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Abstract

Fertility projections inform population projections and are used to plan for the

future provision of vital services such as maternity care and schooling. Existing

fertility forecasting models tend to use aggregate births data indexed by age and time

alone, thereby neglecting to include information about parity, i.e. the number of

previous live-born children. This omission risks ignoring a crucial mechanism of

fertility dynamics. We propose a Bayesian parity-specific fertility projection model

to complete cohort fertility, within a generalized additive model (GAM) framework.

The use of GAMs enables a smooth age-cohort rate surface to be estimated for each

parity simultaneously. We constrain our model using aggregate data and additionally

introduce random walk priors on completed family size and parity progression ratios,

which are summary fertility measures known to change relatively slowly over time.

Using Hamiltonian Monte Carlo methods and data from the Human Fertility Database,

we fit our model to 16 countries. We compare our forecasts with the best-performing

existing models to quantify the impact of including the parity dimension on predictive

accuracy. Our findings indicate that a parity-specific approach could lead to more

plausible and reliable fertility projections, aiding government planners in their

decision-making and enabling more tailored policy solutions.

Keywords: Bayesian methods; Cohort fertility; Forecasting; Generalized additive

models; Parity progression
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1 Introduction

Fertility projections are used in population projections and to plan for future service

provision, such as maternity care and schooling. Methodological literature on fertility

forecasting is extensive, with comprehensive reviews in Booth (2006) and Bohk-Ewald et al.

(2018a). Existing models tend to use aggregate data on the total number of births indexed

only by age, and period (calendar year) or birth cohort. These variables constitute three of

the “five clocks” of fertility (Raftery et al. 1996:1), the other two being time since last birth and

number of previous live-born children (parity). While little information is typically collected

about time since last birth at the population level, disaggregation of births by birth order is

increasingly common (Jasilioniene et al. 2015). As childbearing is a sequential process, the

current number of children is an important determinant of the decision to have another

child; therefore, omitting birth order information risks ignoring a crucial mechanism of

fertility. A parity-specific approach can thus translate into more reliable projections and

improved decision-making in a range of policy and planning domains, while also producing

forecasts of parity-specific measures which are themselves of great interest.

While the consideration of parity is underexplored in fertility projections (Petropoulos et al.

2022:797–798), it is commonplace in the fertility analysis literature. A key reason for this is

the ability to gain a more detailed understanding of the changes in childbearing behaviour

underlying past trends in fertility levels. The approaches taken include: computing period

parity progression ratios (Feeney and Yu 1987; McDonald et al. 2015; Murphy and Berrington

1993; Ní Bhrolcháin 1987); proposing parity-adjusted summary fertility measures such

as the total fertility rate (Bongaarts and Sobotka 2012); decomposing changes in parity

progression ratios and total fertility rates by parity (Andreev et al. 2002; Hellstrand et al.

2020, 2021) and changes in the cohort total fertility rate by parity progression ratios (Zeman

et al. 2018); and calculating standardized rates by birth order (Andersson 1999; Rallu and

Toulemon 1994). Event history analyses of births also typically account for parity, by fitting

separate parity-specific models (e.g. Ellison et al. 2022) or joint models that control for parity

and unobserved heterogeneity between women (e.g. Begall and Mills 2013; Kravdal 2001;
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Van Hook and Altman 2013).

Analysing childbearing patterns by parity can also better inform future fertility assumptions

(Smallwood 2002), which are needed when producing projections. Indeed, Kohler

and Ortega (2002) argue that appropriate cohort fertility projections require plausible

assumptions for the quantum (level) and tempo (timing) of fertility, which in turn

necessitate parity information to account for those exposed to each birth order more

precisely; concurrently, this captures the aforementioned sequential nature of the

childbearing decision-making process. This additional differentiation by parity increases

the homogeneity of the resulting groups while also incorporating women’s previous

childbearing experience (Rallu and Toulemon 1994). Hobcraft (1996) provides a historical

example, stating that parity-specific analyses would likely have helped to anticipate the baby

boom and bust of the 1960s and 1970s in England & Wales, which were not predicted by the

corresponding forecasts. Regarding current use, a recent European survey of 32 national

statistical agencies found that while eight use parity-specific data to inform their fertility

projections, only two actually produce parity-specific projections (Gleditsch et al. 2021).

The core of our proposal is that incorporating a lower level of disaggregation into the

forecasting model could improve predictive accuracy at the aggregate level. This is closely

related to the “bottom-up” approach, well-known in the broader forecasting literature,

whereby forecasts are obtained at a lower level and subsequently aggregated (Petropoulos

et al. 2022). This approach has been applied in a range of contexts in the social sciences,

including forecasting economic indicators (e.g. Duarte and Rua 2007; Heinisch and

Scheufele 2018), and mortality rates by cause of death (Li et al. 2019) and subnational

area (Li and Hyndman 2021). Bottom-up methods are typically compared with “top-down”

approaches, which forecast at the highest level of aggregation and then disaggregate

(Petropoulos et al. 2022). Considerable support has been found for the bottom-up method

over the top-down approach (Athanasopoulos et al. 2024), however we are more concerned

with the choice of disaggregation level. Various studies have explored this issue, including

in the economic (Duarte and Rua 2007; Zotteri et al. 2005) and demographic (Ahlburg

2001; Lutz et al. 1998) forecasting literature. In particular, Lutz et al. (1998) specify that a
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proposed additional dimension should be of substantive interest, a source of demographic

heterogeneity, and technically possible to incorporate. Furthermore, Ahlburg (2001)

comments that although disaggregation may not improve predictive performance at the

aggregate level, there are other benefits such as the generation of knowledge and accurate

subpopulation forecasts.

In the fertility projections literature, the production of parity-specific forecasts has been

suggested, for example by Schmertmann et al. (2014a) and Shang and Booth (2020), with

data limitations preventing the latter from implementing the approach. Ellison et al. (2023)

propose a Bayesian parity-specific projection model combining survey and vital registration

data. Aggregate forecasts are generated but each parity is modelled independently –

this means that measures depending on multiple parities, such as age-specific fertility

rates (ASFRs) or summary measures, cannot be constrained. The authors recommend

the subsequent development of a generalizable approach that models the parities jointly

and incorporates interpretable constraints on summary measures. A Bayesian setup

enables coherent integration of multiple data sources and prior knowledge, and appropriate

quantification of predictive uncertainty; in the field of demographic forecasting, Bayesian

methods are becoming increasingly prevalent (Mazzuco and Keilman 2020).

This discussion motivates the aims of this paper. Firstly, we aim to develop a fertility

forecasting method to complete cohort fertility that incorporates parity information,

advancing the existing literature in line with the suggestions of Ellison et al. (2023). Secondly,

we aim to assess whether the proposed method has increased forecast reliability. Within

a Bayesian generalized additive model framework and informed by parity-specific rate

estimates from the Human Fertility Database (HFD) (HFD 2024), we construct smooth

parity-specific age-cohort rate surfaces. We additionally incorporate constraints on ASFRs

and summary fertility measures at the parity-specific and aggregate levels, using pooled data

also from HFD (2024). We obtain forecasts for 16 countries, comparing their performance

with some of the best-performing existing models and an aggregate version of our proposed

model.
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The paper proceeds as follows. After describing our data sources in Section 2, we specify our

modelling approach in Section 3. In Section 4 we present the model outputs, namely the

parity-specific rates and summary measures, and summarize the comparative findings. We

then provide a discussion in Section 5.

2 Data

2.1 Setup

In this paper we address the fertility projection problem of completing cohort fertility:

forecasting the average number of children that women from a particular birth cohort will

have had by the end of their reproductive lives (cohort total fertility rate, CFR). Contrastingly,

period fertility considers the average number of children a pseudo-cohort of women would

have if they were subject to the fertility rates of a given period at every age (total fertility

rate, TFR). The pros and cons of these approaches to fertility analysis are well known

(Ní Bhrolcháin 1992; Schoen 2022), and either could be used in this context; however,

we prefer the cohort approach for several reasons. Firstly, where period data on parity

distributions are absent or lacking in quality and/or frequency, a cohort perspective allows

their estimation by cumulating across each reproductive age (Jasilioniene et al. 2015; also

see Section 2.2). Secondly, the reduced fluctuation of cohort fertility (de Beer 1985; Li

and Wu 2003; Sobotka 2003) is beneficial for forecasting, as it justifies more strongly the

assumption of the future smooth progression of summary measures.

Next we introduce the modelling setup. Taking the reproductive age range to be from

ami n = 15 to amax = 44 years, we let JOY be a particular ‘jump-off’ year whereby its

associated data are the most recent data used in model fitting. We consider four JOY

values – 2000, 2005, 2010 and 2015 – to test the forecast performance of our model over

different periods and forecast horizons. In a similar setup to Schmertmann et al. (2014a),

for a given JOY we consider nc = amax − ami n + 11 = 40 cohort years of birth, ranging

from c JOY
mi n = (JOY − amax − 10) to c JOY

max = (JOY − ami n). For example, c2000
mi n = 1946 and

c2000
max = 1985, while c2015

mi n = 1961 and c2015
max = 2000. The first 11 cohorts (the 1961–1971 cohorts
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for JOY = 2015) have reached at least age amax by year JOY and therefore have already

completed their reproductive lives; the subsequent (amax −ami n) cohorts are only partially

observed up to age (amax − 1), . . . , ami n . We illustrate this setup graphically in panel a of

Figure 1, for the Canada ASFRs when JOY = 2015. The rates are displayed in the form of a

Lexis surface (left plot) and cohort-specific rate curves (right plot).

The data requirements of the model are population-level birth counts (by age, cohort and

birth order), and exposures (by age and cohort). We use HFD estimates of age-cohort births

(by order) and exposures, computing exposure estimates corresponding to age-cohort

combinations that are either observed (but not available in the HFD) or in the future, from

the 2024 Revision of World Population Prospects (WPP) (United Nations, Department of

Economic and Social Affairs, Population Division 2024). The WPP population estimates and

projections are given by country, sex and single year of age on January 1st each year – we first

approximate each female age-period exposure by the corresponding mid-year population

estimate or projection, and then convert these values to age-cohort exposure estimates via

Lexis triangles, as recommended by van Raalte et al. (2023) when working with period data.

Across the four JOY values we fit our model to 16 HFD countries, listed in Appendix A.

Although many more countries have order-specific births data available in the HFD, it

is not possible to include them either because the time series is not long enough (the

parity-specific data often start to be collected much later than the aggregate data) and/or

the data are not of sufficiently high quality. To include as many countries as possible, we

allow any subset of the JOY values to be represented for a given country; we also allow

for a “reduced” setup of the model, with nc = 35 (instead of 40) cohorts considered and

only the first 6 (instead of 11) being fully observed (see Section 2.1). The 16 countries

included exhibit considerable geographical spread, and differing population sizes and

social, cultural and historical contexts. This leads to a diverse set of childbearing patterns

upon which we can suitably test the forecast performance of our model. The supplementary

material contains a spreadsheet which describes the available data for each HFD country,

summarizes any relevant data quality issues mentioned in the HFD documentation, and

states the subsequent decision taken (to include all or a subset of the cohorts for the country,
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or to exclude it completely).

2.2 Age-parity- and age-specific fertility rates

The primary data source that informs our fertility projection model is conditional

parity-specific fertility rate estimates by age and cohort. Their conditionality means that

they are of occurrence/exposure form and so appropriately account for the population at

risk. For women of a given age a and cohort c, we define the conditional fertility rate for

birth order i , l i
ac , in the following way:

l i
ac =

births of order i to women aged a in cohort c

person-years lived at parity i −1 by women aged a in cohort c
= bi

ac

E i−1
ac

. (1)

We assume that parities J and above, and birth orders J + 1 and above, are combined.

Therefore parity takes values 0,1, . . . , J+ and birth order takes values 1,2, . . . , (J+1)+. We take

J = 3 and therefore consider parities 0–3+, due to small cell counts and similar age patterns

for the conditional rates of the highest parities.

Data for the numerator comes from HFD (2024) (see Section 2.1). Information on true

(i.e. biological) birth order is now collected by most countries, with many having only

requested parity information for marital births until relatively recently (Jasilioniene et al.

2015). We estimate the denominators by cumulating cohort fertility, following the method

of Smallwood (2002); the HFD produces its fertility tables using a similar approach

(Jasilioniene et al. 2015). The method first assumes that all women in a given cohort have no

children at age ami n . Then, at each subsequent age, the relevant order-specific birth counts

are used to update the number of women exposed to each parity. These are then scaled to

sum to the corresponding exposure estimate, giving the final parity-specific exposures. We

specify the method formally in Appendix B.

A drawback to this approach is that it ignores any potential sensitivity of parity to mortality

and migration, which would ideally be accounted for if data were available (Smallwood

2002). We also note that although the HFD provides census- or register-based estimates of

the female age-parity distribution for the vast majority of the 16 countries we consider, we
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do not make use of this in the main analysis1 for several reasons. Firstly, annual estimates

are only available for the Nordic countries from their population registers2, with estimates

for most of the other countries only available from the decennial census; this infrequency

makes it difficult to incorporate the data into the cohort cumulation process. The HFD

achieves this by using a single census or register estimate for the starting exposures of its

period fertility tables, when it is possible and appropriate (Jasilioniene et al. 2015); however,

this limits the range of years for inclusion. Secondly, the absence of such estimates for

some countries, and the differing data availability for the others, means that any proposed

approach would be inconsistently applied across countries. Thirdly, it will be necessary to

replicate the chosen estimation method within our projection model, further elevating the

importance of a simple and consistent methodology.

Next, for women of a given age a and cohort c, we define the unconditional fertility rate for

birth order i , mi
ac , as:

mi
ac =

births of order i to women aged a in cohort c

person-years lived by women aged a in cohort c
= bi

ac

Eac
. (2)

The only difference from the conditional rate in equation (1) is the change in denominator

from women at risk of the particular birth order to those at risk of any birth.

Lastly, for women of a given age a and cohort c, we define the ASFR or age-specific fertility

rate, mac , as:

mac = births to women aged a in cohort c

person-years lived by women aged a in cohort c
=

∑
i bi

ac

Eac
= bac

Eac
.

We note that mac = ∑
i mi

ac , i.e. for fixed a and c, the sum of the unconditional rates gives

the ASFR.

1In Appendix C we compare the census- or register-based estimates with our cumulation-based estimates,
finding that the two methods correspond reasonably closely with each other. Also, in Appendix L we investigate
the sensitivity of our forecasts to the two types of exposures; we discuss this further in Section 5.

2Hungary also has annual estimates available, but these interpolate between decennial censuses rather
than being independent annual estimates.
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2.3 Summary fertility measures

We describe the computation of the summary fertility measures required for our proposed

model, namely the CFR (see Section 2.1) and parity progression ratios (PPRs). These are

defined for women in cohort c after age amax . We define the CFR, C F Rc , representing

the average completed family size, as C F Rc = ∑amax
ami n

mac . We define the CFR for birth

order i , C F R i
c , representing the average number of births of order i per woman, as

C F R i
c =

∑amax
ami n

mi
ac . We note that C F Rc = ∑

i C F R i
c . Then we define the PPR from parity i

to i +1, PPR i→i+1
c , representing the proportion of women progressing from parity i to i +1,

as:

PPR0→1
c =C F R1

c ;

PPR i→i+1
c = C F R i+1

c

C F R i
c

for i ∈ {1,2, . . . , (J −1)};

PPR J+→(J+1)+
c = C F R (J+1)+

c

C F R J
c +C F R (J+1)+

c

.

For a given jump-off year JOY , using estimates of the mi
ac values from the HFD, we

calculate these summary measures for all country-cohort combinations from the 1945

cohort onwards who have completed their reproductive lives by year JOY and where the

estimates are deemed to be of sufficiently high quality. We use these pooled datasets

to inform constraints that we incorporate into our proposed model (Section 3.3 provides

further details). Having described the model setup, the required data sources and fertility

measures, in Section 3 we specify our parity-specific projection model.

3 Methods

3.1 Model structure

We illustrate the model structure in Figure 2. We distinguish between three levels – Level-1,

Level-2 and Level-3 – in the columns. Each level has a different demographic array of interest

(white rectangles):
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• Level-1: true conditional birth rates by age, cohort and birth order, i.e. the true l i
ac

values (equation (1) in Section 2.2);

• Level-2: true unconditional birth rates by age, cohort and birth order, i.e. the true mi
ac

values (equation (2) in Section 2.2);

• Level-3: true summary fertility measures, namely the true CFR and PPRs (Section 2.3).

The observed quantities (gray rectangles) refer to the data requirements of the model

(Sections 2.1–2.3):

• birth counts by age, cohort and birth order (from the HFD; Level-1), which then sum

to give birth counts by age and cohort (Level-2);

• exposures by age and cohort (from the HFD and WPP; Level-2), and exposures by age,

cohort and parity (approximated using the cumulation-based approach described in

Section 2.2; Level-1);

• pooled cross-country dataset of CFR and PPR estimates from the HFD (Level-3).

The two system models (rounded rectangles) allow us to incorporate assumptions regarding

the progression of the demographic arrays of interest across age and/or time. The first

(Level-1) assumes underlying smoothness of the true conditional order-specific birth rates

across age and cohort for each birth order. The second (Level-3) assumes slow changes of

the CFR and PPRs over time informed by the HFD data. The two data models (hexagons)

describe the processes through which the birth count data are generated from the true

rates. These govern the relationships between the births by age, cohort and birth order

and the true conditional birth rates (Level-1), and the births by age and cohort and

the true unconditional rates (Level-2). We compute the true unconditional rates from

the true conditional rates by again applying the cumulation-based method to generate

order-specific birth counts according to the true conditional rates, which we then divide by

the age-cohort exposures which are assumed known. The summary measures then follow

straightforwardly from the formulas in Section 2.3. The remainder of this section motivates

and specifies the system and data models corresponding to Level-1 and Level-2 (Section 3.2)
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and Level-3 (Section 3.3).

3.2 Modelling rates by age, cohort and parity (Level-1 and Level-2)

3.2.1 System model

First we specify the Level-1 system model for the true conditional birth rates by age, cohort

and birth order. We will interchangeably refer to these as parity-specific rates for current

parities 0, 1, 2 and 3+, and order-specific rates for progression to first, second, third, or fourth

and higher-order birth. Returning to the age-cohort ASFR surface (panel a of Figure 1), we

now consider four such surfaces of the conditional parity-specific rates, illustrated in panel

b. Analogous to panel a, we present the Lexis surfaces and the cohort-specific rate curves on

the top and bottom rows respectively. While the first birth (parity 0) rates progress smoothly

across age and cohort and display similar patterns to the ASFRs, the higher-order rates are

more erratic, particularly at the youngest ages3.

Our approach smooths these rates across age and cohort for each parity on the logarithmic

scale, within a generalized additive model (GAM) framework. GAMs enable individual and

joint covariate effects to be represented as smooth functions; Wood (2017) provides an

in-depth introduction. In the demographic forecasting literature, GAMs have been applied

to mortality. Hilton et al. (2019, 2021) develop Bayesian approaches estimating smooth

functions of age, age-specific improvement factors, and cohort. Aburto et al. (2021) fit a

GAM including smooth effects of age, week and their interaction to forecast weekly deaths,

finding it to outperform existing methods. Currie et al. (2004) perform two-dimensional

(2D) smoothing of mortality rates across age and period under a P-spline approach (Eilers

and Marx 1996). Camarda (2019) extends such an approach to incorporate shape constraints

and thus improve forecast plausibility. Concerning fertility, the Bayesian forecasting model

of Ellison et al. (2023) (see Section 1) is also based on a GAM framework. The model

estimates smooth effects of age, cohort and their interaction, as well as time since last birth.

3This observation is the result of several factors: few women are exposed, and those that have reached parity
1 or 2 as a teenager are a select group who have a reasonably high likelihood of progressing quickly to higher
parities (Greulich and Toulemon 2023). It is also the case that our cumulation-based denominators are likely
to be an underestimate of the true exposure (see Appendix C), leading to even greater fluctuation in the rates.
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We now specify our system model. Letting λi
ac be the true conditional rate for age a, cohort

c and birth order i , our system model sets:

log
(
λi

ac

)
= fi (a,c),

where fi is a smooth function of age and cohort estimated using the observed data. Similarly

to Currie et al. (2004) and Camarda (2019), we take a P-spline approach. In the simple

one-dimensional (1D) case this considers a cubic B-spline basis, consisting of a series of

smooth curves, or basis functions, that cover the covariate range and are non-zero for

different parts of it. Following the advice of Currie et al. (2004) we space the basis functions

regularly at five-year intervals, requiring eight and ten in the age and cohort dimensions

respectively. The smooth curve is then constructed as a linear combination of the basis

functions, where the coefficients are constrained to change smoothly across the covariate.

Appendix D provides a visualization of this 1D case.

Extending this to smooth the log-rates across age and cohort, the basis functions are

now smooth 2D surfaces constructed by multiplying the curves from the age and cohort

dimensions together4. Letting there be P = 8 and Q = 10 1D basis functions covering the

age and cohort ranges respectively, for a given age a and cohort c we represent the values

of these functions by b1
A(a), . . . ,bP

A(a) and b1
C (c), . . . ,bQ

C (c). Then, for a given p ∈ {1, . . . ,P }

and q ∈ {1, . . . ,Q} we represent the value of the corresponding 2D basis function as bpq
AC (a,c),

where bpq
AC (a,c) = bp

A(a)×bq
C (c). We then express fi (a,c) as the weighted sum of these basis

functions with parity-specific weights βpq
i :

fi (a,c) =
P∑

p=1

Q∑
q=1

β
pq
i bpq

AC (a,c).

In our case we therefore have P ×Q = 8×10 = 80 basis functions covering the full age-cohort

surface. To constrain the β
pq
i values to change smoothly across age and cohort, we

penalize their first-order differences. We illustrate this in Figure 3, an 8 × 10 grid of the

basis function coefficients where the cell in row p and column q corresponds to βpq

4Figure 2 of Camarda (2019) provides a depiction of this.
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(omitting the i subscript for clarity). First-order differences can be penalized between

adjacent coefficients horizontally or vertically in the cohort or age directions respectively

(represented respectively by vertical or horizontal lines between cells).

We color code Figure 3 to indicate areas with different types of penalization. We constrain

the coefficients in the first and last rows (rows 1 and P ) to equal row-specific values β1 and

βP respectively (gray areas):

β11 = ·· · =β1Q =β1; (3)

βP1 = ·· · =βPQ =βP . (4)

This allows us to achieve forecast plausibility in two ways: firstly, by borrowing strength

across the youngest ages where there is large rate uncertainty, particularly for higher parities

(panel b of Figure 1); and secondly, by ensuring negligible rates at the oldest ages.

For the remaining rows we penalize the first-order differences in the cohort direction (white

and hatched areas) and the age direction (white area only). We implement these penalties

through normal priors for the differences, specified in equations (5) and (6) respectively:

βpq −βp(q−1) ∼ N
(
0,σ2

C

)
, p ∈ {2, . . . ,P −1}, q ∈ {2, . . . ,Q}; (5)

βpq −β(p−1)q ∼ N
(
0,σ2

A

)
, p ∈ {3, . . . ,P −2}, q ∈ {1, . . . ,Q}. (6)

Standard deviation parametersσC andσA govern the degree of smoothing in the cohort and

age directions respectively. We give σC /0.01 and σA/0.01 Student’s t priors with 7 degrees of

freedom; these informative priors express our belief that neighbouring coefficients should

have similar values. When fitting the model, the priors in (5) and (6) combine to achieve

smoothness across age and cohort simultaneously.

To respect the biological constraints of fertility we do not penalize the differences where the

white and hatched areas meet, because experiments found that doing so allowed fertility to

peak at implausibly old ages. Furthermore, we do not penalize the differences where the

gray and white/hatched areas meet, because the coefficients in rows 1 and P take much
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smaller values than those in the interior rows.

3.2.2 Data models

Next we specify the data models for Level-1 and Level-2 (Section 3.1). For birth order i , the

Level-1 data model considers the births by age and cohort, bi
ac , to follow a negative binomial

distribution with mean equal to the relevant parity-specific exposure, E i−1
ac , multiplied

by the true conditional birth rate, λi
ac . The overdispersed Poisson interpretation of the

negative binomial distribution enables extra variability to be accounted for, here through

the dispersion parameter φi :

bi
ac ∼ NegBinomial

(
E i−1

ac λi
ac ,φi

)
.

Smaller values of φ correspond to greater overdispersion, i.e. higher variance. We specify

an informative half-normal N+(0,52) prior for each φi to incorporate our prior belief that

there is substantial uncertainty about the parity-specific rate estimates resulting from the

denominator approximation (Section 2.2). In this way, the negative binomial distribution

accounts for error in the measurement of the exposures, as well as sampling error.

Analogously, the Level-2 data model considers the total births by age and cohort, bac , to

follow a negative binomial distribution with mean equal to the exposure by age and cohort,

Eac , multiplied by the true ASFR, defined as µac :

bac ∼ NegBinomial
(
Eacµac ,φ0) .

We specify a vague uniform U (0,10002) prior for the dispersion parameter φ0 because

unlike the parity-specific rate estimates, we can be very confident about the ASFR estimates

as they only require aggregate data. Therefore large values of φ0, corresponding to

little overdispersion relative to the Poisson distribution, can be reasonably expected.

Consequently, in contrast to the Level-1 data model, here the negative binomial distribution

only accounts for sampling error.
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3.3 Modelling summary fertility measures (Level-3)

In this section we specify the Level-3 system model for the summary measures, namely the

true CFR and PPRs. Continuing from Section 2.3, we first consider our pooled cross-country

dataset of observable CFR and PPR estimates from HFD (2024) for a given JOY value.

This means that we have estimates from the 1945 cohort to the (JOY −amax) cohort, who

complete their childbearing in year JOY . Appendix E provides plots of these estimates for

JOY = 2015. Although the country-specific curves fluctuate substantially across the cohort

range, generally consecutive changes are small. We therefore base the first component of

our system model on the assumption that the true CFR and PPRs change relatively slowly

over time. To inform this assumption, for each summary measure SM , i.e. the CFR and

different PPRs, we calculate the standard deviation of the consecutive differences from all

of the country-specific curves, denoted by σSM . For JOY = 2015 these take the following

values (to 3 significant figures):

σC F R = 0.0507;

σPPR0→1 = 0.0271; σPPR1→2 = 0.0301;

σPPR2→3 = 0.0162; σPPR3+→4+ = 0.00955.

To compare the standard deviations we scale them by the average value of their

corresponding summary measure. We then find that actually PPR2→3 exhibits the greatest

variability (with a scaled standard deviation of 0.0406), followed by PPR1→2 (0.0362),

PPR0→1 (0.0322), PPR3+→4+ (0.0303) and then the CFR (0.0263).

We then express the system model for true summary measure SM , denoted by θSM
c for

cohort c, as a normal prior for a first-order random walk:

θSM
c ∼ N

(
θSM

c−1,σ2
SM

)
,c =

(
c JOY

mi n +1
)

, . . . ,c JOY
max .

In this way the system model indicates that values of the true summary measure for

consecutive cohorts should be close to each other, with the degree of closeness informed by
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the typical variation observed in the historical HFD data. The construction of this prior from

observed data that already enter the model has links to Empirical Bayes methods. However,

the prior will act mainly to achieve plausibility in the projected summary measures for

partially observed cohorts, with any effects for fully observed cohorts likely to be negligible.

The second component of the system model relates only to PPR0→1, the proportion of

women who have at least one child. This component is based on the assumption that

very high values of the true PPR0→1 (and equivalently very low values of 1−PPR0→1, the

proportion of women having no children), which indicate almost universal childbearing, are

unrealistic5. The associated prior is informed by the pooled dataset of PPR0→1 estimates

used above, and penalizes large values of PPR0→1 with increasing strength as PPR0→1

approaches 1. Full details are given in Appendix F.

3.4 Model fitting

For a given country and JOY value, we fit our Bayesian parity-specific fertility projection

model using the package rstan (Stan Development Team 2024) within R (R Core Team

2023). This provides an interface to the Stan software, which enables efficient posterior

sampling from complex models. We obtain 750 samples and discard the first 250 as burn-in,

leaving 500 samples. Assessment of standard convergence diagnostics indicate that the

samples mix well. We also fit an aggregate version that simply smooths the age-cohort

ASFR surface (panel a of Figure 1) and only constrains the CFR. Both the parity-specific and

aggregate models fit quickly, taking on average just over 3 minutes and less than 30 seconds

respectively on a 2.7GHz Intel Core i7 Windows machine. For each posterior sample, we

then generate order-specific and aggregate birth counts according to the data models in

Section 3.2.2, from which we obtain posterior distributions of quantities of interest that we

present in Section 4.

5The HFD advises caution when using estimates of 1−PPR0→1 which are below 5%; such estimates have
been calculated for some Eastern European countries for cohorts born in the 1950s and 1960s (e.g., see Kostova
et al. 2021).
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3.5 Comparator methods

We assess the predictive performance of our proposed parity-specific model by comparing:

(1) against the aggregate version (Section 3.4) to directly evaluate the effect of incorporating

parity information, and (2) against a selection of the best-performing (aggregate) methods

in the existing literature to determine whether our parity-specific model has competitive

forecast accuracy and precision. We consider four comparator methods:

• Freeze rates approach: simply fixes the ASFRs at their most recent observed values.

• Model of Myrskylä et al. (2013): extrapolates the recent age-specific ASFR trend for five

years and then freezes the rates.

• Model of Schmertmann et al. (2014a)6: a Bayesian approach which incorporates prior

information from historical HFD data regarding typical ASFR patterns. While our

approach performs 2D smoothing of the (parity-specific) rates explicitly, the model of

Schmertmann et al. (2014a) does not smooth the observed rates, and obtains smooth

forecasts implicitly by penalizing implausible future ASFR age-cohort progressions.

• model of Ševčíková et al. (2016)7: takes a top-down approach (see Section 1),

deconstructing TFR projections from the hierarchical Bayesian model used in the

United Nations population projections (Gerland et al. 2014) into ASFR projections.

The models of Myrskylä et al. (2013), Schmertmann et al. (2014a) and Ševčíková et al. (2016)

were found to forecast completed cohort fertility with the highest accuracy in the recent

comparative paper of Bohk-Ewald et al. (2018a). The freeze rates approach performed well

despite its simplicity, leading the authors to recommend its usage as a benchmark when

proposing any new fertility forecasting method.

6Details of the adjustments made to the implementation of this model are provided in Appendix G.
7Details of the adjustments made to the implementation of this model are provided in Appendix H.
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4 Results

The range of model outputs presented in this section ensure that all country-JOY

combinations are represented. We visualize the forecasts for eight countries which

demonstrate the geographical spread and diversity of fertility patterns within our results.

4.1 Parity-specific and aggregate models

We present results from the proposed aggregate and parity-specific models fitted to

Denmark, Ireland, Japan and Lithuania. We focus on JOY = 2015 for simplicity, with the

other JOY values considered in Section 4.2 when we compare with existing methods.

4.1.1 Fitted rates

Figure 4 presents the fitted rates for Japan (rows 1 and 2) and Lithuania (rows 3 and 4). Rows

1 and 3 display the posterior median ASFRs from the two models (columns 1 and 2) followed

by the parity-specific rates, which are only estimable by the parity-specific model8. Rows 2

and 4 plot the corresponding observed rates for comparison. The dashed lines indicate rate

forecasts (row 1/3), and rate estimates observed after 2015 (row 2/4).

For Japan, 2015 follows a rapid CFR decline which stands out in a global context (Zeman

et al. 2018). This is demonstrated clearly in the first two columns, where the observed ASFRs

decrease steeply in the first half of the age range and rise only moderately in the second

half. These columns also show reasonably similar ASFR forecasts for the aggregate and

parity-specific models, with gradual declines and recuperation at younger and older ages

respectively. However, the parity-specific model allows us to learn about the parity dynamics

underlying these forecasts. In the subsequent columns we see that increasing smoothing

is required due to the observed rates being more erratic. The further ASFR declines at

younger ages appear to be driven predominantly by decreases in the rate of progression to

motherhood (parity 0 rates) but also in the progression from parity 1 to 2, while all parities

8Note that we do not estimate parity-specific rates below age 16 for parity 1, age 17 for parity 2, and age 18
for parity 3+. This is because these rates are obsolete in the cohort cumulation approach (see Section 2.2) used
to approximate the parity-specific exposures and compute the ASFRs and summary fertility measures.
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(but especially parities 1 and above) contribute to the higher rates at older ages. We also

note that the constraint applied for plausibility at the oldest ages (equation (4) in Section

3.2.1) ensures that the level of these increases diminishes at the upper end of the age range.

Lithuania also exhibits considerable instability in the observed ASFRs, with the ASFR

collapse across ages 15–25 that occurred for the older half of the cohorts following the end

of the communist regime (Billingsley 2010). Unlike Japan, however, this was counteracted

by a steep rise in the ASFRs at later ages, which both models predict to continue for the

younger cohorts. Interestingly, both models also anticipate a slight decrease in the level of

the peak ASFR for the youngest cohorts, occurring at around age 29. The breakdown by

parity determines the main drivers of these changes to be again at parities 0 and 1, with the

higher-order projections remaining reasonably consistent.

Appendix I provides analogous figures for Denmark and Ireland. Denmark presents much

more stable observed ASFRs, with a gentle postponement of childbearing to older ages; they

are projected to remain constant at younger ages but continue to increase gradually at older

ages. Also, the aggregate and parity-specific ASFR forecasts differ noticeably, with a steeper

predicted rise at central ages for the former. The observed ASFRs for Ireland depict a fast

but smooth fertility decline and postponement driven by steep decreases for parities 1 and

above, particularly towards younger ages. Both models forecast further ASFR reductions at

younger ages and rises at older ages, the aggregate model again appearing more extreme.

The PPR constraints encourage more realistic parity-specific forecasts while maintaining

the CFR projection, driving the more stable ASFR forecasts; this also occurs for the other

countries, but less adjustment is required as these forecasts are already reasonable.

4.1.2 Summary measures

Figure 5 presents the forecasts of the five summary measures, namely the CFR and

PPRs, with their associated uncertainty. In row 1 we plot the posterior median CFR and

corresponding 95% prediction interval under the aggregate and parity-specific models for

the four countries. We first observe that the posterior medians have reasonably similar

trends, but differ in level. For Japan and Lithuania both models predict an increasing trend
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followed by a plateau, with the parity-specific model rising to a slightly higher level. For

Denmark and Ireland the projections diverge more considerably, the parity-specific model

predicting for Denmark a decline for the late-1970s cohorts that the aggregate model does

not anticipate, and for Ireland a more extreme decline for the later cohorts.

Regarding the level of uncertainty, while the intervals for the two models overlap extensively,

those for the parity-specific model are consistently narrower, meaning that the projections

have greater precision. Lastly, although the additional data points from 2016 onwards can be

used to assess forecast performance, these correspond to cohorts who were already nearing

the end of their reproductive lives and thus their CFR values can be predicted with high

accuracy. In Section 4.2 we assess the forecast performance for the earlier JOY values, where

longer time series of out-of-sample data are available.

We now consider the posterior distributions of the four PPRs, which are presented

analogously in row 2 of Figure 5 (for the parity-specific model only). We first consider

Ireland and Japan, which both exhibit a steep observed CFR decline for the complete

cohorts, but due to very different trends in the observed PPRs. While Japan has seen

steep declines in the progression to motherhood (PPR0→1) and from one to two children

(PPR1→2), the higher-order PPRs have decreased fastest for Ireland. This supports our

earlier observations that the greatest change in the parity-specific rates was exhibited for

parities 0 and 1 in Japan, but parities 1 and above in Ireland. Concerning the projections,

while the higher-order PPRs are predicted to decline further in Ireland and so continue to

reduce the CFR with PPR0→1 remaining reasonably stable, the lower-order PPRs (and the

CFR) are projected to recover and somewhat stabilize for Japan.

Denmark displays a gradual CFR increase for the complete cohorts, which appears to be

driven by similar observed rises in PPR0→1 and PPR1→2, the higher-order PPRs remaining

stable. However declines are initially predicted for all PPRs, with recovery anticipated for

the lower-order PPRs while the higher-order PPRs plateau. Lithuania also presents relatively

stable observed PPR trends, despite great instability in the underlying rates (Section 4.1.1).

Again, recovery is projected for the lower-order PPRs, while the higher-order PPRs are
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predicted to converge. The steep projected increase in PPR1→2 drives the rise in the

CFR, leading to the predicted CFR convergence for the youngest cohorts in Denmark and

Lithuania. In general, the gradual nature of these predicted PPR and CFR changes reflects

the addition of their respective constraints to incorporate prior knowledge regarding their

relatively slow progressions in the past (Section 3.3).

4.2 Comparison with existing methods

In continuation from Section 3.5, in this subsection we assess the predictive performance

of our proposed parity-specific model by comparing with the aggregate model and the four

comparator methods from the existing literature.

4.2.1 Summary statistics

We first compare the predictive performance of these methods across all countries and JOY

values simultaneously using five different summary statistics relating to the ASFR and CFR

forecasts, which we present in Table 1. Note that of the four comparator methods from the

existing literature, only the models of Schmertmann et al. (2014a) and Ševčíková et al. (2016)

are taken to have probabilistic forecasts9. The first three statistics are standard measures,

namely the mean absolute error (MAE), mean absolute percentage error (MAPE) and the

root mean square error (RMSE), where we take the point estimate for the probabilistic

forecasts to be the posterior median of the forecast distribution10. For both the ASFR and

CFR forecasts, these measures indicate that our proposed parity-specific model is preferred

marginally over the aggregate version; for the ASFR forecasts the model of Ševčíková et al.

(2016) performs slightly better than the parity-specific model, but for the CFR forecasts the

four comparator methods perform worse, in some cases quite considerably.

The next two rows contain the coverage of the 90% and 50% prediction intervals for the four

9Although Myrskylä et al. (2013) provide a method for computing forecast intervals, their coverage has been
shown to be poor (Bohk-Ewald et al. 2018a; Ellison et al. 2020). We therefore only consider the point forecasts
of this approach.

10Note that to ensure a fair comparison between the deterministic models (which provide a perfect fit to the
observed ASFRs) and the probabilistic models, the CFR summary statistics for the latter in Table 1 (excluding
the coverages) and Figure 6 ignore the uncertainty about the ASFRs observed before the jump-off year, instead
treating them as known.
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probabilistic methods. The values for the ASFR forecasts are considerably lower than the

nominal levels, with the Ševčíková et al. (2016) model, and the aggregate and Schmertmann

et al. (2014a) models (jointly) having the highest coverage for the 90% and 50% prediction

intervals respectively. Contrastingly, the values for the CFR forecasts are generally much

closer to the nominal levels, with the proposed parity-specific and aggregate models well

calibrated at the 90% level but with slight overcoverage at the 50% level.

The final row presents the average value of a particular scoring rule. Scoring rules have

been applied in the context of fertility forecasting by Ellison et al. (2020). They are designed

to assess probabilistic rather than point forecasts and so can measure the performance of

the entire forecast distribution (Gneiting and Raftery 2007). We compute the continuous

ranked probability score (CRPS) (Matheson and Winkler 1976), which evaluates the quality

of a forecast distribution based on how close its cumulative distribution function (CDF) is to

that of the true value; it can also be calculated where only point forecasts are available (and

is equivalent to the MAE), meaning that we can compare all of our methods simultaneously

(Ellison et al. 2020). We note that smaller CRPS values indicate greater predictive accuracy.

Table 1 indicates that the ASFR forecasts from the models of Schmertmann et al. (2014a) and

Myrskylä et al. (2013) are most preferable under the CRPS, with our parity-specific model

reasonably close. However, for the CFR forecasts the parity-specific model is preferable.

The summary statistics imply that overall, our proposed parity-specific model tends to

outperform the corresponding aggregate model and is also competitive with some of the

best-performing existing models. However this is at a high level of aggregation, and so next

we summarize the differences we observe when repeating this exercise for a given country or

JOY value (results not shown). The conclusion regarding the comparison with the aggregate

model generally holds, with only a few instances where the aggregate model is preferable

based on at least one measure (ASFR: Estonia, Japan, Norway and Taiwan; CFR: Denmark,

Ireland, Japan, the Netherlands and the United States, and 2005). The findings regarding the

comparison with the existing methods are less consistent across countries and JOY values.

Across the ASFR forecasts, the model of Schmertmann et al. (2014a) is generally the most

preferable, with the model of Myrskylä et al. (2013) only preferable for the United States and
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2015; for the CFR forecasts, the parity-specific model is strongly preferable.

Next, in Figure 6 we inspect the results broken down for each country-JOY combination

for the CFR forecasts. In panel a we plot the average CRPS by country for all JOY values

combined, while panel b provides plots for each individual JOY value. The countries

are ordered by decreasing CRPS according to the parity-specific model, to allow ease of

comparison relative to the alternative methods. We first contrast the lines corresponding to

the parity-specific and aggregate models, observing that in the vast majority of cases where

there is a noticeable difference, the parity-specific model has the lower average CRPS; this

supports our findings from Table 1.

Secondly, we contrast the parity-specific model with the remaining lines, corresponding

to the four comparator methods. Considering the ‘benchmark’ freeze rates approach first,

our parity-specific model strongly outperforms this method overall for nearly all countries

(panel a) and for JOY values 2000 and 2005 (panel b); the methods are more evenly matched

for the later JOY values. This is intuitive because the averages are dominated by completing

cohort fertility at high truncation ages, which is reasonably straightforward to achieve with

considerable accuracy; this explains the more erratic results and greater crossover between

the methods. For the models of Ševčíková et al. (2016) and Schmertmann et al. (2014a) the

parity-specific model is still preferable in general, while the model of Myrskylä et al. (2013)

often outperforms the parity-specific model.

4.2.2 Visual assessment

Next we visually inspect the projections, starting with plotting the CFR forecast distributions

for our second selection of four countries – Canada, Czechia, the Netherlands and the

United States – for JOY values 2000 and 2005 in rows 1 and 2 of Figure 7. We choose

these earliest jump-off years as they provide the longest time series of out-of-sample data

points. In most cases the prediction intervals or point forecasts for the five methods overlap

somewhat. However, the 2000-based forecasts for Czechia provide an interesting example

whereby the predictions diverge sharply from around the 1970 cohort; the parity-specific

and aggregate approaches anticipate a recovery to replacement level, while the other
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methods predict a steep decline to unprecedented levels. The reality lies in the middle, with

a gradual CFR decline being observed that lies much closer to the point forecasts from our

proposed models; this explains the poor performance of the other methods in Figure 6.

In contrast, the 2000-based forecasts for the United States demonstrate an instance where

the simple extrapolative method of Myrskylä et al. (2013) performs best; the parity-specific,

aggregate and Ševčíková et al. (2016) models predict a fairly similar trend, while the freeze

rates approach and the model of Schmertmann et al. (2014a) respectively understate and

overstate the the extent of the CFR recovery. This latter model underperforms in a similar

way for the 2000-based Netherlands and 2005-based United States forecasts; however,

it outperforms the other methods in the 2000-based Canada and 2005-based Czechia

forecasts. This is consistent with the model exhibiting some of the widest ranging average

CRPS values in Figure 6.

Lastly, in rows 3–5 of Figure 7 we examine the ASFR forecasts for the 1975 cohort at JOY

values 2000, 2005 and 2010, when women in this cohort were aged 25, 30 and 35 respectively.

This allows us to appreciate the challenge of completing the cohort schedule at young

truncation ages. For example, the cause of the divergent 2000-based Czechia CFR forecasts

(row 1 of Figure 7) is clear looking at the underlying ASFRs for the 1975 cohort – the age

pattern has peaked and is stable, but when it will decline (or whether it will peak further)

is difficult to determine, hence the very different forecasts. However, the projections for

the same cohort at the later JOY values exhibit much greater consistency due to a larger

proportion of the cohort schedule having been observed. A similar pattern is visible in the

Netherlands panels, with the methods disagreeing on the location and height of the ASFR

peak in the 2000-based forecast, but mostly agreeing in the later forecasts. The same is true

for Canada and the United States but to a lesser extent.

5 Discussion and conclusions

In this paper we propose, to the best of our knowledge, the first integrated methodological

framework for producing fertility projections by parity. The model generates smooth
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age-cohort surfaces of rates for each parity which are combined to give an aggregate rate

surface, allowing summary fertility measures such as completed family size (via the cohort

total fertility rate, or CFR) and parity progression ratios to be computed within the model.

Taking a Bayesian approach makes it straightforward to apply constraints both to these

measures and to the smooth surfaces themselves, thus incorporating prior knowledge and

improving forecast plausibility; it also allows the model to be informed by data sources at

the parity-specific and aggregate levels in a coherent way.

The key methodological challenge to overcome is how to model conditional parity-specific

fertility rates, i.e. rates that depend on the number of women at risk of each particular birth

order, when in most cases data of sufficient quality are only available for the numerator,

i.e. the number of order-specific births. To this end, we exploit the sequential progression

of parity through a person’s life and approximate the denominators by cumulating across

cohort fertility (Jasilioniene et al. 2015; Smallwood 2002). This is similar to the approach

taken by Ellison et al. (2023), however an important difference is that our cumulation occurs

during model fitting rather than only being applied post-hoc to separate parity-specific

model outputs. The implementation of such an approximation is necessary even if the

denominators for the fitting period are known, as estimates consistent with the rate

projections are required for the forecast period. Despite this, the fact remains that fitting

the proposed model relies on having at least some parity-specific data available at the

population level, which may pose a difficulty in less-developed countries.

A second challenge is how to obtain forecasts that are plausible, especially given that we

are extrapolating multiple two-dimensional smooth surfaces within the same model. We

do this by applying various constraints that express our prior knowledge about the likely

progression of demographic rates (see Camarda 2019 for an example of such an approach

in the context of mortality forecasting). The first instance is at the parity-specific level

(Section 3.2.1), constraining the parameters to borrow strength across cohorts where the

rates are erratic at the youngest ages, and to enforce the known biological limitations of

fertility at the oldest ages. The second application is at the aggregate level (Section 3.3),

where we (1) constrain summary fertility measures to change slowly from cohort to cohort,
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informed by the historical variability of these measures in a pooled dataset from the Human

Fertility Database (HFD) (HFD 2024); and (2) discourage unrealistically high values of the

proportion of women becoming mothers. These constraints, when taken together, should

lead to increased forecast plausibility in terms of the shapes of the cohort schedules of rates

at the parity-specific level, and the progression of summary measures at the aggregate level.

To assess the forecast performance of our proposed model we fit it to 16 countries across

four cohort ranges with a different jump-off year, i.e. the last year of data used for

model fitting. We also fit an analogous ‘aggregate’ model, which only smooths the overall

age-specific fertility rates (ASFRs) and constrains the CFR, as well as several competitive

aggregate models from the literature, informed by the results of Bohk-Ewald et al. (2018a).

We perform a comprehensive quantitative and visual comparison of the resulting ASFR

and CFR forecasts to ascertain whether the incorporation of parity information improves

forecast accuracy and precision. We can address this question directly by comparing the

parity-specific and aggregate models, which only differ in this respect; we find that the

former is strongly preferable under nearly all of the measures. In contrast, the comparison

with existing approaches has mixed findings, with the comparator methods often being

preferable, particularly for the ASFR forecasts. However, this comparison only addresses

the question indirectly – there are many differences between our proposed model and the

existing methods which do not relate to parity and cannot be eliminated.

We have tested the sensitivity of our proposed model in several ways, considering

a more flexible prior on the summary measures (Appendix J), different knot spacing

combinations for the age and cohort basis functions (Appendix K), and the use of

register- or census-based age-parity population estimates rather than the aforementioned

cumulation-based approach (Appendix L). In each case we find that no alternative

implementation provides a consistent improvement in predictive accuracy and coverage

across the countries and jump-off years considered. These preliminary investigations

demonstrate that our proposed model appears to be reasonably robust to the choice of

exposure data, smoothing and prior specifications. Further refinement could include testing

the sensitivity to the other constraints and priors within the model.
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Although we include as many HFD countries as possible, it is necessary to exclude those

with lower-quality order-specific births data. Furthermore, the HFD only includes countries

with high-quality birth and population data, which tends to be highly developed countries

(Jasilioniene et al. 2016). Therefore, a key area for future investigation is to apply the

model to countries with poorer-quality or absent order-specific birth data. Our proposed

Bayesian framework makes it reasonably straightforward to handle the various issues

that could arise. For example, coarser order-specific births data can be incorporated by

aggregating the relevant modelled quantities, adjusting the data models to reflect the level of

reliability. Higher-quality data from similar countries can be integrated to borrow strength,

for instance by specifying priors regarding their typical parity-specific age pattern. This

demonstrates the possibility of obtaining plausible estimates and projections in data-poor

contexts by adapting our proposed model to incorporate non-standard data, different levels

of confidence and additional data sources.

Further model extensions could include the incorporation of time since last birth to capture

the important dependence of birth events on this variable (Ellison et al. 2022), and the

adaptation to a period context. Furthermore, scenario testing could be of great interest

to policymakers, whereby the effect of various parity-specific interventions on overall

childbearing levels could be explored. Lastly, our proposed model could be incorporated

into a kinship projection model, where advancements have already been made through an

efficient matrix formulation and the inclusion of parity as a characteristic (Caswell 2020).

In conclusion, our proposed model provides a sophisticated and efficient Bayesian

methodology for obtaining parity-specific fertility projections. That such projections can

express aggregate rates via the underlying parity dynamics that interact to produce them

undoubtedly adds great richness and incorporates an awareness of the sequential nature of

childbearing, features which are absent from existing methods. Furthermore, the ability

to generate plausible projections of parity-specific summary measures, including parity

progression ratios and family size distributions, is exciting in and of itself. Of equal

importance is forecast performance, which we find to be reasonable when compared to

some of the best-performing models from the literature. This demonstrates that enhancing
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explanatory capacity, in this case through explicitly modelling the childbearing mechanism

by parity, yields a model that is at least comparable in terms of its predictive performance

and errors. This provides a strong argument for the use and further development of

fertility projections that more accurately capture the process of childbearing, thus having

the potential to enable more tailored policy solutions.
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Table 1: Summary statistics for the ASFR and CFR forecasts under various models
Forecast Measure P-S A Šev Sch M FR

ASFR

MAE 0.0063 0.0073 0.0058 0.0078 0.0067 0.0073
MAPE (%, 1 decimal place) 11.7 13.5 12.2 18.3 13.3 16.5
RMSE 0.010 0.011 0.009 0.012 0.011 0.011
Coverage of 90% PI (%) 60 68 71 66 - -
Coverage of 50% PI (%) 28 35 34 35 - -
Average CRPS 0.0071 0.0086 0.0071 0.0060 0.0067 0.0073

CFR

MAE 0.012 0.013 0.019 0.026 0.015 0.028
MAPE (%, 1 decimal place) 0.7 0.7 1.0 1.4 0.8 1.5
RMSE 0.029 0.030 0.041 0.056 0.038 0.060
Coverage of 90% PI (%) 87 94 70 71 - -
Coverage of 50% PI (%) 61 67 36 51 - -
Average CRPS 0.013 0.015 0.022 0.022 0.015 0.028

Notes: Summary statistics are calculated across all countries and JOY values for the ASFR
and CFR forecasts under the proposed parity-specific (P-S) and aggregate (A) models, the
Ševčíková et al. (Šev), Schmertmann et al. (Sch) and Myrskylä et al. (M) models, and the
freeze rates approach (FR). Values are given to 2 significant figures unless stated otherwise.
MAE = mean absolute error; MAPE = mean absolute percentage error; RMSE = root mean
square error; PI = prediction interval; CRPS = continuous ranked probability score. The
most preferable value/values is/are in bold.
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Figure 1: (a) Left: Lexis surface of Canada age-specific fertility rate estimates for the
1961–2000 cohorts, observed up to JOY = 2015, from HFD (2024). Right: same data
presented in the form of cohort-specific rate curves. (b) Top row: Lexis surfaces of Canada
conditional parity-specific fertility rate estimates for the 1961–2000 cohorts and parities 0,
1, 2 and 3+, observed up to JOY = 2015, from HFD (2024); note that the rate estimates have
been top-coded at 0.3. Bottom row: same data presented in the form of cohort-specific rate
curves. Note the non-standard age-cohort axes in the Lexis surfaces.
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1Figure 2: Overview of the proposed modelling framework. Straight-edged rectangles
are demographic arrays, rounded rectangles are system and data models; only the gray
rectangles are observed. For convenience, the corresponding symbol (straight-edged
rectangles) and section number where the corresponding system or data model is specified
(rounded rectangles) are given in parentheses.
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Figure 3: Illustration of penalties applied to basis function coefficients for a 2D age-cohort
surface with P = 8 basis functions across age and Q = 10 across cohort. Gray areas:
coefficients fixed across cohort; White and hatched areas: first-order differences penalized
in cohort direction; White area: first-order differences penalized in age direction.
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Figure 4: Row 1: Japan posterior median ASFRs and parity-specific rates from the aggregate
and parity-specific fertility projection models for JOY = 2015; Row 2: corresponding
observed rates from HFD (2024). Rows 3 and 4: Equivalent plots for Lithuania. Dashed
lines indicate values after the year JOY .
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Figure 5: CFR (top row) and PPR (bottom row) posterior medians and 95% prediction
intervals for the aggregate and parity-specific fertility projection models for JOY = 2015 and
four selected countries; note that the PPRs are only estimable by the parity-specific model.
Points are observed values from HFD (2024); vertical lines indicate the last fully-observed
cohort (born in the year 1971 = JOY −amax).
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Figure 6: (a) Average CRPS against country for all JOY values combined, for the proposed
parity-specific and aggregate models, the Ševčíková et al., Schmertmann et al. and Myrskylä
et al. models, and the freeze rates approach, for the CFR forecasts. (b) Equivalent plots
for each individual JOY value. CRPS = continuous ranked probability score; countries are
ordered by decreasing CRPS according to the parity-specific model.
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Figure 7: Rows 1 and 2: CFR posterior medians and 95% prediction intervals for the
proposed parity-specific and aggregate models, the Ševčíková et al. model and the
Schmertmann et al. model, and point forecasts for the Myrskylä et al. model and the freeze
rates approach, for JOY values 2000 and 2005, and four selected countries; vertical lines
indicate the last fully-observed cohort (born in the year JOY −amax). Rows 3–5: For the same
models and the selected countries, ASFR posterior medians and 95% prediction intervals for
the 1975 cohort at JOY values 2000, 2005 and 2010; vertical lines indicate the truncation age
(equal to JOY −1975). Points are observed values from HFD (2024).
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Appendices

A Countries included in the analysis

Table A.1: Countries included in the analysis for each JOY value

JOY c JOY
mi n c JOY ∗

mi n c JOY
max Countries

2000 1946 1951 1985
Canada, Czechia, Hungary, Netherlands, Slovakia,
United States

2005 1951 1956 1990
Canada, Czechia, Denmark*, Hungary, Ireland*,
Japan*, Netherlands, Norway*, Russia*, Slovakia,
Sweden*, United States

2010 1956 1961 1995
Canada, Czechia, Denmark, Hungary, Ireland,
Japan, Lithuania*, Netherlands, Norway, Russia,
Slovakia, Sweden, Taiwan*, United States

2015 1961 1966 2000
Belarus*, Canada, Czechia, Denmark, Estonia*,
Hungary, Ireland, Japan, Lithuania, Netherlands,
Norway, Russia, Sweden, Taiwan, United States

Notes: JOY = jump-off year; c JOY
mi n = minimum cohort included in original setup with

nc = 40 cohorts; c JOY ∗
mi n = minimum cohort included in reduced setup with nc = 35 cohorts(

c JOY ∗
mi n = c JOY

mi n +5
)
; c JOY

max = maximum cohort included (same for original and reduced

setups). Countries are listed alphabetically, with an asterisk (*) indicating that the reduced
setup is used for the particular country.

B Cumulation-based exposure approximation method

In continuation from Section 2.2, for a given cohort c, our goal is to estimate parity-specific

exposures E i
ac for i ∈ {0,1, . . . , J+} and a ∈ {ami n , . . . , amax}. We define temporary exposures

Ẽ i
ac , exposure estimates Eac , and omit the cohort subscripts for clarity. We perform the

following steps as in Smallwood (2002):

1. Assume all women at age ami n are childless:

E 0
ami n

= Eami n
,E i

ami n
= 0 for i ∈ {1,2, . . . , J+}.

2. For a = ami n +1, obtain temporary exposures Ẽ i
a by updating each E i

a−1 according to
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the following equations:

Ẽ 0
a = E 0

a−1 −b1
a−1;

Ẽ i
a = E i

a−1 −bi+1
a−1 +bi

a−1 for i ∈ {1,2, . . . , (J −1)};

Ẽ J+
a = E J+

a−1 +b J
a−1.

Then, scale each Ẽ i
a so that

∑
i Ẽ i

a = Ea , and define this as E i
a :

E i
a = Ea ×

Ẽ i
a∑

i Ẽ i
a

for i ∈ {0,1, . . . , J+}.

3. Repeat step 2 for a ∈ {(ami n +2), . . . , amax}.
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C Comparison of parity-specific exposure estimates

In continuation from Section 2.2, we compare the exposure estimates from the

cumulation-based approximation method that we use in our analysis, with the exposure

estimates produced from the census- or register-based (we will refer to this as register-based

for convenience) period fertility tables from HFD (2024), for all countries where this is

possible. We convert the cumulation-based age-cohort estimates to age-period estimates

via Lexis triangles (see Section 2.1), so that we are not introducing any additional error into

the register-based estimates which are derived from period data.

In Figure C.1 we plot the age-period register-based estimates against the corresponding

cumulation-based estimates for all HFD countries with available data. The correspondence

is generally very good; there are a few outliers, but these are typically from countries

with more unstable histories. There are consistent issues at younger ages, where

the cumulation-based method tends to overestimate the exposure for parity 0 and

underestimate it for higher parities, relative to the register-based method. It is important to

consider that there are data quality issues to be aware of in the register-based methods too,

e.g. whether the parity information was only collected from a sample of the population or

everyone, the representativeness of this sample and/or the census or register as a whole, etc.

Any relevant country-specific factors are summarized in the data availability spreadsheet

provided in the supplementary material.

The effect on the resulting rates is also of great interest as these are the quantity that we are

actually modelling – we see from Figure L.1 that for Sweden there is a small effect on the

parity 0 rates but a larger impact on the rates for higher parities. However, given that these

higher-order rates are very uncertain and erratic at younger ages anyway due to the small

exposures and birth counts, the impact on cohort-specific model outputs such as completed

family size is likely to be minimal.
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Figure C.1: Plot of parity-specific age-period census- or register-based exposure estimates (y-axis) against corresponding cumulation-based
exposure estimates (x-axis) for all available countries in the HFD. The colour of the point indicates the age; open circles indicate that the
cumulation-based estimate may be less reliable due to data quality issues; the scales are in thousands; the black line is where y = x.
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D Illustration of P-spline approach for the univariate case

We illustrate the P-spline approach in Figure D.1 for the simple one-dimensional case where

we are smoothing across a single variable, in this case age. Below we describe the three steps

depicted in the panels of the figure:

1. Step 1 displays the cubic B-spline basis with eight basis functions.

2. Step 2 scales each of the basis functions by different weights which are constrained to

change smoothly across age. Summing the values of the weighted curves for each age

then gives the black smooth curve of fitted log-rates.

3. Step 3 exponentiates the fitted log-rates to give the smooth fitted rate curve.

Figure D.1: Illustration of smoothing of age pattern of log-rates under a P-spline approach.
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E Summary fertility measure estimates for JOY = 2015

Figure E.1: CFR and PPR estimates for the 1945–1971 cohorts, computed from HFD (2024).
Note that only country-cohort combinations where the corresponding data is of sufficiently
high quality are included.
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F Prior on the proportion of women having at least one child

In continuation from Section 3.3, here we specify the second component of the Level-3

system model for the summary fertility measures. The aim of this component is to achieve

plausible projections of PPR0→1, the proportion of women having at least one child (and

equivalently 1−PPR0→1, the proportion of women having no children), when PPR0→1 is

close to 1 (and equivalently 1−PPR0→1 is close to zero). To do this for a given JOY , we first

extract the PPR0→1 estimates from the same pooled cross-country dataset from HFD (2024)

used for the first component of the system model. We then estimate the kernel density of

the observed PPR0→1 values.

As our interest is in obtaining plausible projections at the upper end of the PPR0→1

distribution, to determine the system model we restrict PPR0→1 to be greater than or equal

to the value that gives rise to the last local maximum of the kernel density function (in

the direction of increasing PPR0→1). Scaling the kernel density to take the value 1 at this

maximum, we approximate the density function by a transformed Lognormal cumulative

distribution function (CDF). Specifically, we identify parametersµ ∈ {−∞,∞} andσ> 0 such

that the following quantity is minimized:

∑
i

{
di −

(
1−FX (xi ;µ,σ)

)}
,

where xi is the i th PPR0→1 value for which the kernel density is evaluated, di is the kernel

density estimate corresponding to xi , and FX (xi ;µ,σ) is the CDF of X ∼ Lognormal(µ,σ2)

evaluated at xi . We illustrate this Lognormal approximation to the scaled kernel density in

Figure F.1 for JOY = 2000.

We then add the following quantity to the log-likelihood in the model, where the sum is over

all cohorts c:

∑
c

{
log

(
1−FX (PPR0→1

c ;µ,σ)+0.00001
)}

.
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In this way, large values of PPR0→1 are penalized with increasing strength as PPR0→1

increases, according to the Lognormal CDF approximation to the scaled density of historical

PPR0→1 estimates. Where the CDF takes a value of 0, i.e. approximately where PPR0→1

takes a value below that which gives rise to the last local maximum of the density function,

there is essentially no effect on the log-likelihood (as log(1.00001) ≈ 0). But as PPR0→1

increases from this value (and the value of the CDF approaches 1), an increasingly negative

quantity is added to the log-likelihood, corresponding to a stronger penalization. Where the

CDF takes a value of 1, i.e. where PPR0→1 is very close to 1, the effect on the log-likelihood is

at its most negative at log(0.00001) ≈−11.5, indicating that almost universal childbearing is

highly unlikely. The addition of 0.00001 ensures that the quantity added to the log-likelihood

is always finite, thus avoiding the computational issues associated with adding a value of

log(0) =−∞ while having a similar impact.

Figure F.1: Illustration of the PPR0→1 prior for JOY = 2000. The density (black line) is scaled
to have a value of 1 at the last local maximum (in the direction of increasing PPR0→1); the
value at which this maximum is achieved is indicated by the vertical dashed line, while the
horizontal dashed line is at y = 1.
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G Fitting the Schmertmann et al. model

We fit the model of Schmertmann et al. (2014a) by adapting the code downloaded from the

project website (Schmertmann et al. 2014b). The main changes we make are in relation to

the data used in model fitting. Firstly, for consistency with the data used to fit our models,

we use the asfrVH (fertility rates by birth cohort and age) and exposVH (female population

exposure by birth cohort and age) format from the HFD instead of the asfrVV/exposVV

format (rates/exposures by calendar year, age and birth cohort) used in the original code.

We also use the latest HFD data and therefore include additional countries that have since

been added to the database (and remove them from the additional non-HFD data provided

in the original code if they now have HFD data available).

As we have included countries in the “reduced” setup of the model which fits to 35 cohorts

instead of 40 (see Section 2.1), we create an adjusted version of the Schmertmann et al.

model which fits to the smaller number of cohorts. We also create a second adjusted version

of the model which ignores past uncertainty about the ASFRs, thus treating them as known.

This is required for a fair comparison in terms of summary statistics (see Section 4.2.1).

In this way, we generate a maximum of four forecast outputs per JOY : one set for those

countries with the original 40-cohort setup, containing two forecast outputs which either

incorporate or ignore past ASFR uncertainty; and an equivalent set for those countries with

the reduced 35-cohort setup, if any are present in the particular JOY .
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H Fitting the Ševčíková et al. model

As the United Nations population projections take a period perspective, the adjustments

required to incorporate the model of Ševčíková et al. (2016) into our comparative analysis

are more complex than those for the Schmertmann et al. (2014a) model. We use fertility rate

estimates by calendar year and age from the HFD, i.e. the asfrRR format. For a given JOY ,

using the bayesTFR R package (Ševčíková et al. 2011) which implements the hierarchical

Bayesian TFR projection model of Alkema et al. (2011), we first generate 60,000 posterior

parameter samples from the phase 2 and phase 3 models, fitting the model to the past 30

years of annual TFR data (computed from the HFD ASFR estimates); these specifications

were found to be optimal in Bohk-Ewald et al. (2018b). Discarding the first half of these

parameter samples as burn-in, we then generate 30,000 posterior TFR samples for each

country for the next 30 years (again, annually), to be able to complete all cohorts. We then

thin these samples to retain 500 posterior TFR samples for each country and forecast year.

Next we deconstruct the posterior TFR samples into ASFR samples using the bayesPop R

package (Ševčíková and Raftery 2016) which implements the method of Ševčíková et al.

(2016). We specify the global pattern as the variant that was found to be optimal in

Bohk-Ewald et al. (2018b), and then generate samples of the percent ASFR (PASFR) by

single year of age which we then apply to disaggregate the TFR samples. Following this

it is necessary to appropriately convert the ASFR samples from age-period to age-cohort

rates. We do this by first multiplying the ASFR samples by the corresponding age-period

exposures from the HFD (exposRR format) and the WPP (United Nations, Department of

Economic and Social Affairs, Population Division 2024) to get age-period birth samples. We

then convert these to approximate age-cohort birth samples via Lexis triangles (see Section

2.1). Dividing these by the age-cohort exposures which we use to fit our proposed model

then gives age-cohort ASFR samples to use in our comparative analysis.

There are three important caveats to bear in mind regarding our implementation of the

model of Ševčíková et al. (2016):
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1. The period to cohort conversion is only approximate, so where it is less accurate the

model may perform more poorly compared to an assessment of predictive accuracy

in the original period context.

2. In our cohort setup (Section 2.1) we take observed age-cohort combinations to be

where a + c ≤ JOY (age = a, cohort = c). However in a period setup, the data relating

to the case when a + c = JOY actually straddles the years JOY and JOY + 1. So the

exact jump-off point has a different interpretation in the period and cohort contexts.

For consistency with the cohort setup, we treat the case when a + c = JOY as being

observed perfectly in the period setup, even though it is in fact partly forecasted.

3. We have not accounted for uncertainty about the historical TFR observations and

so are assuming that the ASFRs before jump-off (where a + c ≤ JOY ) are perfectly

observed. This means that our calculated coverage in Table 1 is likely to be a slight

underestimate (Liu and Raftery 2020).
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I Additional rate forecasts for JOY = 2015

Figure I.1: Row 1: Denmark posterior median ASFRs and parity-specific rates from
the aggregate and parity-specific fertility projection models for JOY = 2015; Row 2:
corresponding observed rates from HFD (2024). Rows 3 and 4: Equivalent plots for Ireland.
Dashed lines indicate values after the year JOY .

56



J Sensitivity analysis: Prior on σSM

In continuation from Section 3.3, the current prior for a given true summary measure SM ,

denoted by θSM
c for cohort c, is a normal prior for a first-order random walk:

θSM
c ∼ N

(
θSM

c−1,σ2
SM

)
,c =

(
c JOY

mi n +1
)

, . . . ,c JOY
max .

This prior fixes the standard deviation (SD) σSM for a given JOY value, which is estimated

using historical HFD data. In this appendix we investigate the sensitivity of the forecasts

to this prior by including σSM as a parameter in the model, therefore obtaining posterior

samples of the SD rather than fixing it beforehand.

We specify a non-informative uniform prior for σSM , with bounds given by the lowest and

highest country-specific historical standard deviations for a given JOY 1. To assess the effect

of this uniform prior on our results, for each JOY we fit our proposed parity-specific and

aggregate models to three countries to cover a range of contexts: the one with the highest SD

and the one with the lowest SD (where SM =C F R), and the one with the closest to average

SD (again where SM = C F R, i.e. the current fixed value of σC F R )2. We demonstrate this

for JOY = 2015 in Figure J.1, which plots the country-specific SD values for each summary

measure and overlays the corresponding current fixed SD values. From the C F R panel, it is

therefore clear that the USA (highest), Norway (lowest) and Estonia (closest to average) are

selected for fitting. We specify the uniform prior for σSM as:

σSM ∼U
(
σ̂l

SM , σ̂u
SM

)
,

where σ̂l
SM and σ̂u

SM are the lowest and highest country-specific SD values respectively.

From Figure J.1 we can see for example that for the CFR these are the values corresponding

to Norway and the USA, and for PPR0→1 these are the values for Sweden and Belarus.

1We require the country to have at least six consecutively observed cohorts up to and including the year
JOY , so that we could in theory fit our model to the country.

2We choose these three countries from the set of those that we are already fitting to for the particular JOY
value and have therefore ascertained that the required data is available.
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We fit these alternative versions of the parity-specific and aggregate models, i.e.

incorporating the uniform prior on σSM for each available summary measure, to the

12 country-JOY combinations. We first assess the posterior distributions of the σSM

parameters by plotting the resulting densities in Figure J.2. We see that across all

combinations, despite the non-informative nature of the prior, the σSM density is strongly

positively skewed, pushing towards the lower bound of the uniform prior. Consequently,

the introduction of the prior leads to a smaller estimate of each σSM parameter compared

to the original implementation of the model (the fixed SD values are indicated by the dashed

lines). This in turn leads to a tighter first-order random walk prior on the summary measures

and therefore narrower prediction intervals (PIs). Indeed, the overall summary statistics for

the CFR forecasts (not shown) indicate that the coverage of the 50% and 90% PIs is slightly

reduced (tending to become closer to the respective nominal levels as the original coverage

is above nominal), while the other measures of predictive accuracy all worsen.
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Figure J.1: Country-specific SD values for JOY = 2015, with SD based on all countries
combined (‘average SD’, used in original model) indicated by horizontal dashed lines.
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Figure J.2: Density plots of σSM for each JOY -SM combination (panels, where each row is a different JOY and each column is a different SM).
In each panel, the coloured lines correspond to the different countries fitted to for the particular JOY , the vertical lines indicate the lower
and upper bounds of the uniform prior (σ̂l

SM and σ̂u
SM ), and the dashed vertical line indicates the ‘average SD’ used in the original model;

A = aggregate, P-S = parity-specific.
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To illustrate this visually, in Figure J.3 we plot the coverage of the 50% and 90% PIs, and the

average continuous ranked probability score (CRPS; see Section 4.2.1), for the CFR forecasts

from the original and alternative versions of the aggregate and parity-specific models. For

the coverage of the 50% PI in particular (row 1), in the vast majority of cases there is a

movement towards the nominal value (dashed line), while the coverage of the 90% PI (row 2)

often does not change or moves further away from the nominal level). However, the average

CRPS, which takes into account the entire predictive distribution of the CFR as opposed to

simply its lower and upper quantiles, indicates that predictive accuracy tends to stay roughly

the same or worsen, improving substantially in only a few cases. The analogous plot for the

ASFR forecasts is given in Figure J.4. In contrast with Figure J.3, the coverage of the 50% and

90% PIs is already below nominal level for the original model, moving further away from

nominal in most cases. The CRPS improves in roughly half of the cases, and stays the same

or worsens in the rest. Therefore there is no consistent improvement in the measures across

countries and model type.

In conclusion, our results appear to be reasonably robust to the addition of a prior on σSM .

Although there are improvements in coverage at the 50% level for the CFR forecasts, this is

not seen at the 90% level and is often at the cost of poorer predictive accuracy measured

by the CRPS, with findings worsening for the ASFR forecasts. Extensions to this sensitivity

analysis could include testing other prior specifications for σSM ; however, the clear desire

that the parameter has to be small (see Figure J.2) could cause convergence issues if an

unbounded prior were specified, as this would give the parameter the freedom to be even

closer to zero.
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Figure J.3: Plot of coverage of 50% and 90% PIs, and average CRPS (rows), against country,
for the CFR forecasts from the aggregate and parity-specific models (columns) under the
original and uniform priors. The horizontal dashed lines indicate the nominal coverage
values. PI = prediction interval, CRPS = continuous ranked probability score.
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Figure J.4: Plot of coverage of 50% and 90% PIs, and average CRPS (rows), against country,
for the ASFR forecasts from the aggregate and parity-specific models (columns) under the
original and uniform priors. The horizontal dashed lines indicate the nominal coverage
values. PI = prediction interval, CRPS = continuous ranked probability score.
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K Sensitivity analysis: Knot spacing

In this appendix we investigate the sensitivity of the forecasts to the spacing of the knots

in the age and cohort basis functions. In continuation from Section 3.2.1, the original

implementation of the model spaces the knots every five years in the age and cohort basis

functions, thereby having basis dimensions of P = 8 (for the age basis) and Q = 10 (for

the cohort basis). We test the effect of spacing the knots more or less frequently than this,

considering four additional combinations which space the knots roughly every 3 or 7.5 years

in one or both of the age and cohort dimensions. The combinations that we consider are

summarized below in Table K.1:

P Q Description

8 10
Original knot spacing (knots spaced every 5 years in both
dimensions)

12 15 Knots spaced roughly every 3 years in both dimensions

8 15
Original knot spacing in age dimension
Knots spaced roughly every 3 years in cohort dimension

12 10
Knots spaced every 3 years in age dimension
Original knot spacing in cohort dimension

6 7 Knots spaced roughly every 7.5 years in both dimensions

Table K.1: Summary of the basis dimension specifications that we consider, together with
their corresponding description in terms of knot spacing specifications. P = number of basis
functions in age dimension; Q = number of basis functions in cohort dimension.

We test these alternative basis dimension specifications by fitting the appropriately adjusted

parity-specific and aggregate models to the six countries included for JOY = 2000 (see

Table A.1), namely Canada, Czechia, Hungary, the Netherlands, Slovakia and the United

States. We choose a single JOY value because the presence of four alternatives means

that it would be highly computationally intensive to include all country-JOY combinations;

given this, selecting the earliest JOY value provides the largest amount of holdout data to

assess forecast performance. We note that the most complex option (P = 12, Q = 15) did not

converge for Canada, Czechia and the Netherlands, while the P = 8, Q = 15 option did not

converge for Hungary and Czechia; the results for these combinations are therefore omitted.

In Figure K.1 we plot the coverages of the 50% and 90% prediction intervals (PIs) and the
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average continuous ranked probability score (CRPS) (rows) for the CFR forecasts under

the aggregate and parity-specific models (columns), for each country and knot spacing

specification; Figure K.2 presents the analogous plot for the ASFR forecasts. We observe that

for the CFR forecasts none of the alternative basis dimension combinations consistently

improve coverage and the CRPS compared to the original specification, and for the ASFR

forecasts the performance is often worse than the original (this is similar to the findings

from Appendix J). It is important to have confidence that the model will converge, which is

not possible for the two options with Q = 15; the remaining options can improve or worsen

predictive performance depending on the country and model type, and in some cases the

coverage may improve but the CRPS worsen, and vice versa.

In conclusion, of the alternative knot spacing specifications under consideration in this

sensitivity analysis, there is no option that provides a consistent improvement in coverage

and/or predictive accuracy. The forecast performance can get better or worse, seemingly

dependent on the stability of past rates. Therefore, although alternative basis dimension

specifications may improve the results for an individual country-JOY -model combination,

there is no evidence to support one specification being preferable in general.
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Figure K.1: Plot of coverage of 50% and 90% PIs, and average CRPS (rows), against
country, for the CFR forecasts for JOY = 2000 from the aggregate and parity-specific models
(columns) under different knot spacing specifications. The horizontal dashed lines indicate
the nominal coverage values. PI = prediction interval, CRPS = continuous ranked probability
score, NbA (NbC) = number of basis functions in age (cohort) dimension.
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Figure K.2: Plot of coverage of 50% and 90% PIs, and average CRPS (rows), against country,
for the ASFR forecasts for JOY = 2000 from the aggregate and parity-specific models
(columns) under different knot spacing specifications. The horizontal dashed lines indicate
the nominal coverage values. PI = prediction interval, CRPS = continuous ranked probability
score, NbA (NbC) = number of basis functions in age (cohort) dimension.
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L Sensitivity analysis: Exposure approximation

In this appendix we investigate the impact of fitting the parity-specific model using

the observed census- or register-based (we will refer to this as register-based for

convenience) exposure estimates from the HFD instead of the cumulation-based exposure

approximations that we use in our original model (see Section 2.2). As explained in Section

2.2, there are very few countries in the HFD with a sufficiently long and detailed time series

of direct parity-specific exposure estimates. In fact, only Hungary and Sweden have the

data required to fit our proposed model for any of the four JOY values, and even then

it is not possible to include all JOY values but just 2005 (reduced setup), and 2010 and

2015 (original setup). We first convert the annual age- and parity-specific register-based

exposure estimates to approximate parity-specific age-cohort exposures via Lexis triangles

(see Section 2.1), and then rescale them so that the age-cohort totals match the values in our

original model for consistency.

It is then possible to compute the conditional parity-specific age-cohort fertility rate

estimates calculated using these register-based exposures, and compare them with the

equivalent rates calculated using the cumulation-based exposures. We do this for the

Swedish rates used to fit the model for JOY = 2015, presenting the visual comparison in

Figure L.1. We see that the parity 0 rates appear practically identical, while the higher-order

rates are noticeably lower and considerably less erratic at younger ages. These observations

are consistent with our findings in Appendix C where we compared the exposure estimates

produced by the two methods, finding that the register-based exposures were slightly

smaller for parity 0, and slightly larger for parities 1 and above, at the youngest ages.

It is necessary to adjust our parity-specific model slightly so that we incorporate the

register-based exposure estimates as the known parity-specific exposures for the observed

age-cohort combinations, but still use the cumulation-based method to approximate the

exposures for the future age-cohort combinations. We consider two variants: Variant 1,

which retains the original informative prior on the parity-specific dispersion parameters

(see Section 3.2.2); and Variant 2, which applies the vague prior used for the aggregate

68



Figure L.1: Sweden parity-specific rate estimates under cumulation-based exposures (top
row) and census- or register-based exposures (bottom row), 1961–2000 cohorts, used to fit
the model for JOY = 2015.

dispersion parameter to the parity-specific dispersion parameters. During the model

fitting process we identified issues with both variants in that convergence was not always

achieved on the first model run. We also observed that the forecasts of the parity-specific

summary measures sometimes displayed a lack of smoothness, due to treating the observed

register-based parity-specific exposures as known rather than generated from the smooth

rates under the cumulation-based method.

Figure L.2 presents the coverage of the 50% and 90% prediction intervals (PIs) and the

average continuous ranked probability score (CRPS) for the CFR forecasts under the original

model, Variant 1 and Variant 2, for the three JOY values in the columns, and the two

countries. We see that the results are quite mixed: Variant 1 tends to give almost identical

or slightly worse coverages for both levels, but sometimes provides an improvement in the

average CRPS; Variant 2 again often has the same coverage, but does provide some large

improvements such as for JOY = 2005 (Sweden and Hungary at the 90% level, just Sweden at

the 50% level) and JOY = 2010 (just Sweden at the 50% level). However, the CRPS for Variant

2 is often worse, apart from a considerable improvement for Hungary when JOY = 2005.

Therefore, as we have seen in the earlier sensitivity analyses, there is a lack of consistent
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improvement across countries, JOY values and metrics. The analogous plot for the ASFR

forecasts is shown in Figure L.3. The coverages tend to be similar for Variant 1 and worse for

Variant 2, and are again all below the nominal level as we have seen in Appendices J and K.

The CRPS shows an improvement for both variants for JOY = 2005, but Variant 2 performs

much worse than the original method for the other JOY values.

This sensitivity analysis appears to indicate that using register-based exposures rather than

cumulation-based exposures has a generally negative impact on predictive performance.

We would actually expect there to be an improvement, as it should be preferable to use

exposure estimates that we believe to be more accurate. However, with our limited testing

data we find that Variant 1 has little impact, and Variant 2, which expresses a high level

of confidence in the register-based exposures, performs very poorly. Furthermore, both

variants present convergence issues and unsmooth forecasts. Possibly the prior on the

parity-specific dispersion parameters should express a moderate level of confidence in the

register-based exposures, somewhere in-between Variants 1 and 2. Additionally, to improve

convergence, it may be the case that the register-based exposures should only appear in the

likelihood statement and not when generating the summary measures within the model;

this would avoid the change in methodology when we move from the observed to the future

age-cohort combinations, and would also resolve the issue of the unsmooth forecasts. In

conclusion, further investigation is clearly needed to identify the optimal way to incorporate

the register-based exposures into our proposed model, and to expand the pool of testing

data as much as possible to enable firmer conclusions to be drawn.

70



Figure L.2: Plot of coverage of 50% and 90% PIs, and average CRPS (rows), against country,
for the CFR forecasts from the parity-specific model for JOY values 2005, 2010 and 2015
(columns) under the original and alternative exposure specifications. The horizontal dashed
lines indicate the nominal coverage values. PI = prediction interval, CRPS = continuous
ranked probability score.
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Figure L.3: Plot of coverage of 50% and 90% PIs, and average CRPS (rows), against country,
for the ASFR forecasts from the parity-specific model for JOY values 2005, 2010 and 2015
(columns) under the original and alternative exposure specifications. The horizontal dashed
lines indicate the nominal coverage values. PI = prediction interval, CRPS = continuous
ranked probability score.
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