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ABSTRACT: Airborne particulate matter is a major contributor to global illness and originates from a range of natural and
anthropogenic sources. These particles can undergo agglomeration, whereby individual units cluster into larger, structurally
complex assemblies. This process can span multiple spatial and temporal scales, from nanometer-sized particles interacting
over seconds to minutes, to the formation of larger aggregates that form and evolve over hours or days. Understanding how
particles agglomerate and transport is essential for accurately predicting their dispersion, environmental impact, and potential
health risks. However, traditional analytical models struggle to capture the multivariate, nonlinear nature of these processes.
Recent advances in deep learning, in particular the use of latent space representations, offer promising new tools for address-
ing this complexity. More specifically, latent spaces allow high-dimensional data, such as particle morphology and spatiotempo-
ral measurements, to be projected into lower-dimensional manifolds where hidden structure and dynamics may become more
interpretable. In this work, I explore how latent space methods could be applied to model particle agglomeration and its evolu-
tion over space and time, providing an alternative framework for understanding aerosol behavior beyond conventional
techniques.

SIGNIFICANCE STATEMENT: This work proposes how advanced computational techniques can simplify the com-
plex patterns of airborne particles by converting high-dimensional data into more manageable forms. By employing
these methods to identify patterns in how particles group together, new insights into the behavior of air pollution within
the atmosphere could be obtained. This is significant because these techniques could lead to models to be developed
that can improve air quality forecasts and inform public health strategies. Additionally, this work suggests that integrat-
ing these techniques with multiple data sources could further enhance our understanding of how pollutants form and
evolve over time in the atmosphere, ultimately helping society better predict and mitigate the impacts of air pollution.
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1. Introduction

Airborne particulate matter (PM) pollution is a global health
issue linked to respiratory and cardiovascular diseases and
cancer (Holgate 2017; Peters et al. 2019). Recent studies have
demonstrated that long-term exposure to PM2.5 and PM10 par-
ticles can significantly harm human health. AWorld Health Or-
ganization (WHO)-led research (Orellano et al. 2024) pooled
over 100 cohort studies and demonstrated significant positive
associations between PM exposure and cardiovascular and re-
spiratory mortality. Lelieveld et al. (2020) estimated that ambi-
ent PM2.5 causes approximately 8.8 million premature deaths
globally each year, reducing life expectancy by about 2.9 years.
Krittanawong et al. (2023) described how chronic PM2.5 expo-
sure promotes hypertension, oxidative stress, atherosclerosis,
and systemic inflammation, which all contribute to myocardial
infarction, stroke, heart failure, and arrhythmia. Wang et al.
(2023) found that long-term PM2.5 exposure increased the
risk of developing pneumonia by 6%, and Ni et al. (2024)
showed that nearly one-third of global asthma cases

(especially in children) are attributable to PM2.5. In a study
by Thaichana et al. (2025), it was found that maternal expo-
sure to high PM2.5 levels doubled the odds of preterm birth
and low birth weight, with elevated risks observed even at
lower exposure levels, suggesting there is no safe threshold.
These results highlight that long-term PM2.5 and PM10 ex-
posure increases mortality, exacerbates cardiovascular and
respiratory diseases, and adversely affects fetal and early life
development.

Particulate matter can range in size from submicron to tens of
microns, existing in different shapes (Ličbinský et al. 2010) and
being composed of various chemicals (Nriagu 1989). Ultrafine
PM (,0.1-mm aerodynamic diameter), a subset of PM2.5
(,2.5-mm diameter), can grow larger in the presence of water
vapor (Raes et al. 2000). This occurs via mechanisms that can be
broadly categorized into nucleation, condensation, coagulation,
and chemical reactions (Tomasi and Lupi 2017; Vehkamäki and
Riipinen 2012). Nucleation refers to the formation of new par-
ticles from gaseous precursors when vapor concentrations exceed
a threshold. Condensation involves the addition of gas-phase
molecules to existing particles, promoting growth. Coagulation
merges particles through collisions, reducing their number but in-
creasing size, while chemical reactions, in the gas phase or on
particle surfaces, can alter aerosol composition and properties.
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WHO guidelines for 24-h particulate matter concentrations
are 25 mg m23 for PM2.5 and 50 mg m23 for PM10 (,10-mm di-
ameter), with annual guidelines of 5 and 20 mg m23, respec-
tively (World Health Organization 2006). Particulate matter
can include pollen grains that can cause allergic rhinitis
(McInnes et al. 2017) and sinusitis (Khanna and Gharpure
2012). PM2.5 can reach deep into lungs, leading to respiratory
diseases such as chronic obstructive pulmonary disease
(COPD) (Doiron et al. 2019), asthma (Guarnieri and Balmes
2014), and lung cancer (Raaschou-Nielsen et al. 2013), and af-
fect the cardiovascular system (Du et al. 2016), while ultrafine
particles can enter the lungs and circulation system, having
been found in brain and heart tissue (Maher et al. 2016;
Calderón-Garcidueñas et al. 2019).

In urban environments, airborne particulates mainly originate
from diesel combustion in vehicles (Zuurbier et al. 2010), produc-
ing materials like black carbon and polycyclic aromatic hydrocar-
bons (PAHs) (Cadle et al. 1999). Fossil fuels (Venkataraman
et al. 2005), biofuels (Bond et al. 2013), and wood burning
can also contribute atmospheric particulate concentrations
(Maenhaut et al. 2016). Brake and tire wear from vehicles gen-
erate rubber and metallic particulates (Thorpe and Harrison
2008). Other sources of PM include steelworks (Mazzei et al.
2008) and cement factories (Al-Neaimi et al. 2001), while natu-
ral sources include pollen and fungal spores (Isiugo et al. 2019).
Indoor pollution can arise from cooking (Dacunto et al. 2013),
deodorants (Park et al. 2017), smoking and incense (Li et al.
2017), as well as wood burning stoves (Chakraborty et al. 2020).

Beyond urban environments, particulate matter encompasses
a diverse array of aerosol types, including natural sources such
as mineral dust (Miller-Schulze et al. 2015), wildfire smoke
(Meng et al. 2025), sea salt, and volcanic ash (Akinyoola et al.
2024). These aerosols vary widely in size, composition, and ori-
gin. For instance, mineral dust particles rich in silicon and alumi-
num can be lifted into the atmosphere from arid regions such as
the Sahara Desert (Bozlaker et al. 2013). Sea salt aerosols com-
posed primarily of sodiumchloride are generated by the action
of wind on ocean surfaces. Wildfires can release smoke contain-
ing organic particles such as black carbon, impacting air
quality over vast areas, while volcanic eruptions can emit ash
and sulfur dioxide, leading to the formation of sulfate aerosols
in the atmosphere (Langmann 2014). With this consideration,
this manuscript aims to discuss how latent space models could
accurately capture common structural features across hetero-
geneous particle sources. The methodology aims to facilitate
the development of unified representations of particles originat-
ing from both natural and anthropogenic processes, thereby ad-
vancing comprehensive modeling of atmospheric particulate
matter dynamics.

Aerosol particles often exhibit irregular shapes that can be
characterized using fractal dimensions, which quantify their
geometric complexity. For instance, fly ash particles typically
display both structural fractal features, while soil dust particles
tend to show primarily textural fractality (Kindratenko et al.
1994). These fractal patterns, which repeat at various scales, of-
fer a powerful way to describe self-similar structures in natural
and industrial aerosols. Fractal analysis enables (Sorensen 2001;
Xiong and Friedlander 2001) researchers to distinguish between

particle types with similar chemical compositions by focusing
on morphological differences, thus contributing to improved
environmental monitoring and pollution source attribution.
Techniques such as scanning electron microscopy (SEM) com-
bined with energy-dispersive X-ray (EDX) spectroscopy allow
for detailed characterization of both particle shape and elemen-
tal composition (Heredia Rivera and Gerardo Rodriguez
2016). Owing to the complexity of particles, relying solely on
simplified spherical models fails to address the true com-
plexity of aerosol particles, which may include ellipsoids,
chains, or fibrous forms. In situ imaging and analysis, there-
fore, provide a more accurate representations of these struc-
tures to help understand the particle behavior and thus
environmental impact.

The characteristics of particulate matter, including its size,
shape, and composition, along with meteorological factors, play
a significant role in determining its number density and toxicity
(Kelly and Fussell 2012). Therefore, it is crucial to accurately
characterize and understand how these airborne particles form.
This understanding not only aids in assessing the prevalence of
particulate matter and its potential health implications but also
provides insights into its possible sources. Furthermore, this
knowledge can guide strategies to mitigate the impact of partic-
ulate matter on our health and environment (Zhang et al.
2018). Traditional particulate monitoring methods, such as the
use of large filters and spore traps (Levetin et al. 2000; Peel
et al. 2014), are designed to sample airborne particles and use
laboratory-based postprocessing for detailed examinations.

The agglomeration of urban particulate matter has been stud-
ied using techniques such as Fourier transform infrared (FT-IR)
spectroscopy and EDX spectroscopy (Zeb et al. 2018), as well as
electron microscopy (Yao et al. 2009). Laser-induced break-
down spectroscopy (LIBS) also offers powerful elemental
characterization of individual particles and has been applied
to particles from industrial sources for real-time monitoring
(Gallou et al. 2011). However, owing to its high cost, limited
spatial coverage, and operational complexity, LIBS is cur-
rently impractical for widespread urban or atmospheric sens-
ing applications.

While it is recognized that particulate matter can originate
from primary sources or through atmospheric agglomeration
processes (Seinfeld and Pandis 2016), the precise mechanisms
that lead to the formation of PM are not yet fully comprehended
(Zhang et al. 2015), and current techniques often produce impre-
cise outcomes (Guo et al. 2014; Huang et al. 2014). Hence, this
influences the creation of models that forecast urban pollution
and alleviate its consequences and effects on society.

2. Deep learning

Thanks to advancements in graphics processing units
(GPUs) (HajiRassouliha et al. 2018; Sun et al. 2019), deep
learning neural networks (Szegedy et al. 2015; LeCun et al.
2015) have shown exceptional abilities in tasks such as image
classification (Krizhevsky et al. 2017; Schofield et al. 2019),
generation (Goodfellow et al. 2014), and transformation
(Zhu et al. 2017). These technological strides have enabled the
application of deep learning to very specialized and technical

ART I F I C I AL I N TELL IGENCE FOR THE EARTH SY S TEMS VOLUME 42

Brought to you by UNIVERSITY OF SOUTHAMPTON HIGHFIELD | Unauthenticated | Downloaded 09/03/25 10:48 AM UTC



areas within atmospheric science, thereby improving our capac-
ity to monitor and forecast air quality and comprehend the ef-
fects of aerosols on health and the environment. The fusion of
deep learning models with conventional methods of atmospheric
data collection is leading to the development of more advanced
analytical and forecasting tools. Deep learning has revolution-
ized atmospheric science by providing advanced methods for an-
alyzing complex data and, through the use of convolutional
neural networks (CNNs) and long short-term memory (LSTM)
networks, offers a sophisticated approach to modeling and un-
derstanding the complexities of atmospheric science. These neu-
ral networks provide the tools necessary to interpret the vast
and varied data involved in this field, leading to improved pre-
dictions and a deeper understanding of atmospheric phenomena
(Grant-Jacob and Mills 2022).

For localized monitoring, laser-induced spectroscopy is used
for particulate matter identification in the Rapid-E automatic
particle detector, which collects data from bioaerosols such as
pollen and spores (Daunys et al. 2021). Deep learning was in-
corporated into the Rapid-E for real-time monitoring and auto-
matic airborne classification of pollen using a CNN (Tešendić
et al. 2020). CNNs have also been used for identifying PM2.5
sources from wood burning and diesel exhaust using laser scatter-
ing (Grant-Jacob et al. 2018) and using fluorescence spectroscopy
(Rutherford et al. 2020). On a larger spatial scale, however, deep
learning has also been used to determine PM2.5 and PM10 con-
centrations using MODIS satellite images, with an LSTM-based
neural network trained on ground scenes imaged by MODIS
(Imani 2021). A method to estimate real-time pollution levels us-
ing an image-based deep learning model to approximate air pol-
lution from cityscape photographs has also been demonstrated
(Kow et al. 2022). Another broader-coverage technique includes
using deep learning for multiwavelength light detection and rang-
ing (lidar) to classify aerosol type (del Águila et al. 2025).

Since urban particulate matter exhibits a diverse range of mor-
phologies and size scales with features below the resolution limit
of an optical microscope, electron microscopy is often used to
achieve a better understanding of the structure and agglomera-
tion of such particles. The ability to image such particles allows
visual insight into the variety of sizes and shapes present in air-
borne PM, and potential insight into how particulates agglomer-
ate. Owing to the information contained in such images, and
owing to a neural network’s ability to extract features from such
data, such images are valuable for advancing the understanding
of airborne particulate matter through deep learning techniques.

Importantly, challenges remain in capturing the temporal evo-
lution of aerosols, particularly the transition from freshly emit-
ted to older particles. This transformation can significantly alter
aerosol properties such as size, composition, hygroscopicity, and
optical characteristics (Li et al. 2024; Pöschl 2005). Incorporating
temporal dynamics into deep learning models is therefore essen-
tial for accurately characterizing aerosol behavior across differ-
ent atmospheric lifetimes.

3. Latent space

In recent years, latent space has emerged as a critical con-
cept in deep learning, particularly in generative models such

as generative adversarial networks (GANs) (Isola et al. 2017) and
variational autoencoders (VAEs) (Pinheiro Cinelli et al.
2021; Pitsiorlas et al. 2024). Fundamentally, latent space is a
lower-dimensional representation of high-dimensional data,
achieved by encoding essential features and inherent data
structures. This dimensionality reduction is rooted in mani-
fold learning, where it is assumed that data points lie on a
smooth, low-dimensional manifold embedded within a higher-
dimensional space. In essence, a latent space is an abstract,
multidimensional arena where significant internal data repre-
sentations are encoded. In GANs, the generator model uses
points from the latent space to create new instances of data,
such as images. Latent spaces, employed in style-based neural
networks, possess the ability to generate realistic images of a
wide variety of animals and objects, including specific examples
like pollen grains. An example of a style-based neural network
is StyleGAN (Karras et al. 2019), which stands for style-based
generative adversarial network, that enables the production of
synthetic images that resemble real-life photographs. Its distinc-
tive structure allows for the unsupervised differentiation of at-
tributes and the stochastic variation in the images it produces.
This characteristic facilitates a realistic transition from, for ex-
ample, one facial image to another, and even from images of
one taxa of pollen grain to another (Grant-Jacob et al. 2022).
The latent W-space is a multidimensional domain that enables
the precise spatial representation of data similar to the external
space of the neural network, which is the training data. This
space also supports comprehensible trajectories within the la-
tent space itself (Voynov and Babenko 2020).

Images can essentially be input into the latent space of a
style-based neural network via projection and manipulated
using vector arithmetic, offering an alternative to manipulat-
ing synthetic images alone. The initial step involves projecting
the image into the neural network’s latent space by identifying a
point in this space that, when processed through the generator,
yields an image as similar as possible to the input image. This is
typically achieved using optimization techniques with the goal of
minimizing the discrepancy between the generated image and
the input image. Once a corresponding point in the latent space
for the image has been identified, it can be manipulated using
vector arithmetic. For instance, latent space vectors associated
with specific features (such as spikes on a pollen grain) can be
added or subtracted to introduce or remove these features from
generated images. These vectors can be identified either by
training a separate model to predict these attributes from the la-
tent vectors or by manually gathering examples of images with
and without the attribute and calculating the average difference
in their latent vectors. After the latent vector has been manipu-
lated, it can be processed through the generator to create a new
image that mirrors the modifications made in the latent space.

The StyleGAN network, for example, employs a nonlinear
mapping network to transform a random vector into an inter-
mediate latent W-space vector. The components of this vector
are correlated with different visual features in the generated im-
age, facilitating smooth transitions between various generated
images. For example, the mapping network converts a 1 3 512
random vector (sampled from a normal distribution with mean
zero and standard deviation of one) into a 1 3 512 latent
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W-space vector, which the generation network then transforms
into a 512 3 512-pixel resolution image. Therefore, inputs to
the generative neural network are supplied in the form of
W-space seeds, which are used to generate 512 3 512-pixel
images. The process of interpolation between different W-space
seeds is accomplished by determining the W-space vector from
W-space seed 1 to W-space seed 2 and adding fractions of this
vector to the coordinate of W-space seed 1. Given that W-space
seeds are random vector coordinates in a 512-dimensional
W-space, the interpolation from one W-space seed to another is
unique and can be mathematically represented as the position of
W-space seed 1 plus a fraction of a vector from W-space seed 1
toW-space seed 2 (computed as W-space seed 2 minus W-space
seed 1). Consequently, by averaging numerous W-space
vectors from generated images of a specific type of pollen
to another (for instance, small to large pollen), a W-space
vector for each respective transformation can be identified.

Recent advancements have refined these techniques; for ex-
ample, in methods that discover interpretable directions within
latent space, such as those described by Voynov and Babenko
(2020), enable the targeted manipulation of specific data attrib-
utes (e.g., adjusting the size or morphology of particle images)
without altering unrelated features. This precision is particularly
advantageous when modeling complex phenomena like air-
borne particulate matter, where subtle variations can have sig-
nificant implications for both health and environmental studies.

The latent space approach has several advantages; for example,
by reducing complex atmospheric data into a more manageable
representation, it enhances learning and pattern recognition while
revealing underlying structures that might be hidden in the origi-
nal high-dimensional data. However, projecting data into latent
space can lead to the loss of detailed information, and the inter-
pretability of latent features can vary depending on the model ar-
chitecture and training data. Additionally, these models can be
sensitive to the quality and representativeness of the training
dataset, which is crucial when applying them to real-world at-
mospheric data.

Nevertheless, compared with traditional dimensionality re-
duction and feature extraction techniques such as principal com-
ponent analysis (PCA) (Jolliffe and Cadima 2016), t-distributed
stochastic neighbor embedding (t-SNE) (Van Der Maaten and
Hinton 2008), and shallow CNNs (Zeiler and Fergus 2014),
latent space models offer several distinctive advantages for
analyzing high-dimensional aerosol data. These models can
provide richer, more flexible representations and support
advanced manipulation and interpretation of aerosol fea-
tures in both space and time as follows:

• Nonlinear representation: Latent space models can capture
complex, curved manifolds that could more accurately reflect
the true structure of aerosol populations, including morpho-
logical evolution and interparticle interactions. In contrast,
linear techniques such as PCA and geometry-preserving
methods such as t-SNE often fail to preserve these nonlinear
dependencies, especially over time and across spatial gra-
dients, and can distort intrinsic relationships in the data.

• Bidirectional encoding and generation: PCA, t-SNE, and con-
ventional CNNs reduce data to low-dimensional spaces but

offer no reliable inverse mapping, whereas latent space mod-
els such as VAEs (Kingma and Welling 2013) and GANs
(Karras et al. 2019) support both encoding and decoding.
This could allow aerosol images to be embedded into a latent
representation and reconstructed or simulated from that
space, making it possible to generate controlled variations
in morphology.

• Interpretable latent dimensions: While PCA components
are often abstract, and shallow CNN feature maps are dif-
ficult to interpret, latent variable models can expose se-
mantically meaningful directions. These directions could
correspond to measurable aerosol attributes such as par-
ticulate size, shape, or agglomeration state and could be
manipulated algebraically to explore structure–property
or space–time relationships (Voynov and Babenko 2020).
For example, particle dynamics influenced by atmo-
spheric conditions (e.g., humidity and turbulence) can be
disentangled and studied as trajectories through a latent
space.

This combination of nonlinear modeling, generative syn-
thesis, and interpretability makes latent space techniques
especially well suited for developing data-driven models
of aerosol agglomeration and transport that capture both
morphological complexity and the influence of geophysical
processes.

4. Future work

The ability to interpolate between images in latent W-space
could potentially facilitate the investigation of transformations
from one type of particulate matter to another. Given that a
neural network groups objects (in this case, particles) based on
their visual appearance in latent W-space, the process of inter-
polation and extrapolation across latent W-space could be
analogous to particle agglomeration, provided a path from
smaller to larger particles is identified. By employing a CNN
to classify the types of agglomerated particles, vectors could
enable the addition of specific types of particles to others,
thereby facilitating a realistic construction and understanding
of particle agglomeration.

Since such agglomeration is in more than two dimensions,
3D imaging of the particulate matter would be beneficial in
creating a neural-network-based model that could describe air-
borne particulate matter agglomeration. Hence, while original
style-based neural networks work with 2D images, there have
been extensions to work with 3D image arrays. For example,
3D-StyleGAN is a variant that has been developed for genera-
tive modeling of three-dimensional full brain magnetic reso-
nance images (Sungmin et al. 2021). The neural network also
investigated the controllability and interpretability via style
vectors that include the latent space projection and reconstruc-
tion of unseen real images and style mixing. Another ap-
proach, called Dual Mapping of 2D StyleGAN for 3D-Aware
Image Generation, devised a dual-mapping framework to
make the generated images of pretrained 2D StyleGAN con-
sistent in 3D space (Chen et al. 2024).
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To combine a micro model, i.e., particle agglomeration, and
a macro model of atmospheric fluctuations, aerosol transport,
and atmospheric effects of air pollution, it could be worth ex-
ploring using latent spaces within latent space, such that a micro
model exists within a macro model. The structure of the latent
space can be complex and hierarchical, allowing for nested la-
tent spaces where one latent space can effectively act as an in-
put for another. This, therefore, could be used to capture more
intricate distributions or to model data at different levels of ab-
straction. For example, in a GAN, a primary latent space could
capture high-level features and a secondary latent space could
capture more detailed features within the context provided by
the primary space. It is possible to envisage a Transformer
(Vaswani et al. 2017) type particulate matter latent space that
includes not just spatial dimensions, but also a temporal dimen-
sion. This latent space could serve as an all-encompassing
modeling domain for understanding and mapping particles and
their agglomeration in space and time (see Fig. 1 for concept).
Unlike LSTMs, Transformers have the advantage of handling
long-range dependencies more effectively owing to their self-
attention mechanism. This mechanism allows them to focus on
different parts of the input sequence when producing an output,
thereby making them more flexible and powerful for many
tasks. Consequently, Transformers could provide a more effec-
tive way to model and understand the distribution and agglom-
eration of particles in both space and time.

While the hierarchical structure of latent spaces, such as nest-
ing microscale agglomeration models within macroscale atmo-
spheric models, offers a powerful framework for representing
particulate matter dynamics, it is important to acknowledge the
limitations of Transformer models (Wang et al. 2024a). Although
Transformers can model long-range dependencies through self-
attention mechanisms, they remain computationally demanding,
requiring extensive training data, significant memory resources,
and prolonged training times (Fournier et al. 2023). This, there-
fore, poses a challenge in environmental applications, where
high-resolution, time-resolved data are often scarce or unevenly
distributed across atmospheric conditions and regions. As such,
the development of more comprehensive, multimodal datasets
(e.g., combining microscopy, spectroscopy, and satellite data) is
essential to fully leverage the potential of Transformer-based
models in this field.

To obtain the vast amounts of data that would need to be
collected, automation of particle imaging would likely to be
necessitated, with relevant metadata such as time stamps and
geographic coordinates, as well as consistent imaging
protocols would need to be employed. For example, in the
original StyleGAN paper, around 20 000 images of faces were
used to train the neural network. While many images would
be required, combined efforts from multiple sources could be
achieved, and a powerful dynamic atmospheric particulate
matter model could be developed.

Although LIBS will be limited by its cost and sparse spatial
coverage, it would deliver high-resolution spectral data for indi-
vidual particles. Future work could examine how latent space
models might harness these rich, localized datasets by learning
transferable representations that align LIBS measurements
with broader-scale observations, such as satellite imagery or

low-cost sensor networks. By capturing latent relationships be-
tween microscale particle composition and macroscale atmo-
spheric patterns, this approach would bridge detailed local
insights with wide-area monitoring. Rather than deploying LIBS
extensively, the technique would use it as a reference modality,
enabling models to generalize across spatial scales. Such
integration could enhance the ability to infer fine-grained
aerosol properties in regions where only coarse data are
available, paving the way for more scalable, multiresolu-
tion air quality models.

To further advance the application of latent space techni-
ques in atmospheric science, future research could explore
several key directions:

• Broader context of aerosol formation: Although aerosol for-
mation mechanisms remain complex, latent space models
could help illuminate hidden structures in controlled experi-
ments. By training on time-resolved measurements such as
evolving size distributions or spectral absorbance profiles col-
lected under systematically varied precursor gas concentra-
tions, temperature, and humidity, a model’s latent variables
could trace trajectories corresponding to distinct aerosol
growth and transformation regimes, including nucleation, con-
densation, coagulation, and chemical reaction. While this ap-
proach does not replace detailed chemical kinetics, it could
uncover empirical patterns in how precursor transformations
manifest in observable particle properties, thereby guiding tar-
geted mechanistic studies and improving our ability to inter-
pret laboratory-derived formation pathways.

• Differentiating primary and secondary aerosols: Differentiat-
ing between primary and secondary aerosols remains a sig-
nificant challenge, as both newly emitted particles and those
formed via gas-to-particle conversion can appear rapidly and
often exhibit similar chemical compositions (Huang et al.
2024) or morphologies (Wang et al. 2024b). A potential way
forward could be to train latent-space models on labeled
datasets that combine high-resolution imaging features with
contextual variables, such as temporal emission profiles, precur-
sor gas concentrations, or chemical speciation proxies. In this
framework, the model could learn subtle, multidimensional

FIG. 1. Concept of using latent space to transform images of urban
particles over time and space.
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patterns that distinguish newly emitted primary aerosols from
secondary ones, enabling quantification of each type’s con-
tribution to airborne particulate matter even when their vi-
sual signatures converge.

• Hierarchical and nested latent representations: Future
models should integrate multiple layers of latent representa-
tions to capture both fine-scale particle interactions and broad
atmospheric dynamics, providing a more comprehensive de-
piction of air pollution processes through this multitiered
approach.

• Integration with cutting-edge architectures: Incorporating
Transformer models could significantly enhance the model-
ing of temporal sequences in atmospheric data, as their self-
attention mechanisms allow for more robust tracking of
long-range dependencies, which is vital for understanding
the evolution of airborne particulate matter over time.

• Multimodal data integration: Latent-space models could offer
a way to unify atmospheric data sources by embedding satel-
lite spectral imagery, ground-based sensor time series, and
simulation outputs in a shared lower-dimensional space that
retains the most informative features from each data type.
For example, satellite measurements reveal broad regional
aerosol distributions over time and space, while in situ sensors
and laboratory instruments deliver precise, time-resolved lo-
cal observations. By training a single variational autoencoder
on both data regimes, the model could discover latent factors
that represent common patterns such as composition, aggre-
gation state, and emission source. This unified representation
could enable the inference of detailed ground-level particle
properties in regions lacking sensors and support early detec-
tion of anomalous aerosol events that deviate from expected
spatiotemporal trends.

• Systematic evaluation of strengths and limitations: It will be
crucial to perform a balanced analysis of latent space methods,
acknowledging that while these approaches offer significant
computational and analytical advantages, challenges related to
data quality, model interpretability, and the risk of overfitting
must be addressed through thorough validation and interdisci-
plinary collaboration.
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