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1. Introduction

Air–sea interaction remains one of the most dynamic and influential components
of the Earth’s climate system, significantly shaping the variability and predictability of
both weather and climate [1]. The exchanges of momentum, heat, and mass between the
atmosphere and ocean not only influence short-term weather phenomena but also play a
vital role in long-term climate processes [2,3]. These interactions are particularly complex,
involving a wide range of spatial and temporal scales [4], from turbulent fluxes in the
marine boundary layer [5] to large-scale climate variability patterns such as the El Niño-
Southern Oscillation (ENSO), the North Atlantic Oscillation (NAO), Atlantic Multidecadal
Oscillation (AMO), and other significant modes of climate variability [6–8].

Recent years have witnessed considerable progress in the observation, modeling, and
theoretical understanding of air–sea interactions [9–11]. Advances in observational technol-
ogy, such as high-resolution satellite measurements and improved in situ monitoring, have
enhanced our capability to capture these intricate processes [12]. Meanwhile, innovations
in modeling, driven by both physical and data-driven approaches, have allowed for a more
accurate representation of air–sea exchanges and their role in climate dynamics [13–16].
These developments have paved the way for improved predictions of climate variabil-
ity and extreme weather events, which are critical for societal resilience and sustainable
development in the face of global climate change.

However, despite these advancements, significant uncertainties remain in our under-
standing of air–sea interactions, especially at the submeso to synoptic scales and across
different regions of the world’s oceans. Challenges persist in refining coupled climate mod-
els, achieving comprehensive global and regional air–sea flux estimates, and understanding
the influence of these processes on climate extremes. In recent years, artificial intelligence
techniques have also emerged as powerful tools to enhance our understanding and mod-
eling of these complex interactions, providing new opportunities for tackling unresolved
questions. This Special Issue of Atmosphere aims to address challenges in understanding
air–sea interactions by presenting recent research that highlights innovative observational
techniques, advanced modeling approaches, and emerging data-driven methods, with a
particular focus on their role in climate variability and predictability.

2. An Overview of Published Articles

The article by Mu et al. (Contribution 1) explores the underlying air–sea interaction
and physical mechanisms of the NAO. This research employs advanced data-driven causal
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discovery techniques to investigate the causality between multiple ocean–atmosphere
processes and the NAO. The study finds that the selected predictors of NAO are strongly
associated with its development, providing a basis for more accurate forecasts. Using a
multivariate air–sea-coupled model for NAO (NAO-MCD), this approach delivers sea-
sonal forecasts with a lead time of 1–6 months, significantly outperforming conventional
numerical models. Additionally, the results demonstrate that NAO-MCD can forecast
winter events more reliably than current models. In conclusion, the research advances
our understanding of NAO dynamics and provides a robust tool for improving NAO
predictions, particularly in the seasonal forecasting domain.

The article by Djakouré et al. (Contribution 2) investigates the importance of convec-
tive systems for extreme rainfall along the northern coast of the Gulf of Guinea (GG) and
their relationship with atmospheric and oceanic conditions. The study applies a comprehen-
sive dataset including data from mesoscale convective systems (MCSs), daily precipitation,
sea surface temperature (SST), and moisture flux anomalies. The novelty of this research
lies in its use of a multi-source dataset to analyze the spatial and temporal distribution
of convective systems and their connection to oceanic and atmospheric conditions. The
results show that two-thirds of MCSs crossing Abidjan occur in June, with the majority
originating from the continent. In contrast, oceanic MCSs are initiated closer to the coast.
The study also highlights the role of moisture fluxes from three critical zones—(i) the
seasonal migration of the intertropical convergence zone (ITCZ), (ii) the GG coastline, and
(iii) the continent—which all contribute to the formation and sustenance of MCSs. These
moisture fluxes are closely linked to oceanic warming events off Northeast Brazil and the
northern GG coast, which occurred just before and on the day of extreme rainfall events.
Overall, the findings emphasize the importance of oceanic moisture in supporting MCSs
and enhancing rainfall along the Gulf of Guinea.

The article by Zanchettin et al. (Contribution 3) explores the predictability of the
Antarctic dipole and its implications for Antarctic sea-ice predictability using hindcasts
from a state-of-the-art decadal climate prediction system initialized between 1979 and
2017. The study employs advanced climate prediction models to understand the dynamics
of the Antarctic dipole, specifically focusing on the relationship between sea-ice cover
in the Weddell and Ross Seas. The authors find that the forecast skills for the Antarctic
dipole are low, particularly in the first hindcast year, where the March values show a
strong relaxation toward climatology and September anomalies are overestimated. This
discrepancy is linked to the predominance of local drift processes over large-scale initialized
dynamics. Furthermore, they highlight that the forecast skills for the Antarctic dipole and
total Antarctic sea-ice extent are uncorrelated. The study also reveals the dipole’s limited
predictability under specific conditions, such as during strong El Niño–Southern Oscillation
events. The authors suggest that the initialization timing and model drift contribute to the
poor predictive skills.

The article by Alsubhi and Ali (Contribution 4) explores the variability of dust aerosol
optical depth (DAOD) over the Arabian Peninsula (AP) during the spring season, a region
greatly influenced by desert dust activity. This research employs the MERRA-2 DAOD
reanalysis dataset from 1981 to 2022 and identifies a significant trend in DAOD during the
spring season compared to other seasons. The study reveals that the leading Empirical
Orthogonal Function (EOF) explains 67% of the total DAOD variance in spring, particularly
over central and northeastern AP. It further identifies a link between the upper-level diver-
gence in the western Pacific and mid-tropospheric positive geopotential height anomalies
over AP, which contributes to warmer, drier conditions and increased DAOD. A statistically
significant negative correlation is found between DAOD over AP and the ENSO, with La
Niña conditions correlating with higher DAOD and El Niño conditions with lower DAOD.
The study suggests that ENSO phases, through their influence on mid-tropospheric geopo-
tential height anomalies, could be a predictor for dust variability at a seasonal timescale.
This research highlights the potential of ENSO as a precursor for forecasting seasonal dust
variability over the Arabian Peninsula.
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The article by Shan et al. (Contribution 5) develops a diagnostic model for evaporation
ducts using the Coupled Ocean–Atmosphere–Wave–Sediment Transport (COAWST) and
the Naval Postgraduate School (NPS) models. This research innovates by conducting
sensitivity tests under extreme weather conditions to investigate wave processes’ impact
on evaporation ducts. The results show that wave processes affect evaporation duct heights
by altering sea surface roughness and dynamical factors, with decreased local roughness
leading to higher wind speeds and evaporation ducts at higher altitudes. Changes in
evaporation ducts are influenced by regional circulation, with stronger local impacts in the
eastern South China Sea and more complex effects in the central and western regions. This
study underscores the role of wave processes and regional circulation in evaporation duct
formation under extreme weather conditions.

The article by Mochizuki (Contribution 6) focuses on the relationship between climate
variability and extreme rainfall events on Kyushu Island in Japan. This study investigates
the interannual fluctuations in the extreme daily rainfall values, using large-ensemble
simulations of a global atmospheric model. The innovative aspect of this research lies
in its identification of two distinct physical processes influencing the rainfall variability:
large-scale moisture transport anomalies linked to subtropical high-pressure changes, and
tropical cyclone activity. The study finds that the 90th-percentile rainfall is influenced
by changes in the subtropical high, which are often linked to basin-scale warming in the
Indian Ocean after El Niño events. Additionally, low-frequency modulations of sea surface
temperatures in the Indian and Pacific Oceans are connected to global warming trends and
interdecadal climate variability. In contrast, the 99th-percentile rainfall is mainly driven by
tropical cyclone activity, which is modulated by sea surface temperatures in the tropical
Pacific. In conclusion, this research highlights the complex interplay between different
climate phenomena and their combined effects on rainfall extremes, offering valuable
insights for understanding future trends in extreme weather events in the context of a
changing climate.

The article by Chen et al. (Contribution 7) investigates extreme precipitation events
(EPEs) in the middle and lower reaches of the Yangtze River (MLYR) during the Meiyu
season from 1961 to 2022, using rain gauge observations and ERA5 reanalysis data. This
research explores the different characteristics of EPEs associated with the Northeast China
cold vortex and ordinary EPEs. The study’s innovation lies in its identification of the
contrasting atmospheric patterns that influence these events. The analysis shows that
EPEs linked to the cold vortex are marked by stronger westerlies and a well-defined
wave train pattern extending from Europe to Northeast Asia. This configuration enhances
moisture convergence from southwestern China to the MLYR, increasing rainfall. In
contrast, ordinary EPEs are driven by a weaker Rossby wave propagation and less moisture
transport, resulting in weaker rainfall. The main conclusion of the study is that the intensity
of EPEs in the MLYR is heavily influenced by the atmospheric conditions associated with
the Northeast China cold vortex. These findings suggest that stronger Rossby wave energy
and the westward extension of the subtropical high are critical in determining the severity
of extreme rainfall events. Overall, the study offers valuable insights into the atmospheric
dynamics driving precipitation variability in the region during the Meiyu season.

3. Conclusions

This compilation of articles presents recent advances in understanding air–sea inter-
actions, climate variability, and predictability. The studies cover a wide array of topics,
including the predictability of the NAO, drivers of extreme rainfall, Antarctic sea-ice dy-
namics and predictability, seasonal dust variability over the Arabian Peninsula, wave
impacts on evaporation ducts, and the atmospheric patterns influencing precipitation in
East Asia. Together, these contributions provide the latest insights into air–sea interac-
tions and deepen our understanding of climate dynamics and predictability across diverse
regions and environmental conditions.
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Despite these advancements, significant gaps and challenges remain in the science
community. Key areas of ongoing difficulty include the following:

(1) Scale variability and model resolution: Capturing variability across spatial and tem-
poral scales—from the submesoscale to synoptic patterns—requires enhancing model
resolution to accurately represent sub-mesoscale and mesoscale eddy activities, as well
as subsurface ocean dynamics, which are crucial to understanding air–sea interactions.

(2) Model design and multi-model frameworks: Robust coupled model designs should
be developed and multi-model frameworks should be implemented to improve the
integration of atmospheric and oceanic systems while addressing limitations related
to model initialization and consistency across models.

(3) Data scarcity and observational enhancements in remote regions: The lack of ob-
servational data in remote areas, such as the open ocean and polar regions, should
be addressed through the use of satellite data, advanced observational techniques,
and improved sensor networks. Enhanced observational tools and remote sensing
technologies are critical for obtaining accurate, high-resolution data, which can help
fill gaps in data-scarce regions and improve model validation.

(4) Flux estimate uncertainty: Uncertainties in the estimation of fluxes of heat, momen-
tum, and moisture between the atmosphere and ocean, which are essential for accurate
climate modeling, should be reduced. Enhanced parameterization schemes, better
measurement techniques, and the integration of in situ data with satellite observations
are critical for improving these estimates and minimizing biases in climate models.

(5) Complex physical and biogeochemical processes: The intricate interactions between
physical and biogeochemical processes, such as nutrient cycles, carbon exchange, and
plankton dynamics, within the marine boundary layer should be investigated. Under-
standing these processes is essential for predicting ocean health, carbon sequestration,
and the broader impacts of marine biogeochemical cycles on climate systems.

(6) Climate change impacts on air–sea interactions: How climate change alters air–sea
dynamics should be examined, including effects on extreme weather events (e.g.,
tropical cyclones, heatwaves, and storm surges), shifts in seasonal patterns, and the
intensification of oceanic and atmospheric heat and moisture transport. Research in
this area is vital for predicting future climate scenarios and understanding how these
changes influence global climate systems.

(7) AI and machine learning integration: Leveraging AI techniques such as machine
learning could enhance the analysis, modeling, and prediction of complex air–sea
interactions. These technologies enable the processing of large datasets, improve
model parameterizations, and allow for the development of predictive algorithms that
can capture non-linear and multiscale interactions, advancing our ability to predict
climate dynamics and extreme events with greater accuracy.

As a final note, we are pleased to announce the second edition of the Special Issue
Recent Advances in Air–Sea Interactions, Climate Variability, and Predictability, which will
continue gathering cutting-edge research on these important topics.

Conflicts of Interest: The author declares no conflicts of interest.
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