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Expanding the human gut microbiome atlas 
of Africa

Dylan G. Maghini1,2,15, Ovokeraye H. Oduaran1,15, Luicer A. Ingasia Olubayo1,  
Jane A. Cook3, Natalie Smyth1, Theophilous Mathema1, Carl W. Belger1,4, Godfred Agongo5,6, 
Palwendé R. Boua1,7, Solomon S. R. Choma8, F. Xavier Gómez-Olivé9, Isaac Kisiangani10, 
Given R. Mashaba8, Lisa Micklesfield11, Shukri F. Mohamed10, Engelbert A. Nonterah6, 
Shane Norris11,12, Hermann Sorgho7, Stephen Tollman9, Floidy Wafawanaka9, Furahini Tluway1, 
Michèle Ramsay1, Jakob Wirbel2, the AWI-Gen 2 Collaborative Centre*, Ami S. Bhatt3,13,16 ✉ & 
Scott Hazelhurst1,14,16 ✉

Population studies provide insights into the interplay between the gut microbiome 
and geographical, lifestyle, genetic and environmental factors. However, low- and 
middle-income countries, in which approximately 84% of the world’s population 
lives1, are not equitably represented in large-scale gut microbiome research2–4. Here 
we present the AWI-Gen 2 Microbiome Project, a cross-sectional gut microbiome 
study sampling 1,801 women from Burkina Faso, Ghana, Kenya and South Africa. By 
engaging with communities that range from rural and horticultural to post-industrial 
and urban informal settlements, we capture a far greater breadth of the world’s 
population diversity. Using shotgun metagenomic sequencing, we identify taxa with 
geographic and lifestyle associations, including Treponema and Cryptobacteroides 
species loss and Bifidobacterium species gain in urban populations. We uncover 
1,005 bacterial metagenome-assembled genomes, and we identify antibiotic 
susceptibility as a factor that might drive Treponema succinifaciens absence in 
urban populations. Finally, we find an HIV infection signature defined by several 
taxa not previously associated with HIV, including Dysosmobacter welbionis and 
Enterocloster sp. This study represents the largest population-representative  
survey of gut metagenomes of African individuals so far, and paired with extensive 
clinical biomarkers and demographic data, provides extensive opportunity for 
microbiome-related discovery.

Large population studies can identify lifestyle, genetic and environ
mental factors that drive gut microbiome composition. Indeed, early 
studies5,6 established baseline human gut microbiome measure-
ments, and more recent studies have related the gut microbiome to 
disease and lifestyle factors7–9. However, because these studies typi-
cally focus on high-income populations with relatively homogene-
ous resource access and disease profiles, their results often do not 
translate to populations with different lifestyle practices, health 
challenges and access to healthcare, and varied environmental expo-
sures. In addition, large microbiome studies have typically relied on 
facility-based convenience-sampling models, which generalize less well 
to the population level than more resource-intensive cross-sectional  
sampling.

Low- and middle-income countries (LMICs) account for approximately 
84% of the world’s population1 but are extremely under-represented in 
gut microbiome research2–4. China, an upper-middle income country, 
is an outlier with several recent large population studies10–12. Targeted 
studies in LMICs have found microbiome associations with infectious 
disease13,14 and compositional differences between microbiomes of spe-
cific LMIC and high-income country (HIC) populations15–18, including 
in the context of non-communicable diseases19. Several studies have 
also evaluated early childhood microbiomes in LMICs, especially in 
relation to malnutrition20–24. However, comprehensive measurement 
of global lifestyle diversity that affects gut microbiome composition 
requires large, population-representative studies. It is essential to work 
within frameworks that support representative measurements from 

https://doi.org/10.1038/s41586-024-08485-8

Received: 6 February 2024

Accepted: 3 December 2024

Published online: 29 January 2025

Open access

 Check for updates

1Sydney Brenner Institute for Molecular Bioscience, University of the Witwatersrand, Johannesburg, South Africa. 2Department of Medicine (Hematology), Stanford University, Stanford, CA,  
USA. 3Department of Genetics, Stanford University, Stanford, CA, USA. 4School of Animal, Plant and Environmental Sciences, University of the Witwatersrand, Johannesburg, South Africa. 
5Department of Biochemistry and Forensic Sciences, C. K. Tedam University of Technology and Applied Sciences, Navrongo, Ghana. 6Navrongo Health Research Centre, Ghana Health Science, 
Navrongo, Ghana. 7Clinical Research Unit of Nanoro, Institut de Recherche en Sciences de la Santé, Nanoro, Burkina Faso. 8DIMAMO Population Health Research Centre, University of Limpopo, 
Polokwane, South Africa. 9MRC/Wits Rural Public Health and Health Transitions Research Unit (Agincourt), University of the Witwatersrand, Johannesburg, South Africa. 10African Population 
Health and Research Center, Nairobi, Kenya. 11SAMRC/Wits Developmental Pathways for Health Research Unit, University of the Witwatersrand, Johannesburg, South Africa. 12School of Human 
Development and Health, University of Southampton, Southampton, UK. 13Department of Medicine (Hematology, Blood and Marrow Transplantation), Stanford University, Stanford, CA, USA. 
14School of Electrical & Information Engineering, University of the Witwatersrand, Johannesburg, South Africa. 15These authors contributed equally: Dylan G. Maghini, Ovokeraye H. Oduaran. 
16These authors jointly supervised this work: Ami S. Bhatt, Scott Hazelhurst. *A list of authors and their affiliations appears at the end of the paper. ✉e-mail: asbhatt@stanford.edu;  
Scott.Hazelhurst@wits.ac.za

https://doi.org/10.1038/s41586-024-08485-8
http://crossmark.crossref.org/dialog/?doi=10.1038/s41586-024-08485-8&domain=pdf
mailto:asbhatt@stanford.edu
mailto:Scott.Hazelhurst@wits.ac.za


Nature  |  Vol 638  |  20 February 2025  |  719

populations, facilitate input and leadership from local stakeholders, 
and clearly identify community needs25–27.

The Africa Wits-INDEPTH Partnership for Genomic Studies (AWI-Gen)28 
provides a powerful framework for population-representative and 
community-engaged research (Extended Data Fig. 1). Nested within the 
Human Heredity and Health in Africa Consortium (H3Africa), AWI-Gen 
studies genomic and environmental factors affecting the changing 
disease burden among adults in six communities in four African coun-
tries. The study is a partnership between the University of the Witwa-
tersrand and the International Network for the Demographic Evaluation 
of Populations and Their Health (INDEPTH), a network of health and 
demographic surveillance systems (HDSSs) in LMICs. Together, the five 
AWI-Gen HDSSs and the Developmental Pathways for Health Research 
Unit in Soweto, South Africa support random cross-sectional popula-
tion sampling. By contrast, most extant microbiome and genomics data 
are based on non-random recruitment of self-selecting participants, 
which is not optimal for capturing population-level trends. Each HDSS 
has engaged with host communities for over a decade, conducting 
engagement before study approval and through study conclusion29,30 
that ensures high participant retention while focusing on community 
needs. AWI-Gen collected blood and urine biomarkers, captured exten-
sive participant data—demographic, health history, environment and 
lifestyle—and genotyped all participants on the H3Africa Custom SNP 
Array31. Emphasizing genomics capacity-building and equitable col-
laborations, AWI-Gen presents a unique opportunity for microbiome 
research in understudied populations and holds immense potential 
for associating the microbiome with rich genotype and phenotype 
data. The first phase of AWI-Gen ran from 2012 to 2017, during which 
we conducted pilot microbiome projects at two South African sites32,33.

Here we present the second phase of the AWI-Gen Microbiome 
Project. From 2018 to 2023, we randomly sampled 1,820 adults (1,801 
women and 19 men) from well-characterized populations in six research 
centres in Burkina Faso, Ghana, Kenya and South Africa. These centres 
have widely different population densities, subsistence strategies, 
income levels and disease profiles. Leveraging extensive clinical and 
demographic data, we find that geography has the strongest effect 
on microbiome variation. We assemble thousands of prokaryotic and 
phage genomes, including hundreds for Treponema succinifaciens, a 
hallmark bacterial species previously described as absent in industrial 
populations. Finally, we find HIV-associated differences in microbiome 
composition that differ from those described in HIC populations. 
Altogether, this study demonstrates the importance of investigating 
the gut microbiome in undersampled populations, provides a frame-
work for equitable microbiome research and represents the largest 
population-representative profile of African gut microbiomes so far.

The AWI-Gen 2 Microbiome Project enrolled participants from rural 
villages in Nanoro, Burkina Faso34 (n = 384), Navrongo, Ghana35 (n = 235), 
the Agincourt-Bushbuckridge subdistrict in South Africa36 (n = 533) 
and Dikgale, South Africa37, in which the HDSS is now called DIMAMO 
(n = 203), from the township of Soweto, South Africa (n = 226) and 
from the Korogocho and Viwandani urban informal settlements in 
Nairobi, Kenya38 (n = 239) (Fig. 1a). Participants were a cross-sectional 
representation of the adults in the HDSS catchment areas (Supple-
mentary Methods). The study communities span rural, peri-urban 
and urban areas, and therefore have drastic differences in population 
density, water sanitation, access to healthcare and disease profiles 
(Table 1 and Supplementary Data 1). Briefly, the Nanoro and Navrongo 
study centres are in primarily horticultural rural regions of western 
Africa where subsistence farming and cattle-keeping are dominant 
subsistence strategies. The Agincourt and DIMAMO centres largely 
consist of semi-rural villages that are undergoing rapid epidemiological 
transition and industrialization. Soweto is a district within the city of 
Johannesburg, which under apartheid was designated as an area for 
black people to live; as a post-industrial area, employment in Soweto is 
often related to business, retail and industry, but unemployment among 

women remains above 60% (ref. 39). The Nairobi centre captures two 
urban informal settlements where population density is very high and 
residents have limited access to piped water and sanitation.

AWI-Gen 2 is a population cross-sectional study of adults aged 
32–98 (99% were between 41 and 84). Pregnant women and people 
who had been resident for fewer than 10 years were excluded. At the 
point of recruitment into AWI-Gen, only one person per household was 
included. Most participants were women (n = 1,801), although a small 
number of men (n = 19) were sampled as well. The focus on women was 
motivated by downstream interest in combining these data with a com-
panion menopause study. Samples from men had significantly lower 
alpha-diversity (P = 0.027) (Extended Data Fig. 2), and were excluded 
for all site comparisons presented below; however, given the poor 
representation of these populations in existing microbiome studies, 
samples from men were included in the genome catalogues presented 
below. Participants completed a questionnaire with guidance from a 
field worker, and donated blood, urine and single stool samples. Stool 
samples were collected in temperature-stable buffer and processed at 
a single time in the same location to minimize handling bias (Methods). 
DNA was extracted from each stool sample, followed by 2 × 150 base 
pair paired-end sequencing. We generated a median of 44.16 million 
(M) (range 27.48M to 104.79M) reads per sample, with a median of 
31.20M (range 17.80M to 72.95M) reads remaining after quality control 
and removal of human reads (Methods, Extended Data Fig. 3 and Sup-
plementary Data 2). For an extended description of each study centre 
and recruitment methodology, see the Supplementary Methods.

Taxonomic composition across sites
We first characterized the overall taxonomic composition in the study 
populations. We performed taxonomic classification with mOTUs3 
using an updated database that incorporates new genomes found in 
this study, and summarized features with the GTDB taxonomy (Methods 
and Extended Data Fig. 3). After clustering samples by overall micro-
biome composition, the primary axis of variation captures a trade-off 
in relative abundance between Bacteroidota and Bacillota A (Fig. 1b 
and Extended Data Fig. 4), and correlates with the abundance of the 
archaeal phylum Methanobacteriota. The second principal coordinate 
(PCo2) captures site differences (Fig. 1b), generally ordering samples 
along a gradient corresponding to site population densities, subsist-
ence strategies, environments and sociodemographic factors. The 
exception to this gradient is Nairobi, Kenya, which is a dense urban site 
yet it falls in the middle of the gradient. This second axis is correlated 
with the abundance of Spirochaetota and Elusimicrobiota, phyla that 
are described to decrease in relative abundance with industrializa-
tion40. Relative to external cohorts from western Europe and Japan, 
individuals in the AWI-Gen 2 cohort have higher relative abundance of 
Verrucomicrobiota and Spirochaetota and lower relative abundance 
of Actinomycetota (Extended Data Fig. 4).

Seeking to identify the geography, disease and lifestyle factors that 
have the greatest effect on compositional variation, we performed 
distance-based redundancy analysis with the available covariates, 
excluding highly correlated variables (Extended Data Fig. 5 and 
Methods). Site explains the greatest amount of compositional vari-
ation (7.92%), followed by other variables inherently related to the 
microbiome, such as recency of antibiotic use (0.79%), recency of diar-
rhoea (0.59%), use of deworming medication (0.51%) or probiotics 
use (0.46%). Interestingly, HIV status is the only disease-related vari-
able explaining a sizable amount of variation (0.52%). Other disease 
variables included arthritis, obesity and hypertension among others 
(Extended Data Fig. 5).

To delve deeper into differences between sites, we investigated 
microbial diversity and abundance. Prokaryotic diversity differs signifi-
cantly between sites (Kruskal–Wallis P ≤ 2.2 × 10−16) (Fig. 1c), mirroring 
the site gradient observed for the second principal coordinate, with 
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Nairobi again falling out of sequence. Many taxa have distinct relative 
abundance and prevalence patterns between study sites (Supplemen-
tary Data 3). Few taxa are differentially abundant between sites with 
similar population densities and subsistence strategies (Agincourt 
and DIMAMO, 3 species; Nanoro and Navrongo, 37 species) and several 

are differentially abundant between sites with distinct characteris-
tics (Soweto and Nanoro, 345 species) (Fig. 1d and Supplementary 
Data 4). Among the bacterial genera that varied most across study sites 
(Methods), some have relative abundance that is positively correlated 
with the study site gradient observed previously, such as Phocaeicola, 
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Fig. 1 | Microbiome composition and diversity in the AWI-Gen 2 cohort.  
a, Sample number and location of each study site. Countries containing sites 
are dark grey. b, Principal coordinate analysis of all samples on the basis  
of Bray–Curtis distance on species-level prokaryotic profiles. Study site is 
colour-coded and the boxplots show the samples per site projected onto  
the first and second principal coordinate. c, Prokaryotic diversity (inverse 
Simpson’s index after rarefaction) per site (Kruskal–Wallis test, P < 2 × 10−16, 
n = 1,796 after quality control and removing data from male individuals).  
d, Heatmap showing the number of prokaryotic species with high generalized 
fold change between sites; sites are clustered on the basis of this number of 

species. e, The log10(relative abundance) of genera with the highest variance in 
fold change and median across sites. f, The log10 of the mean relative abundance 
per site is shown for all species within the genera shown in e. For Prevotella, 
Oribacterium, Cryptobacteroides and Treponema, all species with scientific 
names are highlighted; only the top abundant species with scientific names  
are indicated for the other genera. All panels represent data from n = 1,796 
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range (IQR), thick black lines indicate the median, and whiskers indicate the 
most extreme points within 1.5-fold IQR. Supplementary Methods contain 
photographs and further information for each site.
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Bacteroides and Bifidobacterium, and others correspond to the inverse 
gradient, such as Prevotella, Cryptobacteroides, Oribacterium and 
Treponema_D (Fig. 1e). These abundance gradients are often shared 
among the bacterial species within each genus (Fig. 1f), and are also 
reflected in overall species prevalence (Extended Data Fig. 6a), where 
some taxa are ubiquitous and others have increasing or decreasing 
prevalence across the site gradient.

The comparison between Nairobi and Soweto, which are both indus-
trial or post-industrial urban sites, is particularly interesting. Despite 
very high population density in Nairobi, individuals from Nairobi 
often have more similar microbiome composition to individuals from 
Agincourt and DIMAMO than to individuals from Soweto (Fig. 1d–f 
and Extended Data Fig. 6a,b). The relative abundance of Phocaeicola, 
Bacteroides, Prevotella and Treponema_D species is somewhat similar 
between individuals in Nairobi and individuals from semi-rural sites. 
By contrast, Bifidobacterium species have high relative abundance in 
both Soweto and Nairobi populations. Crucially, these findings illus-
trate that ‘urbanization’ or ‘industrialization’, which are commonly 
cited variables that impact the microbiome in previous research 
including our own, cannot adequately capture lifestyle and envi-
ronmental differences between different urban areas and between 
different rural areas.

Altogether, site is the dominant factor explaining overall microbi-
ome composition. Disease and medication variables explain smaller 
amounts of microbiome composition, and HIV status represents one 
of the largest subsequent contributors to microbiome variation after 
site. These findings indicate that study sites represent varied subsist-
ence strategies, industrialization levels, health-care access and overall 
adversity that together affect microbiome composition. These find-
ings also suggest a model for microbiome transition dynamics. Taxa 
such as Treponema_D are less abundant in sites practising large-scale 
agriculture or industry, whereas Bacteroides and Phocaeicola spe-
cies gradually expand in abundance and Prevotella species gradu-
ally decrease. Despite reports in other cohorts41, we do not observe 
mutual exclusion between Prevotella and Bacteroides (Extended Data 
Fig. 6c). We observe interesting taxonomic profiles in participants from  
Nairobi, many of whom probably migrated to Nairobi from rural parts 

of Kenya38,42 into the informal settlements: high Prevotella abundance 
may reflect a microbial signature retained from participants’ former 
rural residences, whereas the high abundance of Bifidobacterium spe-
cies and low abundance of Cryptobacteroides species may reflect taxa 
that are strongly influenced by changing environments.

Novel prokaryotic genomes
African gut microbes are under-represented in public reference col-
lections, and when present, are often sourced from relatively isolated 
populations with lifestyle practices that are not representative of the 
African continent. To identify previously unknown taxa in the AWI-Gen 
2 sample collection, we performed metagenomic assembly and binned 
contigs into metagenome-assembled genomes (MAGs), yielding a total 
of 69,539 genomes, of which 34,215 genomes are high quality (more 
than 90% complete and less than 5% contaminated) and 26,660 are 
medium quality (more than or equal to 50% complete, less than 10% 
contaminated). To condense redundant genomes, we dereplicated 
all MAGs with a minimum genome completeness of 50% and maxi-
mum genome contamination of 5% at 95% average nucleotide identity 
(ANI). The resulting 2,613 MAGs span 19 bacterial phyla (Fig. 2a and 
Supplementary Data 5). We constructed a protein catalogue from all 
medium- and high-quality MAGs clustered at 95% amino acid identity, 
yielding 63.8M unique proteins.

We compared our prokaryotic genome and protein catalogues to 
the Unified Human Gastrointestinal Genome (UHGG) catalogue of 
4,744 prokaryotic species representatives and the Unified Human Gas-
trointestinal Protein 95 (UHGP95) catalogue of 20.5M proteins. The 
AWI-Gen 2 dataset includes 1,005 new prokaryotic MAGs relative to 
UHGG (Fig. 2b,c), and 7.6M new proteins relative to UHGP95 (Extended 
Data Fig. 7a). Most new bacterial MAGs fall under the phyla Bacillota A, 
Actinomycetota and Bacillota. We also observe 29 unique MAGs from 
the archaeal phyla Methanobacteriota, Thermoplasmatota and Halo-
bacteriota (Fig. 2d), and nine are not found in the UHGG, indicating that 
the AWI-Gen 2 population contains substantial archaeal novelty. Most 
individual samples yielded several previously unknown prokaryotic 
genomes and tens of thousands of new proteins relative to reference 

Table 1 | Site-level health and demographic summary statistics

Nanoro,  
Burkina Faso

Navrongo, Ghana DIMAMO,  
South Africa

Agincourt,  
South Africa

Soweto,  
South Africaa

Nairobi, Kenya

HDSS catchment area, km2 594 1,675 545 420 200 6

HDSS catchment area population 63,000 156,000 36,000 115,000 1,200,000 75,000

Population density per km2 105 91 113 274 6,357 14,833

Map coordinates 12.68N, 2.19W 10.89N, 1.09W 23.72S, 29.78E 24.82S, 31.26E 26.24S, 27.84E 1.25S, 36.89E
1.31S, 36.87E

Altitude, m 313 196 1,250 400–600 1,632 1,790

Household size, median (IQR) 12 (7, 20) 6 (5, 7) 5 (3, 7) 5 (3, 7) 4 (2, 6) 4 (2, 6)

Electricity (%) 3.9 33.9 98.0 99.6 98.2 82.9

Age, median (IQR) 50 (48, 53) 55 (52, 61) 53 (50, 57) 61 (54, 68) 54 (50, 58) 50 (48, 53)

Prevalence of HIV in this study

 Seronegative, n (%) – – – 341 (80.6) 164 (75.6) 216 (90.4)

 Seropositive, +ART, n (%) – – – 60 (14.2) 50 (23.0) 19 (7.9)

 Seropositive, −ART, n (%) – – – 22 (5.2) 3 (1.4) 4 (1.7)

Body mass index, mean ± s.d. 21.3 ± 3.7 21.1 ± 4.0 33.7 ± 8.0 29.8 ± 6.8 32.8 ± 6.7 29.6 ± 6.1

Geographic and population density statistics summarize the catchment area of the sites’ surveillance area. Note that the catchment area of the site does not always correspond exactly to 
administrative units for which census data are available. See the Supplementary Methods for a full description of the sites and inclusion criteria. Household size, electricity, age, HIV and  
body mass index statistics are specific to the AWI-Gen 2 Microbiome Project study populations. All HIV+ participants were women; body mass index is shown for women only. 
For normally distributed parameters, values represent the mean ± s.d.; for not normally distributed parameters, values represent the median with IQR (P25, P75). Categorical variables are  
represented by counts and percentages. GPS coordinates (decimal degrees) are listed twice when catchment area surveys from two distinct areas. 
+ART, participant reports currently receiving antiretroviral therapy; −ART, participant does not report currently receiving antiretroviral therapy. 
aThe Soweto study area is managed by the SAMRC/Wits Developmental Pathways to Health Research Unit, not an HDSS.
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collections (Extended Data Fig. 7b,c), with individuals in Nanoro  
contributing the most new genomes per individual.

Relative to recent large gut microbiome metagenomic datasets from 
other populations around the globe43–47, 598 MAGs are unique to the 
AWI-Gen 2 study, a much larger number than those contributed by other 
studies from outside the African continent (Extended Data Fig. 7d). Fur-
ther, rarefaction analysis of the prokaryotic genomes (Extended Data 

Fig. 7e) and proteins (Extended Data Fig. 7f) generated from samples 
across each of the six study sites indicates that no feature has reached 
saturation. Crucially, these results imply that further measurement 
of gut microbiomes in these communities will continue to show new 
microbiome diversity.

The extensive AWI-Gen 2 microbial genome catalogue enables inves-
tigation of taxa that cannot be studied using standard microbiological 
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techniques. One example is T. succinifaciens, a commensal anaerobic 
bacterial species in the phylum Spirochaetota that is non-spore form-
ing, consumes a wide range of sugars and produces short-chain fatty 
acids and succinate48. T. succinifaciens is thought to be present in rural 
hunter-gatherer, pastoralist and agriculturalist populations, and lost 
in urban populations17,40. The first phase of AWI-Gen identified that 
T. succinifaciens is indeed present in urban populations33; however, 
we observe that T. succinifaciens abundance is inversely correlated 
with population density (Fig. 1e). Despite the emerging interest in this 
gut commensal, T. succinifaciens dispersal and acquisition are poorly 
understood.

Treponema are difficult to culture, making MAG catalogues an invalu-
able resource for understanding their biology. One complete genome 
from a cultured T. succinifaciens is available48, and this type strain was 
isolated from the swine gut49. Only 71 high-quality T. succinifaciens 
MAGs exist in UHGG, predominantly from human gut samples from 
populations in Madagascar, Peru and Fiji. Our genome catalogue 
includes 244 high-quality MAGs for T. succinifaciens, primarily from 
sites with low population density (Extended Data Fig. 8a and Supple-
mentary Data 6). T. succinifaciens genomic features are characteristic of 
host-adapted microbes: regardless of site of origin, genome lengths are 
relatively small (2.52 ± 0.15 megabases; Extended Data Fig. 8b), and their 
shared core genome of 1,589 genes constitute most of each genome 
(68.59% ± 3.95%; Extended Data Fig. 8c). T. succinifaciens genomes from 
this study and others43,50 cluster by geographic origin, demonstrating 
a strong phylogeographic signal (Extended Data Fig. 8d; P = 0.001), 
further supporting a hypothesis of limited environmental dispersal.

We sought to further explore T. succinifaciens presence and absence 
in the AWI-Gen 2 population. In Nanoro, Burkina Faso and Navrongo, 
Ghana, where T. succinifaciens prevalence is high, individuals with  
T. succinifaciens reported less recent antibiotic use (P = 0.0075; Fig. 2e), 
and had a lower hip circumference (P = 0.012; Fig. 2f). Consistent with 
T. succinifaciens absence among individuals with recent antibiotic use, 
T. succinifaciens genomes have low prevalence of antibiotic resistance 
genes, excepting three genes related to vancomycin resistance (Fig. 2g). 
As vancomycin inhibits cell-wall synthesis in Gram-positive bacteria 
and T. succinifaciens is a Gram-negative bacterium, these genes may 
not be directly related to vancomycin resistance, but instead related 
to cell-wall synthesis and modification. Although this analysis does 
not capture antibiotic resistance genes on mobile genetic elements, 
it suggests limited antimicrobial resistance within the core genome. 
The association between T. succinifaciens presence and lower hip cir-
cumference may imply a connection between diet, nutrient availability 
and T. succinifaciens persistence. CAZyme profiling of high-quality 
MAGs within the Spirochaetota phylum demonstrates a broad gly-
coside hydrolase repertoire across species, and that T. succinifaciens 
has capacity to degrade hemicellulose and starch (Fig. 2h), indicating 
potential for T. succinifaciens loss during shifts to low fibre diets. We also 
observe that 58% of T. succinifaciens glycoside hydrolases are found in 
95% of the T. succinifaciens genomes, implying that these genes are part 
of the core genome and probably vertically inherited rather than hori-
zontally acquired. Together, these findings connect human exposure 
and phenotype data to T. succinifaciens persistence, and demonstrate 
how MAG catalogues built from populations in understudied areas can 
be used to investigate bacterial biology.

Viral fraction across sites
Although most gut microbiome research focuses on prokaryotes, this 
sample collection also represents a source of viral diversity. We gener-
ated a viral genome catalogue from all metagenomic assemblies and 
clustered all genomes at 95% ANI (Supplementary Data 7). Of 44,506 
viral genomes, 381 are present at the assembly level in at least 18 indi-
viduals (about 1% prevalence) (Fig. 3a), and 2,701 (4.65% of the cata-
logue) are observed in at least 1% of participants in at least one study 

site. Similar to bacterial taxa, some genomes have higher prevalence 
in South African sites and others have higher prevalence in Nanoro and 
Navrongo. We compared the viral catalogue with the Metagenomic 
Gut Virus (MGV) catalogue of 54,118 viral operational taxonomic units, 
and find 40,135 new viruses relative to MGV (Fig. 3b). On average, each 
individual microbiome yielded dozens of new genomes relative to MGV 
(Extended Data Fig. 9a) and relative to a more recent viral catalogue51 
(Extended Data Fig. 9b). Rarefaction indicates that this catalogue 
has not saturated viral discovery among the AWI-Gen populations 
(Extended Data Fig. 9c). Viral richness, measured as the number of 
assembled genomes per sample, does not follow the same population 
density site gradient as prokaryotic richness (Fig. 3c), even though 
prokaryotic and viral richness correlate well (Extended Data Fig. 9d). 
These findings were independent of sequencing depth (Extended Data 
Fig. 3b) and richness trends are similar with reference-based phage 
profiling (Extended Data Fig. 9e).

Crassvirales, an order of abundant gut dsDNA bacteriophage, is 
prevalent across all sites (Fig. 3d). This finding is consistent with pre-
vious descriptions of crAss-like genera having 77% global prevalence52. 
P-crAssphage, the first discovered representative of the clade, is more 
prevalent in Soweto relative to other sites, again consistent with previ-
ous findings of low p-crAssphage prevalence in populations residing 
outside urban and highly industrial contexts53. We also identified sev-
eral jumbophages (phages with genomes larger than 200 kilobases 
(kb)) and identified nine previously unknown jumbophages, with 
stringent thresholds of maximum alignment length of less than 10% 
to any genome in MGV and presence at the assembly level in at least 
five individuals (Fig. 3e). These jumbophage genomes largely consist 
of genes with no predicted functional annotation, but contain several 
features that relate to persistence in the host, including CRISPR arrays, 
sporulation regulators, addiction module toxins and large suites of 
tRNAs (Supplementary Data 8). These phages are prevalent in the stud-
ied cohort, with all reported new jumbophages reaching a prevalence 
of at least 5% in at least one site (Extended Data Fig. 9f). Further, one 
phage (phage A) shows evidence of integration into a Clostridium sp., 
and both phages A and G have unidirectional gene orientation. These 
results indicate the existence of several highly prevalent jumbophages 
that evaded previous discovery due to the narrow scope of previous 
population studies.

Taxonomic associations with HIV status
Finally, we investigated the relationship between the gut microbiome 
and HIV status. HIV represents one of the biggest public health concerns 
in the Kenyan and South African AWI-Gen study populations, especially 
as a rapidly increasing number of people aged 50 and older are living 
with HIV because of high antiretroviral therapy (ART) uptake: HIV preva-
lence was 17.2% among individuals aged 50–64 years in South Africa in 
201754 and 9.1% among individuals aged 45–54 years in Kenya55. Despite 
advances in ART that have reduced population viral load and transmis-
sion, viral suppression is not sufficient to control HIV-related mortality 
and morbidity56, thus motivating deeper investigation into the gut 
microbiome as a possible mediator. Gut microbiota and their metabo-
lites have been implicated in HIV-related inflammation and immune 
activation: gut-associated lymphoid tissue serves as a main reservoir 
for HIV57, and gut microbial metabolites can promote HIV transcrip-
tion58. In turn, HIV infection can diminish epithelial barrier integrity59, 
allowing for microbial translocation that promotes immune activation 
and chronic inflammation60. Moreover, obesity has become a notable 
problem for individuals on the latest generation of ART such as dolute-
gravir61. In HICs, microbiome dysbiosis in people living with HIV (PLWH) 
is characterized by an enrichment of Pseudomonadota and depletion 
of Bacteroidota60,62. Perhaps confounded by a Prevotella-enrichment 
signature often observed in men who have sex with men63, it has even 
been described that the microbiomes of PLWH seem more similar to 
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seronegative individuals in agrarian populations64. Few studies have 
measured associations between the gut microbiome and HIV status in 
African populations14,65–67, where baseline microbiome composition 
and disease profiles are distinct from those observed in HICs. Instead, 
studies have largely focused on men in HICs and have often been con-
founded by sexual practice.

We compared microbiome composition between women living with 
HIV on ART and seronegative (HIV−) women in Agincourt (PLWH n = 60; 

HIV− n = 341), Soweto (PLWH n = 50; HIV− n = 164) and Nairobi (PLWH 
n = 19; HIV− n = 214) (Fig. 4a). HIV status was not assessed in Nanoro and 
Navrongo because of low population prevalence, and DIMAMO was 
excluded from this analysis because only six individuals were found to 
be living with HIV. Our dataset also included participants with positive 
HIV status, but not self-reporting as receiving ART (Supplementary 
Data 9), possibly because they learned of their HIV diagnosis in the 
course of participation within AWI-Gen 2. Because of the low number 
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of ART-naive PLWH in our dataset, we focused our analysis on HIV− and 
ART+ PLWH participants (see Extended Data Fig. 10 for comparison 
between ART+ and ART− PLWH). Prevalence of tuberculosis co-infection 
was low among PLWH (n = 6 individuals reported being on active treat-
ment for tuberculosis) (Supplementary Data 9). Beyond co-infection, 
we do not expect many demographic differences between the HIV− 
and PLWH populations, but observe that PLWH are younger than HIV− 
individuals in Agincourt and Soweto, and have lower cholesterol in 
Nairobi and slightly lower waist-to-hip ratio in Agincourt (Extended  
Data Fig. 10).

First, we compared the microbiome composition of PLWH and HIV− 
individuals using alpha- and beta-diversity metrics. Consistent with 
previous descriptions14, alpha-diversity is lower in PLWH overall and 
within each study site (Fig. 4b). In terms of the beta-diversity, HIV status 
significantly varies over the second principal coordinate axis (PCo1 
P = 0.10, PCo2 P = 6.2 × 10−12, Wilcoxon test) but is again outweighed 
by site differences (PCo1 P = 1.4 × 10−9, PCo2 P = 2.3 × 10−28, Kruskal– 
Wallis test) (Fig. 4c).

To identify specific taxa that vary with HIV status, we performed 
differential abundance testing with a linear mixed effect model that 
accounted for confounders such as site, antibiotic treatment or recency 
of diarrhoea. After correcting for multiple testing with the Benjamini–
Hochberg procedure reported with a q-value, 131 prokaryotic species 
had significant differences with HIV status (q-value < 0.01) (Fig. 4d and 
Supplementary Data 10), most of which were lower in PLWH, agree-
ing with the finding of lower prokaryotic diversity in PLWH. Overall, 
the effect sizes generally agree across sites, with Nairobi exhibiting 
smaller effect sizes because of a lower number of PLWH. Some of the 
most significantly associated (q-value < 1 × 10−5) (Fig. 4d) taxa have 
been associated with HIV status in other cohorts: Faecalibacterium 
prausnitzii is a known butyrate producer that has been associated with 
reduced inflammatory biomarkers, and has been negatively associated 
with HIV status previously, probably because of increased oxygen levels 
in the gut during HIV infection68,69. By contrast, the genus Fusobacte-
rium has well-described pro-inflammatory associations with HIV and 
other diseases70, and has been associated with poor immune recovery 
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following ART administration71 and shown potential to reactivate latent 
HIV58. Interestingly, other taxa that are negatively associated with HIV, 
including Ventricola sp., Faecousia sp. and Limivicinus sp., are better 
represented in metagenomic studies focused on livestock72. Other taxa 
that are positively associated with HIV have conflicting associations 
with inflammatory disorders: Dysosmobacter welbionis is a recently 
isolated gut bacterium that has not been characterized in the con-
text of HIV, but has been shown to counteract diet-induced obesity 
and improve glucose tolerance73,74. Megamonas uniformis has been 
described as enriched in PLWH75, but has discordant associations with 
inflammation and obesity76,77. These results highlight the value of inves-
tigating microbiome and disease associations in broader cohorts, as we 
observe several taxa that are not present in studies conducted in HICs.

To explore which microbial features can differentiate HIV status within 
and across sites, we trained machine learning models for each site indi-
vidually and for all data combined (Fig. 4e,f). The goal of these models 
is to identify features that are strongly associated with HIV status in one 
or several populations as targets for future study; it is not proposed as a 
diagnostic. The models achieved accurate distinction between HIV− and 
PLWH individuals in all sites, yielding area under the receiver operating 
characteristics (AU-ROC) of more than 0.75 in all cases. When transferred 
across sites, only the model trained on data from Agincourt maintains 
high classification accuracy (Fig. 4f), perhaps because of the larger data-
set available for model training. In line with this hypothesis, when data 
from two sites were combined in a leave-one-site-out (LOSO) validation, 
samples from the left-out site are accurately classified (AU-ROC ≥ 0.85 
in all cases), even when samples from Agincourt are not used for train-
ing. As another test for generalization, we calibrated the model trained 
on all data to an internal 5% false positive rate and applied it to samples 
from Nanoro, Navrongo and DIMAMO (Fig. 4g). Even though informa-
tion about HIV status in Nanoro and Navrongo is not available, we can 
assess the fraction of samples predicted to be HIV positive, which we 
would not expect to exceed 5% given the population HIV prevalence 
in these sites and our model calibration. Indeed, the model predicts 
very few samples to be HIV positive (3.1% in Nanoro, 3.7% in Navrongo), 
highlighting its specificity, and correctly classifies two thirds of the 
HIV-positive samples from DIMAMO (Fig. 4g).

We also considered the viral fraction of the microbiome of PLWH. 
Phage richness is lower in PLWH on ART compared with seronega-
tive individuals, and is not significantly different between PLWH who 
are receiving ART and who are ART-naive (Extended Data Fig. 10). We 
observe 89 phages that show significant differences in abundance 
with HIV status (q-value < 0.01) (Supplementary Data 11), but find 
that machine learning models trained on the viral features achieve 
less accurate distinction between seronegative individuals and PLWH 
than models trained on prokaryotic features (Extended Data Fig. 10). 
Future work may identify which viral features are independent of their 
host bacterial abundance and have independent associations with 
HIV status.

Overall, HIV-associated microbiome differences are consistent across 
study settings, despite the strong effect of study context on overall 
microbiome composition. Some strongly associated taxa have been 
described in the context of HIV previously, but we also identify taxa that 
have not been well-described in human gut microbiomes or in microbial 
associations with disease. Although single-time-point sampling cannot 
determine causality or whether microbiome changes precede or follow 
HIV infection and ART administration, these results lend insight into 
possible targets for gut remediation.

Discussion
In 2007, the Human Microbiome Project set the goal of measuring 
the human microbiome and its contribution to disease6. Subsequent 
studies have built upon this goal, studying the human microbiome in 
large cohorts in HICs8,9. Here, 17 years later, the AWI-Gen 2 Microbiome 

Project is a landmark collaborative research effort that extends these 
goals to diverse LMIC populations in Africa: rural and predominantly 
horticultural areas (Nanoro, Burkina Faso and Navrongo, Ghana), rap-
idly transitioning rural areas (Agincourt and DIMAMO, South Africa), 
urban industrial informal settlements (Viwandani and Korogocho 
settlements in Nairobi, Kenya) and an urban post-industrial settle-
ment (Soweto, South Africa). This is the largest cross-sectional and 
population-based survey of gut microbiome composition in relation 
to human health, environment and disease in low- and middle-income 
settings, and will prove invaluable in future microbiome discovery 
research.

This study enables comparison between populations that span a 
range of subsistence strategies and resource access. Site has a strong 
effect on microbiome variation, with alpha-diversity and taxon preva-
lence correlating with gradients in population density and resource 
access. Unexpectedly, we observe differences between sites that have 
similar subsistence strategies and industrialization levels. For exam-
ple, Bifidobacterium and Cryptobacteroides have similar abundance 
in Nairobi and Soweto, whereas abundances of Prevotella, Bacteroides 
and Phocaeicola in Nairobi are more typical of the rural and semi-rural 
sites. HDSS data can contextualize these findings: Nairobi informal set-
tlements have high in- and out-migration rates, and extensive circular 
migration38,42. Paired phenotype and metagenomic data also provide 
insights into taxonomic composition. For example, we identify genomic 
and host phenotype features that define a diet-related nutrient niche 
that supports T. succinifaciens persistence, and predict sensitivity to 
antibiotics that may drive T. succinifaciens loss. Here and previously33, 
we have found Treponema in the guts of urban individuals, perhaps 
because of low rates of antibiotic exposure or high rates of circular 
migration between urban and rural areas. These findings underscore 
the complex interplay between subsistence, industrialization and life-
style factors in shaping the gut microbiome.

Our shotgun sequencing approach yielded assembly-based discovery 
of 40,135 previously unknown viral genomes. We identify nine new and 
prevalent jumbophages, including a putative integrated jumbophage, 
and jumbophages with intriguing unidirectional gene organization. 
To our knowledge, unidirectional gene organization is undescribed 
in jumbophages, and may be indicative of phage integration into a 
host with leading strand-biased gene distribution; indeed, the flanking 
regions of putative integrated Phage A map to a Clostridium species, and 
Bacillota have been previously described to have strong strand-biased 
gene distribution78. These findings provide an exciting opportunity for 
deeper study of previously unknown phages and their hosts.

AWI-Gen’s population-representative enrollment paired with clinical 
and lifestyle information also support the capture of population-level 
disease associations. HIV is prevalent in South Africa and Kenya, and 
improved viral load management with ART is not sufficient to protect 
against HIV-associated comorbidities56. This study represents one of 
the largest microbiome studies of women with HIV so far, and provides 
unique insights into microbiome–HIV associations in LMICs. Several 
taxa are enriched in PLWH receiving ART relative to seronegative par-
ticipants, including taxa that have not been well-described in the con-
text of HIV and inflammation. We cannot conclude whether these taxa 
are enriched in response to HIV infection, HIV-related comorbidities 
or antiretroviral medication, or whether taxa pre-existed HIV infec-
tion because of lifestyle or exposure differences in at-risk individuals. 
These results further demonstrate that existing disease associations 
are probably not broadly portable across global populations, and more 
research is necessary to disentangle the effects of HIV infection and 
other confounding variables on microbiome composition.

We emphasize that the AWI-Gen 2 Microbiome Project does not 
exhaustively represent any country or region. There is tremendous 
diversity within LMIC populations, and population density alone is not a 
sufficient indicator of microbiome composition or population lifestyle. 
Rather, the microbiome field needs to improve representation of LMIC 
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populations to maximize sampling diversity and ensure portability of 
study findings. Even within this study, we focus on older adult women. 
Although sex differences have less impact on microbiome composition 
than other factors79, these studies may not capture health and lifestyle 
differences that may exist between sexes in LMICs. We also specifically 
highlight key variables that explain the greatest amount of microbial 
variation, leaving several disease and lifestyle variables open for future 
investigation. For example, we do not consider diet, which varies greatly 
across the AWI-Gen study populations and across LMIC contexts. We 
also acknowledge the limitations of identifying causality in microbiome 
associations with disease within this study design. We anticipate that 
longitudinal sampling of these populations and others will improve 
our understanding of the timing of microbiome changes in relation to 
HIV infection and other diseases. Further studies can also incorporate 
other microbiome measurements, such as eukaryotic profiling, to 
explore the complex relationship between eukaryote infection and 
immune activation, or total microbial concentration quantification to 
shed light on whether the taxonomic shifts observed in this study are 
due to blooms or losses of specific taxa. Future work can leverage the 
extensive AWI-Gen 2 participant data and more quantification methods 
to investigate the interplay between the microbiome and host genetics, 
environmental exposures, health status and participant demographics.

We strove to conduct the AWI-Gen 2 Microbiome Project ethically and 
equitably, taking into account recommendations for ethical research 
partnerships26,27,80. AWI-Gen hires field workers locally through the 
community-embedded infrastructures, and study staff host commu-
nity advisory group discussions before study onset and return results 
to participants upon study completion. Through community discus-
sions, the research team can identify pressing health issues within each 
study centre and ensure that research questions prioritize community 
needs. This study represents a strong scientific partnership between 
Stanford University in the USA and University of the Witwatersrand 
in South Africa. Trainees and faculty from both groups contributed 
to study design and data analysis, and a trainee from each institution 
has participated in a one-year research exchange with mentorship 
from both institutions. Further, the team has led three microbiome 
and bioinformatic training workshops to support genomics research 
capacity in South Africa. Altogether, this study illustrates that equitable 
research and impactful science do not represent a ‘zero-sum’ trade-off, 
but in fact lead to more robust research with benefit-sharing among 
all stakeholders.

The AWI-Gen 2 Microbiome Project contributes to advancing the inves-
tigation of human gut microbiomes from diverse populations around 
the globe. The study provides extensive opportunities for continued 
exploration, including identifying microbiome and disease associations, 
measuring human genetic contributions to microbiome composition, 
and defining lifestyle factors that shape microbial community assembly. 
Future studies can leverage these data, along with the foundation for 
community-engaged and equitable research described herein, to close 
the gap in global representation in microbiome research. Moreover, 
there is every reason to anticipate that the platforms and findings that 
emerge will enhance disease management, health and wellbeing among 
communities living in a diversity of contexts.
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Methods

Ethics approval
Human subjects research approval was obtained (University of the 
Witwatersrand Human Research Ethics (Medical) Committee Clearance 
Certificate No. M170880, M2210108), and ethics approvals were also 
obtained at each study centre. Informed consent was obtained from 
participants for all samples collected. Every participant was provided 
with an information sheet and consent documents, either in English or 
translated into the local language. Participants had opportunities to 
discuss concerns with the interviewer, and participants who could not 
read or write had documents read aloud with a witness31. The Stanford 
University Institutional Review Board deemed that the de-identified 
data transferred to Stanford University do not constitute human sub-
jects research and thus did not require a further ethics approval beyond 
the human subjects research approval obtained at the University of 
the Witwatersrand.

Community engagement
Each study centre conducted pre-study engagement before recruit-
ment during both AWI-Gen 1 and AWI-Gen 2, adapting to the local con-
texts to engage with community members and discuss feedback and 
concerns related to the study. For example, in DIMAMO, South Africa, 
pre-study engagement involved meeting with tribal leaders, the com-
munity advisory team and community representatives. In Navrongo, 
Ghana, the community engagement team visited chiefs and elders of 
the various study communities and informed them of the proposed 
study, and followed up with a community sensitization gathering before 
AWI-Gen 1 with a larger audience of chiefs, elders and people of the study 
communities. The community durbar was excluded from AWI-Gen 
2, because of the continuing COVID-19 outbreak. In Nairobi, Kenya, 
the community engagement team held several consultative meetings 
with members of the community advisory committee, village elders, 
community health volunteers and AWI-Gen study participants before, 
during and after the study. The village elders and community health 
volunteers were crucial in mobilizing study participants who could not 
be reached by telephone. Questions from participants were related 
to how blood and stool samples would be used and why the study was 
focused on women. If during recruitment and sample collection there 
were notable health concerns28 (for example, hypertension), the partici-
pants are referred into their clinical health-care service infrastructures. 
These mechanisms and processes varied from country to country and 
for sites within a country, depending on resources and local context.

Study design and cohort selection
Inclusion criteria included previous participation in the AWI-Gen 1 
study28 and continued participation in the AWI-Gen 2 study. This AWI-Gen 
2 microbiome study is a companion study to an AWI-Gen 2 menopause 
study, and so only participants self-identifying as female were surveyed 
for the microbiome sub-study. A small number of men were recruited 
owing to a fieldwork mix-up. Given the understudied nature of these 
populations, we did not fully exclude samples from men in downstream 
analyses; rather, samples from men were excluded from site comparisons 
and disease associations, but included when cataloguing genomic nov-
elty. Participants were chosen semi-randomly from the overall AWI-Gen 
2 participant pool, with extra measures taken to ensure a cross-section of 
individuals with respect to menopause status and hypertension. See Sup-
plementary Methods for extended recruitment details.

A harmonized approach for stool sample collection was implemented 
in all study sites to ensure equal temperature exposures and handling 
of all samples. In Soweto, Nairobi and Nanoro, participants came to 
central locations for interviews and biomarker collection. Participants 
were given stool sample collection kits that were either collected the 
same day or collected from their homes or at a central location in the 
following days. At the Navrongo, DIMAMO and Agincourt study centres, 

participants were visited in their homes for interviews and biomarker 
collection. Participant phenotype data and survey information were 
stored in REDCap servers based in South Africa, Burkina Faso, and 
Ghana (v.9 to v.13, regularly updated through the course of the study). 
Participants were given a stool sample collection kit to use at their 
home, which was collected by fieldworkers within 24 h.

Each participant self-collected a single stool samples using an OMNI-
Gene GUT OMR-200 Collection Kit (DNA Genotek). This preservation 
kit maintains DNA integrity and taxonomic composition across a wide 
range of ambient temperatures81, including the temperatures that 
are experienced year-round at each of the study sites. Samples were 
immediately frozen at study centres and then collectively shipped 
frozen to a central laboratory in Johannesburg, South Africa, where 
they were thawed, aliquoted into cryovials and stored at −80 °C. After 
obtaining necessary exportation and importation permits, all samples 
were shipped on dry ice in a single shipment to the United States for 
downstream processing. Samples were thawed once more to retrieve 
aliquots for DNA extraction. We previously conducted analysis to 
ensure that storage and shipping conditions would not significantly 
affect measured microbial composition81. Altogether, this approach 
minimized any technical confounders that would have coincided with 
study site, and we do not anticipate any other site-level methodological 
variation that would affect sample composition. Participant metadata, 
including age, demographic information, health history and blood 
biomarkers were collected as part of the larger AWI-Gen 2 project, with 
methods similar to those used in AWI-Gen 1 (ref. 31).

DNA extraction and metagenomic sequencing
All stool samples were extracted at the same time, in the same facility 
to minimize batch effect. DNA was extracted from samples using the 
QIAamp PowerFecal Pro DNA Kit (Qiagen, catalogue no. 51804) from 
300 µl of stool sample according to manufacturer’s instructions. Bead 
beating was performed for 10 min at 30 Hz, followed by rotation of 
the adapter and an extra 10 min of bead beating using a TissueLyser II 
(Qiagen, catalogue no. 85300) using a 2-ml Tube Holder Set (Qiagen, 
catalogue no. 11993), and DNA extractions were eluted with C6 Elution 
Buffer in a final volume of 80 µl. DNA concentration was quantified by 
spectrophotometer using the DropSense 96 platform (Trinean, cata-
logue no. 10100096). Every extraction batch of 96 samples included 
one water blank as a negative control and one mock community aliquot 
(Zymo Research, catalogue no. D6300) as a positive control.

All libraries were prepared concurrently at the same facility and 
sequenced at the same time across several flow cells. Samples were 
evaluated for concentration, integrity and purity before library prepa-
ration using the 5400 Fragment Analyzer System (Agilent, catalogue 
no. M5312AA). Metagenomic libraries were prepared using the NEB 
Ultra II kit (NEB, catalogue no. E7645L) according to the manufacturer’s 
instructions. Library concentration was quantified using quantita-
tive polymerase chain reaction and fragment length distribution was 
analysed using a 2100 Bioanalyzer (Agilent, catalogue no. G2939BA). 
Libraries were pooled and 2 × 150-base-pair reads were generated using 
the NovaSeq 6000 platform (Illumina, catalogue no. 20012850).

Metagenomic read preprocessing and taxonomy profiling
Metagenomic reads were deduplicated using HTStream SuperDeduper 
v.1.3.3 with default parameters, trimmed using TrimGalore v.0.6.7 
with a minimum quality score of 30 and a minimum read length of 60. 
Reads aligning to version hg38 of the human genome were removed 
using BWA v.0.7.17 (ref. 82). Metagenomic reads were taxonomically 
profiled using mOTUs v.3.0.3 (ref. 83) and counts were distributed to 
GTDB84 species using the GTDB_v207 mapping file available as part of 
the mOTUs database.

Given the number of previously unknown bacterial taxa observed 
in our assembly approach (see below), we aimed to better char-
acterize the taxonomic composition by including our assembled 
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bacterial genomes into the mOTUs database. To do so, we extended 
the mOTUs database with the scripts available under https://github.
com/motu-tool/mOTUs-extender/. In brief, marker genes were identi-
fied in all high-quality assembled genomes using fetchMG v.1.2 (ref. 85). 
Those genes were then clustered together with the genes in the mOTUs 
database v.3.0.3. The resulting extended database contained 662 new 
genome clusters and reduced the fraction of unassigned reads for 
nearly all samples. Particularly in samples from Nanoro and Navrongo, 
the new genome clusters carried a large part of the relative abundance 
(Extended Data Fig. 3). For GTDB-level profiling, the GTDB-tk classifica-
tion of our assembled genomes were added to the GTDB_v207 mapping 
file. Unless indicated otherwise, all analyses shown here are based on 
the extended mOTUs database.

All samples were used for metagenome assembly and new feature 
discovery (n = 1,820). Samples from males, one sample with a potential 
label mismatch, and samples with high percentages of human reads 
(percentage of human reads more than or equal to 70%, n = 4 samples) 
were excluded from classification-based analyses and site comparisons, 
leaving 1,796 samples for other analyses.

Participant covariate processing
Extensive participant data were collected as part of the AWI-Gen study, 
including demographic, ethnolinguistic, family composition, preg-
nancy, cognition, frailty, household amenity, substance use, general 
health, diet, infection history, cardiometabolic disease and physical 
activity information. Participants also gave blood, urine and stool sam-
ples, and underwent ultrasound, blood pressure, blood and urine test-
ing for various metrics. Not all data were available for every participant, 
and some participants gave stool samples for microbiome analysis 
but did not complete other testing or questionnaires. At the time of 
analysis for the microbiome study, not all participant data had gone 
through quality control. In total, 59 variables were available to use as 
covariates in the microbiome study.

Before using covariate data in microbiome analysis, we first collapsed 
the covariate dataset to only those variables that we expected to be 
most meaningful to avoid unnecessary multiple-hypothesis testing 
and measuring associations between dependent variables. First, we 
removed variables that had overwhelmingly missing data, excluding 
those that had entries for 100 or fewer participants (for example, sev-
eral ultrasound measurements). Second, we filtered variables with not 
enough unique values (such as sex, which had only one group). Lastly, we 
excluded variables with an entropy (calculated with the infotheo pack-
age v.1.2.0.1 (ref. 86) in R) of less than 0.2 to avoid variables that were too 
uniform in the participant set to power comparisons (for example, breast 
cancer or cervical cancer status with only 10 and 12 cases, respectively).

To calculate correlation between covariates and associations bet
ween covariates and microbiome composition, we transformed non- 
numerical covariates into numerical values on the basis of ordered 
factor levels. For example, values for the Menopause covariate were 
changed from Pre-menopausal to 1, from Peri-menopausal to 2 and 
from Post-menopausal to 3. Most covariates were binary (for exam-
ple, Probiotics could contain either the value Yes or No) and were con-
verted to 1 (for Yes) and 2 (for No) in this process. The full list of binary 
variables is: Arthritis, Diabetes status, Diabetes treatment, Hyper-
tension status, Hypertension treatment, Pesticides, Vigorous work,  
Weekend work, HIV medication, HIV status, Cattle, Other livestock, 
Potable water, Poultry, Refrigerator, Toilet, Deworming treatment, Pro-
biotics, Chew tobacco and Smokeless tobacco. The variables describing 
time (Deworming period, Probiotics period, Antibiotics and Diarrhoea 
last) were ordered according to recency with the order WithinLast-
Week < WithinLastMonth < WithinLastSixMonths < WithinLastYear <  
WithinLastTwoYears < WithinLastThreeYears < Longer < Never. Employ-
ment was ordered as Self-Employed < FormalFull-time < FormalPart- 
time < Informal < Unemployed. Site density was ordered as Nanoro <  
Navrongo < DIMAMO < Agincourt < Soweto < Nairobi.

Microbial diversity, composition and site differences
To measure prokaryotic alpha-diversity, species counts were rarefied 
to 5,000 using the rrarefy function available through the vegan R pack-
age v.2.6-4 (ref. 87). Alpha-diversity was measured as inverse Simpson 
index after rarefaction, and prokaryotic richness was measured as 
number of species with relative abundance greater than or equal to 
1 × 10−4 after rarefaction).

Beta-diversity was calculated on the Bray–Curtis distance using the 
vegdist function from vegan87 and the pco function from the labdsv R 
package v.2.1-0 (ref. 88). To assess the amount of variance explained 
by covariates, we undertook distance-based redundancy analysis with 
the dbrda function from vegan. In an iterative manner, the covariate 
explaining the highest amount of variance was added to the model 
formula. To reduce redundancy of highly correlated covariates, all 
available covariates were transformed into numerical values (using 
ordinal factors, whenever applicable) and the Pearson correlation 
between covariates was calculated. In cases of highly correlated covari-
ates (Pearson’s r ≥ 0.8), the covariate that explained the higher amount 
of variance in the prokaryotic composition was chosen for the iterative 
model (Extended Data Fig. 5).

Prokaryotic species prevalence was defined as the fraction of indi-
viduals in a study site in which a given species is found at a relative abun-
dance of more than or equal to 1 × 10−4. The difference between sites 
for individual taxa was calculated using a generalized fold change89. 
In short, instead of comparing the median (the 50% quantile) between 
distributions, the generalized fold change is the mean of the differ-
ences between two distributions at several quantiles and can therefore 
resolve differences also in low-prevalence taxa. Figure 3d shows the 
number of taxa for which the generalized fold change between sites 
exceeds the 90% quantile of all pairwise site comparisons across all 
prokaryotic species.

The number of samples for these analyses (Fig. 1 and associated 
supplements) was distributed across the different sites as follows: 
Nanoro, n = 382; Navrongo, n = 218; DIMAMO, n = 201; Agincourt, 
n = 532; Soweto, n = 226; Nairobi, n = 237.

Metagenome assembly and external dataset comparison
All samples (n = 1,820), including samples for male participants, were 
included in metagenomic assembly analyses (Nanoro, n = 384; Nav-
rongo, n = 235; DIMAMO, n = 203; Agincourt, n = 533; Soweto, n = 226; 
Nairobi, n = 239). Metagenomic reads were assembled using mega-
hit v.1.2.9 (ref. 90) and assembly quality was assessed using QUAST 
v.5.2.0 (ref. 91). Metagenomic assemblies were binned into draft 
genomes using MetaBAT v.2.5 (ref. 92), CONCOCT v.1.1.0 (ref. 93) and 
MaxBin v.2.2.7 (ref. 94), and subsequently dereplicated and aggre-
gated on a per-sample basis using DAS Tool v.1.1.6 (ref. 95). Bin quality 
was assessed using CheckM v.1.2.2 (ref. 96). To create a dereplicated 
genome set, MAGs were dereplicated using dRep v.3.4.3 (ref. 97), filter-
ing to only include genomes with a minimum CheckM completeness 
of 50% and maximum CheckM contamination of 5%. In dereplication, 
we implemented a primary clustering threshold (-pa) of 0.9 and sec-
ondary alignment threshold (-sa) of 0.95, requiring minimum overlap 
between genomes (-nc) of 0.3, using multiround primary clustering 
(--multiround_primary_clustering) and greedy secondary clustering 
with fastANI v.1.33 (ref. 98) (--greedy_secondary_clustering, --S_algo-
rithm fastANI) to reduce the computational complexity of derepli-
cating a large genome set. For dereplication, cluster representatives 
were chosen using scoring criteria that included a completion weight 
(-comW) of 1, contamination weight (-conW) of 5, N50 weight (-N50W) 
of 0.5, size weight (-sizeW) of 0, and centrality weight (-centW) of 0. 
Genome filters and scoring were consistent with standards used in the 
UHGG50. The final genome set was taxonomically classified and placed 
in a tree with GTDB-tk v.2.3.0 (ref. 99) using the GTDB r214 catalogue 
and default parameters. Phylogenetic trees were visualized with iTOL 
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v.6 (ref. 100). The dereplicated prokaryotic genome set was compared 
against the UHGG v.2.0.1 species representatives using dRep v.3.4.3 
with the same parameters as previously stated above.

Protein-coding genes were predicted from each medium-quality and 
high-quality prokaryotic genome, before genome dereplication, using 
prodigal v.2.6.3 (ref. 101) with parameters -c -p meta to exclude partial 
genes. Putative proteins were clustered successively using mmseqs 
v.14.7e284 (ref. 102) linclust command with alignment coverage (-c) 
of 0.8 in target coverage mode (--cov-mode 1) and greedy secondary 
clustering (--cluster-mode 2) at 100% and 95% amino acid identity 
(--min-seq-id). The 95% identity protein set was compared against the 
UHGP95 v.2.0.1 proteins using mmseqs v.14.7e284, and proteins sharing 
95% amino acid identity over 80% of the UHGG protein were considered 
to match the UHGP set.

Modelled accumulation of previously unknown prokaryotic genomes 
and proteins with further participant sampling was determined by 
randomly subsetting the full participant set or site-specific participant 
sets to a range of individuals (1–1,500) in 100 iterations and counting the 
number of prokaryotic genome cluster or protein clusters represented 
by the participant subset.

Comparison with external metagenomic studies (Extended Data 
Fig. 7) used the same pipelines for read preprocessing, assembly and 
binning, with the exception of Carter et al.43 who published a MAG 
catalogue. All genomes from the UHGG, AWI-Gen 2 and external 
metagenomic studies were dereplicated using the same parameters 
as described above.

Treponema succinifaciens core genome analysis and functional 
profiling
We evaluated the complete set of T. succinifaciens MAGs in our genome 
catalogue before dereplication. To identify T. succinifaciens genomes, 
we selected all genomes with completeness of more than 90% and con-
tamination less than 5% that fell into a secondary cluster with genomes 
classified as Treponema_D succinifaciens by GTDB-tk in our dereplicated 
genome catalogue (n = 244). Coding sequences were annotated with 
bakta v.1.8.2 (ref. 103). Core genes, defined here as genes present in 
at least 80% of genomes, were identified with roary v.3.12.0 (ref. 104).

Public T. succinifaciens genomes with completeness of more than 90% 
and contamination less than 5% were downloaded from the UHGG50, 
Carter et al.43 and National Center for Biotechnology Information 
(NCBI). To build a global phylogenetic tree, core genes were identi-
fied and incorporated into a core gene multiple sequence alignment 
using roary v.3.12.0 (ref. 104) and MAFFT v.7.407 (ref. 105). The core 
gene multiple sequence alignment was used as input to FastTree v.2.1.11 
(ref. 106), and the resulting phylogenetic trees were visualized in iTOL 
v.6 (ref. 100). Phylogeographic signal was statistically quantified using 
the same method as Hildebrand et al.107: we calculated pairwise phy-
logenetic distance between all genomes on the basis of branch length 
using DendroPy108, and implement a permuted multivariate analysis of 
variance test with 1,000 permutations with adonis2 (ref. 87) to evalu-
ate whether phylogenetic distances within countries are smaller than 
phylogenetic differences between countries.

Associations between T. succinifaciens presence and host phenotype 
were performed for all participants from Nanoro, Burkina Faso and 
Navrongo, Ghana. Host phenotype measurements included antibiotic 
history, anthropometric measurements, livestock ownership, hyper-
tension status and all biomarkers. Associations were tested using a 
linear model that adjusted for site and for antibiotic history, except-
ing the association with antibiotic history, which only adjusted for 
site. Correction for multiple-hypothesis testing was performed with 
the Benjamini–Hochberg procedure. Antimicrobial resistance profil-
ing was performed with the Resistance Gene Identifier109, and ‘Loose’ 
matches were omitted. Carbohydrate-active enzyme (CAZyme) anno-
tation was performed on all high-quality MAGs from AWI-Gen 2 using 
dbCAN3 v.4.1.4 (ref. 110) with the prok parameter for conservative, 

high-confidence annotations. Substrate annotation was performed 
at the CAZyme family level using the high-level substrate annota-
tions from the dbCAN3 substrate mapping table, and substrates were 
grouped according to biological origin.

Viral fraction characterization
Phage genomes were annotated from metagenomic assemblies with 
VIBRANT v.1.2.1 (ref. 111), and genome quality was determined with 
checkV v.1.0.1 (ref. 112). Redundant genomes from each sample were 
removed by clustering medium- and high-quality genomes using a 
database built with BLAST 2.14.0 (ref. 113), clustering at a minimum of 
95% ANI and 85% alignment fraction using checkV supporting scripts 
with default parameters. Phage richness was measured as the number 
of assembled phage genomes per sample after removal of duplicate 
genomes. A unified catalogue of phage genomes was built by clustering 
the representative phages from each individual using the same cluster-
ing parameters, and this catalogue was compared against the MGV v.1.0 
(ref. 114) vOTU representative phage genomes using the same BLAST 
clustering approach and parameters. Alternate phage profiling using 
read-based classification (Extended Data Fig. 9) was performed with 
Phanta v.1.1.0 (ref. 115) using the combination of MGV and UHGG as the 
reference database. Phage richness measured with Phanta was defined 
as the number of phage species clusters present at greater than or 
equal to 10−5% relative abundance. Differences between alpha-diversity 
metrics across sites were tested with a linear model, using the anova 
function from base R to estimate the significance of the difference. 
Modelled accumulation of previously unknown phage genomes with 
further sampling was performed using the same methods as described 
above for modelled prokaryotic genome and protein accumulation.

Crassvirales and crAssphage prevalence was defined as the fraction 
of individuals with taxon relative abundance of greater than or equal to 
10−5%. Previously unknown jumbophages were defined as viral genomes 
in the dereplicated genome catalogue with length greater than 200 kb  
that did not cluster with an MGV vOTU representative. We further 
filtered the new jumbophages to highlight only jumbophages with 
evidence supporting prevalence and novelty, by including only those 
with assembled genomes present in at least five individuals, and with 
alignment fractions less than 10% against any MGV vOTU representa-
tive. Jumbophage genes were annotated with bakta v.1.8.2 (ref. 103). 
Read-level presence of jumbophages was defined at greater than 0.1 
coverage threshold as measured using CoverM v.0.7.0 (ref. 116).

Association between microbiome features and HIV status
Participants from Agincourt, South Africa, Soweto, South Africa 
and Nairobi, Kenya were included in this analysis. Participants from 
DIMAMO, South Africa were excluded because of the low number of 
PLWH (n = 6). Participants from Nanoro, Burkina Faso and Navrongo, 
Ghana were excluded because HIV status was not measured in these 
populations owing to a low national prevalence of HIV. A total of 848 
participants were included in this analysis, capturing 129 PLWH and 719 
seronegative individuals (Table 1 and Supplementary Data 9). The rest 
of the samples from those sites were either HIV positive, but reported 
not to take ART (n = 28, n = 22 in Agincourt, n = 3 in Soweto, n = 3 in 
Nairobi). Male individuals and individuals with missing/discrepant HIV/
ART data or with low read counts were excluded. Prokaryotic alpha- and 
beta-diversity were calculated as described above.

We undertook differential abundance analysis using a linear mixed 
effect model implemented in the lmerTest R package v.3.1-3 (ref. 117), 
including site, exposure to antibiotics and self-reported recency of 
diarrhoea as random effects, because those factors had shown to be 
related to microbiome composition in the previous analyses. Overall 
effect size was estimated through the lmerTest package as well and gen-
eralized fold change within each site was calculated as described above.

For the machine learning analysis, we trained statistical models using 
the SIAMCAT R package v.2.5.0 (ref. 89) for both all data combined and 
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for each site separately. In short, relative abundances were normalized 
using the log.std method in SIAMCAT. Samples were split for five-times 
repeated fivefold cross-validation (20% of samples were retained for 
testing and not included in model training) and for each split, an 
L1-regularized logistic regression model was trained on the training 
folds, using standard parameters. Model evaluation was performed 
within the cross-validation (for example, within a site) by applying each 
model to the respective left-out test fold. The predictions for each sam-
ple were averaged across repeats and AU-ROC was calculated with the 
pROC package v.1.18.2 (ref. 118). For cross-site evaluation, the external 
data was normalized with the recorded normalization parameters (fro-
zen normalization), all models from the cross-validation were applied to 
the normalized data, and predictions were averaged again for AU-ROC 
analysis. For the LOSO analysis, models were trained as described on 
data from two sites combined (for example, Agincourt and Soweto) and 
were then applied on the data from the left-out site (Nairobi).

To test the fraction of positive prediction in other sites, we calibrated 
the model prediction to an internal 5% false positive rate; that is, recorded 
at which prediction threshold 5% of HIV− samples were incorrectly clas-
sified as PLWH. The model trained on all data combined was then applied 
to the data from Nanoro, Navrongo and DIMAMO to quantify the num
ber of samples that resulted in a prediction above the threshold value.

Viral feature comparison between seronegative individuals, PLWH 
who are ART-naive, and PLWH who are ART+ was performed using phage 
relative abundance profiles generated by Phanta. Phage richness was 
calculated as the number of phage species present at greater than 
or equal to 10−5% abundance in Phanta profiles, as opposed to using 
total count of assembled phages, because Phanta abundance profiles 
have features with sufficient prevalence for differential abundance 
analysis and machine learning models. Differential feature analysis and 
machine learning models were performed using the same methods as 
the prokaryotic analysis above.

Statistical analysis
Statistical analyses were performed with R v.4.1.2 using the statisti-
cal test specified in the respective Methods section. Correction for 
multiple-hypothesis testing was performed with the Benjamini– 
Hochberg procedure119 as implemented in the p.adjust function in base 
R in all analyses where several tests were performed. Plots were gener-
ated in R using the packages ggplot2 v.3.4.2 (ref. 120), cowplot v.1.1.1 
(ref. 121), pheatmap v.1.0.12 (ref. 122) and tidyverse v.2.0.0 (ref. 123).

Ethics and inclusion statement
All authors of this study fulfilled criteria for authorship inclusion, 
and researchers from each study centre are represented as authors. 
Researchers from all institutions were involved throughout the study 
process. Study centre staff facilitated community engagement sessions, 
which identified specific community concerns and determined that this 
study is locally relevant. Roles and responsibilities were agreed upon 
amongst collaborators before conducting the research. Authors of 
this study have led formal capacity-building genomics workshops for 
local scientists during the course of the study (Extended Data Fig. 1), 
along with further informal training. This study has been approved by 
local ethics review committees (Methods). Research pertinent to the 
study centres and led by local researchers has been taken into account 
in the citations.

Reporting summary
Further information on research design is available in the Nature Port-
folio Reporting Summary linked to this article.

Data availability
To maximize public availability of our data while protecting partici-
pants, we have split our data into two sets: sequences that may contain 

human reads, which is available from the European Genome-Phenome 
Archive (EGA) as EGAD00001015463 on application to the H3Africa 
Data and Biospecimens Access Committee; and an open dataset 
available from the NCBI Sequence Read Archive as PRJNA115737 (Sup-
plementary Methods). The dereplicated genome sets are available 
at Zenodo (https://doi.org/10.5281/zenodo.13761309)124. Participant 
phenotype is stored at the EGA under accession EGAD00001015440. 
Participant phenotype data are under restricted access due to eth-
ics requirements of the AWI-Gen 2 study. Applications must be made 
to the independent Human Heredity and Health in Africa Data and 
Biospecimen Access Committee by registering and applying at 
https://catalog.h3africa.org/. The H3Africa Data Sharing Policy can 
be found at https://h3africa.org/wp-content/uploads/2020/06/
H3Africa-Consortium-Data-Access-Release-Policy-April-2020.pdf. 
Decisions on requests made by the third week of the month should be 
made by the end of the subsequent month. Source data for figures is 
available. Classification tables, genome summary statistics, taxon prev-
alence and differential feature tables are available as supplementary 
data. Reference data used in this study are available from the Unified 
Human Gastrointestinal Genome collection in the European Nucleo-
tide Archive under project accession PRJEB33885, the Metagenomic 
Gut Virus catalogue at https://portal.nersc.gov/MGV and the Genome 
Taxonomy Database at https://data.gtdb.ecogenomic.org/releases/. 
The hg38 human reference genome is available at NCBI Genome under 
accession number GCF_000001405.26.

Code availability
Source code for analysis and figure generation is publicly available at 
Zenodo (https://doi.org/10.5281/zenodo.14231329)125 and on GitHub 
at https://github.com/bhattlab/AWIGen2Microbiome.
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Extended Data Fig. 1 | Overview of the AWI-Gen 2 Microbiome study.  
a) Organizational chart of the AWI-Gen 2 project. The partnership, funded by 
the National Institutes of Health under the umbrella of the Human Heredity and 
Health in Africa consortium (H3Africa), includes five Health and Demographic 
Surveillance Sites (HDSSs) and the Soweto MRC/Wits Developmental Pathways 
for Health Research Unit (DPHRU). The HDSSs and DPHRU are managed by the 
Clinical Research Unit of Nanoro Institut de Recherche en Sciences de la Santé 
(CRUN/IRSS), Navrongo Health Research Centre (NHRC), University of Limpopo 
Population Health Research Centre (UoL–PHRC), University of the Witwatersrand 
and the South African Medical Research Council (Wits/MRC), and African 
Population Health and Research Center (APHRC). Researchers from Stanford 

University and the University of the Witwatersrand led the microbiome 
analysis. b) Timeline of the AWI-Gen 2 microbiome study research activities, 
including study administration, sample collection, and community engagement. 
During both AWI-Gen phases, researchers led microbiome and bioinformatic 
workshops for local researchers. Community engagement preceded sample 
collection at all sites, and participants with concerning health-related results 
were referred to their local healthcare facilities in accordance with site-specific 
protocols. Community engagement in Nairobi continued intermittently 
throughout sample collection to accommodate roadblocks during the COVID-19 
pandemic. Post-study engagement was conducted at all sites, and microbiome- 
specific return of results is complete at three study sites.



Extended Data Fig. 2 | Microbiome composition of male and female 
participants in Navrongo, Ghana. a) Prokaryotic richness (number of 
prokaryotic species present at ≥ 1 × 10−4% relative abundance after rarefaction, 
see Methods) in n = 16 males and n = 218 females in Navrongo, Ghana (Wilcoxon 
test, P = 0.027). Points indicate individual samples. (In total, 19 samples from 
male participants were sequenced). b) Generalized fold change between male 
and female participants for all species with a prevalence higher than 5% in 

Navrongo is plotted against the negative log10-transformed q-value 
(Benjamini-Hochberg corrected p-value). Positive values correspond to higher 
relative abundance in males, whereas negative fold change values indicate 
higher relative abundance in female participants. No species meet the 
threshold of significance after correction for multiple testing. For all boxplots, 
boxes denote the interquartile range (IQR) with the median as a thick black line 
and the whiskers extending up to the most extreme points within 1.5-fold IQR.
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Extended Data Fig. 3 | Sequencing depth and database effects on taxonomic 
classification. a) Reads per sample throughout quality control, including 
original read count, and reads remaining after deduplication, end trimming, 
and removal of host reads. P-values indicate Kruskal-Wallis tests with Benjamini 
Hochberg multiple testing correction. b) Spearman correlation coefficient 
(Spearman’s ρ) and R2 for a linear model between phage richness (number of 
assembled phages) or prokaryotic richness (number of prokaryotic species 
present at ≥ 1 × 10−4% relative abundance after rarefaction) and total read count 
and total assembly length (length of the total assembly in base pairs). Points 
represent individual samples. Blue line indicates a linear association model 
with 95% confidence intervals shown as shaded areas. c) Count and relative 

abundance of unassigned reads per sample, as estimated by the mOTUs profiler 
using the original database (v3.0.3) or extended database. d) Spearman’s ρ 
between the original and extended database for each sample, separated by 
study site. Prokaryotic species with abundance of zero in both the original and 
extended database were removed on a per-sample basis. e) The cumulative 
abundance of the genomes added to the database for profiling are shown for 
each sample, separated by study site. Figures represent data from n = 1,796 
samples. For all boxplots, boxes denote the interquartile range (IQR) with the 
median as a thick black line and the whiskers extending up to the most extreme 
points within 1.5-fold IQR.



Extended Data Fig. 4 | Phylum-level differences between AWI-Gen sites and 
in external datasets. a) Spearman correlation coefficient (Spearman’s ρ) 
between principal coordinate values and the relative abundance of selected 
prokaryotic phyla. Phyla with an absolute correlation coefficient higher than 
0.5 for either of the first two principal coordinates are shown (see Fig. 1 in  
the main text). Points represent individual samples and are coloured by site.  
b) Principal coordinate analysis of all AWI-Gen 2 samples based on Bray-Curtis 
distance on species-level prokaryotic profiles together with other large datasets, 
color-coded by study. Franzosa et al. and Schirmer et al. are datasets collected 

in the USA and the Netherlands, focusing on patients with inflammatory bowel 
disease and healthy controls, respectively. Yachida et al. is a dataset from Japan 
for the study of colorectal cancer. c) Relative abundance of the most abundant 
phyla across the different datasets. Phyla are ordered by mean abundance 
across all included samples. Figures represent data from n = 1,796 AWI-Gen, 
n = 220 Franzosa et al., n = 471 Schirmer et al., and n = 645 Yachida et al. samples. 
For all boxplots, boxes denote the interquartile range (IQR) with the median as 
a thick black line and the whiskers extending up to the most extreme points 
within 1.5-fold IQR.
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Extended Data Fig. 5 | Metadata correlation and distance-based redundancy 
analysis. a) Pearson correlation coefficient (Pearson’s r) between available 
participant covariates, calculated on all participants included in the site 
comparison (n = 1,796). Non-numerical covariates were transformed into 
numerical values based on ordered factor levels (see Supplementary Methods). 
Asterisks indicate highly correlated covariates (Pearson’s r ≥ 0.8). In those cases, 
the covariate that explained the higher amount of variance in the prokaryotic 
composition (see panel b) was selected (redundant variables are indicated by 
grey labels). b) The amount of variance in the prokaryotic composition that  
is explained by covariates in distance-based redundancy analysis. Blue bars 

indicate single-covariate models (each covariate associated with prokaryotic 
composition individually), whereas orange bars show the amount of variance 
explained in the iterative model in which the variable explaining the most 
additional variation is added iteratively to a multi-covariate model (see Methods). 
Covariates below the dashed line were removed before the iterative modelling 
since they were highly correlated with other covariates. BMI: body mass index, 
MVPA: moderate to vigorous physical activity, LDL: low-density lipoproteins, 
HDL: high-density lipoproteins, VAT: visceral adipose tissue, SCAT: subcutaneous 
adipose tissue, cIMT: carotid intima-media thickness.



Extended Data Fig. 6 | Site-level prevalence and differential abundance of 
microbial taxa. a) The prevalence per site is shown for all prokaryotic species 
with prevalence higher than 5% in at least 2 sites (n = 1,071 species), clustered 
using the Ward algorithm as implemented in the R stats v4.2.2 package. 
Spearman correlation between sites is shown on the right. Population 
prevalence is calculated for each study site, where prevalence of zero indicates 
that the species is absent in all individuals in a site, and prevalence of one 
indicates that the species is present in all individuals in a site. b) The mean 

log10-transformed abundance of the same prokaryotic species as in a). Species 
that belong to the genera with the highest variance in fold change across all 
sites are highlighted by colours. c) The log10-transformed relative abundance 
of the genus Prevotella plotted against the relative abundance for the genera 
Bacteroides and Phocaeicola. Points represent n = 1,796 individual samples, 
coloured by site. d) The fraction of samples in which both Prevotella and either 
Bacteroides or Phocaeicola are present (relative abundance ≥ 1 × 10−4) is shown 
across sites, indicating that these genera co-exist in most samples.
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Extended Data Fig. 7 | Prokaryotic novelty in the AWI-Gen 2 cohort. a) Total 
number of novel and existing prokaryotic proteins in the AWI-Gen assemblies, 
relative to UHGP. Only representative proteins after feature clustering are 
represented. Number of novel b) prokaryotic genomes relative to the UHGG 
and c) prokaryotic proteins relative to the UHGP95 present in each sample. 
Points indicate the number of genome or protein clusters present per sample 
(n = 1,820 total samples) that are not found in respective feature databases.  
For all boxplots, boxes denote the interquartile range (IQR) with the median as 
a thick black line and the whiskers extending up to the most extreme points 
within 1.5-fold IQR. d) Comparison of number of representative genomes 
contributed by several metagenomic gut microbiome studies, including the 

UHGG50 (global), Carter et al.43 (Tanzania), Yachida et al.44 (Japan), Franzosa 
et al.45 (USA, Netherlands), Schirmer et al.46 (western Europe), and Lochlainn 
et al.47 (United Kingdom). The UpSet plot shows the number of genomes that 
are shared between or unique to each study. Note that Carter et al. performed 
ultra-deep metagenomic sequencing, leading to a high number of MAGs 
generated per individual sample. Rarefaction curves of the number of e) 
prokaryotic genomes and f) prokaryotic proteins detected as a function of the 
number of individuals sampled, by study site or from the full AWI-Gen sample 
set (grey). Each random subset was repeated a hundred times, and lines 
represent the mean feature count and standard deviation.



Extended Data Fig. 8 | Features of Treponema succinifaciens metagenome- 
assembled genomes (MAGs). a) Number of high-quality T. succinifaciens 
metagenome-assembled genomes by study site. b) Distribution of the length, 
in megabase pairs (Mbp), of each T. succinifaciens MAG. MAGs from Soweto  
are not pictured, as Soweto samples only contained two MAGs. c) Number  
of genes in each MAG that were classified as core (≥ 80% prevalence), shell  
(25 ≤ prevalence < 80%), or cloud genes (< 25% prevalence) in the complete  

MAG set. d) Midpoint-rooted phylogenetic tree of T. succinifaciens MAGs from 
this study (noted in pink inner ring) and public data sets (n = 430 total genomes). 
Middle ring indicates the country of origin, and outer ring indicates the continent 
of origin. White line and asterisk indicate the T. succinifaciens DSM 2489 type 
strain reference genome. PERMANOVA test indicates significant difference in 
phylogenetic distance by country of origin (P = 0.001).
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Extended Data Fig. 9 | Additional characterization of viral novelty and 
diversity in the AWI-Gen 2 cohort. Number of novel viral genomes relative  
to the MGV (a) and the Zolfo et al. viral catalogue (b) present in each sample 
(n = 1,820 total samples). Points indicate the number of genome clusters 
present per sample that are not found in respective feature databases.  
c) Rarefaction curves of the number of viral genomes detected as a function  
of the number of individuals sampled, by study site or from the full AWI-Gen 
sample set (grey). Each random subset was repeated a hundred times, and  
lines represent the mean feature count. d) Spearman correlation coefficient 

(Spearman’s ρ) between prokaryotic richness and viral richess. Points represent 
individual samples. e) Viral richness per sample, based on Phanta profiles 
(number of phage species clusters present ≥ 10−5% relative abundance).  
f) Prevalence of jumbophages across sites, where prevalence indicates  
the percent of individuals at each site with 0.1× coverage of the indicated 
jumbophage genome, as measured by CoverM (see Methods). All colors 
indicate site, using colour-code in panel a. For all boxplots, boxes denote the 
interquartile range (IQR) with the median as a thick black line and the whiskers 
extending up to the most extreme points within 1.5-fold IQR.



Extended Data Fig. 10 | Phage, prokaryotic, and phenotypic differences  
in ART+ and ART- PLWH. a) Prokaryotic diversity (inverse Simspon’s index  
after rarefaction) and phage richness (species present at ≥10−5% abundance)  
by HIV and antiretroviral therapy status. Points represent individual samples. 
Differences in diversity by site were tested with ANOVA and across sites with a 
linear mixed effect model accounting for site as a random effect. b) Generalized 
fold change (gFC) for all species in HIV+ ART+ relative to HIV− individuals and 
for HIV+ ART− relative to HIV− individuals. Species are coloured by q-value in 
HIV− vs HIV+ ART+ comparison. Species with an absolute gFC ≥ 0.3 in the  
HIV− vs HIV+ ART− comparison (that do not exhibit a gFC ≥ 0.3 in the HIV− vs 
HIV+ ART+ comparison) are annotated. c) Prediction from machine learning 
model trained prokaryotic data from HIV− and HIV+ ART+ participants and 
applied to HIV+ ART- participants. Sample fraction predicted to be positive at a 

5% internal false positive rate (dashed line) is listed below. d) HIV-associated 
effect size for prokaryotic and phage species. Species are colored by q-value.  
e) Receiver-operating characteristic (ROC) for models trained to distinguish 
HIV status using phage composition. Shading indicates 95% confidence intervals 
and numbers show area under the ROC curve (AU-ROC). f) AU-ROC for models 
trained on participants from each site (panel e) and applied to other sites. Models 
were trained on two sites and validated on the left-out site for leave-one-site-out 
(LOSO) validation. g) Statistics for age, waist-to-hip ratio, cholesterol, and 
glucose for individuals who are HIV seronegative and seropositive on ART.  
All p-values result from Wilcox rank sum test. For all panels, n = 129 HIV+ ART+, 
n = 28 HIV+ ART−, n = 719 HIV−. For all boxplots, boxes denote the interquartile 
range (IQR) with the median as a thick black line and the whiskers extending up 
to the most extreme points within 1.5-fold IQR.
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