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Direct numerical simulations are carried out to investigate the underlying mechanism of10
the low-frequency unsteadiness of a transitional shock reflection with separation at 𝑀 = 1.5.11
To clarify the nonlinear mechanisms, the incoming laminar boundary layer is forced with12
two different arrangements of oblique unstable modes. Each wave arrangement is given by13
a combination of two unstable waves such that their difference in frequency falls in a low14
frequency range corresponding to a Strouhal number (based on the length of interaction)15
of 0.04. This deterministic forcing allows the introduction of nonlinearities, and high-order16
statistical tools are used to identify the properties of quadratic couplings. It is found that17
the low-frequency unsteadiness and the transition to turbulence are decoupled problems.18
On the one hand, the unstable modes of the boundary layer interact non-linearly such that19
energy cascades to higher frequencies, initiating the turbulent cascade process, and to lower20
frequencies. On the other hand, the low-frequency quadratic coupling of the oblique modes21
is found to be responsible for low-frequency unsteadiness affecting the separation point. The22
direction of the quadratic interactions is extracted and it is shown that, in the presence of low-23
frequency unsteadiness, these interactions enter the separated zone just before reattachment24
and travel both downstream and upstream, extending beyond the separation point, hence25
feeding the low-frequency bubble response. In addition to the two main arrangements of26
oblique modes, two other combinations are analysed, including multiple oblique waves27
and streaks. Interestingly, their inclusion did not alter the low-frequency unsteadiness28
phenomenon. Furthermore, the effect of the forcing difference frequency is examined and it29
is shown that the breathing phenomenon is sensitive to the range of frequencies present in30
the system due to a low-pass filter effect.31
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1. Introduction33

In high speed flows, the interaction between shock waves and the boundary layer is a common34
phenomenon. This interaction, referred to in the literature as SBLI, can have significant35
effects on aerothermodynamic loads and performance during high-speed flight and gas36
turbine operation. In the case of transonic airfoils, the occurrence of self-sustained shock37
wave oscillations, known as the buffet phenomenon (Lee 2001), adds further complexity.38

For these reasons, SBLI has been one of the most important topic of research within39
the aeronautical scientific community over the past 70 years (Dolling 2001). Among others,40
Délery et al. (1986), Smits & Dussauge (2006), Doerffer et al. (2010) and Babinsky & Harvey41
(2011) represent the most notable reviews on this topic. Incident normal shock, oblique shock42
reflection, compression ramps and transonic airfoils were, and still are nowadays, typical43
geometries employed to explore this phenomenon.44

Dolling (2001) reports that until the 1950s, SBLI were commonly described as relatively45
steady. Nowadays, it is now known that this description is incorrect, at least for separated tur-46
bulent interactions. Quantitative measurements of turbulent SBLIs reported a low frequency47
unsteadiness of the separation shock (Dolling & Murphy 1983; Erengil & Dolling 1991;48
Thomas et al. 1994). The two orders of magnitude separating the characteristic frequency49
of the incoming boundary layer from the frequency of the separation shock explain why50
the unsteadiness is classified as being low frequency, relative to the higher characteristic51
frequency of the incoming turbulent boundary layer. The work of Dupont et al. (2006) noted52
that the rear part of the interaction for an oblique reflected shock geometry also exhibits53
unsteadiness, which is in quasi-linear dependence with the reflected shock motion. The54
low frequency motion of the head shock, coupled to the expansion and contraction of the55
separated flow, is referred to as a breathing motion.56

Whether discussing low-frequency unsteadiness or breathing motion, the necessity to find a57
consensus on the magnitude of the low frequency oscillations prompted a search for temporal58
scaling. Erengil & Dolling (1991) used the interaction length 𝐿𝑖𝑛𝑡 , defined as the distance59
between the average position of the reflected shock and the extrapolation to the wall of the60
incident shock, and the upstream velocity𝑈∞ to scale the low-frequency unsteadiness. Based61
on this scaling, it was found in different experiments (Dussauge et al. 2006; Dupont et al.62
2006; Ganapathisubramani et al. 2009; Souverein et al. 2009; Piponniau et al. 2009) and63
numerical investigations (Pirozzoli & Grasso 2006; Wu & Martin 2008; Touber & Sandham64
2009; Priebe & Martı́n 2012) that the low-frequency oscillations in turbulent SBLIs falls in65
the range of Strouhal number 𝑆𝑡 = 𝑓 𝐿/𝑈∞ = 0.02−0.07, where 𝑓 is the frequency associated66
with the low frequency motion and 𝐿 and 𝑈∞ are as defined above. While the spatial and67
temporal dynamics of the global organisation of the flow have been illustrated (Dupont et al.68
2006), and there is a clear comprehension of the qualitative mean flow organisation (Agostini69
et al. 2012), several mechanisms, sometimes conflicting, have been proposed to describe the70
mechanisms that govern the turbulent unsteady interaction.71

The unsteadiness of reflected shocks has been commonly linked to turbulent structures72
within the incoming boundary layer (Erengil 1993). Early studies by Uenalmis & Dolling73
(1994) identified a connection between small-scale shock motions and turbulence fluctuations74
or velocity fluctuations in the boundary layer. Ganapathisubramani et al. (2007) later75
identified large-scale coherent structures, or superstructures, in the upstream boundary76
layer as responsible for low-frequency shock motion. Numerical simulations by Wu &77
Martin (2008) provided further insights, showing that the low-momentum structures of78
the incoming boundary layer and the separation point have a small correlation, indicating79
that the influence of the superstructures may be minimal. Additionally, it was found that both80
the shock motion and the motion of the separation point are correlated with the motion of the81
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reattachment point, suggesting that the downstream flow contributes to the low-frequency82
unsteadiness. Further research has indicated a potential role for downstream mechanisms.83
Touber & Sandham (2009) observed low-frequency unsteadiness even without upstream84
coherent structures, while Priebe et al. (2016) linked shock motion to downstream Görtler-85
like vortices. Another line of research has focused on the role of vortical structures emerging86
from the shear layer. Dussauge et al. (2006) suggested that the source of excitation of the87
shock motion can be attributed to eddies in the separated zone. Pirozzoli & Grasso (2006)88
found that eddies in the separated zone interact with the shock, producing acoustic waves89
that propagate upstream and induce a low-frequency oscillation in the shock, reminiscent of90
acoustic resonance seen in cavity flows. Piponniau et al. (2009) proposed a model that relates91
the mass recharge within the separated bubble to the flapping dynamics occurring near the92
reattachment point. The main parameter controlling the low-frequency shock motions is the93
spreading rate of the compressible mixing layer. Recent works, such as Chandola & Estruch-94
Samper (2017) and Jenquin & Narayanaswamy (2023), support the role of mass imbalance95
within the separated bubble, driven by shear layer entrainment, as the driving mechanism for96
the pulsation of the separated bubble. A more recent consensus suggests that both upstream97
and internal mechanisms contribute to low-frequency unsteadiness. The work of Puckett98
& Narayanaswamy (2024) suggests the combined effects of the separation bubble inherent99
unsteadiness and the shear layer instabilities as key contributors to the dynamics of swept100
SBLI. Thomas et al. (1994) and Dupont et al. (2006) observed strong coherence in pressure101
fluctuations near the separation bubble and reattachment point, indicative of a “breathing”102
mode of the separated region. Touber & Sandham (2011) extended this understanding103
by demonstrating that the interaction between the shock and boundary layer could be104
modelled as a first-order low-pass filter, implying that the low-frequency unsteadiness is105
an intrinsic property of the system. Clemens & Narayanaswamy (2014) proposed that while106
both upstream and internal mechanisms are always present, downstream effects dominate in107
strongly separated flows, with a combined mechanism prevailing in weaker separations.108

It is evident that the focus of researchers has largely centered on turbulent interactions,109
with only recent efforts directed towards studying laminar and transitional SBLIs. Robinet110
(2007) conducted one of the earliest studies examining the temporal dynamics of laminar111
SBLI. In his work, both three-dimensional direct numerical simulations and linearised global112
stability analysis were carried out on an incident oblique shock impinging onto a laminar113
boundary layer. Simulations highlighted that for an increasing angle of the incident shock, the114
flow becomes three-dimensional, and the stability analysis revealed a bifurcation, generating115
the three-dimensional character of the flow. It was concluded that, beyond a critical angle of116
the incident shock wave, the two-dimensional and stationary flow becomes linearly globally117
unstable to a 3D stationary mode. However, Guiho et al. (2016) conducted a global stability118
analysis on a similar laminar interaction and found that the SBLI is globally stable for a119
wide range of flow parameters. They showed that unsteadiness is instead associated with non120
linear mechanisms between convective instabilities arising from the shear layer. The very121
recent study of Niessen et al. (2023) confirmed that the laminar SBLI they investigated122
cannot support the temporal growth of a disturbance in a fixed region of the space.123
Consequently, no two-dimensional global instabilities exist and thus all two-dimensional124
instability mechanisms are convective. They determined the most amplified perturbation125
content of SBLI in terms of the most amplified spanwise wavelength, which was found to126
be as large as 10% of the separated region, and frequency, about 9 kHz at the reattachment127
location. From these studies, it is clear that the low-frequency unsteadiness cannot be related128
to any unstable global mode.129
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Between the years 2012 and 2016, the European TFAST† project promoted several130
numerical simulations and experimental campaigns focused on transitional SBLI. This131
project permitted progress in understanding the role of transition in the context of the mutual132
interaction between the shock system and the laminar boundary layer. In particular, the DNS133
work of Sansica et al. (2014) studied the global response of the separated region to white134
noise forcing both upstream and inside the bubble. It was concluded that the internal forcing135
causes the low-frequency response near the separation point. This result is in agreement136
with Guiho et al. (2016), who showed that the low frequency response at the separation is137
more effective when the forcing comes from the recirculating region than when forcing the138
upstream boundary layer. Bugeat et al. (2022) suggested that the low-frequency dynamics of139
the SBLI corresponds to a forced damped stable mode, in which background perturbations140
through the receptivity mechanism continuously excite the flow. The flow thus behaves like141
a low-pass filter with respect to external disturbances.142

To study the mechanism in more detail, Sansica et al. (2016) forced the inlet of the143
interaction with a pair of monochromatic oblique unstable modes. Despite the clean144
upstream condition, they observed low frequency unsteadiness near the separation point,145
with 𝑆𝑡 = 0.04. They attributed the appearance of unsteadiness to the breakdown of the146
deterministic turbulence, leading to broadband pressure disturbances travelling upstream147
through the separated region (within the subsonic layer of the boundary layer) at phase148
velocity of −0.6𝑈∞. The acoustic nature of the backward travelling pressure waves was149
challenged by Larchevêque (2016). In his study, fluidic backwards motion, with a possible150
origin at reattachment, was observed and the corresponding phase velocity, associated with151
low frequencies, was found to be of −0.22𝑈∞. Bonne et al. (2019) conducted RANS based152
simulations coupled with a resolvent analysis and confirmed the backward motion of waves153
through the recirculating region. However, they suggested a density or acoustic nature of154
those waves. Moreover, the low frequency dynamics was described as a pseudo-resonance155
process that amplifies the instabilities in the separated shear layer and excites the shock156
foot, leading to the backward motion of density waves, with a phase velocity of −0.1𝑈∞.157
A similar scenario of density disturbances propagating upstream through the recirculating158
region with a group velocity of −0.18𝑈∞ was observed experimentally by Threadgill et al.159
(2021). Their detailed phase analysis of schlieren data permitted the identification of slow-160
moving density disturbances within the bubble that convect toward the shock foot and lead161
to the slow motion of the separation shock. Indeed, high-speed schlieren images showed162
that the separation shock exhibits low-frequency unsteadiness at 𝑆𝑡 = 0.025. To the current163
authors’ knowledge, this Strouhal value associated with the slow dynamics is the only one,164
in the context of the experiment, to be similar to those reported by numerical simulations.165

Recent studies have suggested a non-linear mechanism as a possible explanation for the low-166
frequency unsteadiness. Sansica et al. (2014) noted that low-frequency unsteadiness occurs167
even without direct low-frequency forcing, and it is due to weak non-linear interactions with168
the shear layer instability modes. Mauriello et al. (2022) suggest that quadratic couplings169
between oblique modes are responsible for the oscillation of the reflected shock. The low170
frequency range in the separated region was found to be significantly quadratically coupled171
to the oblique mixing layer modes of much higher frequencies. They extended the analysis172
in the wavenumber space and showed that the flow features beneath the reflected shock,173
sustaining the low-frequency motion, are 2D. They also confirmed the existence of a slow174
upstream convective fluidic motion originating from the vicinity of the reattachment point.175
In their work, broadband and stochastic forcing was applied to stimulate the transition of the176
boundary layer to a turbulent state. Despite the non-forced transitional SBLI studied by Saı̈di177
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et al. (2025), similar strong triadic interactions were observed in the downstream region of178
the shock interaction playing a role in the low frequency dynamics. However, in all these179
studies the nature of the non-linearities that drives the unsteadiness remains unclear.180
Building upon this body of work, the present work aims to investigate the presence of181
any unsteadiness and to address fundamental questions about the nature of nonlinearities182
in the context of the transitional SBLI. Motivated by the distinct approaches employed in183
prior researches, wherein Mauriello et al. (2022) work incorporated broadband forcing and184
Saı̈di et al. (2025) study focused on a non-forced SBLI, the decision was to construct a185
simplified and didactic model. This model was designed to include a modal transition and186
enable precise control of the input parameters. Accordingly, one-period direct numerical187
simulations (DNS) combined with high-order statistical analysis have been performed on a188
𝑀 = 1.5 oblique shock reflection with separation. All details of the numerical setup and189
the flow conditions are given in Section 2. Starting from the work of Sansica et al. (2016),190
which suggests that the origin of the low-frequency unsteadiness is due to the breakdown191
into turbulence, deterministic simulations have been performed. The deterministic approach192
allows full control of the input conditions. We first reproduced the basic configuration used193
in the work of Sansica et al. (2016), where the incoming laminar boundary layer is stimulated194
with a pair of monochromatic oblique unstable modes. The result, presented in Section 3,195
showed that a pair of oblique unstable modes is not sufficient to produce the low frequency196
response of the head shock, although the breakdown to turbulence is observed to persist.197
Consequently, we have combined two different (in frequency) and opposite (in wavenumber)198
arrangements of unstable boundary layer modes. Our aim is to see if the introduction of199
nonlinearities triggers both the low frequency unsteadiness and the transition to turbulence200
in the boundary layer. Results are presented in Section 4. This deterministic approach, while201
providing valuable insights into the fundamental nonlinear interactions, inherently presents202
certain limitations. The use of specific monochromatic forcing arrangements represents203
a simplification of the broadband disturbances present in natural flows. Despite these204
limitations, this work addressed fundamental questions regarding the nature of nonlinearities205
driving low-frequency unsteadiness. In Section 5, we are interested in studying potential206
triadic interactions between the structures responsible for the boundary layer transition and207
those arising at the separation point. To achieve this, we have used high-order statistical208
tools. High-order spectral analysis is also used to identify the signature of low-frequency209
unsteadiness in wavenumber space. Two additional forcing configurations and a case with210
a different frequency combination are presented in Section 6. The concluding Section 7211
summarises all the outcomes of this study.212
It is essential to emphasise that this study focuses specifically on transitional SBLI. Relating213
the observed phenomena directly to turbulent SBLIs is challenging due to the fundamental214
differences in their spectral content and nature of the flows. Moreover, the deterministic215
approach allows for precise control and analysis of nonlinear interactions, but it also limits216
the direct extension to fully turbulent scenarios.217
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2. Flow conditions and numerical setup218

2.1. Numerical method and flow conditions219

The 3D compressible Navier-Stokes equations are solved in the conservative form, and are220
presented in the Cartesian coordinate system as221

𝜕𝜌

𝜕𝑡
+
𝜕𝜌𝑢 𝑗

𝜕𝑥 𝑗
= 0 (2.1)222

𝜕𝜌𝑢𝑖

𝜕𝑡
+
𝜕𝜌𝑢𝑖𝑢 𝑗

𝜕𝑥 𝑗
= − 𝜕𝑝

𝜕𝑥𝑖
+ 1
𝑅𝑒

𝜕𝜏𝑖 𝑗

𝜕𝑥 𝑗
(2.2)223

𝜕𝜌𝐸

𝜕𝑡
+
𝜕 (𝜌𝐸 + 𝑝) 𝑢 𝑗

𝜕𝑥 𝑗
=

1
(𝛾 − 1)𝑅𝑒𝑃𝑟𝑀2

∞

𝜕

𝜕𝑥 𝑗

(
𝜇
𝜕𝑇

𝜕𝑥 𝑗

)
+ 1
𝑅𝑒

𝜕𝜏𝑖 𝑗𝑢𝑖

𝜕𝑥 𝑗
(2.3)224

showing the non-dimensional form of the mass conservation equation, three momentum225
conservation equations, and the energy conservation equation, respectively. The indices226
𝑖 and 𝑗 run from 1 to 3. In the equations, 𝜌 = 𝜌∗/𝜌∗∞ is the non-dimensional density,227
𝑢1 = 𝑢 = 𝑢∗/𝑈∗∞, 𝑢2 = 𝑣 = 𝑣∗/𝑈∗∞ and 𝑢3 = 𝑤 = 𝑤∗/𝑈∗∞ are the non-dimensional velocity228
components respectively in the 𝑥-, 𝑦- and 𝑧-directions scaled with free-stream velocity229
𝑈∗∞. 𝐸 = 𝑒 + 1/2𝜌(𝑢2 + 𝑣2 + 𝑤2) is the total energy per unit mass, with 𝑒 as specific230
internal energy. The corresponding conservative variables are 𝜌, 𝜌𝑢, 𝜌𝑣, 𝜌𝑤, and 𝜌𝐸 . The231
terms 𝑝, 𝑇 are the non-dimensional pressure and temperature, respectively, while 𝜏𝑖 𝑗 =232
𝜇
[
𝜕𝑢𝑖/𝜕𝑥 𝑗 + 𝜕𝑢 𝑗/𝜕𝑥𝑖 − 2/3(𝜕𝑢𝑘/𝜕𝑥𝑘)𝛿𝑖 𝑗

]
is the viscous stress tensor, where 𝜇 is the non-233

dimensional dynamic viscosity given by the Sutherland’s law, with a Sutherland temperature234
of 𝑇∗

𝑆
= 110.4𝐾 , and 𝛿𝑖 𝑗 is the Kronecker delta function. The various physical variables235

are normalised using the corresponding free-stream values. However, pressure is normalised236
using the free-stream dynamic pressure term, 𝜌∗∞𝑈∗2∞ , i.e. 𝑝 = 𝑝∗/𝜌∗∞𝑈∗2∞ , while the unit237
total energy 𝐸 is normalised by𝑈∗2∞ . The dimensional quantities are denoted by a superscript238
∗, which is dropped for non-dimensional quantities unless mentioned otherwise. Also, the239
subscript “∞ ”represents the free-stream conditions at the inflow. 𝑥 = 𝑥∗/𝛿∗

𝑖𝑛𝑙𝑒𝑡
, 𝑦 = 𝑦∗/𝛿∗

𝑖𝑛𝑙𝑒𝑡
240

and 𝑧 = 𝑧∗/𝛿∗
𝑖𝑛𝑙𝑒𝑡

are the non-dimensional coordinates scaled with the displacement thickness241
𝛿∗
𝑖𝑛𝑙𝑒𝑡

= 0.075 [mm] at the inflow. The characteristic fluid dynamic time scale is 𝛿∗
𝑖𝑛𝑙𝑒𝑡
/𝑈∗∞.242

The OpenSBLI solver (Lusher et al. 2021), which is an open-source finite-difference-243
based solver, is used on structured Cartesian coordinate systems for the shock-reflection244
setup. A Local Lax-Friedrichs (LLF) flux splitting approach is used for the inviscid fluxes245
in characteristic space. Different variations of flux reconstruction schemes, i.e. WENO and246
TENO (Weighted and Targeted Essentially Non-Oscillatory), are available to compute the247
inviscid fluxes. As noted in earlier literature, the TENO scheme is less dissipative than the248
WENO schemes and hence, an adaptive version of 6th order TENO is used to perform the249
present simulations (Lusher et al. 2021). The viscous fluxes are computed using 4th order250
central differences, while a 3rd order Runge-Kutta scheme is used for time integration.251

A 2D schematic of the computational setup is shown in Figure 1. The computational252
domain, marked with red dashed line, has extents 0 ⩽ 𝑥 ⩽ 375, 0 ⩽ 𝑦 ⩽ 140, 0 ⩽ 𝑧 ⩽ 27.32,253
and the number of points (𝑁𝑥 , 𝑁𝑦 , 𝑁𝑧) = (2050, 325, 200). The origin is located at the254
beginning of the computational domain. The grids are stretched in the wall-normal (𝑦)255
direction using a tangent hyperbolic stretching function, while the grids are uniform in both256
streamwise (𝑥) and spanwise (𝑧) directions. All the distances are scaled with the displacement257
thickness 𝛿∗

𝑖𝑛𝑙𝑒𝑡
= 0.075 [mm] at the inflow plane, which is initialised using a similarity258

solution for a Mach 1.5 flow with a unit Reynolds number of 107 [m-1]. Hence, the simulation259
Reynolds number based on this 𝛿∗

𝑖𝑛𝑙𝑒𝑡
is 𝑅𝑒 = 750.260

The reference conditions are the same as Sansica et al. (2016), and Table 1 summarises261
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Figure 1: 2D schematic of the numerical setup, where the computational domain is
demarcated with red dashed line.

𝑀∞ 𝑅𝑒𝑢𝑛𝑖𝑡 [m−1] 𝜃 [deg] 𝑃∞ [Pa] 𝑇∞ [K]
1.5 1 × 107 2.5 2 × 103 202.17

Table 1: Aerodynamic flow conditions.

the aerodynamic parameters. At the wall, no-slip and isothermal boundary conditions262
(where the wall temperature is set to the laminar adiabatic wall temperature, i.e. 𝑇𝑤𝑎𝑙𝑙 =263
𝑇∗
𝑤𝑎𝑙𝑙
/𝑇∗∞ ≈ 1.381) are used. Here, the reference free-stream temperature is 𝑇∗∞ = 202.17 K.264

An extrapolation method is used at the inflow (for pressure) and outflow, while the span is265
periodic. The top boundary has shock jump conditions for a wedge-angle of 2.5◦ at 𝑥 = 20,266
resulting in a pressure rise of 𝑝3/𝑝1 = 1.28, where 𝑝3 indicates the pressure state after the267
reflected shock. The Reynolds number at the location of inviscid shock impingement from268
the leading edge of the flat plate is 𝑅𝑒 𝑥̃𝑖𝑚𝑝

= 1.95 × 105. These are further depicted in the269
schematic of the domain in Figure 1.270

Disturbances are applied, upstream of the separation bubble, as a body-forcing term in the271
continuity equation, and a sample oblique wave representation with a particular frequency272
and spanwise wavenumber is given as273

𝜌′ (𝑥, 𝑦, 𝑧, 𝑡) = 𝑅𝑒𝑎𝑙 [𝐴0 exp[−(𝑥 − 𝑥𝑐)2 − (𝑦 − 𝑦𝑐)2)] exp[𝑖(±𝛽𝑧 − 𝜔𝑡)]], (2.4)274

𝐴0 in the above equation represents the amplitude of the forcing, while (𝑥𝑐, 𝑦𝑐)=(20, 4) are275
the coordinates where the forcing is centered, which is roughly located at the edge of the276
shear layer. The forcing takes a maximum value at the central location and then tapers off in277
both 𝑥 and 𝑦 directions due to the first exponential term in (2.4). The last exponential term278
introduces variation in the spanwise and temporal dimensions, representing an oblique wave279
which travels at different angles with respect to the z-direction depending upon the + or -280
sign. The values of the spanwise wavenumber and circular frequency (𝛽 and 𝜔 respectively)281
are obtained from the linear stability theory (Sansica et al. 2016).282

Various combinations of the simple deterministic forcing represented by (2.4) are used to283
trigger flow transition, the simplest of which is a pair of oblique waves with single circular284
frequency as used in Sansica et al. (2016). As the modifications represent a key point in this285
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study, an entire section (see Section 4) has been devoted to a comprehensive and detailed286
treatment of them. At this point in the text it is important to emphasise that, when two287
frequencies are forced, the combination is designed to be periodic over one cycle of the288
difference frequency (i.e. 𝑇 = 2𝜋/Δ𝜔). This periodicity should be evident in the response289
flow field under these forcings, and once this was ensured, the wall pressure data was collected290
over one cycle of this difference frequency to evaluate the frequency spectrum.291

2.2. High-order analysis292

High-order spectra, corresponding to the Fourier transform of high-order correlation func-293
tions, are the preferred tools to study non-linear interactions since they allow the analysis of294
the quadratic couplings present in the governing Navier-Stokes equations on a scale-by-scale295
basis.296

One relevant high-order spectrum is the bispectrum (Tynan et al. 2001). It is formally297
defined as the Fourier transform of the triple correlation, given by298

𝐵𝑖𝑠𝐹𝐺𝐻 (xF, xG, xH, 𝑓1, 𝑓2) = ⟨𝐹̂ (xF, 𝑓1) 𝐺̂ (xG, 𝑓2) 𝐻̂∗(xH, 𝑓1 + 𝑓2)⟩ (2.5)299

where ⟨⟩ denotes the averaging operation over time segments and possibly homogeneous300
direction. 𝐹̂, 𝐺̂, and 𝐻̂ are the temporal Fourier transforms at the locations xF, xG and xH,301
and the superscript ∗ indicates the complex conjugate. The bispectrum reveals the energy302
content associated with the cross-interaction between 𝐹̂ and 𝐺̂ (𝐹̂ × 𝐺̂) and a third signal 𝐻̂303
at the frequency 𝑓1 + 𝑓2. This tool has been used extensively in the work of Mauriello (2024),304
where a broadband stochastic forcing was used to stimulate the boundary layer transition305
in the case of a transition SBLI at Mach 1.7. It has been proven to be very powerful in306
highlighting the triadic interactions that occur between the oblique modes, i.e. the coherent307
structures responsible for the transition to the turbulent state of the boundary layer, and the308
structures of a 2D nature that emerge at the separation point. In the present work, the modal309
transition has been fostered and a deterministic forcing has been applied (see Section 4),310
plus the periodicity of the present simulations (one period simulation) imposes that, for the311
lowest frequency 𝑓𝑚𝑖𝑛 = 1/𝑇 , only a single segment, encompassing fully the period, can312
be considered. It therefore excludes the possibility of averaging over segments leading to a313
meaningless value of the normalised form of the bispectrum, i.e. the bicoherence (𝐵𝑖𝑐 = 1).314
With this in mind, the bispectral analysis presented above is reformulated in term of spanwise315
wavenumbers taking advantage of the time/space duality found for both the oblique mode and316
the low-frequency unsteadiness (Mauriello 2024). This version of the bispectrum is given by317

𝐵𝑖𝑠𝐹𝐺𝐻

(
(𝑥𝐹 , 𝑦𝐹), (𝑥𝐺 , 𝑦𝐺), (𝑥𝐻 , 𝑦𝐻 ), 𝑘𝑧1 , 𝑘𝑧2

)
=

⟨𝐹̂
(
(𝑥𝐹 , 𝑦𝐹), 𝑘𝑧1 , 𝑡

)
𝐺̂
(
(𝑥𝐺 , 𝑦𝐺), 𝑘𝑧2 , 𝑡

)
𝐻̂∗

(
(𝑥𝐻 , 𝑦𝐻 ), 𝑘𝑧1 + 𝑘𝑧2 , 𝑡

)
⟩ (2.6)318

where ⟨⟩ denotes a time average over one period. In this way, it is possible to de-319
tect the wavenumbers responsible for non-linear interactions among the fixed locations320
(𝑥𝐹 , 𝑦𝐹), (𝑥𝐺 , 𝑦𝐺), (𝑥𝐻 , 𝑦𝐻 ). By time averaging in the wavenumber space, information about321
the temporal behaviour is lost, but can be partially recovered by introducing a time delay 𝜏.322
The time delay can be introduced for the two time series 𝐹 and 𝐺, consequently 𝜏1 and 𝜏2323
identify the time lag occurring with respect to the third time series 𝐻 ( 𝑓 ). The formula can324
be written as325

𝐵𝑖𝑠𝐹𝐺𝐻

(
(𝑥𝐹 , 𝑦𝐹), (𝑥𝐺 , 𝑦𝐺), (𝑥𝐻 , 𝑦𝐻 ), 𝑘𝑧1 , 𝑘𝑧2 , 𝜏1, 𝜏2

)
=

⟨𝐹̂
(
(𝑥𝐹 , 𝑦𝐹), 𝑘𝑧1 , 𝑡 + 𝜏1

)
𝐺̂
(
(𝑥𝐺 , 𝑦𝐺), 𝑘𝑧2 , 𝑡 + 𝜏2

)
𝐻̂∗

(
(𝑥𝐻 , 𝑦𝐻 ), 𝑘𝑧1 + 𝑘𝑧2 , 𝑡

)
⟩ (2.7)326

In addition to the standard bispectrum maps defined in (2.7), optimal bispectrum maps can327
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(a) (b)

Figure 2: Streamwise evolution of the friction coefficient 𝐶 𝑓 (a) and of the pressure at the
wall normalised with the reference pressure 𝑃𝑤𝑎𝑙𝑙/𝑃∞ (b).

be extracted. These maps are optimal in the sense that for all possible time delay pairs, the328
optimal time delay 𝜏𝑜𝑝𝑡 is such that it maximises the bispectral energy content. For the sake329

of simplicity, the Fourier transforms 𝐹̂, 𝐺̂, and 𝐻̂ will all be referred to by the letter 𝐺 in the330
remainder of the text, and will be distinguished by subscript numbers running from 1 to 3.331

3. Reference case of transitional SBLI332

Sansica (2015) presented a detailed study using the local linear stability analysis, which333
identified the most unstable modes for the shock-reflection problem. Sansica et al. (2016)334
further performed DNS using these modes to perform the oblique mode transition using a335
pair of oblique modes to trigger transition. Lusher et al. (2021) used OpenSBLI solver to336
repeat these oblique mode transition simulations, however with different numerical methods337
and forcing setup. As we use OpenSBLI solver in the present research, we wanted to first338
cross validate our results against Lusher et al. (2021), starting with oblique mode transition,339
before performing more complicated forcing combinations that are further explored in this340
study. We next explain the validation results in this section.341

The modal forcing is applied as a prescribed time-dependent forcing, where the density342
disturbances 𝜌′ (𝑥, 𝑦, 𝑧, 𝑡) are superimposed on the density laminar flow field at (𝑥𝑐, 𝑦𝑐) =343
(20, 4). The values of the streamwise and spanwise wavenumbers (𝛼 and 𝛽 respectively)344
as well as the pulsation frequency 𝜔 were extracted from the temporal stability map (see345
Figure 4.3 of Sansica (2015)). The spanwise width of the domain is set as 𝐿𝑧 = 2𝜋/𝛽 such346
that it accommodates at least one wavelength of the most unstable oblique mode. Hence, the347
decision to set 𝐿𝑧 = 2𝜋/𝛽 = 𝜆𝑧 = 27.32.348

The first set of simulations, that are performed using the deterministic forcing approach,349
use a pair of monochromatic oblique unstable modes, as used in Lusher et al. (2021) and350
Sansica et al. (2016), and the resultant forcing expression is given as351

𝜌′ (𝑥, 𝑦, 𝑧, 𝑡) = 𝑅𝑒𝑎𝑙 [𝐴0 exp[−(𝑥 − 𝑥𝑐)2 − (𝑦 − 𝑦𝑐)2)] (𝑒𝑖 (+𝛽𝑧−𝜔𝑡 ) + 𝑒𝑖 (−𝛽𝑧−𝜔𝑡 ) )] (3.1)352

The oblique mode pair in the forcing expression uses 𝐴0 = 1.25 × 10−3, 𝛽 = 0.23 and a353
single frequency value of 𝜔 = 0.101, similar to Sansica et al. (2016), to force the separated354
boundary layer. The OpenSBLI solver is used to run these simulations and the setup is355
identical to Lusher et al. (2021), except that we used a uniform grid in the streamwise356
direction. The aerodynamic conditions used in Lusher et al. (2021), including the freestream357
and shock jump conditions, and shock impingement location, are the same as Sansica et al.358
(2016). However, the present simulation is different from Sansica et al. (2016) due to the359
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Figure 3: 3D view showing slices of 𝜌𝑢. The initial symmetry and its breakdown due to
transition at downstream locations is showed.

way the forcing is applied. In the current simulations, the forcing is applied as a volumetric360
forcing in the density term centered at (𝑥𝑐, 𝑦𝑐) = (20, 4), i.e. downstream of the inlet plane361
and upstream of the separation bubble, while in Sansica et al. (2016), the forcing was applied362
at the inflow in terms of the eigenfunctions for all conservative variables.363

As we reran the setup of Lusher et al. (2021) with a uniform grid in the streamwise direction,364
we performed some initial verification of our results against the skin friction results extracted365
from the reference. Figure 2 (a) shows a comparison of skin friction from the rerun of Lusher366
et al. (2021) setup with two different schemes, i.e. WENO and TENO. The 2D laminar skin367
friction is also plotted for reference. It can be seen that the TENO version shows a slightly368
better agreement with Lusher et al. (2021) compared to the WENO version. Some minor369
deviations are noted towards the exit of the domain perhaps due to streamwise stretching used370
in the reference simulation of Lusher et al. (2021). Figure 2 (b) shows minimal variations371
of non-dimensional wall pressure, which is further non-dimensionalised with the reference372
pressure 𝑃∞ = 1/𝛾𝑀2

∞ between the schemes. The 2D laminar wall pressure is also shown as373
a reference.374

A 3D visualisation of the flow is shown in Figure 3, which shows streamwise momentum375
𝜌𝑢 at equally spaced 𝑥-𝑦 plane slices, with the first slice placed close to the reattachment376
point at x≈ 190. The second slice at 𝑥 ≈ 230 shows the first signs of spanwise non-uniformity377
due to the production of streamwise vorticity. The spanwise symmetry starts to break once378
further smaller scales are generated due to the transition to turbulence.379

Figure 4 shows the spectral content of the pressure fluctuations at the wall in an 𝑥- 𝑓 plane,380
where 𝑥 is the non-dimensional streamwise distance, shown in a linear scale, while 𝑓 is the381
non-dimensional frequency, shown with a logarithmic scale. The frequency is normalised382
using the reference frequency scale 𝑈∗∞/𝛿∗𝑖𝑛𝑙𝑒𝑡 . In this way, the 𝑦-axis gives the Strouhal383
number based on the length scale 𝛿∗

𝑖𝑛𝑙𝑒𝑡
. It is worth mentioning that, unless explicitly stated384

otherwise, the same normalisations (for 𝑥 and 𝑓 ) will be applied to all the other spectra385
presented in this study. The spectrum clearly shows the forcing 𝑓 = 𝜔/2𝜋 ≈ 1.6 × 10−2386
introduced at 𝑥 = 20 . Its energy content extends over the whole domain and, starting387
from 𝑥 = 150, subsequent harmonics develop towards increasingly higher frequencies. This388

Rapids articles must not exceed this page length
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Figure 4: Power spectra spectrum of the wall pressure fluctuations for the case with a pair
of monochromatic oblique unstable modes.

indicates that in the reattachment zone the boundary layer transitions to a turbulent state389
containing increasingly smaller structures (small scales) and increasingly higher frequencies.390
However, the separation point around 𝑥 = 110 is free of any energy content, indicating that391
no low-frequency unsteadiness arises with this specific deterministic forcing.392

The present power spectrum differs in one respect from Sansica et al. (2016), where weak393
low-frequency unsteadiness was identified using a local (in 𝑥) normalisation. Besides the394
difference in the normalisation, there are a few differences in methodology. In the current395
simulations, the perturbations are introduced as body forcing source term through the density396
equation downstream of the inflow plane, while in Sansica’s case the forcing was applied at397
the inlet through the entire state vector. Also, the numerical method used in Sansica’s case398
included a total variation diminishing (TVD) scheme (Sansica 2015) for shock capturing,399
while the present study uses a TENO scheme. On the hypothesis that the low-frequency400
content of the baseline case is sensitive to the numerical noise level, we prefer in the next401
section to introduce the nonlinearities in a deterministic way.402

4. Deterministic forcing of low-frequency403

The work of Mauriello et al. (2022) on a transitional SBLI similar to the present case404
highlighted the occurrence of triadic interactions between the unstable boundary layer modes405
and flow features of 2D nature emerging at the separation point. However, in their work,406
broadband and stochastic fluctuations were used as forcing, which prohibited the complete407
control of the inlet state of the flow. Nevertheless, according to their results, quadratic408
interactions are expected to occur, responsible for the low frequency unsteadiness phenomena.409
Considering the clean deterministic approach examined in the previous section, a second410
family of oblique modes was selected allowing the emergence of low-frequency content.411

The choice was made to ensure that the frequency difference between these two wave412
families fell within the low-frequency range corresponding to the typical Strouhal number413
of the breathing phenomenon. Therefore, the pulsation frequencies 𝜔1 and 𝜔2 were chosen414
such that Δ𝜔 = 𝜔2 −𝜔1, where 𝜔1 was extracted from the stability analysis of Sansica et al.415
(2016) corresponding to the most unstable boundary layer mode, and Δ𝜔 = 2𝜋Δ 𝑓 . Δ 𝑓 was416
derived from the low-frequency Strouhal number 𝑆𝑡𝐿𝐹 = 0.04 found in the work of Sansica417
et al. (2016). Based on this, the two 3D waves families were selected such that419

𝜌′1(𝑥, 𝑦, 𝑧, 𝑡) = 𝑅𝑒𝑎𝑙 [𝐴0 exp[−(𝑥 − 𝑥𝑐)2 − (𝑦 − 𝑦𝑐)2)] exp[𝑖(±𝛽𝑧 − 𝜔1𝑡)]
𝜌′2(𝑥, 𝑦, 𝑧, 𝑡) = 𝑅𝑒𝑎𝑙 [𝐴0 exp[−(𝑥 − 𝑥𝑐)2 − (𝑦 − 𝑦𝑐)2)] exp[𝑖(±𝛽𝑧 − 𝜔2𝑡)]

(4.1)420
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𝐴0 𝛽 𝜔1 ( 𝑓1) 𝜔2 ( 𝑓2) Δ𝜔(Δ 𝑓 )
1.25 × 10−3 ±0.23 0.1(0.0159) 0.104(0.0165) 0.004(0.0006)

Table 2: Unstable boundary layer waves characterisation.

(a) (b)

Figure 5: Modal forcing combinations. Panel (a) is representative of the crossing waves
family, and panel (b) is representative of the parallel beating waves family.

The sole distinction between the two families lies in their frequencies, with their spatial421
dimensions remaining unchanged as well as their initial level of energy 𝐴0. Table 2 lists the422
values of the parameters extracted from the stability analysis (Sansica et al. 2016) and used423
to characterise the two 3D unstable wave families.424

Various combinations of the most unstable mode waves are possible, two of which will425
be presented in this section, with more shown later (see Section 6). It is useful to establish426
the notation that will be used in the following sections before considering the first two wave427
combinations that were selected.428

The general mathematical description of a family of oblique waves is given by equation429
(2.4). The formula shows that a family can include two waves of opposite spanwise430
wavenumber sign (±𝛽). In a more physical sense, the expression represents two identical431
waves with the same magnitude of wavenumber vector k = 𝛼𝑖± 𝛽𝑘̂ , but travelling at opposite432
angles concerning the streamwise flow progression. With this in mind, the superscript +433
denotes a set of waves distinguished by a positive wavenumber 𝛽, while the minus superscript434
− denotes the opposite waves. When waves of both families move in the same direction (same435
sign of 𝛽), we refer to them as a parallel family, while we use the terms crossing family when436
the spanwise wavenumbers are opposite. In addition, the subscript 1 indicates that the wave437
propagates with a characteristic frequency equal to the most unstable frequency determined438
by the stability analysis ( 𝑓1 = 𝜔1/2𝜋). The subscript 2 means that the characteristic frequency439
is set to 𝑓2 = 𝜔2/2𝜋. According to this notation, the two combinations of 3D waves are given440
by441

Crossing waves: 𝜌′ (𝑥, 𝑧, 𝑡) = 𝜌′+1 (𝑥, 𝑧, 𝑡) + 𝜌
′−
2 (𝑥, 𝑧, 𝑡)

Parallel beating waves: 𝜌′ (𝑥, 𝑧, 𝑡) = 𝜌′+1 (𝑥, 𝑧, 𝑡) + 𝜌
′+
2 (𝑥, 𝑧, 𝑡)

(4.2)442

Figure 5 visualises the differences between the selected combinations for an illustrative443
case with 𝜔1 = 0.62, 𝜔2 = 0.57 and Δ𝜔 = 0.05 given the period 𝑇 = 2𝜋/Δ𝜔 = 111. If we444
exclude waves with negative 𝛽 from the first family and waves with positive 𝛽 from the second445
family, we generate what we called crossing modes, shown in Figure 5 (a). Conversely, by446
eliminating waves with negative spanwise wave numbers from this combination, we obtain447
an arrangement known as the parallel beating waves family, shown in Figure 5 (b).448

The asymmetric combination of the two forcings is reflected in the organisation of the449
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(a) (b)

Figure 6: 3D views of the flow field. Panel (a) is for crossing waves, and panel (b) is for
parallel waves.

Crossing waves Parallel beating waves
𝐴0 2.5 × 10−5 2.5 × 10−5

𝐿𝑠𝑒𝑝 79 116

Table 3: Length (normalised by inlet displacement thickness) of the separated region for
each combination of oblique mode waves. The maximum perturbation amplitude 𝐴0 that

is injected in each combination is shown.

flow, as can be seen in Figure 6. The 3D view of both flow fields is represented by five450
equally spaced slices. The contours show the streamwise momentum. Both flow fields show451
an incoming laminar boundary layer at the respective first slices. However, already at the452
location of the second slice, positioned at 𝑥 = 230, the scenario starts to differ. In the case of453
crossing waves (panel (a)), the development of streamwise vortices is evident. They evolve454
in the streamwise direction, eventually leading to the transition of the boundary layer (see455
last slice). On the other hand, parallel beating waves develop smoothly and reach an incipient456
chaotic state only at the end of the computational domain. The nature of the boundary layer457
appears to be far from being fully turbulent.458

Figure 7 plots the streamwise evolution of the friction coefficient for each family. The 2D459
laminar flow solution is also shown for ease of comparison. The black dashed horizontal line460
indicates 𝐶 𝑓 = 0, and helps to visualise the separated region. The extent of the separated461
zone is thus equal to the interval between the reattachment point 𝑥𝑅 and the separation point462
𝑥𝑆 , such that463

𝐿𝑠𝑒𝑝 = 𝑥𝑅 − 𝑥𝑆 (4.3)464

Table 3 summarises information about the flow reversal of each combination. It can be noted465
that both cases are injected with the same level of maximum perturbation amplitude, i.e. 𝐴0,466
and hence are equivalent in terms of initial perturbation energy.467

Both combinations reveal an incoming laminar boundary layer. As the shock system is468
approached, 𝐶 𝑓 departs from the laminar boundary layer branch. The boundary layer in the469
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Figure 7: Streamwise evolution of the friction coefficient for each oblique waves
combination. The black dashed horizontal line indicates 𝐶 𝑓 = 0.

(a) (b)

Figure 8: Power spectra of the wall pressure fluctuations for crossing waves (panel a) and
parallel beating waves (panel b) families. In each spectra, the white solid vertical lines

indicate the separation points, while the white dashed vertical lines indicate the
reattachment points.

case of parallel beating waves separates further upstream than the crossing combination and470
reattaches further downstream, resulting in a longer separation bubble (see Table 3). The471
resulting boundary layer is far from turbulent indicating that this combination is much less472
efficient than the oblique mode transition mechanism that is active for crossing modes. This473
is in agreement with Mayer et al. (2011), who already observed that two oblique unstable474
waves with opposite wave angle can cause transition more rapidly than secondary instability.475
This also explains why the length of the reverse flow zone is longer for the parallel beating476
waves. In the case of crossing waves, although the energy level is the same as in the case of477
parallel beating waves, 𝐶 𝑓 keeps increasing and deviates from the laminar boundary layer478
trend.479

Besides different lengths of the reversal region and the resulting downstream flow state, the480
two combinations of unstable boundary layer modes show a very different spectral response.481
Figure 8 shows the power spectrum of the pressure fluctuations field extracted at the wall for482
each family. In each spectrum, the white vertical lines indicate the separation (solid line) and483
reattachment (dashed line) points. All spectra clearly identify the forcing frequencies used484
upstream of the interaction. Note that two forcing frequencies have been applied, but from485
the spectra the distinction between them (a frequency difference of 0.0006) is barely visible486
and they appear as a single horizontal line.487

A noticeable difference emerges when looking at the separation point. Parallel beating488
waves show intense activity at low frequency values, indicating that the head shock is489
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Figure 9: Power spectum extracted at the respective separation points for both crossing
waves (red line) and parallel beating waves from raw (blue line) and detrended data using

equation 4.4 (light blue line).

unsteady. This specific arrangement has hence allowed the breathing of the separated region.490
Although the same level of maximum perturbation energy is continuously added in both491
combinations, the crossing waves case lacks energy content at the separation point in the low492
frequency range.493

If one looks at the region downstream of the reattachment point and frequencies higher494
than the forcing frequencies, the energy content for the crossing waves case shows a cascade495
towards its harmonics and begins to fill the spectrum up to high frequencies representing the496
characteristics of turbulence. This cascading process is almost absent in the parallel family497
case (see panel (b) of Figure 8) and is consistent with the result that we saw earlier from the498
skin friction profile variation for the two cases.499

Figure 9 shows the evolution of the amplitude of the power spectrum for pressure500
fluctuations at the wall extracted at the respective separation points for both families. Both501
the 𝑥 and 𝑦 axes are plotted on a logarithmic scale and show a power-law trend. Note that502
the spectrum of the parallel case exhibits a −2 power law beyond the very low frequency503
range (dark blue line). This can be associated with the Fourier series of a sawtooth wave. This504
means that the dynamics at the separation point deviates from a strictly periodic behavior due505
a small linear drift. All the flows considered in this study which are associated with a low-506
frequency dynamics in the vicinity of the separation point, are subject to such drifts. However507
their amplitude is decreasing from period to period (results not shown). All computations508
have therefore been extended in time up until the extrapolation of the −2 power law down509
to the lowest frequency is at least four orders of magnitude lower than the natural energy510
content for that frequency. This ensures that the jump associated with the lack of periodicity511
is equal to at most 3% of the peak-to-peak amplitude of the low-frequency fluctuation. In512
order to unveil the high-frequency behavior of the flow in all subsequent analyses that involve513
in some way the time-Fourier space, the drift is removed by detrending the data in such a514
way that the C0 continuity of the variable is ensured through the periodicity:515

𝜌𝑑𝑤 (𝑥, 𝑧, 𝑡) = 𝜌𝑤 (𝑥, 𝑧, 𝑡) +
𝑡 − 𝑡0
𝑇

〈
𝜌𝑤 (𝑥, 𝑧, 𝑡0) − 𝜌𝑤 (𝑥, 𝑧, 𝑡0 + 𝑇)

〉
𝑧

(4.4)516

where ⟨⟩𝑧 is the averaging operator in the spanwise direction. The rationale behind the517
detrend scheme built from the spanwise average of the jump induced by periodicity is that518
discontinuities identified in the separated region are mostly associated with flow features of519
2D nature (Mauriello 2024). They have in fact a Fourier series expansion in the spanwise520
direction fully dominated by the 𝑘𝑧 = 0 coefficient. Because of the average, the correction521
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Crossing waves Parallel beating waves
𝐿𝑖𝑛𝑡 46.5 58
𝐿𝑠𝑒𝑝 79.0 116
𝑆𝑡𝐿𝑖𝑛𝑡

− 0.037
𝑆𝑡𝐿𝑠𝑒𝑝

− 0.074

Table 4: Interaction and separation lengths (normalised by inlet boundary layer thickness)
and the corresponding Strouhal number for both families of crossing and parallel beating

waves.

tends to zero in the non-deterministic region of the flow, where periodicity is not expected,522
and therefore should not be enforced.523

It can be seen in Figure 9 that this correction removes the −2 power law and that the524
corrected spectrum (light blue line) shows no significant higher-order power law, confirming525
the linear nature of the drift. Analyses described in the following sections which do not526
involve moving to the frequency space, were performed on both the raw and detrended data.527
No significant differences were found between the two approaches, even when considering528
early periodic datasets with 10 times greater drifts. Therefore, for simplicity and consitency,529
it was decided to present the metrics obtained from the detrended data only.530

In the case of parallel waves (using the linear detrended data), the order of magnitude at low531
frequency is approximately 𝑂 (10−6). In the case of crossing waves, the order of magnitude532
is approximately 𝑂 (10−12), for which the interaction is steady. The profiles show a constant533
decrease and both peak at the forcing frequencies. Moreover, both cases show an additional534
peak corresponding to the first harmonic. This result suggests that nonlinear interactions are535
already at play at the separation point. From this analysis, we can infer that the distinctive536
combination of oblique mode families, for the same magnitude of the perturbation energy, is537
the predominant factor influencing the low frequency behaviour of the head shock.538

In the framework of turbulent SBLI, various numerical and experimental studies have539
shown that there is a consistent collapse of the magnitude of the low-frequency oscillations540
when the corresponding frequency is scaled with the interaction length 𝐿𝑖𝑛𝑡 , defined as the541
distance between the average position of the reflected shock 𝑥𝑖𝑛𝑡 and the extrapolation to542
the wall of the incident shock 𝑥𝑖𝑚𝑝. The resulting Strouhal number is thus 𝑆𝑡𝐿𝑖𝑛𝑡

= 𝑓 𝐿𝑖𝑛𝑡543
where both 𝑓 and 𝐿𝑖𝑛𝑡 are non-dimensional quantities normalised using reference frequency544
𝑈∗∞/𝛿∗𝑖𝑛𝑙𝑒𝑡 and 𝛿∗

𝑖𝑛𝑙𝑒𝑡
, respectively. On the basis of this scaling, the literature indicates that545

the low-frequency oscillations in turbulent SBLI fall in the 0.02 − 0.07 range of Strouhal546
number. However, the length of the separation bubble 𝐿𝑠𝑒𝑝, defined as the distance between547
the separation point 𝑥𝑆 and the reattachment point 𝑥𝑅 (see equation 4.3), can also be used as a548
length scale and hence 𝑆𝑡𝐿𝑠𝑒𝑝

= 𝑓 𝐿𝑠𝑒𝑝 (same as Sansica et al. (2016)). Although the correct549
length scale remains unclear, including whether the same scaling can be applied in the case550
of transitional SBLI, a compilation of the different lengths and the corresponding Strouhal551
number are provided in Table 4. Since only the arrangement of parallel beating waves led to552
an unsteady interaction, the Strouhal number is presented solely for this case.553

5. Quadratic couplings554

The spectral analysis of the pressure fluctuations at the wall in the previous section showed555
an approximately steady interaction (lacking the low-frequency content) in the case of the556
crossing family, while an unsteady interaction was found for the parallel arrangement. This557
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Quadratic couplings Resulting quadratic couplings

(−𝜔1, +𝛽) × (−𝜔2,−𝛽) [(−𝜔1 − 𝜔2), 0]
(−𝜔1, +𝛽) × (−𝜔2,−𝛽)∗ [(−𝜔1 + 𝜔2), 2𝛽]
(−𝜔1, +𝛽)∗ × (−𝜔2,−𝛽) [(𝜔1 − 𝜔2),−2𝛽]
(−𝜔1, +𝛽)∗ × (−𝜔2,−𝛽)∗ [(𝜔1 + 𝜔2), 0]

Table 5: Frequency-wavenumber combinations of Fourier modes for the crossing wave
case. Symbol ∗ indicates the complex conjugate. The first column shows the possible

combinations in compact notation; the second column shows the resulting combinations
after multiplication.

raises the question: how can the influence of specific arrangements of oblique modes on the558
interaction be explained?559

The analysis stems from mathematical considerations starting from the perturbation field560
described by ansatz (2.4). It is a normal mode reduction and the Fourier transform allows561
for the identification of frequencies within the original signal. For a single oblique travelling562
wave in physical space with (−𝜔, +𝛽), the ansatz (2.4) in the Fourier space can be expressed563
in a compact notation as564

(−𝜔, +𝛽) and (+𝜔,−𝛽) (5.1)565

where 𝜔 = 2𝜋 𝑓 is the circular frequency, and 𝛽 = 2𝜋/𝜆𝑧 = 2𝜋/𝐿𝑧 , as there is a single566
wavelength in the spanwise domain length of 𝐿𝑧 . Hence, the wave velocity is related to the567
spanwise wavelength 𝜆𝑧 and frequency 𝑓 as 𝑐𝑧 = 𝜔/𝛽 or 𝜆𝑧 𝑓 . Note that because the Fourier568
transform is applied to real data, Hermitian symmetry holds and each signal in spectral space569
is supported by its complex conjugate (c.c.), shown in the second bracket in equation (5.1).570

Fourier modes of different signals can be quadratically combined with each other, resulting571
in new modes that are included in the new signal. Recalling that in the case of crossing waves572
two families of oblique modes are included (see equation (4.2)), in the frequency-wavenumber573
notation they read [(−𝜔1, +𝛽)+c.c.]×[(−𝜔2,−𝛽)+c.c.]. Table 5 shows all possible frequency-574
wavenumber quadratic combinations, specifically the first column presents the product of575
various possible combinations for quadratic interactions of modes, while the second column576
shows the corresponding resulting quadratic combinations after multiplication.577

At this point, it is important to emphasise that our main focus is on the low frequency578
unsteadiness that affects the separation point. Consequently, when examining the interactions579
between crossing waves, we limit our attention to combinations that result in a positive580
difference between the frequencies, i.e. (𝜔2 −𝜔1). For crossing waves, the only combination581
that respects this condition gives [(𝜔2 − 𝜔1), 2𝛽], i.e.582

𝜔𝐿𝐹 = 𝜔2 − 𝜔1 −→ 𝛽 + 𝛽 = 2𝛽 (5.2)583

Note that also the combination resulting in (𝜔1 − 𝜔2) is present. This is the Hermitian584
symmetric counterpart of (𝜔2−𝜔1) that is required to reconstruct the real-valued function that585
mathematically describes the oblique modes (see ansatz (2.4)). However, it yields negative586
frequencies, and in this context, we only consider resulting frequencies that are positive,587
hence (𝜔2 − 𝜔1). Therefore, in the graphical representation of the forthcoming results, only588
the positive frequency space (i.e. half plane) is presented.589

One can note that this low frequency combination for the crossing waves case results in590
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Low frequency High frequency
(𝜔2 − 𝜔1) 𝑘𝐿𝐹 (𝜔2 + 𝜔1) 𝑘𝐻𝐹

Crossing waves:

(−𝜔1, 𝛽) × (−𝜔2,−𝛽) 𝛽 + 𝛽 = 2𝛽 2 𝛽 − 𝛽 = 0 0

Parallel beating waves:

(−𝜔1, 𝛽) × (−𝜔2, 𝛽) 𝛽 − 𝛽 = 0 0 −𝛽 − 𝛽 = −2𝛽 −2

Table 6: Summary of the quadratic couplings for the modal forcing combinations. The
subscripts ”𝐿𝐹” and ”𝐻𝐹” in 𝑘 indicate the low-frequency dynamics (𝜔2 − 𝜔1) and the

high-frequency dynamics (𝜔2 + 𝜔1) respectively.

a non-zero resultant spanwise wavenumber (𝑘𝐿𝐹 ≠ 0), implying that the associated flow591
features are 3D in nature. The work of Mauriello (2024) on a transitional SBLI showed that592
the low-frequency unsteadiness is driven by structures populating the foot of the head shock,593
whose nature is 2D in wavenumber space and they result from quadratic interactions. Based594
on this result, it can be explained why crossing waves only lead to a steady interaction.595

By following the same mathematical approach for the parallel beating waves, we obtain596

𝜔𝐿𝐹 = 𝜔2 − 𝜔1 −→ 𝛽 − 𝛽 = 0 (5.3)597

The resultant spanwise wavenumber in the low-frequency range is therefore 𝑘𝐿𝐹 = 0, and598
low-frequency unsteadiness are observed for such a case.599
Table 6 summarises all possible combinations at both low frequency (𝜔2 − 𝜔1) and high600
frequency (𝜔2 +𝜔1) for each family of oblique modes. The resultant spanwise wavenumber601
corresponding to the low frequency (high frequency) quadratic coupling is also presented as602
𝑘𝐿𝐹 (𝑘𝐻𝐹), which highlights the 2D or 3D nature of the flow features. Note that for each603
family, its definition in the frequency-wavenumber space is presented, omitting its complex604
conjugate part. When the parallel combination is active in the low frequency range, the605
topology of the flow is two-dimensional in the wavenumber space, with 𝑘𝐿𝐹 = 0. Conversely,606
when dealing with high frequency (𝜔2 + 𝜔1), a different scenario emerges, with crossing607
waves responsible for a 2D periodicity of the flow.608

5.1. Frequency, wavenumber, and location609

More information about the interactions can be obtained from a spectral analysis of the610
resulting flow. Figure 10 displays the power spectrum of wall pressure fluctuations in the611
spanwise wavenumber domain, at fixed frequencies and for each combination of oblique612
waves. The wavenumber is presented as a multiple of the imposed wavenumber 𝛽 in the form613
𝑘 = 𝑘𝑧/𝛽. This approach enables a direct comparison of the results with the theoretical ones614
presented in Table 6. The white vertical lines indicate the position of the separation point615
(solid line) and the reattachment point (dashed line) respectively. For simplicity, we will use616
frequency 𝑓 instead of circular frequency 𝜔. Consequently, the left column plots the flow617
organisation in the low frequency dynamics ( 𝑓2− 𝑓1), while the right column shows the space618
arrangement for ( 𝑓2 + 𝑓1). Furthermore, the first row illustrates the results for the crossing619
family (a)-(b), while the second row shows the parallel beating family (c)-(d).620

In the high-frequency dynamics (right column), the crossing combination of waves gives621
rise to two-dimensional waves 𝑘 = 0, originating around the reattachment point and extending622
downstream. However, a similar downstream contribution at 𝑘 = 0 is absent for the parallel623
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Low frequency High frequency
( 𝑓2 − 𝑓1) ( 𝑓2 + 𝑓1)

Crossing waves

(a) (b)
Parallel beating waves

(c) (d)

Figure 10: Streamwise distribution of the power spectra for each normalised wavenumber
at selected frequencies: left column indicates low frequency ( 𝑓2 − 𝑓1), right column

indicates high frequency ( 𝑓2 + 𝑓1). The white vertical lines indicate the position of the
separation point (solid pattern) and the reattachment point (dashed pattern) respectively.

Panels (a)-(b): crossing waves; panels (c)-(d): parallel beating waves.

beating family at high frequency ( 𝑓2 + 𝑓1) (see panel (d)). This region is populated by624
three-dimensional structures whose value of 𝑘 is equal to -2.625

A detailed examination of the slow dynamics (left column) reveals that only the parallel626
combination (see panel (c)) leads to two-dimensional structures, originating before the627
separation point. Conversely, in the case of crossing waves, the spectral content for two-628
dimensional structures does not emerge at this same location, thereby confirming their629
absence in the slow dynamics at the separation point. These observations are consistent with630
the findings of the previous section, i.e. that the appearance of low-frequency unsteadiness631
only occurs for wavenumber combinations that are 2D.632

5.2. Non-linear analysis in terms of wavenumber633

The previous subsection showed that oblique mode families interact in such a way as to634
produce two- and three-dimensional flow features at specific locations in both slow and fast635
dynamics. Exploiting the periodicity of the present simulation (one-period of the difference636
mode Δ𝜔), the extended version of the higher-order spectral analysis, as presented in Section637
2.2, is applied in order to detect any possible triadic interactions. In addition, a further638



20

simplification has been introduced. In the study of Mauriello et al. (2022) it was observed639
from bicorrelation maps that the quadratic interactions between oblique modes are maximal640
for null time-delay between the modes (see Figure 8 of their paper, high bispectral content is641
observed along the diagonal shown in the bispectrum map). In short, for a time 𝜏1 = 𝜏2 = 𝜏, the642
nonlinear interaction between oblique modes is at its maximum energy activity. Consequently,643
the same time delay 𝜏1 = 𝜏2 is set for the source sensors used to extract possible quadratic644
couplings between oblique modes with respect to the target sensor. Using these assumptions,645
the equation (2.7) is reduced to646

𝐵𝑖𝑠𝐹𝐺𝐻

(
(𝑥𝐹 , 𝑦𝐹), (𝑥𝐺 , 𝑦𝐺), (𝑥𝐻 , 𝑦𝐻 ), 𝑘𝑧1 , 𝑘𝑧2 , 𝜏

)
=

⟨𝐹̂
(
(𝑥𝐹 , 𝑦𝐹), 𝑘𝑧1 , 𝑡 + 𝜏

)
𝐺̂
(
(𝑥𝐺 , 𝑦𝐺), 𝑘𝑧2 , 𝑡 + 𝜏

)
𝐻̂∗

(
(𝑥𝐻 , 𝑦𝐻 ), 𝑘𝑧1 + 𝑘𝑧2 , 𝑡

)
⟩

(5.4)647

Optimal bispectral maps are presented in this section. The optimality results from the time648
delay 𝜏𝑜𝑝𝑡 , which maximises 𝐵𝑖𝑠𝐹,𝐺,𝐻 (𝑘𝑧1 , 𝑘𝑧2 , 𝜏). For the sake of simplicity, we will drop649
the subscript “𝑧 ”in the wavenumber 𝑘 , and the three signals will all be denoted by the sole650
letter G. Subscripts from 1 to 3 are used to distinguish the signals. The first two signals 𝐺1651
and 𝐺2 have been chosen as source signals and are located between the forcing location652
and the separation point at 𝑥 = 45. At this location the spectral decomposition of the wall653
pressure fluctuations has the same power content in each of the cases (see Figure 8) and654
the flow field in this region is described solely by the dynamics of the oblique modes. This655
implies full knowledge of the power contribution of the source sensors 𝐺1 and 𝐺2, which656
is the same for both families. Consequently, it is natural that the target sensor 𝐺3 (located657
either at the separation or at the reattachment points) will have a power contribution that658
depends only on the power due to the quadratic couplings, which varies according to the case659
under consideration. An alternative approach would be to use the bicoherence to quantify660
the level of nonlinear coupling. However, in the latter case, the normalisation used to define661
the bicoherence yields a measure of the strength of the quadratic coupling regardless of the662
level of quadratic power involved, thus highlighting a set of quadratic couplings that have no663
dynamical impact due to negligible energy content. In contrast, the norm of the bispectrum664
directly reveals the energy content associated with the nonlinear couplings. The location of665
the three sensors is the same for all further analyses, unless clearly stated.666

Figure 11 shows maps of the norm of the optimal bispectrum for each oblique mode667
combination. In all maps, the two source sensors 𝐺1 and 𝐺2 are located at 𝑥 = 45 for668
the reason previously explained, whereas the destination sensor 𝐺3 is located either at the669
separation point (left column) and at the reattachment point (right column). This approach670
allows the 2D and/or 3D nature of the flow features responsible for the non-linear coupling671
between the upstream region and the separation and reattachment locations to be highlighted.672
Note that the spanwise wavenumbers are presented with subscripts 1 and 2 to indicate that the673
quadratic couplings result from all possible wavenumbers detected by sensor 𝐺1, i.e. 𝑘1 and674
𝐺2, i.e. 𝑘2. Also note that (𝑘1, 𝑘2) pairs resulting in squared bicoherence values higher than675
0.25 are encircled by a black thick line in order to demarcate couplings effectively resulting676
in a high level of relative quadratic power.677

When considering the crossing waves combination at the separation point (see panel (a)),678
the set of wavenumbers resulting from quadratic non-linearities of the oblique modes are679
dominated by couplings involving at least one oblique mode, i.e. 𝑘1,2 = ±1, all with a680
similar amount of quadratic power (orange circles). In contrast, for the parallel wave case,681
the bispectral map is dominated by the combination (𝑘1, 𝑘2) = (−1, 1), for which the level682
of bispectral content is higher (see panel (c)). This means that quadratic couplings at the683
separation point lead to 2D flow features with 𝑘3 = 𝑘1 + 𝑘2 = 0. However, it is evident that684
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Separation point Reattachment point

Crossing waves

(a) (b)
Parallel beating waves

(c) (d)

Figure 11: Modal forcing: maps of the norm of the optimal wavenumber bispectrum, with
pairs resulting in bicoherence value higher than 0.25 encircled in black. Left column: the
target sensor 𝐺3 is located at the separation point; right column: the target sensor 𝐺3 is
located at the reattachment point. Panels (a)-(b): crossing waves; panels (c)-(d): parallel

beating waves. All maps show quadratic interactions with the two source sensors 𝐺1 = 𝐺2
located at 𝑥 = 45.

2D quadratic combinations also appear for the subsequent 𝑘2 = −𝑘1 couplings visible along685
the diagonal, despite the decrease in the bispectral power content. Nevertheless, at this stage686
of the analysis, it is still not possible to infer whether the quadratic interactions arise from687
the interaction of the oblique modes after they have passed through the shock interaction688
system and thus have the possibility of flowing back through the separated region, or whether689
they are the beginning of pure triadic interactions that are about to develop and will continue690
to develop along the shear layer. Another important difference between crossing waves and691
parallel beating waves, when observed at the separation point, is the resulting non-linear692
contribution introduced to the mean field (𝑘1, 𝑘2) = (0, 0) that occurs in the case of the693
combination of parallel waves. This non-linear modulation of the mean field is also present,694
for this particular combination, when the target sensor is positioned at the reattachment point695
(see panel (d)). However, the corresponding level of the bicoherence is low, indicating that696
the power issued from this coupling only contributed to a small amount of the total power at697
𝑘3 = 0.698

On the other hand, strong quadratic couplings for all integer multiples of the fundamental699
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×
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Figure 12: Norm of the optimal wavenumber bispectrum for both crossing (×) and parallel
beating (//) waves extracted for the resulting 2D (𝑘3 = 0) and 3D (𝑘3 = 2) flow

characteristics.The vertical black lines indicate the separation (solid) and reattachment
(dashed) points.

wavenumber 𝑘1,2 = 1 appear for the crossing wave family at the reattachment point (see700
panel (b)). The oblique modes at the reattachment region interact nonlinearly, initiating the701
cascade process towards higher wavenumbers (smaller scales) typical of the turbulent kinetic702
energy cascade. For small 𝑘1,2, the same organisation of the quadratic power is observed as703
for the separation point. The combination of 𝑘1,2 = 1 is largest, indicating a direct quadratic704
interaction between oblique modes resulting in a 3D organisation of the flow.705

When restricted to the reattachment point, the parallel waves show a cascade process706
towards higher 𝑘1,2 that is at its early stages, as only a few cascading combinations of the707
fundamental harmonic are visible (see panel (d)). These results support the previous finding708
that the crossing arrangement is more prone to turbulence breakdown than the parallel wave709
arrangement.710

Limiting attention to combinations of 2D ((𝑘1, 𝑘2) = (−1, +1)) and 3D ((𝑘1, 𝑘2) =711
(+1, +1)) wavenumbers from the previous maps, information on the streamwise evolution712
of the norm of the optimal bispectrum is extracted and presented in Figure 12. Note that713
in this figure, the target sensor 𝐺3 is no longer limited to the two locations of separation714
and reattachment, but extracts information for each point in the 𝑥 direction. For the clarity715
of the figure, the crossing waves are indicated in the legend by the symbol ×, while the716
parallel beating family is indicated by //. The vertical black lines indicate the separation717
(solid line) and reattachment (dashed line) locations for each wave family. A high value of718
the optimal bispectral content is observed in the separated flow region for the oblique mode719
coupling resulting in 2D spanwise organisation of the flow in the case of parallel beating720
waves, confirming that most of the quadratic couplings result in 𝑘3 = 0 (see green line) for721
such an arrangement. In the same region, nonlinear couplings between the oblique modes722
resulting in 3D (parallel beating waves) and 2D and 3D (crossing waves) flow characteristics723
begin to develop within the separation bubble. After the shock interaction, quadratic couplings724
saturate, with significantly higher plateau levels in the case of the crossing waves, especially if725
3D interactions (𝑘3 = 2) are considered. Those associated with the occurrence of the turbulent726
energy cascade dominate, confirming the occurrence of the turbulent energy cascade, which727
is observed to be less pronounced in the case of parallel beating waves for 𝑘3 = 2.728

The norm of the optimal bispectrum does not directly indicate the frequency range in which729
the quadratic couplings occur. In this context, the time-filtered optimal bispectral maps are730
computed. They are obtained by bandpass filtering in time the target signal𝐺3(𝑘1+ 𝑘2, 𝑡−𝜏).731
The filter retains either the frequencies associated with the low-frequency dynamics ( 𝑓2− 𝑓1)732
or those associated with the high-frequency dynamics ( 𝑓2 + 𝑓1). This enables the whole733
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frequency spectrum used to calculate the optimal bispectral power to distinguish whether734
the predominant contribution comes from quadratic interactions occurring at low or high735
frequencies. In each plot of Figure 13, the separation (solid line) and reattachment (dashed736
line) locations are shown to ease visualisation of the separated region. In addition, the colour737
code uses black for the unfiltered target signal 𝐺3, red for low-pass filtering, and blue for738
all signals that retain only the high-frequency range. The total frequency spectrum for the739
2D periodicity in the case of the crossing arrangement (see panel (a)) is fully dominated by740
quadratic couplings occurring at high frequency ( 𝑓2 + 𝑓1), and the contribution of nonlinear741
couplings at low frequency is marginal. The opposite situation is observed for the same742
2D organisation of the flow in the case of parallel beating waves (see panel (c)). Most743
of the nonlinear interaction is detected in the low frequency range (see the red diamonds744
overlapping the black line). The high value of the optimal bispectral content through the745
separated region again supports the observation that non-linear coupling due to oblique746
modes in the specific case of parallel arrangement is responsible for the appearance of 2D747
flow features at the separation point. These flow features are in turn sustaining the low748
frequency motion of the head shock. In short, in the wavenumber space, the trace of the low-749
frequency unsteadiness is two-dimensional. Indeed, for the crossing waves with periodicity750
𝑘3 = 0, only quadratic couplings acting at high frequency are observed, and in Section 4 we751
have observed that in such a case the interaction is steady. The three-dimensional periodicity752
requires careful analysis, as the quadratic couplings also take into account beatings of a753
different nature. Although most of the contribution to the total bispectral content comes from754
the low-frequency (crossing waves) and high-frequency (parallel beating waves), a complete755
overlap of the plots is not observed. The full bispectral power is only recovered when the756
self-quadratic coupling of each single oblique mode is taken into account, i.e. 𝑓1 + 𝑓1 = 2 𝑓1757
and 𝑓2 + 𝑓2 = 2 𝑓2 in the frequency range that best maximises the total quadratic power. This758
is shown in panels (b) and (d) with the green diamond symbols.759

5.3. The direction of quadratic couplings760

Information on the directionality of the quadratic motion can be extracted by mapping the761
norm of the bispectrum into the time delay-space domain, as in Figure 14. The contours762
represent the norm of the bispectral power, and information on the time periodicity and763
direction of the motion is available from its pattern and the slope associated with it. Note that764
the contours are saturated such that low amplitude activity can be highlighted. The inverse765
of the ratio of 𝜏 to 𝑥 directly gives the value of a propagation velocity associated with the766
quadratic coupling under consideration, normalised with the external velocity, i.e. 𝑈𝐵/𝑈∞.767
In each map, the location of the separation and reattachment points is indicated by black768
vertical lines, solid for the former and dashed for the latter. Propagation velocities deduced769
from the map in various regions of the flow thus delineated are listed in Table 7. Note770
that the streamwise evolution has been divided into three regions: from the forcing location771
(𝑥 𝑓 𝑜𝑟𝑐𝑖𝑛𝑔 = 20) to the separation point, within the recirculating region and downstream the772
reattachment point.773

Downstream motion is observed for crossing waves, regardless of the 2D (see panel (a))774
or 3D (see panel (b)) nature of the flow structures. However, the fundamental periodicity775
is different. A short period corresponding to 𝑇 = 1/( 𝑓1 + 𝑓2) is observed for 𝑘3 = 0. This776
result is consistent with the previous observations, for which most of the quadratic activity777
concerns the high frequency range of the total spectrum (see panel (a) of Figure 13).778

Indeed, the upstream region of the flow is dominated by slow periodic dynamics corre-779
sponding to 𝑇 = 1/( 𝑓2 − 𝑓1), in agreement with the results presented in the previous section780
(see panel (b) of Figure 13). But, as seen in this plot, there are also quadratic couplings781
of lower amplitude associated with self-interactions of oblique modes towards frequencies782
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Figure 13: Norm of the time-filtered wavenumber bispectrum. The filter is applied to the
target sensor 𝐺3, which spans all 𝑥 locations. It retains either the frequencies associated

with the low-frequency dynamics ( 𝑓2 − 𝑓1) (indicated in the legend with 𝐺3 ( 𝑓2 − 𝑓1)) or
those associated with the high-frequency dynamics ( 𝑓2 + 𝑓1) (indicated in the legend with
𝐺3 ( 𝑓2 + 𝑓1)). Symbols are used when the lines overlap perfectly. The green diamond

symbols indicate the presence of self-quadratic couplings, i.e. 𝑓1 + 𝑓1 = 2 𝑓1 and
𝑓2 + 𝑓2 = 2 𝑓2. The vertical black lines indicate the separation (solid) and reattachment

(dashed) locations.

𝑥 𝑓 𝑜𝑟𝑐𝑖𝑛𝑔 < 𝑥 < 𝑥𝑠𝑒𝑝 𝑥𝑠𝑒𝑝 < 𝑥 < 𝑥𝑟𝑒𝑎𝑡𝑡 𝑥 > 𝑥𝑟𝑒𝑎𝑡𝑡

Crossing waves 2D 0.98 0.53 0.76

Crossing waves 3D 0.57 0.52 0.52

Parallel beating waves 2D -0.17 -0.17 0.12

Parallel beating waves 3D 0.52 0.52 0.53

Table 7: Value of the propagation velocity of the bispectral content normalised by the
external velocity, i.e.𝑈𝐵/𝑈∞, for each region of the flow: from the forcing location to the
separation point, within the recirculating region and downstream the reattachment point.

2 𝑓1 and 2 𝑓2. In the time delay domain of Figure 14, the sum of these two waves of similar783
frequencies is visualised, through beating, as a wave at frequency ( 𝑓1 + 𝑓2) being modulated784
in amplitude by a wave at frequency ( 𝑓1 − 𝑓2). It hence results in spots of high frequency785
ripples with width equal to 𝑇/2 seen, for instance, in the first half of the separated region or786



25

downstream of the reattachment point. In the Fourier space, however, the only contribution787
to the ( 𝑓2 − 𝑓1) range comes from the quadratic interaction between modes 1 and 2.788

Although barely visible, the same observations apply to the parallel beating waves in the789
case of 𝑘3 = 2 organisation of the flow (see panel (d)). Both crossing and parallel beating790
waves cases for 𝑘3 = 0 are free of this self quadratic interaction, since the self coupling of a791
single mode towards zero wavenumber corresponds to zero frequency. Consequently, there792
is no secondary modulation in time in panels (a) and (c).793

In all these cases, the quadratic power couplings move from upstream to downstream, with794
the exception of the 2D parallel beating waves. In this case, panel (c) clearly shows that there is795
an upstream motion of period𝑇 = 1/( 𝑓2− 𝑓1) within the separated region. The corresponding796
value of the propagation velocity is 𝑈𝐵/𝑈∞ = −0.17. Such a value is in agreement with the797
values suggested by Larchevêque (2016), Bonne et al. (2019), and Threadgill et al. (2021).798
Moreover it falls in the range of values observed in Mauriello et al. (2022), who studied799
transitional SBLI in a similar flow configuration and observed an upstream motion from the800
reattachment point towards the separation point. The value they found is𝑈𝐵/𝑈∞ = −0.09 for801
the features sustaining the low frequency dynamics and𝑈𝐵/𝑈∞ = −0.25 for the frequencies802
falling in the medium range. In our case, after 𝑥 = 197, the direction of the motion changes803
to downstream, with a speed of𝑈𝐵 = 0.12𝑈∞.804

5.4. Phenomenology of the non-linear interactions805

The basic phenomenology can now be proposed as follows. As the oblique modes convect806
downstream in the separated shear layer, they grow in amplitude, developing a high amplitude807
towards the end of the separation bubble, achieving a maximum quadratic power transfer.808
After this power input, structures having zero spanwise wavenumber and period 𝑇 = 1/( 𝑓2 −809
𝑓1) split into two parts just upstream of the reattachment point. Part is convected downstream810
with the reattaching flow, and is possibly reinforced by further quadratic interactions between811
the oblique modes still persisting in that region. The other part enters the lower region of812
separated zone and is subject to an upstream propagation up towards (and beyond) the813
separation point. This upstream propagation occurs without further quadratic power supply814
because of the low oblique mode amplitude in that region. The separation point and the815
reattaching boundary layer therefore undergoes motion similar in amplitude but opposite in816
sign. In this context, the work of Dupont et al. (2006) noted that the rear part of the interaction817
for an oblique reflected shock geometry also exhibits some degree of unsteadiness which818
is in quasi-linear dependence with the reflected shock motion, reinforcing the idea that the819
separation bubble is in a breathing motion. In addition, the work of Touber & Sandham820
(2009) on a turbulent shock-induced separation bubble interaction had already observed a821
jump in the velocity phase associated with the wall pressure perturbations. However, in their822
work, this jump is observed to occur at one-third of the length of the separation zone. In823
the present work, the shift in the velocity direction occurs near the point of minimum 𝐶 𝑓 at824
𝑥 = 200 (see Figure 7), after which the skin friction begins to increase. The same observation825
applies to the other time delay maps, although instead of a net change in direction, an increase826
in bispectral activity is observed.827

We observed in Section 5.2 that, at the separation point, both crossing waves and parallel828
beating waves experienced quadratic couplings towards wavenumber equal to zero (see829
Figures 11 (a) and (c)). It is now possible to add that the nonlinearities observed at the830
separation point in the case of parallel beating waves result from quadratic interactions of831
the oblique modes which, after passing through the shock interaction, succeed in entering832
the separation bubble via the reattachment point and traveling up to the separation point.833
These triadic interactions result in 2D structures. In contrast, the 2D structures that populate834
the separation point in the case of crossing waves are the result of quadratic interactions in835
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Figure 14: Time delay map extracted from the real part of the wavenumber bispectrum.
First row shows the crossing waves, second row is for parallel beating waves. The vertical

black lines indicate the separation (solid) and reattachment (dashed) points.

the incoming boundary layer. They begin to develop between the oblique modes and among836
families of them.837

Irrespective of the 2D or 3D spanwise structure of the flow and the specific arrangement838
of the oblique modes in the two families, an upstream motion is observed for 𝑥 ⩽ 20. This839
point corresponds to the location of the forcing 𝑥 𝑓 𝑜𝑟𝑐𝑖𝑛𝑔, and since the perturbations are840
introduced as density perturbations (leading to pressure perturbations), they are free to move841
in all directions, including upstream within the subsonic layer of the compressible boundary842
layer.843

5.5. The frequency-space organisation of the quadratic coupling844

The time delay 𝜏 introduced in equation 5.4 can be exploited to expand the wavenumber845
bispectrum 𝐵𝑖𝑠1,2,3(𝑘𝑧1 , 𝑘𝑧2 , 𝜏) into a Fourier series in time . This results in the frequency-846

transformed wavenumber bispectrum 𝐵𝑖𝑠1,2,3(𝑘𝑧1 , 𝑘𝑧2 , 𝑓𝑛) for discrete frequencies 𝑓𝑛 = 𝑛/𝑇847
such that848
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Figure 15: Streamwise-frequency distribution of norm of the frequency-transformed
wavenumber bispectrum for selected wavenumver pairs.Panels (a)-(b): crossing waves;
panels (c)-(d): parallel beating waves. The white vertical lines indicate the separation

(solid) and reattachment (dashed) points.

𝐵𝑖𝑠1,2,3(𝑘𝑧1 , 𝑘𝑧2 , 𝜏) =
+ 𝑇

2Δ𝜏∑︁
𝑛=− 𝑇

2Δ𝜏

𝐵𝑖𝑠1,2,3(𝑘𝑧1 , 𝑘𝑧2 , 𝑓𝑛) 𝑒2𝑖 𝜋 𝑛𝜏
𝑇 (5.5)849

The space transform provides information about the nature of the structures, while the850
time transform allows the amount of non-linear content associated with each frequency and851
each streamwise location to be determined. Overall, the frequency-transformed wavenumber852
bispectrum directly highlights the relevant frequency content of the non-linear coupling853
involved between selected wavenumbers. For simplicity, the subscript 𝑧 is dropped in the854
following discussion.855

Figure 15 shows the norm of the space-frequency transformed bispectrum for each856
combination of oblique waves. The streamwise organisation of the quadratic interactions857
is plotted for each frequency. Only results for selected wavenumbers 𝑘1 + 𝑘2 = 𝑘3 = 0858
(left column) and 𝑘1 + 𝑘2 = 𝑘3 = 2 (right column) are presented. Note that for 𝑘3 = 0 the859
wavenumber bispectrum is real, resulting in a time Fourier series that is even, i.e. symmetric860
with respect to the origin 𝑓 = 0. On the other hand, for 𝑘3 = 2 the bispectrum is inherently861
complex and the positive and negative frequency regions are no longer symmetric, even862
in the Hermitian sense. If we take into account the asymmetries inherent in the different863
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arrangements of the waves, the present bispectra are therefore able to reflect these spanwise864
asymmetries.865

In the case of the crossing wave family, panel (a) shows that from the reattachment point866
onwards, the quadratic coupling, associated with the transition mechanism, takes place. The867
cascade process starts from the forcing frequencies and fills the spectrum with exact non-868
linear harmonics of the fundamental frequency, becoming increasingly difficult to visualise869
in the plot because of their sharp frequency distribution and the use of the logarithmic scale.870
Evidence of quadratic interactions is clearly detected in the low-frequency range for 𝑘3 = 2871
(see panel (b)), and confirm the results presented in Table 6. Specifically, this confirms that872
two-dimensional flow features 𝑘3 = 0 lack the low-frequency dynamics.873

Panel (c) of figure 15shows that high values of bispectral content are observed for parallel874
beating waves when 𝑘3 = 0. Nevertheless, at the separation point as well as upstream and875
downstream of it, the range of frequency associated with quadratic couplings spreads up to876
𝑓 ∼ 0.005. On the contrary, this combination of waves, when quadratically interacting to give877
𝑘3 = 2, does not support the low-frequency dynamics, and only the frequency corresponding878
to the sum of the forcing contribution emerges (see panel (d)). Note that this frequency is879
negative because the wavenumber 𝑘3 = 2 under consideration is positive. For the parallel880
family, 𝑘3 = 2 can be obtained from oblique modes only by considering an additive quadratic881
coupling, i.e. the one involving 𝑘1 = +𝛽 and 𝑘2 = +𝛽. It translates, through the ansatz (2.4)),882
into an (−𝜔1, −𝜔2) coupling into the frequency space. As a consequence of the Hermitian883
symmetry of the space-time transform, the quadratic interaction resulting in the positive884
(𝜔1 + 𝜔2) frequency is found for the negative wavenumber 𝑘3 = −2.885

6. Additional considerations886

So far we have focused on two cases with a difference-mode nonlinear interaction, in addition887
to the baseline case where the difference-mode was absent. In this section we expand the888
discussion to include two additional forcing configurations as well as a case with a different889
frequency combination.890

6.1. A beating crossing combination891

The spectral analysis of the pressure fluctuations at the wall showed that an approximately892
steady interaction (lacking 2D low frequency content) is observed in the case of the crossing893
waves family, while an unsteady interaction was found for the parallel beating arrangement.894
A third combination of waves that combines both parallel waves and crossing waves is next895
considered. The aim is to explore whether this new arrangement of waves still retains the896
properties of parallel waves to stimulate unsteadiness as well as the ability of crossing waves897
to facilitate the breakdown to turbulence. The arrangement is called beating crossing waves898
and it is expressed through the notation of (4.2) as899

Beating crossing waves: 𝜌′ (𝑥, 𝑧, 𝑡) = 𝜌′+1 (𝑥, 𝑧, 𝑡) + 𝜌
′−
1 (𝑥, 𝑧, 𝑡) + 𝜌

′+
2 (𝑥, 𝑧, 𝑡) + 𝜌

′−
2 (𝑥, 𝑧, 𝑡)900

Figure 16 (a) plots the streamwise evolution of the skin friction coefficient, comparing901
the different cases. The beating crossing waves have the shortest separation zone with902
𝐿𝑖𝑛𝑡/𝛿∗𝑖𝑛𝑙𝑒𝑡 = 44 (𝐿𝑠𝑒𝑝/𝛿∗𝑖𝑛𝑙𝑒𝑡 = 73.4) and result in a transitioning boundary layer down-903
stream of the interaction. This result is consistent with the observation that this family904
possesses a double crossing wave combination and, as observed from the previous results,905
the breakdown to turbulence is facilitated.906

Since double parallel beating waves are also included, low-frequency unsteadiness is907
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(a) (b)

Figure 16: Figure (a) shows the streamwise evolution of the skin friction coefficient 𝐶 𝑓 for
all combinations of waves. The black dashed horizontal lines indicates 𝐶 𝑓 = 0. Figure (b)

plots the spectral decomposition of the wall pressure fluctuation for the sole beating
crossing waves case. The white vertical lines indicate the separation (solid) and the

reattachment (dashed) points.

expected to develop. Figure 16 (b) shows the spectral decomposition of the wall pressure908
fluctuations for the beating crossing waves. The same normalisation and structure of the909
spectra shown in Figure 8 is followed here. Downstream of the reattachment point and910
starting from the forcing frequencies, the energy content cascades over all their harmonics911
and fills the spectrum up to high frequencies consistent with the results extracted from912
the 𝐶 𝑓 plot that indicates transition to turbulence. When looking at the separation point,913
beating crossing waves shows high energy activity that results in an unsteady interaction. As914
observed, the parallel combination induces slow motion at 𝑆𝑡𝐿𝑖𝑛𝑡

= 0.037. For the beating915
crossing family, the head shock moves at 𝑆𝑡𝐿𝑖𝑛𝑡

= 0.028. This difference is due to the change916
of 𝐿𝑖𝑛𝑡 . Hence, the inclusion of the parallel combination of the two wave families proves once917
again to be responsible for the slow 2D motion of the head shock, but this time combined918
with transition to turbulence. Note that all the quadratic metrics used in Section 5 to analyse919
the crossing and parallel cases have been applied to the beating crossing combination. The920
results, not presented here for the sake of conciseness, confirm that this more complex family921
combines the individual quadratic features of the two simpler cases.922

6.2. A streaky crossing combination923

Low speed velocity streaks are often present in laminar boundary layers, for example when924
free stream turbulence or roughness modifies the laminar base flow. They are steady in time925
(𝜔 = 0), but have non-zero spanwise wavenumber (Schmid & Henningson 2001). Hence it926
is of interest to take advantage of them to modify the simple crossing case to achieve a two-927
dimensional spanwise organisation of the flow at the separation point without altering the928
incoming frequency content and verify whether the slow bubble breathing motion occurs. The929
targeted non-linear coupling involving the streaks and the oblique modes will inherently result930
in the same frequency as the corresponding non-linear coupling between the sole oblique931
modes, but it must result in 𝑘𝑧 = 0 in the separated flow region. Consequently, the spanwise932
dimension of the streaks must be carefully chosen. For this purpose, half of the spanwise933
dimension of the 3D unstable waves was chosen (𝛽𝑠𝑡𝑟𝑒𝑎𝑘 = 2𝛽𝑂𝑀 ). The mathematical934
representation of the streaks is therefore given by 𝜌′

𝑠𝑡𝑟𝑒𝑎𝑘
(𝑥, 𝑧, 0) = 𝑅𝑒[𝐴0 𝜌̂(𝑦)𝑒𝑖 (2𝛽𝑧) ]. By935

adding the streak to the crossing waves family, the new combination we are considering is936
called streaky crossing waves, and it is mathematically described by937
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(a) (b)

Figure 17: Streaky wave family: power spectra of the wall pressure fluctuations (panel (a))
and wavenumber bispectrum for sensor 𝐺3 located at the separation point, denoted by the

white solid vertical lines on plot (a).

Streaky crossing waves: 𝜌′ (𝑥, 𝑧, 𝑡) = 𝜌′+1 (𝑥, 𝑧, 𝑡) + 𝜌
′−
2 (𝑥, 𝑧, 𝑡) + 𝜌

′
𝑠𝑡𝑟𝑒𝑎𝑘

(𝑥, 𝑧, 0)938

By following the same mathematical approach presented in Section 5, for the streaky939
crossing family, we obtain that the only non-linear combination involving the oblique modes940
with frequency ( 𝑓2− 𝑓1) is given by the same relation of (5.2). Nevertheless, if the contribution941
of the streak is included, many possible non-linear combinations of the triad of modes can942
result in the ( 𝑓2 − 𝑓1) frequency. The simplest ones are two consecutive quadratic coupling943
or a single cubic coupling. The five simplest possible non-linear couplings towards the low944
frequency range therefore read945

𝑓𝐿𝐹 = 𝑓2 − 𝑓1 ←→



𝛽 + 𝛽 = 2𝛽 quadratic coupling

(𝛽 + 𝛽) + 2𝛽 = 4𝛽 consecutive quadratic couplings

(𝛽 + 𝛽) − 2𝛽 = 0 consecutive quadratic couplings

𝛽 + 𝛽 + 2𝛽 = 4𝛽 cubic coupling

𝛽 + 𝛽 − 2𝛽 = 0 cubic coupling

(6.1)946

The first line corresponds to interactions between oblique modes only, whereas the four947
subsequent lines are related to couplings involving both the oblique modes and streaks.948
Thus, the streaky family potentially results at low frequency in both 2D and 3D flow features,949
once either quadratic or cubic couplings involving streaks are taken into account.950

Figure 17 (a) shows the spectral content of the pressure fluctuations field extracted at951
the wall for the streaky crossing case. In contrast with the simple crossing arrangement,952
a low-frequency activity of mostly constant level is found in the separated flow region. It953
results in a low-frequency power at the separation point being 1.5 orders of magnitude larger954
for the streaky case compared to the original crossing case. Although such a value is more955
than four orders of magnitude lower than the one found for the parallel arrangement, it is a956
clear indication that streaks non-linearly promote flow structures at low frequency that are957
sustained in the separated flow region.958

Recalling the results from Mauriello (2024) and from Section 5, it is tempting to postulate959
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Low frequency High frequency
(𝜔2 − 𝜔1) 𝑘𝐿𝐹 (𝜔2 + 𝜔1) 𝑘𝐻𝐹

Crossing waves:

(−𝜔1, 𝛽) × (−𝜔2,−𝛽) 𝛽 + 𝛽 = 2𝛽 2 𝛽 − 𝛽 = 0 0

Parallel beating waves:

(−𝜔1, 𝛽) × (−𝜔2, 𝛽) 𝛽 − 𝛽 = 0 0 −𝛽 − 𝛽 = −2𝛽 −2

Beating crossing waves:

(−𝜔1,±𝛽) × (−𝜔2,±𝛽) 𝛽 − 𝛽 = 0 0 𝛽 + 𝛽 = 2𝛽 2

𝛽 + 𝛽 = 2𝛽 2 𝛽 − 𝛽 = 0 0

−𝛽 − 𝛽 = −2𝛽 −2 −𝛽 + 𝛽 = 0 0

−𝛽 + 𝛽 = 0 0 −𝛽 − 𝛽 = −2𝛽 −2

Streaky crossing waves:

(−𝜔1, 𝛽) × (−𝜔2,−𝛽) × (0, 2𝛽) 𝛽 + 𝛽 = 2𝛽 2 𝛽 − 𝛽 = 0 0

𝛽 + 𝛽 + 2𝛽 = 4𝛽 4 𝛽 − 𝛽 + 2𝛽 = 2𝛽 2

𝛽 + 𝛽 − 2𝛽 = 0 0 𝛽 − 𝛽 − 2𝛽 = −2𝛽 −2

Table 8: Summary of the couplings for all modal forcing combinations. The subscript
”𝐿𝐹” and ”𝐻𝐹” in 𝑘 indicate the low frequency dynamics (𝜔2 − 𝜔1) and the high

frequency dynamics (𝜔2 + 𝜔1) respectively.

that such a sustainability is related to two-dimensionality. Candidate non-linear couplings960
having such a property correspond to lines 3 and 5 of equation 6.1. The former, being961
quadratic in nature, can be tested using the bicoherence defined in equation 5.4. Its imprint962
on the 𝑘1− 𝑘2 bispectral map at separation plotted in Figure 17 (b) would include the primary963
interaction between oblique modes at (𝑘1, 𝑘2) = (1, 1), already present in the simple crossing964
case, as well as the secondary interaction between the structures resulting from the primary965
interaction and the streaks at (2,−2).966

No such extra quadratic coupling is found when comparing Figures 11(a) and 17(b) and,967
in fact, the norms of the bispectra at separation are similar for the pure crossing and streaky968
crossing cases for all wavenumber pairs under consideration. This demonstrates that, at969
least in the separated region of the flow, streaks do not contribute to quadratic coupling.970
Moreover, bicoherence levels are generally lower for the streaky crossing case. This, coupled971
with similar norms for the bispectra, is a clear indication that the extra power found in the972
separated region for the streaky case in Figure 17 (a) do not originate from any additional973
quadratic coupling.974

The cubic coupling hypothesis appears therefore as the most probable explanation. Note975
that it could be formally tested by computing the wavenumber trispectrum. However its976
definition involves four distinct time series, three time delays and only limited obvious977
hypotheses to reduce the dimension of the input space they span. This makes its computation978
quite cumbersome, even if restricted to a small number of wavenumber triads. As a979
consequence, a formal demonstration of the actual occurrence of cubic couplings involving980
streaks at the separation point has not been carried out.981

Table 8 integrates table 6 with all possible combinations at both low frequency (𝜔2 −𝜔1)982
and high frequency (𝜔2 +𝜔1) for the new families of oblique mode, i.e. the beating crossing983
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Figure 18: Power spectrum of the wall pressure fluctuations for the parallel beating waves
family with forcing frequency difference Δ𝑆𝐿𝑖𝑛𝑡

≃ 0.4. The white vertical lines indicated
the separation (solid) and the reattachment (dashed) points.

waves and streaky crossing waves. The table supports the results presented in Sections 6.1984
and 6.2. When the arrangement of oblique modes, whether it contains a parallel arrangement985
and/or structures such that the resulting spanwise wavenumber (which interacts with the986
oblique modes) is 𝑘𝑧 = 0 (as we have seen with the streak), then activity of low-frequecy987
spectral content appears in the spectrum at the separation point. Those 2D structures are988
responsible for the phenomenon of the low-frequency unsteadiness.989

6.3. Effect of the frequency990

At this point it is important to make a few more comments. First, both parallel beating waves991
and simple crossing wave configurations had the same injected energy level (see Table 3).992
Despite that, they exhibited very differing characteristics in terms of their influence on the993
unsteady dynamics and transition process. Secondly, regardless of the specific configuration,994
the system was forced with two high frequencies, such that their difference fell in the low995
range of the frequency spectrum, i.e. Δ𝑆𝑡𝐿𝑖𝑛𝑡

≃ 0.04. Although the forcing is set in the high996
frequency range, thanks to quadratic coupling we observed low-frequencies emerging in997
the spectrum. Nevertheless, it would be interesting to observe the possible consequences for998
both the low-frequency dynamics and the transition process when the resulting, quadratically-999
induced, Strouhal number falls within a higher range of the frequency spectrum. To this end,1000
we decided to investigate the arrangement of parallel beating waves since they resulted in1001
a strong response at the quadratic couplings in the low-frequency dynamics. The forcing1002
frequency was chosen so that the frequency separating the motion of the two parallel wave1003
families is ten times larger than for the original one, with Δ𝑆𝑡𝐿𝑖𝑛𝑡

≃ 0.4. This (similar) value1004
was observed in the work of Mauriello (2024), which studied the interaction between an1005
incoming laminar boundary layer and an impinging reflected shock system at 𝑀 = 1.7, and1006
examined the non-linear coupling between the multiple boundary layer modes and the flow1007
features at the separation point. In that work, it was found that the resulting nonlinearities1008
occurring between oblique modes of different frequencies were progressively damped when1009
the frequency difference exceeded Δ𝑆𝑡𝐿𝑖𝑛𝑡

= 0.35.1010
Figure 18 shows the power spectrum of the wall pressure fluctuations for the parallel beating1011

waves with medium forcing frequency-difference yielding to Δ𝑆𝑡𝐿𝑖𝑛𝑡
≃ 0.4. For simplicity,1012

in the following discussion we will refer to this case as 𝑀𝐹-forcing, whereas the original1013
parallel beating case with the low forcing frequency-difference of Δ𝑆𝑡𝐿𝑖𝑛𝑡

≃ 0.04, whose1014
corresponding power spectrum is plotted in Figure 8 (b), will be referred to as 𝐿𝐹-forcing.1015

When comparing Figures 8 (b) and 18, it appears that the region downstream the1016
reattachment point experiences a different transition state, with a slightly more developed1017
energy cascade in the case of 𝑀𝐹-forcing. Such a difference is consistent with the slightly1018
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(a) (b)

Figure 19: Wavenumber bispectra of the parallel beating waves family with forcing
frequency difference Δ𝑆𝐿𝑖𝑛𝑡

≃ 0.4 for the 2D (𝑘𝑧3 = 0) coupling: streamwise coordinate –
time delay map if the real part (panel (a)) and norm of the time–Fourier transform (panel

(b)). The vertical lines indicated the separation (solid) and the reattachment (dashed)
points. The horizontal dashed lines in panel (a) denote the time boundary of a single

period since data have been duplicated through time–periodicity for better visualization.

reduced size of the separated region in that case. One can postulate that the alteration of1019
the early transition is due to the non-linear process that broadens the frequency ranges1020
𝜔𝑛 associated with the 𝑛th non-linear harmonics of the oblique modes. The broadening1021
is progressively achieved through a succession of forward and backward interactions1022
involving the two kinds of oblique modes: (𝜔𝑛) × (±𝜔1) → (𝜔𝑛 ± 𝜔1) followed by1023
(𝜔𝑛 ± 𝜔1) × (∓𝜔2) → (𝜔𝑛 ± 𝜔1 ∓ 𝜔2). The frequency extent of the process therefore1024
scales with the (𝜔2 − 𝜔1) difference, making the 𝑀𝐹-forcing case to result more rapidly1025
in the overlapping of the broadened frequency ranges, thus leading to a fuller spectrum at1026
earlier stations.1027

Besides the transition mechanism, the larger frequency difference also affects the low-1028
frequency dynamics. Note that the lack of energy content for frequencies below 𝑓 = 0.00351029
for the 𝑀𝐹-forcing case is a direct consequence of the medium frequency-difference forcing1030
that results in a periodicity in time being inversely proportional to Δ𝑆𝑡𝐿𝑖𝑛𝑡

. The power1031
contents of the lowest frequency ranges, being equal to Δ𝜔/(2𝜋) for both cases, is rather1032
similar alongside the last third of the separated region (180 < 𝑥 < 220) and downstream of1033
the reattachment. In the first two thirds of the bubble, however, a significantly lower power is1034
found for the 𝑀𝐹-forcing case compared to the 𝐿𝐹-forcing one.1035

The power content of the low frequency range in the separated region having been1036
associated in Section 5, for the parallel case, with 2𝐷 quadratic coupling, the various1037
bispectral metrics described in that section have also been applied to the 𝑀𝐹-forcing1038
case. Overall, these analyses yielded similar results to the ones of the 𝐿𝐹-forcing case,1039
but two noticeable differences were found in the separated region. The first is related to1040
the upstream propagation velocity of the 2D bispectral content, which is found to be about1041
2.5 times larger than for the 𝐿𝐹-forcing case, as deduced from the time delay map of the1042
norm of the bispectrum for the 𝑘𝑧3 = 0 coupling, plotted in Figure 19 (a). It is worth1043
noting that a similar velocity ratio was found in Mauriello et al. (2022) between the lower1044
and upper frequency ranges of the low-frequency, upstream propagating structures resulting1045
from quadratic interactions between multiples oblique modes.1046

Beyond a velocity change, the quadratically-induced structures of the 𝑀𝐹-forcing case are1047
also subject to an extra damping when moving upstream in the separated region. The norm1048
of the time Fourier-transformed wavenumber bispectrum associated with the 2D (𝑘3 = 0)1049
coupling experiences a 1.5 order of magnitude drop between 𝑥 = 180 and 𝑥 = 155, as seen in1050
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Figure 19 (b). In the first half of the bubble this yields a difference of more than one order of1051
magnitude between the bispectral powers at the lowest frequency found in the 𝐿𝐹-forcing and1052
𝑀𝐹-forcing cases. This fully explains the similar differences seen on the power spectrum in1053
Figures 8 (b) and 18. It therefore seems that the downstream part of the separated region acts1054
as a low-pass filter (in the wavenumber space) with respect to the 2D structures originating1055
in the quadratic coupling of oblique modes. This is reminiscent of the the low-pass filter1056
nature of the shock/bubble system suggested by Touber & Sandham (2011) for a turbulent1057
interaction, even if the upstream part of the separated region was considered in this work.1058
Moreover, this is compatible with the mechanism suggested by Bugeat et al. (2022).1059

7. Conclusions1060

The present work has provided a comprehensive investigation into the unsteady dynamics of1061
transitional shock wave-boundary layer interactions (SBLIs) at Mach 1.5, employing direct1062
numerical simulations, deterministic forcing and high-order spectral analysis. The study1063
has successfully elucidated the distinct roles of different oblique mode configurations in1064
triggering low-frequency unsteadiness and transition to turbulence. The results unequivocally1065
demonstrate that these two phenomena are decoupled, with the transition to turbulence1066
primarily driven by nonlinear interactions of high-frequency unstable modes (oblique1067
breakdown), while low-frequency unsteadiness arises from the quadratic coupling of low-1068
frequency components. The study further underscores the critical role of the specific1069
arrangement of oblique modes in influencing the flow dynamics. The presence of crossing1070
oblique modes, characterised by opposite orientation of spanwise wavenumbers, was found1071
to facilitate the transition to turbulence. In contrast, parallel oblique modes, with the1072
same orientation of spanwise wavenumber, were more effective in triggering low-frequency1073
unsteadiness. The research also confirmed that the trace of low-frequency unsteadiness in1074
wavenumber space is distinctly two-dimensional, originating from nonlinear interactions of1075
oblique modes downstream of the shock interaction that subsequently propagate upstream1076
within the separated flow region.1077

Additional mode configurations were explored. The beating crossing waves configuration,1078
which combines aspects of both parallel and crossing waves, was shown to exhibit both1079
low-frequency unsteadiness and transition to turbulence, confirming that these phenomena1080
can coexist under certain conditions. Then the streaky crossing waves configuration was1081
investigated, where low-speed streaks are added to the crossing waves. This configuration1082
leads to low-frequency unsteadiness involving cubic interactions, further highlighting the1083
role of 2D flow structures in this phenomenon.1084

Finally, the impact of forcing frequency was examined by considering a case where1085
the difference between the forcing frequencies is increased. It is observed that, when the1086
difference between the forcing frequencies falls within a specific range, identified asΔ𝑆𝑡𝐿𝑖𝑛𝑡

<1087
0.4, it facilitates the generation of low-frequency unsteadiness, suggesting that the bubble1088
acts as a low-pass filter for nonlinear interactions.1089

The insights gleaned from this study contribute significantly to our understanding of the1090
intricate dynamics of transitional SBLIs. The findings not only enhance our comprehension1091
of the underlying mechanisms but also offer potential avenues for future research and the1092
development of control strategies. For instance, the identification of specific oblique mode1093
arrangements that favour or suppress low-frequency unsteadiness and turbulence transition1094
could pave the way for flow control techniques aimed at mitigating the detrimental effects1095
of SBLIs in high-speed flows. The observed two-dimensional nature of low-frequency1096
unsteadiness in wavenumber space could also be leveraged to develop simplified models1097
for predicting and controlling such fluctuations.1098
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