN-based pre-trained models of DenseNet and ResNet-50 for
malaria image detection. It involves the mutual collaboration of hospitals and medical
institutes, while sharing data in a privacy-preserving manner. The novelty of this research
work reflects the approach of data sharing while following GDPR rules.

1.5. Paper Organisation

This article constitutes an introduction part, followed up with the literature review
where we have critically reviewed various state-of-the-art literature. After the literature
review, follows the methodology that includes research model design, and configuration of
models in federated learning architecture. It further includes data gathering and exploratory
data analysis (EDA). After the research model design, it includes malaria experiment and
results in four, six and eight client settings. It further involves the section of significance
test, followed up with the conclusion and references.

2. Literature Review

This section demonstrates the different state-of-the-art techniques that are used for
medical image detection. We have critically analysed the previous work and highlighted
the limitations as well as reasons for the selection of CNN-based models.

Researchers have used the CNN pre-trained model of ResNet-50 for the detection of
the diabetic retinopathy, which is the major cause of blindness in diabetic patients [11]. The
researchers followed the optimal steps for image pre-processing and augmentation. In the
experiment, dataset of 3762 images was used, among them 1855 were healthy ones and
1907 were infected from the Eyepacs. The authors have compared the work with the other
state-of-the-art literature and found that the performance of the ResNet-50 is effective when
the image pre-processing is enhanced, as the model performance can vary depending on



Bioengineering 2024, 11, 340 4 of 23

the input images. In the machine learning context, with regards to the image detection, the
author has demonstrated the outcome of the experiments while achieving the accuracy of
0.9802 in the binary classification. It gives a clear view of using the dataset giving better
augmentation and data cleaning, to let the model perform effectively.

Another experiment was performed while comparing the model of ResNet-50 and
VGG16 for the detection of the COVID-19 [12]. In the experiment, the dataset of “COVID-
19 Radiography Database” was used that was obtained from the Kaggle. The dataset
constitutes of the images over 10 k, among them 3600 were infected. After performing the
data cleaning and data pre-processing, the authors have individually used the ResNet-50
and VGG16 model. The results of the experiments have demonstrated that the performance
of ResNet-50 stands out in contrast to the VGG16. The achieved accuracy on the experiment
for ResNet-5050 was 88% while, on the other hand, the achieved accuracy for the VGG16
was 85% for the detection of the COVID-19. In the same experiment, the precision achieved
was 100% for ResNet-50, and 84% for the VGG network. The authors have suggested
that the overall accuracy of the model performance can be enhanced while using the
hyperparameter tunning.

Research was conducted while using the ResNet-50 model on the COVID-19 dataset [13].
The CT scan images were used for the experiment. The dataset constituting over 5 K CT
scan images was utilised. The researchers realised that the quite larger number of datasets
was similar to the pre-training dataset, therefore the CNN-based models can be less effective.
To cope with this challenge, researchers were urged to perform fine tuning of the model
on the training dataset to enhance the performance of the model and also reduce the time
consumption of the model training. While using the same optimiser, the authors achieved
the accuracy of 88% on the normal CNN model with the default tuning, however, when the
authors used the similar optimiser on the tuned CNN model, the accuracy went up by 6%,
which is 94%. The experiment performed by the authors clearly distinguishes the use of
different hyperparameter tuning to effectively increase the model accuracy for the disease
prediction and also improve the time consumption. As per our proposed model for using
the real-time data, where the amount of data and time required to train the model will be
challenging, it is important to define the model into a state of fine tuning to obtain the best
possible outcome.

The researchers have proposed the use of an enhanced method for tuberculosis (TB)
detection from the CXR while using the DenseNet model [14]. The experiment was
performed while using the wider framework of the DenseNet (WDnet), which was based on
the Convolutional Block Attention Module (CBAM). In the experiment, a dataset was used
from multiple repositories and then combined together. The combination of the repositories
has produced images up to 5 k. Among the image dataset, 1094 were classed as infected
images while the remaining were classed as normal. While comparing the model with other
literature, the researchers demonstrated the evaluation of the experiments by producing the
accuracy of 98.80%. This research has highlighted the use of different epochs to understand
the best possible outcome of the experiment for medical image detection.

The study was conducted to highlight the importance of using a deep learning approach
for effective medical image detection [15]. In the literature, authors have analysed the
different machine learning models for medical image classification and used the benchmark
CT scan dataset to compare the results. The authors have raised the concern of challenges
in using the deep learning model for training the dataset. Also, it has been mentioned in
the research that the new dataset for the pre-trained model could be complex, therefore
it is important we understand what is lacking, and use the effective approach to obtain
the least false positive or negative results. This research gives us an understanding of
using the deep learning model for larger amount of datasets to understand the maximum
number of patterns in the data, especially in the medical images. Our proposed solution of
using the real-time data in the federated learning framework gives a clear way forward to
utilise the constant stream of data from different hospitals and medical institutions, that
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would eventually help to make deep learning models more capable of recognising different
diseases and effective classification accuracy.

The experiment was conducted to analyse the performance of the neural network
in the detection of SARS-CoV-2 virus [16]. The research was performed while using
the CNN model of VGG-16, VGG-19, ResNet 50, Inception v3, DenseNet, XceptionNet,
and MobileNet v2. The dataset used in the experiment consists of 1252 COVID and
1229 Non-COVID CT scan images. While comparing the different CNN models, the authors
defined the use of proposed CNN model that has produced the accuracy of 92%. The main
idea of the research was to identify the different model performance, do the alteration
on the CNN pre-trained model and produce the customised CNN approach for effective
classification. The results of the experiment have been demonstrated in the paper that gives
the clear picture of the use of customised CNN model. Although the customised CNN
approach has produced the classification of the SARS-CoV-2 virus, the proposed model
of the authors could be challenging when followed up with the higher number of images.
The current experiment demonstrates the limited number of images. While considering
our proposed method of using the real-time data in the federated learning framework, it
possesses limitations, the idea is to use the model that is pre-trained and scalable. The
authors’ given experiment is effective in the limited number of datasets, however higher
numbers can adversely impact the performance of the model.

In another experiment [17], the researchers performed experiments for the detection
of the pneumonia disease while using the ResNet. In the experiment, authors have used
the different version of the ResNet to compare the results. The researchers have used the
optimised attention mechanism to enhance the performance of the model that includes
better extract of channel and spatial feature from the features map. The publicly available
dataset was used for the experiment comprises 5800 images, among which 3875 were
infected with pneumonia, while others were normal images, i.e., 1341. The researchers have
used the Convolutional Block Attention Module (CBAM) with the ResNet models which
has resulted in the overall effectiveness of disease detection. The epoch of 30 was used in
the experiment. While using the attention mechanism, ResNet50, resnet101 and resnet152
have produced accuracies of 90%, 92%, and 94%, respectively, while those taken by each
epoch are 22 s, 21 s and 28 s. The result demonstrates that, although the performance
of the resnet152 with the attention mechanism performs well in terms of accuracy, time
consumption on the other hand has been increased, while ResNet-50 has slightly less
accuracy in contrast, the time consumption on each epoch is less. This experiment gives us
an understanding of using a model that is capable of producing effective classification on
detection of the disease and the least possible time of each epoch. While considering the
larger dataset, as in case of real-time, the time element plays an essential role as a higher
training time can adversely impact the overall architecture.

An experiment was performed on the classification of malaria cells by using the
deep learning methods [18]. The authors have conducted the experiment by using the
CNN model of Alexnet, ResNet-50, DenseNet201, vgg19, GoggleNet and Inception 3. In
the experimental setup, the authors have used filtration techniques that include medium
filter and gauss filter. The highest accuracy of 97.83% was achieved on the DenseNet201
gauss filter settings. Although the use of gauss filter has increased the overall accuracy,
gaussian filtering can blur the images which ultimately results in the loss of essential
image details including edges, which causes ineffective classification. It is also one of
the processor-intensive techniques that would be effectively suitable for deploying in the
federated learning environment.

Another interesting experiment was performed that has demonstrated the performance
of aggregated deep learning models that includes ResNet-34, VGG-19, DenseNet-121, and
DenseNet-161 [19]. The experiment was conducted on the detection of knee osteoarthritis.
The dataset used in the experiment was available publicly on Kaggle, and constituted
9786 images in total, which were classed into four different grades. The experiment was
conducted individually on the models as well as the with the ensemble approach. The
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proposed ensemble approach has produced an accuracy of 98%. The authors have used
the fine-tuned model to ensemble and evaluate the results. Although, authors have used
the effective approach of ensemble for the detection of knee osteoarthritis. The limitation
involves the model overfitting issues where different models have their own capabilities to
input and process the data. It is important to ensure that model performance is maintained
by feeding with the different quantity and variety of the dataset as in the case of a real-time
stream of data.

The research [20] was carried out using block chain technology in a federated learning
environment. In the proposed study, a novel approach of weight modification was used
to train local models from different data sources. The concept of federated learning
falls under single point failure; therefore, to cope up with this challenge researchers
have used the blockchain in collaboration, which involves the training of the dataset
from the different sources based on nodes and ledgers. As utilising the blockchain is
immutable, the history of all events is preserved. In the multi-disease classification, the
researchers have achieved an accuracy of 88.10%. The experiment has demonstrated the
use of federated learning in conjunction with blockchain technology for medical image
classification; however, the use of blockchain ledger in the federated learning architecture
slows the process of training the model and aggregating at the central server. Therefore,
in real time, to effectively use the federated learning architecture, the collaboration of
blockchain technology possesses limitations. Our proposed study is based on utilising the
solely federated learning architecture and adjusting hyperparameters as well as adding an
optimiser to effective medical image classification.

According to the research, there are quite limited data available to study the implications
of federated learning [21]. Several experimental studies have been performed during the
COVID-19 pandemic while using the framework of horizontal federated learning [22–24].
The authors have highlighted the necessity of using the decentralized framework. It was
analyzed that due to new pandemic breakout, data are not sufficient to train the local
medical institutes without collaboration. The technique of FL has provided the benefit of
using data from different hospitals where the uneven concentration of COVID-19 X-rays can
be equally used for all participants. Other research has highlighted the importance of using
federated learning in cancer detection [25]. The researchers have significantly contributed
towards using the decentralized framework effectively, while ensuring data privacy. The
study clearly highlights the importance of federated learning in distinct diseases. Our
research is inspired by the significance of using the FL framework for medical disease
detection.

An experiment was conducted by using the federated transfer learning framework
that involves the training of the model among distinct clients that share similar data
distribution [26]. Researchers have used this concept to aggregate the class specialty of
one client and transferred it to the other clients by mutual collaboration. The proposed
framework constitutes clustering mechanisms for higher model efficiency. Another research
was conducted by the researchers using the transfer federated learning framework for
credit scoring [4]. The experiment was conducted on five distinct datasets and it has been
demonstrated an effective approach for credit scoring. Although transfer federated learning
has many advantages over the several domains including credit card fraud detection, the
process can be biased as it can cause data distribution mismatch and complexity overheads.

We have considered the use of DenseNet and ResNet models on the federated learning
architecture as these are the state-of-the-art algorithms used in the image classification
as observed in the above literature analysis. The architecture of these models allows
the learning of complex image patterns, as in the case of medical images. The skipping
connections among the layers in ResNet and interconnected block of DenseNet make
these models ideal for learning the data patterns that are not identical among the different
clients as in the case of federated learning. The capabilities of transfer learning, as well as
performance efficiency in terms of scaling, make ResNet and DenseNet models an effective
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choice for medical image classification on the real time data. Table 1 shows the brief
overview of different literature analyses with respect to our contribution to the knowledge.

Table 1. Literature review analysis in contrast to the proposed method.

References Disease Algorithm Accuracy Dataset Size Pros Cons

[11] Diabetic
Retinopathy ResNet-50 98% 3762 images

ResNet-50 is effective when
the image pre-processing is

enhanced as the model
performance can vary

depending on the input
images.

The performance of this
algorithm is not further

explored in larger datasets.

[12] COVID-19 ResNet-50 and
VGG16

ResNet50 was
88%

VGG16 was 85%
10 k Effective classification

considering both algorithms.

Data is imbalanced. In case
of ResNet-50 precision is
100% while for VGG16

its 85%

[13] COVID-19 ResNet-50 88% to 94% 5 K CT scan

Authors have clearly
distinguish the use of

different hyperparameter
tuning to effectively increase
the model accuracy for the

disease prediction

Limited dataset size. Hyper
tuning could be enhanced

with use of some optimizer.

[14] Tuberculosis (TB) DenseNet 98.8% 5 K

This research has highlighted
the use of different epochs to
understand the best possible
outcome of the experiment for

medical image detection.

Dataset is highly imbalance
between the normal and

infected images.

[16] SARS-CoV-2 customised CNN
model 92% 2481 CT scan

The customised CNN
approach has produced in the

classification of the
SARS-CoV-2 virus

Limited dataset size.
Higher number can

adversely impact on the
performance of the model.

[17] Pneumonia ResNet-50 90% 5800 images

The performance of the
ResNet-50 with the attention
mechanism performs well in

terms of accuracy

Higher time consumption
in training dataset

[18] Malaria CNN models 97.83% for
DenseNet-201 6730 images The use of gauss filter has

increased the overall accuracy

Processor intensive.
Gaussian filtering can blur

the images which
ultimately results in the
loss of essential image
details including edges
which causes ineffective

classification.

[19] Knee
Osteoarthritis CNN models 98% 9786 images

Effective approach of
ensemble for the detection of

knee osteoarthritis.

Model overfitting issues
where the different models
have their own capabilities

to input and process
the data.

Our
contribution

Malaria
(4 clients)

ResNet-50
DenseNet

ResNet-50 =
94.86%

DenseNet =
94.63%

27 k images

Privacy preserving approach
of using dataset from different
clients while following GDPR

with enhanced accuracy in
detection of malaria disease.

Legal regulation of
deploying this architecture

in the real-time could be
challenging as it requires

standard operating
procedures. The reliance on
image annotation from the
medical experts can make

this process slower.

Our
contribution

Malaria
(6 clients)

ResNet-50
DenseNet

ResNet-50 =
72.50%

DenseNet =
92.13%

27 k images

Privacy preserving approach
of using dataset from different
clients while following GDPR

with enhanced accuracy in
detection of malaria disease.

Legal regulation of
deploying this architecture

in the real-time could be
challenging as it requires

standard operating
procedures. The reliance on
image annotation from the
medical experts can make

this process slower.

Our
contribution

Malaria
(8 clients)

ResNet-50
DenseNet

ResNet-50 =
72.50%

DenseNet =
75.04%

27 k images

Privacy preserving approach
of using dataset from different
clients while following GDPR

with enhanced accuracy in
detection of malaria disease.

Legal regulation of
deploying this architecture

in the real-time could be
challenging as it requires

standard operating
procedures. The reliance on
image annotation from the
medical experts can make

this process slower.
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3. Methodology
3.1. Research Model Design

The conventional system adopted by medical institutions and hospitals abides by data
protection and privacy laws. This is why data are not shared with other institutions or any
third party due to GDPR. Therefore, in our FL framework, data privacy is ensured while
model training is performed in multiple medical institutes and hospitals without sharing
data. In medical image detection, this approach is effective as it helps train the ML model
from various medical centers. In this way, a significant amount of heterogeneous real-time
data is used, which ultimately helps the ML model for effective training. The framework
of using FL with the CNN-based pre-trained models is selected based on previous work
on medical image detection. As mentioned in the literature review, the performance of
the ML model is enhanced if the model is trained with a larger amount of data. In other
words, fewer data produces ineffective performance in ML model training and vice versa.
Therefore, a collaborative way of using the dataset’s multiple sources is required, which
can be possible with mutual collaboration. In this way, the model learns the patterns of
the image data and helps to form an effective model for detecting diseases from pool of
datasets. Figure 1 illustrates our research model design as follows:
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Figure 1. Proposed framework showing the hybrid architecture constitute of CNN based pre-trained
model in federated learning. “Local device*”, where “*” shows the device 2 and device 3.

As elaborated in the Figure 1, our research workflow follows the data collection. The
collected dataset was pre-processed by resizing and removing any irregularities. Once the
data are pre-processed, they are split into training, validation, and testing with a ratio of
70%, 20%, and 10%, respectively. The training dataset is used for applying the machine
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learning model after processing which is sent across the participants for model training
in the aforementioned federated learning framework. Once the model is locally trained
on the local devices, the individual trained model is shared with the FL server (central
server), forming an updated model after aggregation. Secure aggregation is in place in this
model design to ensure the security of the trained model. The performance of the model is
evaluated with the validation and testing data set. Training the ML model on the individual
devices and the FL server is an iterative process to obtain more updates and correspondence
from the dataset on the client side. As our research framework is based on FL, let us explore
the fundamental concepts behind FL. In the federated learning architecture, the merging
algorithm used for the model updates from the distinct client is known as the federated
averaging (FedAvg) [27].

We have used FL architecture in our research to demonstrate the privacy-preserving
approach that allows for mutual collaboration between hospitals and medical institutions.
A standard approach is required to be agreed by participating parties and includes the
model framework, loss, and activation functions. In general, the FL architecture can be
illustrated as follows [28]:

min
w∈Rd
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To understand the architecture of FL, let us take hospitals ‘C’ comprising the dataset
‘Di = nc’, ‘n’ shows the quantity of data, and the FL architecture in the individual hospital
can be illustrated as follows [21]:
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The FL global server inputs the model that consists of different parameters for medical
image detection. During the individual cycle with the global server, random participants
are considered, then generate the one-to-one link with the server. The local participant
downloads the model from the local server that calculates the average gradient based
on the loss ‘fc’ which can be demonstrated based on the weight ‘wt’ that constitutes the
learning rate ‘η’. In this way, the local participant keeps updating and at the same time
keeps updating the central server. The aggregated model receiving the updates from the
participants can be calculated as follows [28]:

wt+1 ← wt − η∇l(x, y; w)

wt+1 ← wt − η
∑C

c=1
nc
n ∇Lc(xc, yc; w)

(3)

wt+1 ← wt − η
nc

n
fc (4)

For every hospital c, wc
t+1 ← wt − η fc , then

wt+1 ← wt −
∑C

c=1

nc

n
wc

t+1 (5)

The various sizes of the dataset at each round help to improve the model learning
capability in terms of detection wc

t+1, which can be quite useful for the skewed dataset and
can be illustrated in the following equation [21]:

wt+1 ← wt −
∑C

c=1

nc

n
αc

t+1wc
t+1 (6)

The concept of increasing the weight parameter can result in better performance. The
averaging of the weight from the distinct client tends to improve the learning capabilities
of the model for image detection.
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3.2. Configuration of Models in Federated Learning

In the configuration setting of our models in the federated learning framework, we have
used ‘return_df()’ function that is capable of processing the ‘.png’ images file directories
based on distinct datasets and spread equally across the participating clients, i.e., client
4, 6 and 8. The individual file ‘.png’ keeps track of the file location. The return function
is capable of performing an equal distribution of available data labels to the clients. For
example, if we have five clients and 100 images, then the return function will ensure the
distribution of 20 images to individual clients.

In our setting, we have also used custom data loader, which is efficient as it avoids
loading the full dataset in RAM and instead loads on demand basis. This is an effective
approach, especially on larger datasets. While using the data loading function, i.e.,
‘return_dataloader()’, the data loader object is outputted in Figure 2:
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8. TrainLoader: It is the type of data loader that determines the training section of the
dataset. It is quite useful in iterating the transformed images, as well as in iterating the
labels over the batches. Variability is also ensured, as it is involved in the reshuffling
of the training data prior to every epoch.

9. valLoader: It shows the validation section of the dataset. Data iteration takes place
over batches on validation images, as well as labels. It is not involved in the data
reshuffling; therefore, the order stays intact throughout the epochs.

10. testLoader: It is the type of data loader that demonstrates the test part of the dataset.
The data iteration takes place over the batched over the test images as well as labels.
Unlike TrainLoader, it is not involved in data reshuffling.

Data loaders are dependant on the percentage allocated for the training, validation,
and the testing data. In general, data loaders are quite efficient in memory consumption
and can be effectively used in the training validation and testing stages of ML models. It
eventually helps to make the data ready for PyTorch-based models.

We have also used the ‘train_model()’ function, which is involved in the following stages:

11. Initialise the variable and list: The initial step involved in the tracking of the model
state, validation loss, and the accuracy for the individual epoch.

12. Epoch loops: The train model function also loops over a certain number of epochs.
13. Phase loops: The function also performs the loops over the training as well as the

validation stage of individual epochs.
14. Set Models Mode: The function also keeps the mode to ‘train’ if the model is in training

mode. In this way, certain features including dropout as well as batch normalisation
are activated. Similarly, during the validation stage, these parameters are disabled.

15. Batch loops: The function also loops with the data batches.
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16. Forward pass: The function transfers the input label to the corresponding device via
model and performs loss calculation.

17. Backward pass and optimisation: When using the train model function, if the training
is zero, then the gradient of the model is calculated by using the optimisers also known
as backward pass.

18. Statistics calculation: In the train_model function, the prediction is calculated, and the
model run loss as well as accuracy is updated.

19. Epoch Statistic Calculation: During the training phase, by the end of every epoch,
the loss and accuracy are calculated by the end of every epoch. While in the vase
of validation stage, the precision, accuracy, F1-score is calculated while showing the
confusion matrix.

Several numbers of iterations are performed by using the while loop. The ‘while loop’
in general is involved in higher number of continuous iterations, however, in our case, it
runs at one time based on the rounds:

• In our case, we have used clients 4, 6 and 8 to train the model individually on the
clients while using the ‘train_model’ function, and in this way, model accuracy and
loss are given out.

• The weights from the individual clients are kept in ‘w_local’ lists, similarly, the accuracy
and loss of the model are kept on their respective lists.

• In the federated learning framework, the ‘fed_avg’ function is used to take the average
weight of all models to form the global model.

• The mean loss and accuracy are also calculated on the participants.
• The mean average of all the weights is referred back towards the model on individual

devices. It allows every client to receive the similar model update.
• The weight average of the models is stored as the ‘fed_model_client’.
• The output is displayed with the round phase, loss, as well as the accuracy.
• Alterations in ‘validation_loss’ as well as accuracy from the last round are displayed too.

In this configuration setup of federated learning, we have demonstrated that ML
models are locally trained on participating clients, the weight of individual clients is
aggregated to form a global model which is shared acres the clients. In this approach, data
stay local to client, and only the weight average model is shared to central server. In these
data, data privacy is retained.

20. Return best model: Once all corresponding epoch rounds are accomplished, the one
with the least validation loss loads up the model.

At every epoch, initially the model is trained with the training dataset, and once the
training is done, the model performance is observed with the validation data. The confusion
matrix including the accuracy and loss function is demonstrated at each stage to understand
the performance of the model. Once all the epochs are completed, the function determines
the epoch with the least validation loss, which ultimately selects the corresponding model
state. It is a quite useful method that helps us to understand the state of the model in terms
of its best performance.

The overall methodology illustrates the different steps from data gathering to ex-
ploratory data analysis. Once the pre-processing is completed, data are training over
the distinct number of clients in a federated learning environment. Once the data are
training, the trained model is aggregated together in central server which also reflects our
contribution where the data is not shared to central server, only the trained model is sent
across keeping the data privacy. The next section is followed up with data gathering.

3.3. Data Gathering

The mobile application was designed by Lister Hill National Center for Biomedical
Communication, known as “malaria screener”, and was designed specifically for individuals
who work with microscopes but don’t have massive resources. The mobile application
was linked to the microscope, where the camera was used to capture pictures. The malaria
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pictures were marked by professionals from the Mahidol Oxford Tropical Research Institute,
which is based in Bangkok, Thailand. The data set comprises 27,560 images which contain
those both infected and unaffected [29]. The data set was gathered from the different
locations based on the types of malaria as follows:

21. Malaria falciparum blood samples were taken from 150 patients at the Chittaging
Medical College Hospital, Bangladesh.

22. The vivax malaria samples were taken from the same location as above from 150 patients,
and also 50 from healthy individuals.

23. Malaria samples from falciparum were also taken from a similar location in Bangladesh:
148 patients and 45 healthy individuals.

24. Vibrax samples, which is another form of malaria, were also taken from Bangkok,
Thailand, from 171 patients.

25. In addition, blood cell samples of falciparum malaria were collected from Bangladesh,
from 150 patients and others from 50 healthy individuals.

We have used the malaria dataset for several reasons, some of the main reasons are
as follows:

26. Real-time data, non-synthetic: In the experiments, synthetic data can be quite useful
for training the ML models, however, the lab-based model has a limitation to real-time
complexity and variance of the disease. The data collected from the real-time provide
stronger robust and efficient data for training the models. As in our experiments,
we are targeting the real-time data; therefore, the given dataset is collected from the
patients in real time, which helps model generalisation.

27. Geographical relevancy: Another significant impact of using this dataset involves its
correspondence with the geographic relevance where malaria is the serious health issue,
i.e., in Bangladesh and Thailand. The geographic location of the data helps to make
the effective model prediction based on the provided data. The model customisation
facility based on geographic location can help achieve higher performance. Similarly,
it assists in nonspecific regions for malaria detection as well.

28. Reliable dataset: Another important aspect of using these data is the reliability, as the
data have been collected from the endorsed hospitals that maintain the standards.
Therefore, higher reliability is essential for better model performance.

29. Diverse images: The diverse malaria image collection helps to understand the
variations of the causing parasites, which ultimately helps to train the ML model
effectively.

30. Significant global impact: Malaria is one of the serious diseases that affect millions of
individuals each year, with major health consequences. Therefore, the reflection of
malaria disease constitutes the main global consideration.

The selection of the malaria dataset fulfils our goal of diagnosing the disease that has a
significant impact globally. The work done in the field will help to improve public health
and avoid the maximum serious consequences of the disease.

3.4. Exploratory Data Analysis (EDA)

To perform the EDA, we have randomly selected the training dataset to visualise the
data diversity. We have taken 15 images individually from the training dataset and the
validation dataset with their own labels. The visualisation of the training dataset has helped
us to understand the data, while observing its performance during the validation stage. We
have divided the dataset for training, validation and testing in the ratio of 70%, 20%, and
10%, respectively. The EDA on the malaria dataset is quite important as it helped to ensure
the correct labels on the images, and it also aids in understanding the data variation and
complexities, so the models can be adjusted accordingly while training.
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3.4.1. Number of Available Datasets

The individual dataset that is available on the training and validation dataset is 13,780.
The count of dataset, based on the infected and unaffected, can be visualized in Figure 3:
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Figure 3. Malaria dataset distribution.

The total count of 27,560 images is available when combining the training and validation
datasets. The large number of images helps our models to perform an effective training
from the variety of images. The balance of the dataset helps to achieve better model training
that is essential for correct disease prediction.

3.4.2. How Parasitised and Nonparasitised Cells Look

When observing the malaria dataset, the main element that makes the difference
between the two classes is the ‘dots’ that are visible in the parasitised (infected) class. The
dots are actually the malaria parasite. The parasite that causes malaria is known as the
plasmodium, which directly targets red blood cells of the body. Under the microscope, the
infected part of the cell is seen as small dots.

In our dataset, we can see the ‘ting dots’ that are represented in the pink color as
the parasite in the cells, which is one of the visual sides of detecting malaria. The tiny
dots also make a good difference between the healthy cells, in contrast to those affected
by the malaria parasite. Healthy cells lack these dots that make up non-malaria cells. The
difference between healthy cells and malaria cells can be identified in Figure 4 as follows
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DenseNet, to learn the patterns from the cells. Therefore, the ML models classify cells with the
presence of dots as parasitised and those without dots as uninfected.

3.5. Data Preparation

Data preparation is an initial step to prepare the data for machine learning modelling.
Therefore, the images must be changed in the form and shape that the computer could
understand. The following are the steps involved in our data preparation.

• The initial stage involves reading the images from the directory.
• Decoding of the image content that involves converting into grid form as RGB.
• Conversion of images into float point tensor.
• Rescaling the tensors into the form that allows the scale range from 0 and 255 to be 0 s

and 1 s as the CNN models takes in the smaller inputs.

We have performed the above steps using the TensorFlow tool known as the Im-
ageDataGenerator. It helps to form the images in the required form for CNN models.
The sampling of images also takes place with a similar tool. Afterwards, we used the
technique known as the flow-from-directory, which helps to input the images, adjust the
value, and rescale the size of the images. The significance of data pre-processing involves
the conversion of images into the shape and size so that it can be compatible to effectively
perform on the CNN-based pre-trained models of DenseNet and ResNet-50.
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3.6. Visualize the Training Images

We have taken 15 random images from the training dataset, as well as from the
validation dataset, which can be visualised in Figures 5 and 6 with respect to their labels:
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In terms of performance of model towards the unseen data, let us consider the test
data performance analysis with critical discussion:

31. Accuracy: (TP + TN)/(TP + FP + FN + TN)

With the overall correct malaria predictions out of all predictions, the accuracy can be
calculated as follows:

• DenseNet: (1276 + 1353)/(1276 + 1353 + 39 + 84) = 0.9463 or 94.63%
• ResNet-50: (1254 + 1366)/(1254 + 1366 + 26 + 106) = 0.9486 or 94.86%

ResNet-50 has slightly higher accuracy than DenseNet.

32. Precision: TP/(TP + FP)

It shows the accuracy of the positive prediction of malaria and can be observed in the
following equation:

• DenseNet: 1276/(1276 + 39) = 0.9703 or 97.03%
• ResNet-50: 1254/(1254 + 26) = 0.9796 or 97.96%

ResNet-50 has slightly higher precision.
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33. Recall (sensitivity): TP/(TP + FN)

It involves the fraction of positive predictions which is correctly determined:

• DenseNet: 1276/(1276 + 84) = 0.9382 or 93.82%
• ResNet-50: 1254/(1254 + 106) = 0.9220 or 92.20%

DenseNet has slightly higher recall.

34. Specificity: TN/(TN + FP)

It involves the fractions of negative prediction that are correctly determined:

• DenseNet: 1353/(1353 + 39) = 0.9720 or 97.20%
• ResNet-50: 1366/(1366 + 26) = 0.9813 or 98.13%

ResNet has higher specificity.

35. F1 Score: 2 × (Precision × Recall)/(Precision + Recall)

The weighted average of precision and recall of both models can be calculated as
follows:

• DenseNet: 2 × (0.9703 × 0.9382)/(0.9703 + 0.9382) = 0.9540 or 95.40%
• ResNet-50: 2 × (0.9796 × 0.9220)/(0.9796 + 0.9220) = 0.9501 or 95.01%

DenseNet has a slightly higher F1 score.
The evaluation metric of the above results can be illustrated in the Table 2:

Table 2. Evaluation metrics based on 4 clients.

Accuracy Precision Recall F1 Score Specificity

ResNet-50 96.63% 97.96% 92.20% 95.01% 98.13%
DenseNet 94.86% 97.03% 93.82% 95.40% 97.20%

It can be observed from the above analysis that DenseNet has higher recall as well as
F1-score, however, ResNet-50 stands out with its accuracy, precision, and specificity.

To determine the selection of model based on the above results, it depends on the use
case in any given situation. In this case, if we need to decrease false negative values, for
example to classify if someone who does not have malaria actually has it, the selection of
DenseNet is preferred, as it has a higher recall rate. In the other case, if we need to reduce
false positive values, in other words, if the model tells someone they have malaria, however
in reality they do not, then ResNet-50 could be a better option due to better precision and
specificity. ResNet-50 is also leads slightly in accuracy. The following trend can be observed
in Figures 8 and 9 considering the train/validation loss on device 1, 2, 3, and 4 (malaria
dataset—4 clients) DenseNet and ResNet:

It is worthwhile to understand the importance of model selection based on the metric;
however, the selection mostly relies on the use case scenario. In real life, it is good to have a
model with few false positive values (including some further testing), instead of missing
true positive results that can prevent treatment. Therefore, in this case, the model with
higher recall rate should be prioritised.
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4.2. FL_DenseNet and FL_ResNet-50 (6 Clients)

The following confusion matrix is achieved by using 6 clients in the malaria dataset:

36. Accuracy:

• DenseNet: (688 + 1272)/(688 + 0 + 168 + 1272) = 0.9213 (92.13%)
• ResNet-50: (666 + 1269)/(666 + 3 + 703 + 1269) = 0.7250 (72.50%)
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37. Precision:

• DenseNet: 688/(688 + 0) = 1 (100%)
• ResNet-50: 666/(666 + 3) = 0.9955 (99.55%)

38. Recall:

• DenseNet: 688/(688 + 168) = 0.8037 (80.37%)
• ResNet-50: 666/(666 + 703) = 0.4864 (48.64%)

39. F1-score:

• DenseNet: 2 × (1 × 0.8037)/(1 + 0.8037) = 0.8911 (89.11%)
• ResNet-50: 2 × (0.9955 × 0.4864)/(0.9955 + 0.4864) = 0.6530 (65.30%)

40. Specificity:

• DenseNet: 1272/(1272 + 0) = 1 (100%)
• ResNet-50: 1269/(1269 + 3) = 0.9976 (99.76%)

The evaluation metric of the above results can be illustrated in Table 3:

Table 3. Evaluation metrics based on 6 clients.

Accuracy Precision Recall F1 Score Specificity

ResNet-50 72.50% 99.55% 48.64% 65.30% 100.00%
DenseNet 92.13% 100.00% 80.37% 89.11% 97.20%

The above results show the better performance of DenseNet in contrast to ResNet-50
while comparing accuracy, recall, f1-score and specificity. ResNet-50 also constitutes less
precision, while the difference is quite minor. The overall comparison shows that there
are less false negative and non-false positive in contrast. The detailed analysis shows
that the DenseNet model stands out in terms of malaria classification; however, it is also
important to understand the certain requirement of the use case. In the case where higher
false positives are required, the use of DenseNet could be a good choice, as it constitutes
higher precision. Overall, DenseNet performed well in the malaria case study which can be
observed in Figure 10 as follows:
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4.3. FL_DenseNet and FL_ResNet-50 (8 Clients)

We have evaluated the models’ performance based on the following matrix:

41. Accuracy:
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• DenseNet: (1308 + 712)/(1308 + 552 + 68 + 712) = 0.7504 (75.04%)
• ResNet-50: (666 + 1269)/(666 + 3 + 703 + 1269) = 0.7250 (72.50%)

The accuracy result shows that the DenseNet performs well in accuracy as compared
to DenseNet demonstrating the fewer errors. On the other case, the only accuracy is not
enough to justify the model performance in the case where the rate of false positive is
massively different from that of false negative.

42. Precision:

• DenseNet: 1308/(1308 + 552) = 0.7033 (70.33%)
• ResNet-50: 666/(666 + 3) = 0.9955 (99.55%)

In the consideration where the cost of false positive is higher, which means the
prediction of malaria disease while its reality is not, then ResNet-50 is the best choice.

43. Recall (sensitivity):

• DenseNet: 1308/(1308 + 68) = 0.9506 (95.06%)
• ResNet-50: 666/(666 + 703) = 0.4864 (48.64%)

In the case where it is necessary to determine the actual malaria case while risking the
false alarm, the DenseNet model is effective due to the higher recall value. The use of a
recall matrix could be ideal in the health care sector where disease identification is crucial.

44. F1-Score:

• DenseNet: 2 × (0.7033 × 0.9506)/(0.7033 + 0.9506) = 0.8087 (80.87%)
• ResNet-50: 2 × (0.9955 × 0.4864)/(0.9955 + 0.4864) = 0.6530 (65.30%)

Determines the relationship between precision and recall values. In other words,
f1-score plays an essential role where the false positive as well as the false negative are of
equal importance. In our case, the DenseNet model is the best selection for f1-score.

45. Specificity (True Negative Rate):

• DenseNet: 712/(712 + 552) = 0.5635 (56.35%)
• ResNet-50: 1269/(1269 + 3) = 0.9976 (99.76%)

The evaluation metric of the above results can be illustrated in the Table 4:

Table 4. Evaluation metrics based on 8 clients.

Accuracy Precision Recall F1 Score Specificity

ResNet-50 72.50% 99.55% 48.64% 65.30% 99.76%
DenseNet 75.04% 70.33% 95.06% 80.87% 56.35%

Figure 11 is the graphical illustration with eight clients on DenseNet:
Specificity is quite useful in the cases where it is required to determine the negative

cases that do not constitute malaria. In our case, ResNet-50 performs a higher specificity
score, which is useful in the situation where it requires one to avoid unnecessary treatment.
Figure 12 shows the confusion metrix based on 8 clients.
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4.4. Significance Test

The t-test suggests whether the difference between the methods really makes the
difference based on the critical differences, or whether it is just a coincidence [30]. Therefore,
we have used our CNN models along with FL to conduct pairwise tests. The p-value reflects
whether the difference between the models is larger, in case if the values go lower than 5%,
it will result in rejection. The p-test conducted on the CNN models individually on the FL
framework reflects the performance based on each model. In other words, the t-test shows
the mean difference of the chosen parameter between the two models. The positive t-values
indicate whether the first group have any differences with the second group and negative
values reflect that the second group has major differences with the first one. Similarly, the
p-value, as in our case, is standard scale of 0.05, so if the results are below this value it
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indicates the significant difference between the models. The following Table 5 shows the
t-stats and p-values of our results:

Table 5. T-stats and p-values of different models on malaria dataset.

Metrics Model Name T-Stats p-Value

Accuracy FL_DENSENET And FL RESNET-50 11.45726 0

Precision FL_DENSENET And FL RESNET-50 −0.09118 0.92746

Re-call FL_DENSENET And FL RESNET-50 0.09637 0.92335

F1-Score FL_DENSENET And FL RESNET-50 0.25665 0.79778

5. Discussion

The performance of the model’s comparison using the four clients shows that the
DenseNet constitutes higher recall as well as F1-score while on the other hand, ResNet-50
shows higher accuracy, precision and specificity. If we observe the performance of the
models under six clients, it can be seen that the ResNet-50 shows less precision, however
the difference is minor. It can be observed that the performance of the DenseNet stands out
in classification. Depending on the type of use in cases, both models play an essential role in
malaria image detection as well as classification. While performing the experiments under
eight clients, it was observed that the DenseNet performed quite well in classification, in
contrast to ResNet-50.

Based on the models’ performance, the following situations can be taken into account:

• In the case where it is necessary to determine actual malaria disease as much as
possible, DenseNet is preferred due to higher recall.

• In the case where it is required to determine actual malaria disease, and in reality, it is
malaria, then ResNet-50 is preferred due to its higher precision.

• In the case where it is required to determine the balancing among the false positive as
well as false negative, then DenseNet performs well due to higher recall.

• In the case where it is required to correctly determine the negative cases, that is,
no-malaria, ResNet-50 performs well due to its effective specificity results.

In overall experiments, it was observed that the classification accuracy reduced as the
number of clients are increased. One of the reasons for this is the limited dataset availability,
as the dataset is divided across various participants. However, in a stream of real-time
dataset, where the high availability of data would eventually divide into distinct number
of clients, it will enhance the classification performance.

6. Summary

While observing the above results, it can be seen that the DenseNet model performs
better in terms of accuracy, recall, and f1-score, while on the other hand, ResNet-50 did well
in precision and specificity. We have experimented both models in different settings and our
preliminary results showed that the DenseNet model performed better in accuracy (75%),
in contrast to ResNet-50 (72%), when considering 8 clients, while the trend is observed
common in four clients with the similar accuracy of 94% and use in six clients showed
that the DenseNet model performed quite well with the accuracy of 92%, while ResNet-50
achieved only 72%.

In general, DenseNet might be the best choice if the accuracy of predicting the malaria
cases is crucial, however, the ResNet-50 model avoids false alarms and also helps in the
correct detection of non-malaria cases. The use of federated learning architecture among
the distinct clients for ensuring the data privacy and following the GDPR is the contribution
of this research work.
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7. Limitation and Constraints

Although the use of ResNet and DenseNet have shown good results in image classifi-
cation, there are limitations as well. As the medical images are complex in nature, once the
CNN-based pre-trained models are used, it degrades the image size that can cause the loss
of essential features and ultimately results in inefficient accuracy. CNN models can also be
inefficient on the larger-scale datasets, especially while training the model. If the data are
wrongly labelled, which could be caused by human error, this can lead to inefficient model
training, where results could produce higher numbers of false positives and false negatives.
Legal regulations on deploying this architecture in real-time could be challenging, as it
requires standard operating procedures. The reliance on image annotation from the medical
experts could make this process slower.
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