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Direct numerical simulations are carried out to investigate the underlying mechanism of
the low-frequency unsteadiness of a transitional shock reflection with separation at M = 1.5.
To clarify the nonlinear mechanisms, the incoming laminar boundary layer is forced with
two different arrangements of oblique unstable modes. Each wave arrangement is given by
a combination of two unstable waves such that their difference in frequency falls in a low
frequency range corresponding to a Strouhal number (based on the length of interaction)
of 0.04. This deterministic forcing allows the introduction of nonlinearities, and high-order
statistical tools are used to identify the properties of quadratic couplings. It is found that
the low-frequency unsteadiness and the transition to turbulence are decoupled problems.
On the one hand, the unstable modes of the boundary layer interact non-linearly such that
energy cascades to higher frequencies, initiating the turbulent cascade process, and to lower
frequencies. On the other hand, the low-frequency quadratic coupling of the oblique modes
is found to be responsible for low-frequency unsteadiness affecting the separation point. The
direction of the quadratic interactions is extracted and it is shown that, in the presence of low-
frequency unsteadiness, these interactions enter the separated zone just before reattachment
and travel both downstream and upstream, extending beyond the separation point, hence
feeding the low-frequency bubble response. In addition to the two main arrangements of
oblique modes, two other combinations are analysed, including multiple oblique waves
and streaks. Interestingly, their inclusion did not alter the low-frequency unsteadiness
phenomenon. Furthermore, the effect of the forcing difference frequency is examined and it
is shown that the breathing phenomenon is sensitive to the range of frequencies present in
the system due to a low-pass filter effect.
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1. Introduction

In high speed flows, the interaction between shock waves and the boundary layer is a common
phenomenon. This interaction, referred to in the literature as SBLI, can have significant
effects on aerothermodynamic loads and performance during high-speed flight and gas
turbine operation. In the case of transonic airfoils, the occurrence of self-sustained shock
wave oscillations, known as the buffet phenomenon (Lee 2001), adds further complexity.

For these reasons, SBLI has been one of the most important topic of research within
the aeronautical scientific community over the past 70 years (Dolling 2001). Among others,
Délery et al. (1986), Smits & Dussauge (2006), Doerffer et al. (2010) and Babinsky & Harvey
(2011) represent the most notable reviews on this topic. Incident normal shock, oblique shock
reflection, compression ramps and transonic airfoils were, and still are nowadays, typical
geometries employed to explore this phenomenon.

Dolling (2001) reports that until the 1950s, SBLI were commonly described as relatively
steady. Nowadays, it is now known that this description is incorrect, at least for separated tur-
bulent interactions. Quantitative measurements of turbulent SBLIs reported a low frequency
unsteadiness of the separation shock (Dolling & Murphy 1983; Erengil & Dolling 1991;
Thomas et al. 1994). The two orders of magnitude separating the characteristic frequency
of the incoming boundary layer from the frequency of the separation shock explain why
the unsteadiness is classified as being low frequency, relative to the higher characteristic
frequency of the incoming turbulent boundary layer. The work of Dupont et al. (2006) noted
that the rear part of the interaction for an oblique reflected shock geometry also exhibits
unsteadiness, which is in quasi-linear dependence with the reflected shock motion. The
low frequency motion of the head shock, coupled to the expansion and contraction of the
separated flow, is referred to as a breathing motion.

Whether discussing low-frequency unsteadiness or breathing motion, the necessity to find a
consensus on the magnitude of the low frequency oscillations prompted a search for temporal
scaling. Erengil & Dolling (1991) used the interaction length L;,;, defined as the distance
between the average position of the reflected shock and the extrapolation to the wall of the
incident shock, and the upstream velocity U, to scale the low-frequency unsteadiness. Based
on this scaling, it was found in different experiments (Dussauge et al. 2006; Dupont et al.
2006; Ganapathisubramani et al. 2009; Souverein et al. 2009; Piponniau et al. 2009) and
numerical investigations (Pirozzoli & Grasso 2006; Wu & Martin 2008; Touber & Sandham
2009; Priebe & Martin 2012) that the low-frequency oscillations in turbulent SBLIs falls in
the range of Strouhal number St = fL/U, = 0.02—0.07, where f is the frequency associated
with the low frequency motion and L and U, are as defined above. While the spatial and
temporal dynamics of the global organisation of the flow have been illustrated (Dupont et al.
2006), and there is a clear comprehension of the qualitative mean flow organisation (Agostini
et al. 2012), several mechanisms, sometimes conflicting, have been proposed to describe the
mechanisms that govern the turbulent unsteady interaction.

The unsteadiness of reflected shocks has been commonly linked to turbulent structures
within the incoming boundary layer (Erengil 1993). Early studies by Uenalmis & Dolling
(1994) identified a connection between small-scale shock motions and turbulence fluctuations
or velocity fluctuations in the boundary layer. Ganapathisubramani et al. (2007) later
identified large-scale coherent structures, or superstructures, in the upstream boundary
layer as responsible for low-frequency shock motion. Numerical simulations by Wu &
Martin (2008) provided further insights, showing that the low-momentum structures of
the incoming boundary layer and the separation point have a small correlation, indicating
that the influence of the superstructures may be minimal. Additionally, it was found that both
the shock motion and the motion of the separation point are correlated with the motion of the
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reattachment point, suggesting that the downstream flow contributes to the low-frequency
unsteadiness. Further research has indicated a potential role for downstream mechanisms.
Touber & Sandham (2009) observed low-frequency unsteadiness even without upstream
coherent structures, while Priebe et al. (2016) linked shock motion to downstream Gortler-
like vortices. Another line of research has focused on the role of vortical structures emerging
from the shear layer. Dussauge et al. (2006) suggested that the source of excitation of the
shock motion can be attributed to eddies in the separated zone. Pirozzoli & Grasso (2006)
found that eddies in the separated zone interact with the shock, producing acoustic waves
that propagate upstream and induce a low-frequency oscillation in the shock, reminiscent of
acoustic resonance seen in cavity flows. Piponniau et al. (2009) proposed a model that relates
the mass recharge within the separated bubble to the flapping dynamics occurring near the
reattachment point. The main parameter controlling the low-frequency shock motions is the
spreading rate of the compressible mixing layer. Recent works, such as Chandola & Estruch-
Samper (2017) and Jenquin & Narayanaswamy (2023), support the role of mass imbalance
within the separated bubble, driven by shear layer entrainment, as the driving mechanism for
the pulsation of the separated bubble. A more recent consensus suggests that both upstream
and internal mechanisms contribute to low-frequency unsteadiness. The work of Puckett
& Narayanaswamy (2024) suggests the combined effects of the separation bubble inherent
unsteadiness and the shear layer instabilities as key contributors to the dynamics of swept
SBLI. Thomas et al. (1994) and Dupont et al. (2006) observed strong coherence in pressure
fluctuations near the separation bubble and reattachment point, indicative of a “breathing”
mode of the separated region. Touber & Sandham (2011) extended this understanding
by demonstrating that the interaction between the shock and boundary layer could be
modelled as a first-order low-pass filter, implying that the low-frequency unsteadiness is
an intrinsic property of the system. Clemens & Narayanaswamy (2014) proposed that while
both upstream and internal mechanisms are always present, downstream effects dominate in
strongly separated flows, with a combined mechanism prevailing in weaker separations.

It is evident that the focus of researchers has largely centered on turbulent interactions,
with only recent efforts directed towards studying laminar and transitional SBLIs. Robinet
(2007) conducted one of the earliest studies examining the temporal dynamics of laminar
SBLI. In his work, both three-dimensional direct numerical simulations and linearised global
stability analysis were carried out on an incident oblique shock impinging onto a laminar
boundary layer. Simulations highlighted that for an increasing angle of the incident shock, the
flow becomes three-dimensional, and the stability analysis revealed a bifurcation, generating
the three-dimensional character of the flow. It was concluded that, beyond a critical angle of
the incident shock wave, the two-dimensional and stationary flow becomes linearly globally
unstable to a 3D stationary mode. However, Guiho et al. (2016) conducted a global stability
analysis on a similar laminar interaction and found that the SBLI is globally stable for a
wide range of flow parameters. They showed that unsteadiness is instead associated with non
linear mechanisms between convective instabilities arising from the shear layer. The very
recent study of Niessen er al. (2023) confirmed that the laminar SBLI they investigated
cannot support the temporal growth of a disturbance in a fixed region of the space.
Consequently, no two-dimensional global instabilities exist and thus all two-dimensional
instability mechanisms are convective. They determined the most amplified perturbation
content of SBLI in terms of the most amplified spanwise wavelength, which was found to
be as large as 10% of the separated region, and frequency, about 9 kHz at the reattachment
location. From these studies, it is clear that the low-frequency unsteadiness cannot be related
to any unstable global mode.
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Between the years 2012 and 2016, the European TFAST{ project promoted several
numerical simulations and experimental campaigns focused on transitional SBLI. This
project permitted progress in understanding the role of transition in the context of the mutual
interaction between the shock system and the laminar boundary layer. In particular, the DNS
work of Sansica et al. (2014) studied the global response of the separated region to white
noise forcing both upstream and inside the bubble. It was concluded that the internal forcing
causes the low-frequency response near the separation point. This result is in agreement
with Guiho et al. (2016), who showed that the low frequency response at the separation is
more effective when the forcing comes from the recirculating region than when forcing the
upstream boundary layer. Bugeat et al. (2022) suggested that the low-frequency dynamics of
the SBLI corresponds to a forced damped stable mode, in which background perturbations
through the receptivity mechanism continuously excite the flow. The flow thus behaves like
a low-pass filter with respect to external disturbances.

To study the mechanism in more detail, Sansica et al. (2016) forced the inlet of the
interaction with a pair of monochromatic oblique unstable modes. Despite the clean
upstream condition, they observed low frequency unsteadiness near the separation point,
with St = 0.04. They attributed the appearance of unsteadiness to the breakdown of the
deterministic turbulence, leading to broadband pressure disturbances travelling upstream
through the separated region (within the subsonic layer of the boundary layer) at phase
velocity of —0.6U. The acoustic nature of the backward travelling pressure waves was
challenged by Larchevéque (2016). In his study, fluidic backwards motion, with a possible
origin at reattachment, was observed and the corresponding phase velocity, associated with
low frequencies, was found to be of —0.22U,. Bonne et al. (2019) conducted RANS based
simulations coupled with a resolvent analysis and confirmed the backward motion of waves
through the recirculating region. However, they suggested a density or acoustic nature of
those waves. Moreover, the low frequency dynamics was described as a pseudo-resonance
process that amplifies the instabilities in the separated shear layer and excites the shock
foot, leading to the backward motion of density waves, with a phase velocity of —0.1U.
A similar scenario of density disturbances propagating upstream through the recirculating
region with a group velocity of —0.18U, was observed experimentally by Threadgill et al.
(2021). Their detailed phase analysis of schlieren data permitted the identification of slow-
moving density disturbances within the bubble that convect toward the shock foot and lead
to the slow motion of the separation shock. Indeed, high-speed schlieren images showed
that the separation shock exhibits low-frequency unsteadiness at St = 0.025. To the current
authors’ knowledge, this Strouhal value associated with the slow dynamics is the only one,
in the context of the experiment, to be similar to those reported by numerical simulations.

Recent studies have suggested a non-linear mechanism as a possible explanation for the low-
frequency unsteadiness. Sansica et al. (2014) noted that low-frequency unsteadiness occurs
even without direct low-frequency forcing, and it is due to weak non-linear interactions with
the shear layer instability modes. Mauriello et al. (2022) suggest that quadratic couplings
between oblique modes are responsible for the oscillation of the reflected shock. The low
frequency range in the separated region was found to be significantly quadratically coupled
to the oblique mixing layer modes of much higher frequencies. They extended the analysis
in the wavenumber space and showed that the flow features beneath the reflected shock,
sustaining the low-frequency motion, are 2D. They also confirmed the existence of a slow
upstream convective fluidic motion originating from the vicinity of the reattachment point.
In their work, broadband and stochastic forcing was applied to stimulate the transition of the
boundary layer to a turbulent state. Despite the non-forced transitional SBLI studied by Saidi
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et al. (2025), similar strong triadic interactions were observed in the downstream region of
the shock interaction playing a role in the low frequency dynamics. However, in all these
studies the nature of the non-linearities that drives the unsteadiness remains unclear.
Building upon this body of work, the present work aims to investigate the presence of
any unsteadiness and to address fundamental questions about the nature of nonlinearities
in the context of the transitional SBLI. Motivated by the distinct approaches employed in
prior researches, wherein Mauriello et al. (2022) work incorporated broadband forcing and
Saidi et al. (2025) study focused on a non-forced SBLI, the decision was to construct a
simplified and didactic model. This model was designed to include a modal transition and
enable precise control of the input parameters. Accordingly, one-period direct numerical
simulations (DNS) combined with high-order statistical analysis have been performed on a
M = 1.5 oblique shock reflection with separation. All details of the numerical setup and
the flow conditions are given in Section 2. Starting from the work of Sansica et al. (2016),
which suggests that the origin of the low-frequency unsteadiness is due to the breakdown
into turbulence, deterministic simulations have been performed. The deterministic approach
allows full control of the input conditions. We first reproduced the basic configuration used
in the work of Sansica et al. (2016), where the incoming laminar boundary layer is stimulated
with a pair of monochromatic oblique unstable modes. The result, presented in Section 3,
showed that a pair of oblique unstable modes is not sufficient to produce the low frequency
response of the head shock, although the breakdown to turbulence is observed to persist.
Consequently, we have combined two different (in frequency) and opposite (in wavenumber)
arrangements of unstable boundary layer modes. Our aim is to see if the introduction of
nonlinearities triggers both the low frequency unsteadiness and the transition to turbulence
in the boundary layer. Results are presented in Section 4. This deterministic approach, while
providing valuable insights into the fundamental nonlinear interactions, inherently presents
certain limitations. The use of specific monochromatic forcing arrangements represents
a simplification of the broadband disturbances present in natural flows. Despite these
limitations, this work addressed fundamental questions regarding the nature of nonlinearities
driving low-frequency unsteadiness. In Section 5, we are interested in studying potential
triadic interactions between the structures responsible for the boundary layer transition and
those arising at the separation point. To achieve this, we have used high-order statistical
tools. High-order spectral analysis is also used to identify the signature of low-frequency
unsteadiness in wavenumber space. Two additional forcing configurations and a case with
a different frequency combination are presented in Section 6. The concluding Section 7
summarises all the outcomes of this study.

It is essential to emphasise that this study focuses specifically on transitional SBLI. Relating
the observed phenomena directly to turbulent SBLIs is challenging due to the fundamental
differences in their spectral content and nature of the flows. Moreover, the deterministic
approach allows for precise control and analysis of nonlinear interactions, but it also limits
the direct extension to fully turbulent scenarios.
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2. Flow conditions and numerical setup
2.1. Numerical method and flow conditions

The 3D compressible Navier-Stokes equations are solved in the conservative form, and are
presented in the Cartesian coordinate system as

dp Opuj
— =0 2.1
ot (')xj 1)
dpu; Opuiu; op 1 07
L AL 22
ot * ox; 6x[+Re6xj (2.2)
0 (pE + i 0 iU
OpE OpE+puj ! O (91 L omm 2.3)
ot Ox; (y = 1)RePrMZ% dx; \" dxj] Re 0x;

showing the non-dimensional form of the mass conservation equation, three momentum
conservation equations, and the energy conservation equation, respectively. The indices
i and j run from 1 to 3. In the equations, p = p*/pZ is the non-dimensional density,
uy =u=u"JUL, uy =v =v"/UL and us = w = w*/UY% are the non-dimensional velocity
components respectively in the x-, y- and z-directions scaled with free-stream velocity
U:. E = e+ 1/2p(u* +v* + w?) is the total energy per unit mass, with e as specific
internal energy. The corresponding conservative variables are p, pu, pv, pw, and pE. The
terms p, T are the non-dimensional pressure and temperature, respectively, while 7;; =
u [o"?ui/axj +0u;/0x; — 2/3(8uk/(9xk)6,-]-] is the viscous stress tensor, where y is the non-
dimensional dynamic viscosity given by the Sutherland’s law, with a Sutherland temperature
of Tg = 110.4K, and 6;; is the Kronecker delta function. The various physical variables
are normalised using the corresponding free-stream values. However, pressure is normalised
using the free-stream dynamic pressure term, p’ U2, i.e. p = p*/pZ U2, while the unit
total energy E is normalised by U2, The dimensional quantities are denoted by a superscript
*, which is dropped for non-dimensional quantities unless mentioned otherwise. Also, the
subscript “s “represents the free-stream conditions at the inflow. x = x*/67 .y =y*/6] .
and z = /07 , are the non-dimensional coordinates scaled with the displacement thickness

let
0} et = 0.07%1 [emm] at the inflow. The characteristic fluid dynamic time scale is 67 , /UZ.

The OpenSBLI solver (Lusher et al. 2021), which is an open-source ﬁnite—dlinfi“cetrence—
based solver, is used on structured Cartesian coordinate systems for the shock-reflection
setup. A Local Lax-Friedrichs (LLF) flux splitting approach is used for the inviscid fluxes
in characteristic space. Different variations of flux reconstruction schemes, i.e. WENO and
TENO (Weighted and Targeted Essentially Non-Oscillatory), are available to compute the
inviscid fluxes. As noted in earlier literature, the TENO scheme is less dissipative than the
WENO schemes and hence, an adaptive version of 6™ order TENO is used to perform the
present simulations (Lusher et al. 2021). The viscous fluxes are computed using 4" order
central differences, while a 3" order Runge-Kutta scheme is used for time integration.

A 2D schematic of the computational setup is shown in Figure 1. The computational
domain, marked with red dashed line, has extents 0 < x < 375,0 <y < 140,0 < z £ 27.32,
and the number of points (N, Ny, N;) = (2050, 325, 200). The origin is located at the
beginning of the computational domain. The grids are stretched in the wall-normal (y)
direction using a tangent hyperbolic stretching function, while the grids are uniform in both
streamwise (x) and spanwise (z) directions. All the distances are scaled with the displacement
thickness ¢, = 0.075 [mm] at the inflow plane, which is initialised using a similarity

*

solution for a Mach 1.5 flow with a unit Reynolds number of 107 [m™!]. Hence, the simulation
Reynolds number based on this 67, is Re = 750.
The reference conditions are the same as Sansica et al. (2016), and Table 1 summarises
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Figure 1: 2D schematic of the numerical setup, where the computational domain is
demarcated with red dashed line.

Moo Reynie [m™'] 6 [deg] Po [Pa] Two [K]
1.5 1x 107 25 2x10° 202.17

Table 1: Aerodynamic flow conditions.

the aerodynamic parameters. At the wall, no-slip and isothermal boundary conditions
(where the wall temperature is set to the laminar adiabatic wall temperature, i.e. Ty =
T} .;/Ts ~ 1.381) are used. Here, the reference free-stream temperature is 73, = 202.17 K.
An extrapolation method is used at the inflow (for pressure) and outflow, while the span is
periodic. The top boundary has shock jump conditions for a wedge-angle of 2.5° at x = 20,
resulting in a pressure rise of p3/p; = 1.28, where p3 indicates the pressure state after the
reflected shock. The Reynolds number at the location of inviscid shock impingement from
the leading edge of the flat plate is Rex,,,, = 1.95 X 10°. These are further depicted in the
schematic of the domain in Figure 1.

Disturbances are applied, upstream of the separation bubble, as a body-forcing term in the
continuity equation, and a sample oblique wave representation with a particular frequency
and spanwise wavenumber is given as

p'(x,y,2,1) = Real[Agexp[—(x — x¢)* = (y — ye)H) expli(£Bz — w)]], (2.4)

A in the above equation represents the amplitude of the forcing, while (x., y.)=(20, 4) are
the coordinates where the forcing is centered, which is roughly located at the edge of the
shear layer. The forcing takes a maximum value at the central location and then tapers off in
both x and y directions due to the first exponential term in (2.4). The last exponential term
introduces variation in the spanwise and temporal dimensions, representing an oblique wave
which travels at different angles with respect to the z-direction depending upon the + or -
sign. The values of the spanwise wavenumber and circular frequency (S and w respectively)
are obtained from the linear stability theory (Sansica et al. 2016).

Various combinations of the simple deterministic forcing represented by (2.4) are used to
trigger flow transition, the simplest of which is a pair of oblique waves with single circular
frequency as used in Sansica et al. (2016). As the modifications represent a key point in this
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study, an entire section (see Section 4) has been devoted to a comprehensive and detailed
treatment of them. At this point in the text it is important to emphasise that, when two
frequencies are forced, the combination is designed to be periodic over one cycle of the
difference frequency (i.e. T = 27/Aw). This periodicity should be evident in the response
flow field under these forcings, and once this was ensured, the wall pressure data was collected
over one cycle of this difference frequency to evaluate the frequency spectrum.

2.2. High-order analysis

High-order spectra, corresponding to the Fourier transform of high-order correlation func-
tions, are the preferred tools to study non-linear interactions since they allow the analysis of
the quadratic couplings present in the governing Navier-Stokes equations on a scale-by-scale
basis.

One relevant high-order spectrum is the bispectrum (Tynan et al. 2001). It is formally
defined as the Fourier transform of the triple correlation, given by

Bispu (Xp. X6, Xn. fi. f2) = (F(xr, fi) G(x6, o) H* (xu. fi + f5)) (2.5

where () denotes the averaglng operation over time segments and possibly homogeneous
direction. ', G, and H are the temporal Fourier transforms at the locations Xy, Xg and xg,
and the superscript * indicates the complex conjugate. The bispectrum reveals the energy
content associated with the cross-interaction between £ and G (F x G) and a third signal H
at the frequency f; + f>. This tool has been used extensively in the work of Mauriello (2024),
where a broadband stochastic forcing was used to stimulate the boundary layer transition
in the case of a transition SBLI at Mach 1.7. It has been proven to be very powerful in
highlighting the triadic interactions that occur between the oblique modes, i.e. the coherent
structures responsible for the transition to the turbulent state of the boundary layer, and the
structures of a 2D nature that emerge at the separation point. In the present work, the modal
transition has been fostered and a deterministic forcing has been applied (see Section 4),
plus the periodicity of the present simulations (one period simulation) imposes that, for the
lowest frequency fuin = 1/T, only a single segment, encompassing fully the period, can
be considered. It therefore excludes the possibility of averaging over segments leading to a
meaningless value of the normalised form of the bispectrum, i.e. the bicoherence (Bic = 1).
With this in mind, the bispectral analysis presented above is reformulated in term of spanwise
wavenumbers taking advantage of the time/space duality found for both the oblique mode and
the low-frequency unsteadiness (Mauriello 2024). This version of the bispectrum is given by

R Bisrcr((xp.yF), (x6,Y6), (xt. yu). kz, k2, ) =

(F((xp,yF) k2o t) G((xG,yG), kzyit) B ((xm, yu), kzy + Kz, 1))
where () denotes a time average over one period. In this way, it is possible to de-
tect the wavenumbers responsible for non-linear interactions among the fixed locations
(xr,yF), (xG,¥G), (xm, ym). By time averaging in the wavenumber space, information about
the temporal behaviour is lost, but can be partially recovered by introducing a time delay .
The time delay can be introduced for the two time series F' and G, consequently 7; and 1,
identify the time lag occurring with respect to the third time series H( f). The formula can
be written as

(2.6)

R BiSFGH((XF,yf), (xG,yG), (X, YH), keyskzys T, T2) =
<F((XF,yF),kZ|9t+T1) G((XG,)’G), kzg,["'TZ) H*((XH,)’H), kz| + kzz’t)>

In addition to the standard bispectrum maps defined in (2.7), optimal bispectrum maps can

2.7)
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Figure 2: Streamwise evolution of the friction coefficient C¢ (a) and of the pressure at the
wall normalised with the reference pressure Py, 471/ P (b).

be extracted. These maps are optimal in the sense that for all possible time delay pairs, the
optimal time delay 7, ,; is such that it maximises the bispectral energy content. For the sake
of simplicity, the Fourier transforms F, G, and H will all be referred to by the letter G in the
remainder of the text, and will be distinguished by subscript numbers running from 1 to 3.

3. Reference case of transitional SBLI

Sansica (2015) presented a detailed study using the local linear stability analysis, which
identified the most unstable modes for the shock-reflection problem. Sansica et al. (2016)
further performed DNS using these modes to perform the oblique mode transition using a
pair of oblique modes to trigger transition. Lusher et al. (2021) used OpenSBLI solver to
repeat these oblique mode transition simulations, however with different numerical methods
and forcing setup. As we use OpenSBLI solver in the present research, we wanted to first
cross validate our results against Lusher ef al. (2021), starting with oblique mode transition,
before performing more complicated forcing combinations that are further explored in this
study. We next explain the validation results in this section.

The modal forcing is applied as a prescribed time-dependent forcing, where the density
disturbances p’(x, y, z,t) are superimposed on the density laminar flow field at (x., y.) =
(20,4). The values of the streamwise and spanwise wavenumbers (@ and 3 respectively)
as well as the pulsation frequency w were extracted from the temporal stability map (see
Figure 4.3 of Sansica (2015)). The spanwise width of the domain is set as L, = 2/ such
that it accommodates at least one wavelength of the most unstable oblique mode. Hence, the
decision to set L, =2x/8 =1, = 27.32.

The first set of simulations, that are performed using the deterministic forcing approach,
use a pair of monochromatic oblique unstable modes, as used in Lusher ef al. (2021) and
Sansica et al. (2016), and the resultant forcing expression is given as

p'(x,y,2,1) = Real[Agexp[—(x — xc)? = (y = ye)H)] ("Bl 4 oi=Bamwi] (3 1)

The oblique mode pair in the forcing expression uses Ag = 1.25x 1073, 8 = 0.23 and a
single frequency value of w = 0.101, similar to Sansica et al. (2016), to force the separated
boundary layer. The OpenSBLI solver is used to run these simulations and the setup is
identical to Lusher ef al. (2021), except that we used a uniform grid in the streamwise
direction. The aerodynamic conditions used in Lusher et al. (2021), including the freestream
and shock jump conditions, and shock impingement location, are the same as Sansica et al.
(2016). However, the present simulation is different from Sansica et al. (2016) due to the
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Figure 3: 3D view showing slices of pu. The initial symmetry and its breakdown due to
transition at downstream locations is showed.

way the forcing is applied. In the current simulations, the forcing is applied as a volumetric
forcing in the density term centered at (x., y.) = (20,4), i.e. downstream of the inlet plane
and upstream of the separation bubble, while in Sansica et al. (2016), the forcing was applied
at the inflow in terms of the eigenfunctions for all conservative variables.

As we reran the setup of Lusher ef al. (2021) with a uniform grid in the streamwise direction,
we performed some initial verification of our results against the skin friction results extracted
from the reference. Figure 2 (a) shows a comparison of skin friction from the rerun of Lusher
et al. (2021) setup with two different schemes, i.e. WENO and TENO. The 2D laminar skin
friction is also plotted for reference. It can be seen that the TENO version shows a slightly
better agreement with Lusher ef al. (2021) compared to the WENO version. Some minor
deviations are noted towards the exit of the domain perhaps due to streamwise stretching used
in the reference simulation of Lusher ef al. (2021). Figure 2 (b) shows minimal variations
of non-dimensional wall pressure, which is further non-dimensionalised with the reference
pressure Po, = 1/yM?2 between the schemes. The 2D laminar wall pressure is also shown as
a reference.

A 3D visualisation of the flow is shown in Figure 3, which shows streamwise momentum
pu at equally spaced x-y plane slices, with the first slice placed close to the reattachment
point at x ~ 190. The second slice at x ~ 230 shows the first signs of spanwise non-uniformity
due to the production of streamwise vorticity. The spanwise symmetry starts to break once
further smaller scales are generated due to the transition to turbulence.

Figure 4 shows the spectral content of the pressure fluctuations at the wall in an x- f plane,
where x is the non-dimensional streamwise distance, shown in a linear scale, while f is the
non-dimensional frequency, shown with a logarithmic scale. The frequency is normalised
using the reference frequency scale U, /07, In this way, the y-axis gives the Strouhal
number based on the length scale 6; , . It is worth mentioning that, unless explicitly stated
otherwise, the same normalisations (for x and f) will be applied to all the other spectra
presented in this study. The spectrum clearly shows the forcing f = w/27 ~ 1.6 x 1072
introduced at x = 20 . Its energy content extends over the whole domain and, starting
from x = 150, subsequent harmonics develop towards increasingly higher frequencies. This

Rapids articles must not exceed this page length
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Figure 4: Power spectra spectrum of the wall pressure fluctuations for the case with a pair
of monochromatic oblique unstable modes.

indicates that in the reattachment zone the boundary layer transitions to a turbulent state
containing increasingly smaller structures (small scales) and increasingly higher frequencies.
However, the separation point around x = 110 is free of any energy content, indicating that
no low-frequency unsteadiness arises with this specific deterministic forcing.

The present power spectrum differs in one respect from Sansica et al. (2016), where weak
low-frequency unsteadiness was identified using a local (in x) normalisation. Besides the
difference in the normalisation, there are a few differences in methodology. In the current
simulations, the perturbations are introduced as body forcing source term through the density
equation downstream of the inflow plane, while in Sansica’s case the forcing was applied at
the inlet through the entire state vector. Also, the numerical method used in Sansica’s case
included a total variation diminishing (TVD) scheme (Sansica 2015) for shock capturing,
while the present study uses a TENO scheme. On the hypothesis that the low-frequency
content of the baseline case is sensitive to the numerical noise level, we prefer in the next
section to introduce the nonlinearities in a deterministic way.

4. Deterministic forcing of low-frequency

The work of Mauriello et al. (2022) on a transitional SBLI similar to the present case
highlighted the occurrence of triadic interactions between the unstable boundary layer modes
and flow features of 2D nature emerging at the separation point. However, in their work,
broadband and stochastic fluctuations were used as forcing, which prohibited the complete
control of the inlet state of the flow. Nevertheless, according to their results, quadratic
interactions are expected to occur, responsible for the low frequency unsteadiness phenomena.
Considering the clean deterministic approach examined in the previous section, a second
family of oblique modes was selected allowing the emergence of low-frequency content.

The choice was made to ensure that the frequency difference between these two wave
families fell within the low-frequency range corresponding to the typical Strouhal number
of the breathing phenomenon. Therefore, the pulsation frequencies w; and w, were chosen
such that Aw = wy — w1, where w; was extracted from the stability analysis of Sansica et al.
(2016) corresponding to the most unstable boundary layer mode, and Aw = 27rAf. Af was
derived from the low-frequency Strouhal number Stz r = 0.04 found in the work of Sansica
et al. (2016). Based on this, the two 3D waves families were selected such that

P} (x,y,2,1) = Real [Agexp[—(x = xc)* = (y = ye)))] expli(£z — wi1)]

k s ) . 4.1)
p2(x,y,2,1) = Real[Ag exp[—(x = xc)” = (y = ye) )] expli(£Bz — wat)]
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Ap B w1 (f1) w2 (f2) Aw(Af)
1.25% 1073 +0.23 0.1(0.0159) 0.104(0.0165) 0.004(0.0006)

Table 2: Unstable boundary layer waves characterisation.
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Figure 5: Modal forcing combinations. Panel (a) is representative of the crossing waves
family, and panel (b) is representative of the parallel beating waves family.

The sole distinction between the two families lies in their frequencies, with their spatial
dimensions remaining unchanged as well as their initial level of energy Ag. Table 2 lists the
values of the parameters extracted from the stability analysis (Sansica et al. 2016) and used
to characterise the two 3D unstable wave families.

Various combinations of the most unstable mode waves are possible, two of which will
be presented in this section, with more shown later (see Section 6). It is useful to establish
the notation that will be used in the following sections before considering the first two wave
combinations that were selected.

The general mathematical description of a family of oblique waves is given by equation
(2.4). The formula shows that a family can include two waves of opposite spanwise
wavenumber sign (+£3). In a more physical sense, the expression represents two identical
waves with the same magnitude of wavenumber vector k = ai + Bk, but travelling at opposite
angles concerning the streamwise flow progression. With this in mind, the superscript *
denotes a set of waves distinguished by a positive wavenumber 3, while the minus superscript
~ denotes the opposite waves. When waves of both families move in the same direction (same
sign of 3), we refer to them as a parallel family, while we use the terms crossing family when
the spanwise wavenumbers are opposite. In addition, the subscript ;| indicates that the wave
propagates with a characteristic frequency equal to the most unstable frequency determined
by the stability analysis ( f; = w1/2x). The subscript ; means that the characteristic frequency
is set to fo = wy/2x. According to this notation, the two combinations of 3D waves are given
by

Crossing waves: p’(x, z,t) = pi*(x, 2, 1) + p5 (X, 2, 1) 42
Parallel beating waves: p’(x, z,1) = p|"(x, z,1) + p5"(x, 2, 1) .

Figure 5 visualises the differences between the selected combinations for an illustrative
case with w; = 0.62, wy = 0.57 and Aw = 0.05 given the period T = 27 /Aw = 111. If we
exclude waves with negative 8 from the first family and waves with positive 8 from the second
family, we generate what we called crossing modes, shown in Figure 5 (a). Conversely, by
eliminating waves with negative spanwise wave numbers from this combination, we obtain
an arrangement known as the parallel beating waves family, shown in Figure 5 (b).

The asymmetric combination of the two forcings is reflected in the organisation of the
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(b)

Figure 6: 3D views of the flow field. Panel (a) is for crossing waves, and panel (b) is for
parallel waves.

Crossing waves Parallel beating waves

A 2.5% 107 2.5%107
Lsep 79 116

Table 3: Length (normalised by inlet displacement thickness) of the separated region for
each combination of oblique mode waves. The maximum perturbation amplitude A that
is injected in each combination is shown.

flow, as can be seen in Figure 6. The 3D view of both flow fields is represented by five
equally spaced slices. The contours show the streamwise momentum. Both flow fields show
an incoming laminar boundary layer at the respective first slices. However, already at the
location of the second slice, positioned at x = 230, the scenario starts to differ. In the case of
crossing waves (panel (a)), the development of streamwise vortices is evident. They evolve
in the streamwise direction, eventually leading to the transition of the boundary layer (see
last slice). On the other hand, parallel beating waves develop smoothly and reach an incipient
chaotic state only at the end of the computational domain. The nature of the boundary layer
appears to be far from being fully turbulent.

Figure 7 plots the streamwise evolution of the friction coefficient for each family. The 2D
laminar flow solution is also shown for ease of comparison. The black dashed horizontal line
indicates Cy = 0, and helps to visualise the separated region. The extent of the separated
zone is thus equal to the interval between the reattachment point xz and the separation point
xg, such that

Lsep =XR —X§ 4.3)

Table 3 summarises information about the flow reversal of each combination. It can be noted
that both cases are injected with the same level of maximum perturbation amplitude, i.e. Ay,
and hence are equivalent in terms of initial perturbation energy.

Both combinations reveal an incoming laminar boundary layer. As the shock system is
approached, C¢ departs from the laminar boundary layer branch. The boundary layer in the
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Figure 7: Streamwise evolution of the friction coefficient for each oblique waves
combination. The black dashed horizontal line indicates C¢ = 0.
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Figure 8: Power spectra of the wall pressure fluctuations for crossing waves (panel a) and
parallel beating waves (panel b) families. In each spectra, the white solid vertical lines
indicate the separation points, while the white dashed vertical lines indicate the
reattachment points.

case of parallel beating waves separates further upstream than the crossing combination and
reattaches further downstream, resulting in a longer separation bubble (see Table 3). The
resulting boundary layer is far from turbulent indicating that this combination is much less
efficient than the oblique mode transition mechanism that is active for crossing modes. This
is in agreement with Mayer et al. (2011), who already observed that two oblique unstable
waves with opposite wave angle can cause transition more rapidly than secondary instability.
This also explains why the length of the reverse flow zone is longer for the parallel beating
waves. In the case of crossing waves, although the energy level is the same as in the case of
parallel beating waves, C keeps increasing and deviates from the laminar boundary layer
trend.

Besides different lengths of the reversal region and the resulting downstream flow state, the
two combinations of unstable boundary layer modes show a very different spectral response.
Figure 8 shows the power spectrum of the pressure fluctuations field extracted at the wall for
each family. In each spectrum, the white vertical lines indicate the separation (solid line) and
reattachment (dashed line) points. All spectra clearly identify the forcing frequencies used
upstream of the interaction. Note that two forcing frequencies have been applied, but from
the spectra the distinction between them (a frequency difference of 0.0006) is barely visible
and they appear as a single horizontal line.

A noticeable difference emerges when looking at the separation point. Parallel beating
waves show intense activity at low frequency values, indicating that the head shock is
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Crossing waves
Parallel waves
Parallel waves (detr.)

Figure 9: Power spectum extracted at the respective separation points for both crossing
waves (red line) and parallel beating waves from raw (blue line) and detrended data using
equation 4.4 (light blue line).

unsteady. This specific arrangement has hence allowed the breathing of the separated region.
Although the same level of maximum perturbation energy is continuously added in both
combinations, the crossing waves case lacks energy content at the separation point in the low
frequency range.

If one looks at the region downstream of the reattachment point and frequencies higher
than the forcing frequencies, the energy content for the crossing waves case shows a cascade
towards its harmonics and begins to fill the spectrum up to high frequencies representing the
characteristics of turbulence. This cascading process is almost absent in the parallel family
case (see panel (b) of Figure 8) and is consistent with the result that we saw earlier from the
skin friction profile variation for the two cases.

Figure 9 shows the evolution of the amplitude of the power spectrum for pressure
fluctuations at the wall extracted at the respective separation points for both families. Both
the x and y axes are plotted on a logarithmic scale and show a power-law trend. Note that
the spectrum of the parallel case exhibits a —2 power law beyond the very low frequency
range (dark blue line). This can be associated with the Fourier series of a sawtooth wave. This
means that the dynamics at the separation point deviates from a strictly periodic behavior due
a small linear drift. All the flows considered in this study which are associated with a low-
frequency dynamics in the vicinity of the separation point, are subject to such drifts. However
their amplitude is decreasing from period to period (results not shown). All computations
have therefore been extended in time up until the extrapolation of the —2 power law down
to the lowest frequency is at least four orders of magnitude lower than the natural energy
content for that frequency. This ensures that the jump associated with the lack of periodicity
is equal to at most 3% of the peak-to-peak amplitude of the low-frequency fluctuation. In
order to unveil the high-frequency behavior of the flow in all subsequent analyses that involve
in some way the time-Fourier space, the drift is removed by detrending the data in such a
way that the C° continuity of the variable is ensured through the periodicity:

r—1y
T

p\‘/lv (.X,Z,f) = Pw (X’Z’[)-" <Pw ()C,Z,l()) — Pw (X,ZJO"'T) >Z (44)
where (), is the averaging operator in the spanwise direction. The rationale behind the
detrend scheme built from the spanwise average of the jump induced by periodicity is that
discontinuities identified in the separated region are mostly associated with flow features of
2D nature (Mauriello 2024). They have in fact a Fourier series expansion in the spanwise
direction fully dominated by the k, = O coefficient. Because of the average, the correction
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Crossing waves Parallel beating waves

Lt 46.5 58
Leep 790 116
Str,. - 0.037
Sthy., - 0.074

Table 4: Interaction and separation lengths (normalised by inlet boundary layer thickness)
and the corresponding Strouhal number for both families of crossing and parallel beating
waves.

tends to zero in the non-deterministic region of the flow, where periodicity is not expected,
and therefore should not be enforced.

It can be seen in Figure 9 that this correction removes the —2 power law and that the
corrected spectrum (light blue line) shows no significant higher-order power law, confirming
the linear nature of the drift. Analyses described in the following sections which do not
involve moving to the frequency space, were performed on both the raw and detrended data.
No significant differences were found between the two approaches, even when considering
early periodic datasets with 10 times greater drifts. Therefore, for simplicity and consitency,
it was decided to present the metrics obtained from the detrended data only.

In the case of parallel waves (using the linear detrended data), the order of magnitude at low
frequency is approximately O (107°). In the case of crossing waves, the order of magnitude
is approximately O (10~12), for which the interaction is steady. The profiles show a constant
decrease and both peak at the forcing frequencies. Moreover, both cases show an additional
peak corresponding to the first harmonic. This result suggests that nonlinear interactions are
already at play at the separation point. From this analysis, we can infer that the distinctive
combination of oblique mode families, for the same magnitude of the perturbation energy, is
the predominant factor influencing the low frequency behaviour of the head shock.

In the framework of turbulent SBLI, various numerical and experimental studies have
shown that there is a consistent collapse of the magnitude of the low-frequency oscillations
when the corresponding frequency is scaled with the interaction length L;,,, defined as the
distance between the average position of the reflected shock x;,; and the extrapolation to
the wall of the incident shock x;,,,,. The resulting Strouhal number is thus St7, , = fLiu;
where both f and L;,,; are non-dimensional quantities normalised using reference frequency
Us/6;,,,, and 67, ., respectively. On the basis of this scaling, the literature indicates that
the low-frequency oscillations in turbulent SBLI fall in the 0.02 — 0.07 range of Strouhal
number. However, the length of the separation bubble Ly, ,, defined as the distance between
the separation point xs and the reattachment point xg (see equation 4.3), can also be used as a
length scale and hence Sy, = fLsep (same as Sansica et al. (2016)). Although the correct
length scale remains unclear, including whether the same scaling can be applied in the case
of transitional SBLI, a compilation of the different lengths and the corresponding Strouhal
number are provided in Table 4. Since only the arrangement of parallel beating waves led to
an unsteady interaction, the Strouhal number is presented solely for this case.

5. Quadratic couplings

The spectral analysis of the pressure fluctuations at the wall in the previous section showed
an approximately steady interaction (lacking the low-frequency content) in the case of the
crossing family, while an unsteady interaction was found for the parallel arrangement. This
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Quadratic couplings Resulting quadratic couplings
(-w1,+B) X (w2, —p) [(~wi - w2),0]
(—w1,+B) X (w2, =p)" [(-w1 +w2), 28]
(—w1,+B)" X (w2, —p) [(w1 - w2), -2p]
(w1, +B)" X (w2, —B)* [(w1 +w2),0]

Table 5: Frequency-wavenumber combinations of Fourier modes for the crossing wave
case. Symbol * indicates the complex conjugate. The first column shows the possible
combinations in compact notation; the second column shows the resulting combinations
after multiplication.

raises the question: how can the influence of specific arrangements of oblique modes on the
interaction be explained?

The analysis stems from mathematical considerations starting from the perturbation field
described by ansatz (2.4). It is a normal mode reduction and the Fourier transform allows
for the identification of frequencies within the original signal. For a single oblique travelling
wave in physical space with (—w, +f), the ansatz (2.4) in the Fourier space can be expressed
in a compact notation as

(~w,+B) and (4+w,-B) (5.1)
where w = 2xf is the circular frequency, and 8 = 2n/1, = 2n/L,, as there is a single
wavelength in the spanwise domain length of L,. Hence, the wave velocity is related to the
spanwise wavelength A, and frequency f as c¢; = w/B or A, f. Note that because the Fourier
transform is applied to real data, Hermitian symmetry holds and each signal in spectral space
is supported by its complex conjugate (c.c.), shown in the second bracket in equation (5.1).

Fourier modes of different signals can be quadratically combined with each other, resulting
in new modes that are included in the new signal. Recalling that in the case of crossing waves
two families of oblique modes are included (see equation (4.2)), in the frequency-wavenumber
notation they read [ (—w1, +8)+c.c.] X[ (—w2, —B)+c.c.]. Table 5 shows all possible frequency-
wavenumber quadratic combinations, specifically the first column presents the product of
various possible combinations for quadratic interactions of modes, while the second column
shows the corresponding resulting quadratic combinations after multiplication.

At this point, it is important to emphasise that our main focus is on the low frequency
unsteadiness that affects the separation point. Consequently, when examining the interactions
between crossing waves, we limit our attention to combinations that result in a positive
difference between the frequencies, i.e. (w, — wp). For crossing waves, the only combination
that respects this condition gives [(w; — wy), 28], i.e.

wLF =wy —w) — B+ =20 (5.2)
Note that also the combination resulting in (w; — wy) is present. This is the Hermitian
symmetric counterpart of (w,—wp) thatis required to reconstruct the real-valued function that
mathematically describes the oblique modes (see ansatz (2.4)). However, it yields negative
frequencies, and in this context, we only consider resulting frequencies that are positive,
hence (w; — w). Therefore, in the graphical representation of the forthcoming results, only
the positive frequency space (i.e. half plane) is presented.
One can note that this low frequency combination for the crossing waves case results in
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Low frequency High frequency
(w2 —wy) kL (w2 +wy) kur
Crossing waves:
(—w1,B) X (~w2,—p) B+B=2B 2 B-B=0 0
Parallel beating waves:
(-w1,B) X (w2, B) B-B=0 0 -B-B=-28 -2

Table 6: Summary of the quadratic couplings for the modal forcing combinations. The
subscripts ”7 g and g " in k indicate the low-frequency dynamics (wy — w1) and the
high-frequency dynamics (w; + wp) respectively.

a non-zero resultant spanwise wavenumber (kpr # 0), implying that the associated flow
features are 3D in nature. The work of Mauriello (2024) on a transitional SBLI showed that
the low-frequency unsteadiness is driven by structures populating the foot of the head shock,
whose nature is 2D in wavenumber space and they result from quadratic interactions. Based
on this result, it can be explained why crossing waves only lead to a steady interaction.

By following the same mathematical approach for the parallel beating waves, we obtain

wpp=wy—w; — B-=0 (5.3)
The resultant spanwise wavenumber in the low-frequency range is therefore k;r = 0, and
low-frequency unsteadiness are observed for such a case.
Table 6 summarises all possible combinations at both low frequency (w; — w;) and high
frequency (w, + wp) for each family of oblique modes. The resultant spanwise wavenumber
corresponding to the low frequency (high frequency) quadratic coupling is also presented as
krr (kgr), which highlights the 2D or 3D nature of the flow features. Note that for each
family, its definition in the frequency-wavenumber space is presented, omitting its complex
conjugate part. When the parallel combination is active in the low frequency range, the
topology of the flow is two-dimensional in the wavenumber space, with k; r = 0. Conversely,
when dealing with high frequency (w; + w1), a different scenario emerges, with crossing
waves responsible for a 2D periodicity of the flow.

5.1. Frequency, wavenumber, and location

More information about the interactions can be obtained from a spectral analysis of the
resulting flow. Figure 10 displays the power spectrum of wall pressure fluctuations in the
spanwise wavenumber domain, at fixed frequencies and for each combination of oblique
waves. The wavenumber is presented as a multiple of the imposed wavenumber S in the form
k = k,/B. This approach enables a direct comparison of the results with the theoretical ones
presented in Table 6. The white vertical lines indicate the position of the separation point
(solid line) and the reattachment point (dashed line) respectively. For simplicity, we will use
frequency f instead of circular frequency w. Consequently, the left column plots the flow
organisation in the low frequency dynamics ( f> — fi), while the right column shows the space
arrangement for (f> + f1). Furthermore, the first row illustrates the results for the crossing
family (a)-(b), while the second row shows the parallel beating family (c)-(d).

In the high-frequency dynamics (right column), the crossing combination of waves gives
rise to two-dimensional waves k = 0, originating around the reattachment point and extending
downstream. However, a similar downstream contribution at k = 0 is absent for the parallel
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Low frequency High frequency
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Figure 10: Streamwise distribution of the power spectra for each normalised wavenumber
at selected frequencies: left column indicates low frequency (f, — f1), right column
indicates high frequency (f> + f1). The white vertical lines indicate the position of the
separation point (solid pattern) and the reattachment point (dashed pattern) respectively.
Panels (a)-(b): crossing waves; panels (c)-(d): parallel beating waves.
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beating family at high frequency (f> + f1) (see panel (d)). This region is populated by
three-dimensional structures whose value of k is equal to -2.

A detailed examination of the slow dynamics (left column) reveals that only the parallel
combination (see panel (c)) leads to two-dimensional structures, originating before the
separation point. Conversely, in the case of crossing waves, the spectral content for two-
dimensional structures does not emerge at this same location, thereby confirming their
absence in the slow dynamics at the separation point. These observations are consistent with
the findings of the previous section, i.e. that the appearance of low-frequency unsteadiness
only occurs for wavenumber combinations that are 2D.

5.2. Non-linear analysis in terms of wavenumber

The previous subsection showed that oblique mode families interact in such a way as to
produce two- and three-dimensional flow features at specific locations in both slow and fast
dynamics. Exploiting the periodicity of the present simulation (one-period of the difference
mode Aw), the extended version of the higher-order spectral analysis, as presented in Section
2.2, is applied in order to detect any possible triadic interactions. In addition, a further
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simplification has been introduced. In the study of Mauriello et al. (2022) it was observed
from bicorrelation maps that the quadratic interactions between oblique modes are maximal
for null time-delay between the modes (see Figure 8 of their paper, high bispectral content is
observed along the diagonal shown in the bispectrum map). In short, foratime 7 = 7 = 7, the
nonlinear interaction between oblique modes is atits maximum energy activity. Consequently,
the same time delay 7; = 7 is set for the source sensors used to extract possible quadratic
couplings between oblique modes with respect to the target sensor. Using these assumptions,
the equation (2.7) is reduced to

Bispcu ((xr, yF), (G, YG)s (XH, YH), kzys kzy T) =
<ﬁ((xF’yF)’kZ1st+T) é((szYG), km,l+‘l’) I:I*((XH,}’H)akzl + kzzst)>

Optimal bispectral maps are presented in this section. The optimality results from the time
delay 7,,,, which maximises Bisr G, H(k;,,kz,, 7). For the sake of simplicity, we will drop
the subscript “, ”in the wavenumber k, and the three signals will all be denoted by the sole
letter G. Subscripts from 1 to 3 are used to distinguish the signals. The first two signals G
and G, have been chosen as source signals and are located between the forcing location
and the separation point at x = 45. At this location the spectral decomposition of the wall
pressure fluctuations has the same power content in each of the cases (see Figure 8) and
the flow field in this region is described solely by the dynamics of the oblique modes. This
implies full knowledge of the power contribution of the source sensors G| and G», which
is the same for both families. Consequently, it is natural that the target sensor G3 (located
either at the separation or at the reattachment points) will have a power contribution that
depends only on the power due to the quadratic couplings, which varies according to the case
under consideration. An alternative approach would be to use the bicoherence to quantify
the level of nonlinear coupling. However, in the latter case, the normalisation used to define
the bicoherence yields a measure of the strength of the quadratic coupling regardless of the
level of quadratic power involved, thus highlighting a set of quadratic couplings that have no
dynamical impact due to negligible energy content. In contrast, the norm of the bispectrum
directly reveals the energy content associated with the nonlinear couplings. The location of
the three sensors is the same for all further analyses, unless clearly stated.

Figure 11 shows maps of the norm of the optimal bispectrum for each oblique mode
combination. In all maps, the two source sensors G| and G, are located at x = 45 for
the reason previously explained, whereas the destination sensor G3 is located either at the
separation point (left column) and at the reattachment point (right column). This approach
allows the 2D and/or 3D nature of the flow features responsible for the non-linear coupling
between the upstream region and the separation and reattachment locations to be highlighted.
Note that the spanwise wavenumbers are presented with subscripts | and , to indicate that the
quadratic couplings result from all possible wavenumbers detected by sensor G, i.e. k; and
Gy, i.e. ky. Also note that (k1, k) pairs resulting in squared bicoherence values higher than
0.25 are encircled by a black thick line in order to demarcate couplings effectively resulting
in a high level of relative quadratic power.

When considering the crossing waves combination at the separation point (see panel (a)),
the set of wavenumbers resulting from quadratic non-linearities of the oblique modes are
dominated by couplings involving at least one oblique mode, i.e. k1, = <1, all with a
similar amount of quadratic power (orange circles). In contrast, for the parallel wave case,
the bispectral map is dominated by the combination (k1, k) = (-1, 1), for which the level
of bispectral content is higher (see panel (c)). This means that quadratic couplings at the
separation point lead to 2D flow features with k3 = k| + ko, = 0. However, it is evident that
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Figure 11: Modal forcing: maps of the norm of the optimal wavenumber bispectrum, with
pairs resulting in bicoherence value higher than 0.25 encircled in black. Left column: the
target sensor G3 is located at the separation point; right column: the target sensor G3 is
located at the reattachment point. Panels (a)-(b): crossing waves; panels (c)-(d): parallel
beating waves. All maps show quadratic interactions with the two source sensors G| = G,
located at x = 45.

2D quadratic combinations also appear for the subsequent k, = —k; couplings visible along
the diagonal, despite the decrease in the bispectral power content. Nevertheless, at this stage
of the analysis, it is still not possible to infer whether the quadratic interactions arise from
the interaction of the oblique modes after they have passed through the shock interaction
system and thus have the possibility of flowing back through the separated region, or whether
they are the beginning of pure triadic interactions that are about to develop and will continue
to develop along the shear layer. Another important difference between crossing waves and
parallel beating waves, when observed at the separation point, is the resulting non-linear
contribution introduced to the mean field (k, k») = (0,0) that occurs in the case of the
combination of parallel waves. This non-linear modulation of the mean field is also present,
for this particular combination, when the target sensor is positioned at the reattachment point
(see panel (d)). However, the corresponding level of the bicoherence is low, indicating that
the power issued from this coupling only contributed to a small amount of the total power at
k3 =0.

On the other hand, strong quadratic couplings for all integer multiples of the fundamental
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Figure 12: Norm of the optimal wavenumber bispectrum for both crossing (x) and parallel
beating (//) waves extracted for the resulting 2D (k3 = 0) and 3D (k3 = 2) flow
characteristics.The vertical black lines indicate the separation (solid) and reattachment
(dashed) points.

wavenumber kj, = 1 appear for the crossing wave family at the reattachment point (see
panel (b)). The oblique modes at the reattachment region interact nonlinearly, initiating the
cascade process towards higher wavenumbers (smaller scales) typical of the turbulent kinetic
energy cascade. For small k| », the same organisation of the quadratic power is observed as
for the separation point. The combination of k> = 1 is largest, indicating a direct quadratic
interaction between oblique modes resulting in a 3D organisation of the flow.

When restricted to the reattachment point, the parallel waves show a cascade process
towards higher k; > that is at its early stages, as only a few cascading combinations of the
fundamental harmonic are visible (see panel (d)). These results support the previous finding
that the crossing arrangement is more prone to turbulence breakdown than the parallel wave
arrangement.

Limiting attention to combinations of 2D ((ky, k) = (—=1,+1)) and 3D ((ki,kz) =
(+1,+1)) wavenumbers from the previous maps, information on the streamwise evolution
of the norm of the optimal bispectrum is extracted and presented in Figure 12. Note that
in this figure, the target sensor G3 is no longer limited to the two locations of separation
and reattachment, but extracts information for each point in the x direction. For the clarity
of the figure, the crossing waves are indicated in the legend by the symbol X, while the
parallel beating family is indicated by //. The vertical black lines indicate the separation
(solid line) and reattachment (dashed line) locations for each wave family. A high value of
the optimal bispectral content is observed in the separated flow region for the oblique mode
coupling resulting in 2D spanwise organisation of the flow in the case of parallel beating
waves, confirming that most of the quadratic couplings result in k3 = O (see green line) for
such an arrangement. In the same region, nonlinear couplings between the oblique modes
resulting in 3D (parallel beating waves) and 2D and 3D (crossing waves) flow characteristics
begin to develop within the separation bubble. After the shock interaction, quadratic couplings
saturate, with significantly higher plateau levels in the case of the crossing waves, especially if
3D interactions (k3 = 2) are considered. Those associated with the occurrence of the turbulent
energy cascade dominate, confirming the occurrence of the turbulent energy cascade, which
is observed to be less pronounced in the case of parallel beating waves for k3 = 2.

The norm of the optimal bispectrum does not directly indicate the frequency range in which
the quadratic couplings occur. In this context, the time-filtered optimal bispectral maps are
computed. They are obtained by bandpass filtering in time the target signal G3 (ki +k2,1—7).
The filter retains either the frequencies associated with the low-frequency dynamics ( f> — f1)
or those associated with the high-frequency dynamics (f> + fi). This enables the whole
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frequency spectrum used to calculate the optimal bispectral power to distinguish whether
the predominant contribution comes from quadratic interactions occurring at low or high
frequencies. In each plot of Figure 13, the separation (solid line) and reattachment (dashed
line) locations are shown to ease visualisation of the separated region. In addition, the colour
code uses black for the unfiltered target signal G3, red for low-pass filtering, and blue for
all signals that retain only the high-frequency range. The total frequency spectrum for the
2D periodicity in the case of the crossing arrangement (see panel (a)) is fully dominated by
quadratic couplings occurring at high frequency ( f> + fi), and the contribution of nonlinear
couplings at low frequency is marginal. The opposite situation is observed for the same
2D organisation of the flow in the case of parallel beating waves (see panel (c)). Most
of the nonlinear interaction is detected in the low frequency range (see the red diamonds
overlapping the black line). The high value of the optimal bispectral content through the
separated region again supports the observation that non-linear coupling due to oblique
modes in the specific case of parallel arrangement is responsible for the appearance of 2D
flow features at the separation point. These flow features are in turn sustaining the low
frequency motion of the head shock. In short, in the wavenumber space, the trace of the low-
frequency unsteadiness is two-dimensional. Indeed, for the crossing waves with periodicity
k3 = 0, only quadratic couplings acting at high frequency are observed, and in Section 4 we
have observed that in such a case the interaction is steady. The three-dimensional periodicity
requires careful analysis, as the quadratic couplings also take into account beatings of a
different nature. Although most of the contribution to the total bispectral content comes from
the low-frequency (crossing waves) and high-frequency (parallel beating waves), a complete
overlap of the plots is not observed. The full bispectral power is only recovered when the
self-quadratic coupling of each single oblique mode is taken into account, i.e. f] + f] = 2f
and f, + f> = 2, in the frequency range that best maximises the total quadratic power. This
is shown in panels (b) and (d) with the green diamond symbols.

5.3. The direction of quadratic couplings

Information on the directionality of the quadratic motion can be extracted by mapping the
norm of the bispectrum into the time delay-space domain, as in Figure 14. The contours
represent the norm of the bispectral power, and information on the time periodicity and
direction of the motion is available from its pattern and the slope associated with it. Note that
the contours are saturated such that low amplitude activity can be highlighted. The inverse
of the ratio of 7 to x directly gives the value of a propagation velocity associated with the
quadratic coupling under consideration, normalised with the external velocity, i.e. Up/Uc.
In each map, the location of the separation and reattachment points is indicated by black
vertical lines, solid for the former and dashed for the latter. Propagation velocities deduced
from the map in various regions of the flow thus delineated are listed in Table 7. Note
that the streamwise evolution has been divided into three regions: from the forcing location
(X forcing = 20) to the separation point, within the recirculating region and downstream the
reattachment point.

Downstream motion is observed for crossing waves, regardless of the 2D (see panel (a))
or 3D (see panel (b)) nature of the flow structures. However, the fundamental periodicity
is different. A short period corresponding to 7 = 1/(f; + f2) is observed for k3 = 0. This
result is consistent with the previous observations, for which most of the quadratic activity
concerns the high frequency range of the total spectrum (see panel (a) of Figure 13).

Indeed, the upstream region of the flow is dominated by slow periodic dynamics corre-
sponding to T = 1/( f> — f1), in agreement with the results presented in the previous section
(see panel (b) of Figure 13). But, as seen in this plot, there are also quadratic couplings
of lower amplitude associated with self-interactions of oblique modes towards frequencies
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Figure 13: Norm of the time-filtered wavenumber bispectrum. The filter is applied to the
target sensor G3, which spans all x locations. It retains either the frequencies associated
with the low-frequency dynamics (f> — f) (indicated in the legend with G3(f> — f})) or
those associated with the high-frequency dynamics (f; + f1) (indicated in the legend with
G3(f2 + f1)). Symbols are used when the lines overlap perfectly. The green diamond
symbols indicate the presence of self-quadratic couplings, i.e. fi + fi = 2f; and
>+ f»r =2f>. The vertical black lines indicate the separation (solid) and reattachment
(dashed) locations.

Xforcing <X < Xsep Xsep <X < Xreatt X > Xreatt
Crossing waves 2D 0.98 0.53 0.76
Crossing waves 3D 0.57 0.52 0.52
Parallel beating waves 2D -0.17 -0.17 0.12
Parallel beating waves 3D 0.52 0.52 0.53

Table 7: Value of the propagation velocity of the bispectral content normalised by the
external velocity, i.e. Up /U, for each region of the flow: from the forcing location to the
separation point, within the recirculating region and downstream the reattachment point.

2f1 and 2 f,. In the time delay domain of Figure 14, the sum of these two waves of similar
frequencies is visualised, through beating, as a wave at frequency (f1 + f>) being modulated
in amplitude by a wave at frequency (f] — f2). It hence results in spots of high frequency
ripples with width equal to 7'/2 seen, for instance, in the first half of the separated region or
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downstream of the reattachment point. In the Fourier space, however, the only contribution
to the (f> — f1) range comes from the quadratic interaction between modes 1 and 2.

Although barely visible, the same observations apply to the parallel beating waves in the
case of k3 = 2 organisation of the flow (see panel (d)). Both crossing and parallel beating
waves cases for k3 = 0 are free of this self quadratic interaction, since the self coupling of a
single mode towards zero wavenumber corresponds to zero frequency. Consequently, there
is no secondary modulation in time in panels (a) and (c).

In all these cases, the quadratic power couplings move from upstream to downstream, with
the exception of the 2D parallel beating waves. In this case, panel (c) clearly shows that there is
an upstream motion of period T = 1/( f, — f1) within the separated region. The corresponding
value of the propagation velocity is Ug/Us = —0.17. Such a value is in agreement with the
values suggested by Larchevéque (2016), Bonne et al. (2019), and Threadgill ef al. (2021).
Moreover it falls in the range of values observed in Mauriello et al. (2022), who studied
transitional SBLI in a similar flow configuration and observed an upstream motion from the
reattachment point towards the separation point. The value they found is Ug /U = —0.09 for
the features sustaining the low frequency dynamics and Ug /U, = —0.25 for the frequencies
falling in the medium range. In our case, after x = 197, the direction of the motion changes
to downstream, with a speed of Up = 0.12U.

5.4. Phenomenology of the non-linear interactions

The basic phenomenology can now be proposed as follows. As the oblique modes convect
downstream in the separated shear layer, they grow in amplitude, developing a high amplitude
towards the end of the separation bubble, achieving a maximum quadratic power transfer.
After this power input, structures having zero spanwise wavenumber and period 7 = 1/(f> —
/1) split into two parts just upstream of the reattachment point. Part is convected downstream
with the reattaching flow, and is possibly reinforced by further quadratic interactions between
the oblique modes still persisting in that region. The other part enters the lower region of
separated zone and is subject to an upstream propagation up towards (and beyond) the
separation point. This upstream propagation occurs without further quadratic power supply
because of the low oblique mode amplitude in that region. The separation point and the
reattaching boundary layer therefore undergoes motion similar in amplitude but opposite in
sign. In this context, the work of Dupont ez al. (2006) noted that the rear part of the interaction
for an oblique reflected shock geometry also exhibits some degree of unsteadiness which
is in quasi-linear dependence with the reflected shock motion, reinforcing the idea that the
separation bubble is in a breathing motion. In addition, the work of Touber & Sandham
(2009) on a turbulent shock-induced separation bubble interaction had already observed a
jump in the velocity phase associated with the wall pressure perturbations. However, in their
work, this jump is observed to occur at one-third of the length of the separation zone. In
the present work, the shift in the velocity direction occurs near the point of minimum Cy at
x = 200 (see Figure 7), after which the skin friction begins to increase. The same observation
applies to the other time delay maps, although instead of a net change in direction, an increase
in bispectral activity is observed.

We observed in Section 5.2 that, at the separation point, both crossing waves and parallel
beating waves experienced quadratic couplings towards wavenumber equal to zero (see
Figures 11 (a) and (c)). It is now possible to add that the nonlinearities observed at the
separation point in the case of parallel beating waves result from quadratic interactions of
the oblique modes which, after passing through the shock interaction, succeed in entering
the separation bubble via the reattachment point and traveling up to the separation point.
These triadic interactions result in 2D structures. In contrast, the 2D structures that populate
the separation point in the case of crossing waves are the result of quadratic interactions in
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Figure 14: Time delay map extracted from the real part of the wavenumber bispectrum.
First row shows the crossing waves, second row is for parallel beating waves. The vertical
black lines indicate the separation (solid) and reattachment (dashed) points.

the incoming boundary layer. They begin to develop between the oblique modes and among
families of them.

Irrespective of the 2D or 3D spanwise structure of the flow and the specific arrangement
of the oblique modes in the two families, an upstream motion is observed for x < 20. This
point corresponds to the location of the forcing X forcing, and since the perturbations are
introduced as density perturbations (leading to pressure perturbations), they are free to move
in all directions, including upstream within the subsonic layer of the compressible boundary
layer.

5.5. The frequency-space organisation of the quadratic coupling
The time delay 7 introduced in equation 5.4 can be exploited to expand the wavenumber
bispectrum Bis; 2 3(kg,, kz,, T) into a Fourier series in time . This results in the frequency-

transformed wavenumber bispectrum %1,2,3 (kz,, kz,, fn) for discrete frequencies f,, = n/T
such that
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Figure 15: Streamwise-frequency distribution of norm of the frequency-transformed
wavenumber bispectrum for selected wavenumver pairs.Panels (a)-(b): crossing waves;
panels (c)-(d): parallel beating waves. The white vertical lines indicate the separation
(solid) and reattachment (dashed) points.

T
) _ 2AT — -
Bisip3(kz, ke, 7) = Z Bisi23(kz ke fn) e T (5.5)
T
n==ra7

The space transform provides information about the nature of the structures, while the
time transform allows the amount of non-linear content associated with each frequency and
each streamwise location to be determined. Overall, the frequency-transformed wavenumber
bispectrum directly highlights the relevant frequency content of the non-linear coupling
involved between selected wavenumbers. For simplicity, the subscript , is dropped in the
following discussion.

Figure 15 shows the norm of the space-frequency transformed bispectrum for each
combination of oblique waves. The streamwise organisation of the quadratic interactions
is plotted for each frequency. Only results for selected wavenumbers k| + kp = k3 = 0
(left column) and ki + kp = k3 = 2 (right column) are presented. Note that for k3 = O the
wavenumber bispectrum is real, resulting in a time Fourier series that is even, i.e. symmetric
with respect to the origin f = 0. On the other hand, for k3 = 2 the bispectrum is inherently
complex and the positive and negative frequency regions are no longer symmetric, even
in the Hermitian sense. If we take into account the asymmetries inherent in the different
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arrangements of the waves, the present bispectra are therefore able to reflect these spanwise
asymmetries.

In the case of the crossing wave family, panel (a) shows that from the reattachment point
onwards, the quadratic coupling, associated with the transition mechanism, takes place. The
cascade process starts from the forcing frequencies and fills the spectrum with exact non-
linear harmonics of the fundamental frequency, becoming increasingly difficult to visualise
in the plot because of their sharp frequency distribution and the use of the logarithmic scale.
Evidence of quadratic interactions is clearly detected in the low-frequency range for k3 = 2
(see panel (b)), and confirm the results presented in Table 6. Specifically, this confirms that
two-dimensional flow features k3 = 0 lack the low-frequency dynamics.

Panel (c) of figure 15shows that high values of bispectral content are observed for parallel
beating waves when k3 = 0. Nevertheless, at the separation point as well as upstream and
downstream of it, the range of frequency associated with quadratic couplings spreads up to
f ~ 0.005. On the contrary, this combination of waves, when quadratically interacting to give
k3 =2, does not support the low-frequency dynamics, and only the frequency corresponding
to the sum of the forcing contribution emerges (see panel (d)). Note that this frequency is
negative because the wavenumber k3 = 2 under consideration is positive. For the parallel
family, k3 = 2 can be obtained from oblique modes only by considering an additive quadratic
coupling, i.e. the one involving k| = +8 and k, = +p. It translates, through the ansatz (2.4)),
into an (—w1, —w;) coupling into the frequency space. As a consequence of the Hermitian
symmetry of the space-time transform, the quadratic interaction resulting in the positive
(w1 + w») frequency is found for the negative wavenumber k3 = —2.

6. Additional considerations

So far we have focused on two cases with a difference-mode nonlinear interaction, in addition
to the baseline case where the difference-mode was absent. In this section we expand the
discussion to include two additional forcing configurations as well as a case with a different
frequency combination.

6.1. A beating crossing combination

The spectral analysis of the pressure fluctuations at the wall showed that an approximately
steady interaction (lacking 2D low frequency content) is observed in the case of the crossing
waves family, while an unsteady interaction was found for the parallel beating arrangement.
A third combination of waves that combines both parallel waves and crossing waves is next
considered. The aim is to explore whether this new arrangement of waves still retains the
properties of parallel waves to stimulate unsteadiness as well as the ability of crossing waves
to facilitate the breakdown to turbulence. The arrangement is called beating crossing waves
and it is expressed through the notation of (4.2) as

Beating crossing waves: p’(x, z,t) = p1*(x,z,1) + p” (x,2,8) + p5* (x,2,1) + 5~ (x, 2, 1)

Figure 16 (a) plots the streamwise evolution of the skin friction coefficient, comparing
the different cases. The beating crossing waves have the shortest separation zone with
Lint/65,,,, = 44 (Lsep/9;,,,, = 73.4) and result in a transitioning boundary layer down-
stream of the interaction. This result is consistent with the observation that this family
possesses a double crossing wave combination and, as observed from the previous results,
the breakdown to turbulence is facilitated.

Since double parallel beating waves are also included, low-frequency unsteadiness is
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Figure 16: Figure (a) shows the streamwise evolution of the skin friction coefficient C ¢ for
all combinations of waves. The black dashed horizontal lines indicates C¢ = 0. Figure (b)
plots the spectral decomposition of the wall pressure fluctuation for the sole beating
crossing waves case. The white vertical lines indicate the separation (solid) and the
reattachment (dashed) points.

expected to develop. Figure 16 (b) shows the spectral decomposition of the wall pressure
fluctuations for the beating crossing waves. The same normalisation and structure of the
spectra shown in Figure 8 is followed here. Downstream of the reattachment point and
starting from the forcing frequencies, the energy content cascades over all their harmonics
and fills the spectrum up to high frequencies consistent with the results extracted from
the Cy plot that indicates transition to turbulence. When looking at the separation point,
beating crossing waves shows high energy activity that results in an unsteady interaction. As
observed, the parallel combination induces slow motion at Stz, . = 0.037. For the beating
crossing family, the head shock moves at St;,,, = 0.028. This difference is due to the change
of L;;;. Hence, the inclusion of the parallel combination of the two wave families proves once
again to be responsible for the slow 2D motion of the head shock, but this time combined
with transition to turbulence. Note that all the quadratic metrics used in Section 5 to analyse
the crossing and parallel cases have been applied to the beating crossing combination. The
results, not presented here for the sake of conciseness, confirm that this more complex family
combines the individual quadratic features of the two simpler cases.

6.2. A streaky crossing combination

Low speed velocity streaks are often present in laminar boundary layers, for example when
free stream turbulence or roughness modifies the laminar base flow. They are steady in time
(w = 0), but have non-zero spanwise wavenumber (Schmid & Henningson 2001). Hence it
is of interest to take advantage of them to modify the simple crossing case to achieve a two-
dimensional spanwise organisation of the flow at the separation point without altering the
incoming frequency content and verify whether the slow bubble breathing motion occurs. The
targeted non-linear coupling involving the streaks and the oblique modes will inherently result
in the same frequency as the corresponding non-linear coupling between the sole oblique
modes, but it must result in k, = 0 in the separated flow region. Consequently, the spanwise
dimension of the streaks must be carefully chosen. For this purpose, half of the spanwise
dimension of the 3D unstable waves was chosen (Bstreak = 2Boam)- The mathematical
representation of the streaks is therefore given by p . (x,z,0) = Re[Ag p(y)e!?F2)] By
adding the streak to the crossing waves family, the new combination we are considering is
called streaky crossing waves, and it is mathematically described by
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Figure 17: Streaky wave family: power spectra of the wall pressure fluctuations (panel (a))
and wavenumber bispectrum for sensor G3 located at the separation point, denoted by the
white solid vertical lines on plot (a).

Streaky crossing waves: p’(x, z,t) = p|"(x,z,1) + p5 " (x,2,8) + p’,. .1 (X, 2,0)

By following the same mathematical approach presented in Section 5, for the streaky
crossing family, we obtain that the only non-linear combination involving the oblique modes
with frequency (f>— f1) is given by the same relation of (5.2). Nevertheless, if the contribution
of the streak is included, many possible non-linear combinations of the triad of modes can
result in the (f> — f1) frequency. The simplest ones are two consecutive quadratic coupling
or a single cubic coupling. The five simplest possible non-linear couplings towards the low
frequency range therefore read

B+p
(B+B)+2B
fir=H-fie— 1 (B+B) -2
B+pB+2B = 4B cubic coupling
B+B-28 = 0 cubic coupling

2B quadratic coupling

48 consecutive quadratic couplings

0  consecutive quadratic couplings  (6.1)

The first line corresponds to interactions between oblique modes only, whereas the four
subsequent lines are related to couplings involving both the oblique modes and streaks.
Thus, the streaky family potentially results at low frequency in both 2D and 3D flow features,
once either quadratic or cubic couplings involving streaks are taken into account.

Figure 17 (a) shows the spectral content of the pressure fluctuations field extracted at
the wall for the streaky crossing case. In contrast with the simple crossing arrangement,
a low-frequency activity of mostly constant level is found in the separated flow region. It
results in a low-frequency power at the separation point being 1.5 orders of magnitude larger
for the streaky case compared to the original crossing case. Although such a value is more
than four orders of magnitude lower than the one found for the parallel arrangement, it is a
clear indication that streaks non-linearly promote flow structures at low frequency that are
sustained in the separated flow region.

Recalling the results from Mauriello (2024) and from Section 5, it is tempting to postulate
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Low frequency High frequency
(w2 —wy) kLr (w2 +wy) kHF
Crossing waves:
(—w1, B) X (w2, —p) B+B=28 2 B-B=0 0
Parallel beating waves:
(—w1, B) X (w2, B) B-B8=0 0 -B-B=-28 -2
Beating crossing waves:
(—wi, £B) X (-w2, £B) B-B8=0 0 B+B=2B
B+B=28 2 B-B=0
-B-B=-28 -2 -B+B=0
-B+B=0 0 -B-B=-28 -2
Streaky crossing waves:
(—w1, B) X (w2, —B) % (0,28) B+B=28 2 B-B=0
B+B+2B=4B 4 B-B+2B=28
B+B-28=0 0 B-B-28=-28 -2

Table 8: Summary of the couplings for all modal forcing combinations. The subscript
”rr” and "gF” in k indicate the low frequency dynamics (wy — w1) and the high
frequency dynamics (w; + wp) respectively.

that such a sustainability is related to two-dimensionality. Candidate non-linear couplings
having such a property correspond to lines 3 and 5 of equation 6.1. The former, being
quadratic in nature, can be tested using the bicoherence defined in equation 5.4. Its imprint
on the k| — k, bispectral map at separation plotted in Figure 17 (b) would include the primary
interaction between oblique modes at (ky, k2) = (1, 1), already present in the simple crossing
case, as well as the secondary interaction between the structures resulting from the primary
interaction and the streaks at (2, —2).

No such extra quadratic coupling is found when comparing Figures 11(a) and 17(b) and,
in fact, the norms of the bispectra at separation are similar for the pure crossing and streaky
crossing cases for all wavenumber pairs under consideration. This demonstrates that, at
least in the separated region of the flow, streaks do not contribute to quadratic coupling.
Moreover, bicoherence levels are generally lower for the streaky crossing case. This, coupled
with similar norms for the bispectra, is a clear indication that the extra power found in the
separated region for the streaky case in Figure 17 (a) do not originate from any additional
quadratic coupling.

The cubic coupling hypothesis appears therefore as the most probable explanation. Note
that it could be formally tested by computing the wavenumber trispectrum. However its
definition involves four distinct time series, three time delays and only limited obvious
hypotheses to reduce the dimension of the input space they span. This makes its computation
quite cumbersome, even if restricted to a small number of wavenumber triads. As a
consequence, a formal demonstration of the actual occurrence of cubic couplings involving
streaks at the separation point has not been carried out.

Table 8 integrates table 6 with all possible combinations at both low frequency (w; — w1)
and high frequency (w; + w) for the new families of oblique mode, i.e. the beating crossing
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Figure 18: Power spectrum of the wall pressure fluctuations for the parallel beating waves
family with forcing frequency difference ASy,,, =~ 0.4. The white vertical lines indicated
the separation (solid) and the reattachment (dashed) points.
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waves and streaky crossing waves. The table supports the results presented in Sections 6.1
and 6.2. When the arrangement of oblique modes, whether it contains a parallel arrangement
and/or structures such that the resulting spanwise wavenumber (which interacts with the
oblique modes) is k, = 0 (as we have seen with the streak), then activity of low-frequecy
spectral content appears in the spectrum at the separation point. Those 2D structures are
responsible for the phenomenon of the low-frequency unsteadiness.

6.3. Effect of the frequency

At this point it is important to make a few more comments. First, both parallel beating waves
and simple crossing wave configurations had the same injected energy level (see Table 3).
Despite that, they exhibited very differing characteristics in terms of their influence on the
unsteady dynamics and transition process. Secondly, regardless of the specific configuration,
the system was forced with two high frequencies, such that their difference fell in the low
range of the frequency spectrum, i.e. ASt;,, . =~ 0.04. Although the forcing is set in the high
frequency range, thanks to quadratic coupling we observed low-frequencies emerging in
the spectrum. Nevertheless, it would be interesting to observe the possible consequences for
both the low-frequency dynamics and the transition process when the resulting, quadratically-
induced, Strouhal number falls within a higher range of the frequency spectrum. To this end,
we decided to investigate the arrangement of parallel beating waves since they resulted in
a strong response at the quadratic couplings in the low-frequency dynamics. The forcing
frequency was chosen so that the frequency separating the motion of the two parallel wave
families is ten times larger than for the original one, with ASt;, = =~ 0.4. This (similar) value
was observed in the work of Mauriello (2024), which studied the interaction between an
incoming laminar boundary layer and an impinging reflected shock system at M = 1.7, and
examined the non-linear coupling between the multiple boundary layer modes and the flow
features at the separation point. In that work, it was found that the resulting nonlinearities
occurring between oblique modes of different frequencies were progressively damped when
the frequency difference exceeded ASty,,, = 0.35.

Figure 18 shows the power spectrum of the wall pressure fluctuations for the parallel beating
waves with medium forcing frequency-difference yielding to ASt;, , ~ 0.4. For simplicity,
in the following discussion we will refer to this case as M F-forcing, whereas the original
parallel beating case with the low forcing frequency-difference of AStr,,, =~ 0.04, whose
corresponding power spectrum is plotted in Figure 8 (b), will be referred to as L F-forcing.

When comparing Figures 8 (b) and 18, it appears that the region downstream the
reattachment point experiences a different transition state, with a slightly more developed
energy cascade in the case of M F-forcing. Such a difference is consistent with the slightly
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Figure 19: Wavenumber bispectra of the parallel beating waves family with forcing
frequency difference ASy,,, =~ 0.4 for the 2D (k;; = 0) coupling: streamwise coordinate —
time delay map if the real part (panel (a)) and norm of the time—Fourier transform (panel
(b)). The vertical lines indicated the separation (solid) and the reattachment (dashed)
points. The horizontal dashed lines in panel (a) denote the time boundary of a single
period since data have been duplicated through time—periodicity for better visualization.

reduced size of the separated region in that case. One can postulate that the alteration of
the early transition is due to the non-linear process that broadens the frequency ranges
w™ associated with the n™ non-linear harmonics of the oblique modes. The broadening
is progressively achieved through a succession of forward and backward interactions
involving the two kinds of oblique modes: (w") X (xw;) — (W" + w;) followed by
(W" £ W) X (Fwz) — (W" £ w; F wy). The frequency extent of the process therefore
scales with the (wy — wy) difference, making the M F-forcing case to result more rapidly
in the overlapping of the broadened frequency ranges, thus leading to a fuller spectrum at
earlier stations.

Besides the transition mechanism, the larger frequency difference also affects the low-
frequency dynamics. Note that the lack of energy content for frequencies below f = 0.0035
for the M F-forcing case is a direct consequence of the medium frequency-difference forcing
that results in a periodicity in time being inversely proportional to AStz, . The power
contents of the lowest frequency ranges, being equal to Aw/(2x) for both cases, is rather
similar alongside the last third of the separated region (180 < x < 220) and downstream of
the reattachment. In the first two thirds of the bubble, however, a significantly lower power is
found for the M F-forcing case compared to the LF-forcing one.

The power content of the low frequency range in the separated region having been
associated in Section 5, for the parallel case, with 2D quadratic coupling, the various
bispectral metrics described in that section have also been applied to the M F-forcing
case. Overall, these analyses yielded similar results to the ones of the LF-forcing case,
but two noticeable differences were found in the separated region. The first is related to
the upstream propagation velocity of the 2D bispectral content, which is found to be about
2.5 times larger than for the LF-forcing case, as deduced from the time delay map of the
norm of the bispectrum for the k,, = O coupling, plotted in Figure 19 (a). It is worth
noting that a similar velocity ratio was found in Mauriello et al. (2022) between the lower
and upper frequency ranges of the low-frequency, upstream propagating structures resulting
from quadratic interactions between multiples oblique modes.

Beyond a velocity change, the quadratically-induced structures of the M F-forcing case are
also subject to an extra damping when moving upstream in the separated region. The norm
of the time Fourier-transformed wavenumber bispectrum associated with the 2D (k3 = 0)
coupling experiences a 1.5 order of magnitude drop between x = 180 and x = 155, as seen in
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Figure 19 (b). In the first half of the bubble this yields a difference of more than one order of
magnitude between the bispectral powers at the lowest frequency found in the L F'-forcing and
M F-forcing cases. This fully explains the similar differences seen on the power spectrum in
Figures 8 (b) and 18. It therefore seems that the downstream part of the separated region acts
as a low-pass filter (in the wavenumber space) with respect to the 2D structures originating
in the quadratic coupling of oblique modes. This is reminiscent of the the low-pass filter
nature of the shock/bubble system suggested by Touber & Sandham (2011) for a turbulent
interaction, even if the upstream part of the separated region was considered in this work.
Moreover, this is compatible with the mechanism suggested by Bugeat ef al. (2022).

7. Conclusions

The present work has provided a comprehensive investigation into the unsteady dynamics of
transitional shock wave-boundary layer interactions (SBLIs) at Mach 1.5, employing direct
numerical simulations, deterministic forcing and high-order spectral analysis. The study
has successfully elucidated the distinct roles of different oblique mode configurations in
triggering low-frequency unsteadiness and transition to turbulence. The results unequivocally
demonstrate that these two phenomena are decoupled, with the transition to turbulence
primarily driven by nonlinear interactions of high-frequency unstable modes (oblique
breakdown), while low-frequency unsteadiness arises from the quadratic coupling of low-
frequency components. The study further underscores the critical role of the specific
arrangement of oblique modes in influencing the flow dynamics. The presence of crossing
oblique modes, characterised by opposite orientation of spanwise wavenumbers, was found
to facilitate the transition to turbulence. In contrast, parallel oblique modes, with the
same orientation of spanwise wavenumber, were more effective in triggering low-frequency
unsteadiness. The research also confirmed that the trace of low-frequency unsteadiness in
wavenumber space is distinctly two-dimensional, originating from nonlinear interactions of
oblique modes downstream of the shock interaction that subsequently propagate upstream
within the separated flow region.

Additional mode configurations were explored. The beating crossing waves configuration,
which combines aspects of both parallel and crossing waves, was shown to exhibit both
low-frequency unsteadiness and transition to turbulence, confirming that these phenomena
can coexist under certain conditions. Then the streaky crossing waves configuration was
investigated, where low-speed streaks are added to the crossing waves. This configuration
leads to low-frequency unsteadiness involving cubic interactions, further highlighting the
role of 2D flow structures in this phenomenon.

Finally, the impact of forcing frequency was examined by considering a case where
the difference between the forcing frequencies is increased. It is observed that, when the
difference between the forcing frequencies falls within a specific range, identified as ASt; <
0.4, it facilitates the generation of low-frequency unsteadiness, suggesting that the bubble
acts as a low-pass filter for nonlinear interactions.

The insights gleaned from this study contribute significantly to our understanding of the
intricate dynamics of transitional SBLIs. The findings not only enhance our comprehension
of the underlying mechanisms but also offer potential avenues for future research and the
development of control strategies. For instance, the identification of specific oblique mode
arrangements that favour or suppress low-frequency unsteadiness and turbulence transition
could pave the way for flow control techniques aimed at mitigating the detrimental effects
of SBLIs in high-speed flows. The observed two-dimensional nature of low-frequency
unsteadiness in wavenumber space could also be leveraged to develop simplified models
for predicting and controlling such fluctuations.
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