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Abstract. In this article, we introduce the command beyondpareto, which esti-
mates the extreme-value index for distributions that are Pareto-like, that is, whose
upper tails are regularly varying and eventually become Pareto. The estimation is
based on rank-size regressions, and the threshold value for the upper-order statis-
tics included in the final regression is determined optimally by minimizing the
asymptotic mean squared error. An essential diagnostic tool for evaluating the
fit of the estimated extreme-value index is the Pareto quantile-quantile plot, pro-
vided in the accompanying command pggplot. The usefulness of our estimation
approach is illustrated in several real-world examples focusing on the upper tail of
German wealth and city-size distributions.
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1 Introduction

Many distributions in economics and the natural sciences exhibit upper tails that decay
like power functions. In economics, leading cases of interest are the upper tails of the
wealth and income distributions in the inequality literature, of the city-size distribution
in urban economics, and of the firm-size distribution in industrial economics (see, for
example, the discussion in Schluter and Trede [2019] and references therein). Outside of
economiics, other size distributions of interest (among many others) are internet traffic,
word frequencies, or biological systems.

More specifically, let the cumulative distribution function F' be regularly varying, so
for sufficiently large vy,

F(y)=1—y(y) (v >0) (1)
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where | denotes a slowly varying nuisance function that is constant asymptotically
[[(ty)/l(y) = 1 as y — o0]. v > 0 is called the extreme-value index, and the Pareto
or tail index (o« = 1/7) is its reciprocal. The objective is to estimate the parameter
~. A popular approach is to assume that the tail of F' is exactly or generalized Pareto
beyond a fixed threshold value and then to use maximum likelihood (see, for example,
Jenkins [2017] and Charpentier and Flachaire [2022]).1 The question of where the Pareto
tail starts is usually not addressed explicitly; the two articles cited earlier are notable
exceptions. However, the empirical challenges are that real-world size distributions
are rarely exactly Pareto and that convergence to the Pareto can be slow. Such slow
convergence will be manifested in the Pareto quantile—quantile (QQ) plot, which becomes
linear only eventually. If the choice of the threshold value falls in the nonlinear part of
the plot, the estimator of v will be distorted. Schluter (2018, 2021) demonstrates that
these distortions can be considerable. In particular, the Pareto QQ plot tends to exhibit
a concavelike curvature that ultimately leads to an overestimate of ~.

While many estimators of the extreme-value index are proposed in the statistical
literature (see, for example, the textbook treatments in Embrechts, Kliippelberg, and
Mikosch [1997] and Beirlant et al. [2004]), we consider here the rank-size regression
estimator because of its popularity among applied researchers (see, for example, Atkin-
son [2017] and the reference therein for the inequality literature, and see Schluter [2021]
for the city-size literature).? In some literature, this regression is referred to as a Zipf
regression, and some controversies center on whether « is equal to unity or simply pos-
itive or whether the size distribution is lognormal or Pareto-like (these are discussed
extensively in Schluter and Trede [2019]).3

Schluter (2018) provides the distributional theory for the rank-size regression estima-
tor in the distributional model (1) and considers an optimal data-dependent threshold
choice based on the minimization of the asymptotic mean squared error (AMSE). Schluter
(2021) discusses in detail the usefulness of the Pareto QQ plot as a diagnostic tool, while
Konig, Schluter, and Schroder (2023) have generalized the procedure to accommodate
complex survey design. These articles also provide applications to the upper tails of the
wealth, income, and city-size distributions. The command beyondpareto implements
these estimation and inference procedures. The accompanying command pqgplot pro-

1. Several solutions for the estimation of Pareto distributions already exist as commands. The com-
mand paretofit estimates the parameters of a Pareto type I distribution via maximum likelihood
(Jenkins and Van Kerm 2007). The command extreme estimates the parameters of the generalized
Pareto distribution via maximum likelihood (Roodman 2015). However, these commands do not
address the issue of threshold choice.

2. Because the rank-size regression estimator is not invariant to shifts in the data, it is conceivable that
a purposefully chosen shift could yield an asymptotic refinement. Gabaix and Ibragimov (2011)
show this in the strict Pareto model. Schluter (2018) shows that the distortions induced by a slow
convergence to the Pareto model are empirically of a greater concern.

3. Although the speed of tail decay of the lognormal distribution is slower than that of the class (1),
it is sufficiently slow to generate a tail that is commonly considered as “heavy”; that is, for both
distributional classes, we have e#%{1— F(x)} = oo for all § > 0 as z — co. Such tail decay is labeled
subexponential. Thus, in the lognormal case, the speed of decay is faster than any power function
but also slower than exponential. This slow speed is partly at the origin of the confusing situation in
the applied literature where the same data are given diametrically opposite interpretations. Schluter
and Trede (2019) propose a test for the “Gibrat—Gumbel” hypothesis v > 0.
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duces Pareto QQ plots to visually assess the fit of the Pareto distribution for different
cutoff values. Later sections provide real-world illustrations of the usefulness of these
techniques, some of which are included in the help files.

2 Statistical theory

The rank-size regression estimator of the extreme-value index measures the ultimate
slope of the Pareto QQ plot. This follows because the tail quantile function for model (1)
is U(y) = inf{t : Pr(Y > t) = 1/y} = y7I(y), where I(y) is a slowly varying function,
which then implies log U(y) ~ vlog(y) as y — oco. Replacing these population quantities
with their empirical counterparts gives the Pareto QQ plot, and ~ is its ultimate slope.
If the tail of the distribution were strictly Pareto, then the Pareto QQ plot would be
linear, and a linear regression would estimate its slope coefficient. In model (1), it will
become linear only eventually, and a slow decay of the nuisance functions [(y) and Z(y)
will then induce asymptotic distortions in the estimator of the slope coefficient. Below,
such slow convergence will be considered in the form of second-order regular variation.*

Let Y1, < --- <Y, , denote the order statistics of the given sample Y7,...,Y, of,
for example, wealth or income, and consider the k£ upper-order statistics. The Pareto QQ
plot has coordinates (—log{j/(n + 1)},log Ys_j11.n)j=1,.. k, Where the relative rank is
given by —log{j/(n+1)} and j = 1 for the highest upper-order statistic. The ordinary
least-squares estimator of the slope parameter in the Pareto QQ plot is obtained by
minimizing the least-squares criterion

Z( Yojtin lgkj) (1<j<k<n)

nkn

with respect to v, which corresponds to a regression of log sizes on the log of relative
ranks for sufficiently large values given by Y;,_j ». Note that Y;,_;11.,/Yn—k n is a nor-
malized size equal to 1 at the threshold. The resulting ordinary least-squares estimator
is

R & Zg 1 1Og ( ) (IOgY Jj+ln — 1Og Ynfk;n)
T 1 k+1 2 (2)
P i (log %)

The distributional theory for 4 requires imposing more structure on the behav-
ior of nuisance functions. It is common practice in the extreme-value literature to
strengthen the first-order regular representation to second-order regular variation. Re-
call that model (1) has the equivalent (first-order regular variation) representation
limy_, o {log U(ty) —logU(¢t)}/{a(t)/U(t)} = logy, where a is a positive norming func-
tion with the property a(t)/U(t) — . We then assume that

4. See Schluter (2018, 2021) for a rigorous discussion.
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logU(ty)—logU(t) lo
et —logy
lim (t)/U(¢)

o0 A(t) = )

for all y > 0, where H.,~0, ,<0(y) = 1/p{(y” — 1)/p—logy} with p < 0. The parameter p
is the so-called second-order parameter of regular variation, and A(t) is a rate function
that is regularly varying with index p, with A(t) — 0 ast — oo. As p falls in magnitude,
the nuisance part of [ in (1) decays more slowly. Many heavy-tailed distributions satisfy
this second-order representation, such as members of the Hall class of distributions given
by F(z) = 1 —az~ Y7 {14+bxzP +o(x?)} for large values of x, whose tail quantile function
is U(z) = cx" {1+ dz” + o(z”)}.

Schluter (2018) then demonstrates that as k — oo and k/n — 0, this estimator is
weakly consistent, and if vVEA(n/k) — 0,

VG =) 54w (0.32)

Asymptotically, the estimator is thus unbiased if vVkA(n/k) — 0. But if this decay is
slow, the estimator will suffer from a higher-order distortion in finite samples given by
1
2

2,
bin = g—”Am/k) (v >0,p<0)

(1-p)?

2.1 The choice of the threshold k for the upper-order statistics

Any tail index estimator requires a choice of how many upper-order statistics, given by
k, should be accounted for. This choice invariably introduces a tradeoff between bias
and precision of the estimator that is typically ignored by practitioners. However, this
mean-variance tradeoff suggests that it is unwise to set the threshold level mechanically
(for example, a wealth level of 1 million euros or 10% of the sample). By contrast, we
determine this threshold level in a data-dependent manner for estimator (2) by using
the residuals in the rank-size regression to nonparametrically estimate the AMSE.

Following Beirlant, Vynckier, and Teugels (1996) and Schluter (2018, 2021), we
observe that the expectation of the mean-weighted theoretical squared deviation

k 2
1 Yo k41
T > winE {10g (;iln) —vlog (j) } (3)
_7:1 n—k,n

equals, to first order, ¢, Var(%) + dk(p)bi,n for some coefficients ¢, depending only on
k and for di(p) depending on k and p < 0. For an explicit statement of the coeffi-
cients ¢ and dj, see Schluter (2018). The procedure then consists of applying two
different weighting schemes wJ(z,)C (i = 1,2) in (3), estimating the corresponding two
mean-weighted theoretical deviations using the residuals of regression (2), and comput-

ing a linear combination thereof such that Var(¥) + bi,n obtains. We proceed in this
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manner for weights w§1,2 =1 and wﬁz = j/(k+ 1) for a set of preselected values of
p. In particular, based on the experiments reported in Schluter (2018, 2021), we have
set a very conservative value of p = —0.5 (implying a slow decay of the slowly varying
nuisance function ).

2.2 Complex surveys

Survey data often come with sampling weights to allow inference on the level of the
population. The aforementioned theory and methods are easily adapted to this setting
if we define the weighted empirical distribution function as

Faly) = 7 Y wil (¥ < ) (@

where w; is the sampling weight associated with the ¢th observation Y; with Z?zl w; =
n. Examples are a scheme of unity weights (w; = 1 for all ¢) or w; = w;n with 0 < w; < 1
and ) ,w; = 1. Then, for the jth largest observation, we have F.{Y,_j_1)n} =
(n—3"7_; w(i<j))/n with the implicit notation convention that »_7_; w(;<;) denotes the
summation of the survey weights corresponding to the j largest upper-order statistics.
The resulting Pareto QQ plot has coordinates

J
[— log {Z wei<yy/(n + 1)} ,log YnjH,n]
j=1,...,k

i=1

yeeey

and the resulting survey-weights-adjusted estimator of v then becomes

Bl
130 log { B0 | (l0g V. — 10g Vi kon)

2
k R i<n
% ijl {log Zl,]; (i<k+1)
o1 wass)

The estimator (2) then follows as a special case of (5) with unity weights w; = 1.

3 The beyondpareto command
3.1 Syntax

beyondpareto runs in Stata 11.2 and later versions. The syntax is

beyondpareto wvarname [zf] [m] [weight} [ , nrange(#,#) fracrange(#,#)
rho(#) plot(string) size(string) save(string) ]

The command requires one variable with numerical data of values greater than zero.
Weights are assumed to be survey weights as described in section 2 above. Accordingly,
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the size of the weight is related to the number of represented units in the population.
If no weights are specified, they are assumed to be 1. If weights are missing for a
subset of the data, the corresponding observations are not considered for the analysis
and plots. test can be used after estimation for hypothesis tests with respect to the
value of the estimated extreme-value index +y, for example, whether v is zero. predict
is not supported. pweights are allowed; see [U] 11.1.6 weight.

3.2 Options

nrange (#,#) determines, in terms of the integer indices (a,b), the minimum and
maximum upper-order statistics considered for optimal threshold selection and for
estimation of the extreme-value index, where 2 < a < b < n, with n being the
total number of observations. It thereby also determines the upper limit of the
possible thresholds that can be selected because the first value a corresponds to the
highest upper-order statistic considered for threshold selection, that is, the origin of
the Pareto QQ plot. The minimum a should not be set lower than 2. The options
nrange () and fracrange() are mutually exclusive.

fracrange (#, #) determines, in terms of fractions (p,q) of the sample, the minimum
and maximum of upper-order statistics considered for optimal threshold selection
and for estimation of the extreme-value index, where 0 < p < ¢ < 1. That is, if
fracrange () is set to (0.05,0.3), then the fraction of observations considered for tail
estimation in total is the upper 30% of observations but taking a minimum of 5%
of upper-order statistics. Other than nrange(), fracrange() accounts for weights
and determines the absolute minimum and maximum sample sizes for tail estimation
as weighted values. If neither nrange() nor fracrange() is set by the user, then
fracrange(0.025, 0.2) is used.

rho (#) sets the second-order parameter of regular variation as discussed in section 2.
The choice of rho () will influence the bias correction of the estimate of the extreme-
value index. Accordingly, choosing different levels of rho() can be used for a sensi-
tivity analysis. # should be smaller than 0. Common values for sensitivity analyses
are —0.5, —1, and —2. The default is rho(-0.5). In general, however, the choice
of rho () should have little-to-negligible influence on the final results in areas where
the Pareto QQ plot has become approximately linear.

plot (string) specifies that one of the following diagnostic plots or a combined graph of
all three plots be produced (from left to right): 1) Pareto QQ plot, 2) extreme-value
index () plot, and 3) AMSE plot. Possible values are pareto, gamma, amse, and all.
Set, for example, plot (pareto) if only the Pareto QQ plot is needed. The AMSE plot
shows the calculated AMSE on the ordinate and the upper-order statistics (k) on the
abscissa along with the selected upper-order statistic that gives the minimum AMSE.
The extreme-value index plot shows the estimated values of gamma and their 95%
confidence intervals (CIs) for all values of the upper-order statistics considered for
estimation. It also marks the selected upper-order statistic that gives the minimum
AMSE. The Pareto QQ plot shows normalized sizes on the ordinate and ranks on
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the abscissa. For a precise definition of the Pareto QQ plot, see Schluter (2021).
The plot also shows the line that has been fit to the Pareto QQ plot based on the
optimally selected threshold and the associated estimate of the extreme-value index.
The Pareto QQ plot is restricted to the fraction or number of observations set as the
upper bound in nrange() or fracrange().

size (string) specifies the size of the graph. The syntax is identical to [G-3] region__op-
tions, and one can set size(xsize(#)), size(ysize(#)), or both via
size(xsize(#) ysize(#)).

save (string) specifies that the plotted graph be saved under a supplied filename, which
needs to be given as newfilename. suffiz, where suffiz can be chosen from the list of
formats given in graph export, along with other options. This option saves only
the graph in combination with plot ().

3.3 Stored results

beyondpareto stores the following in e ():

Scalars
e(Ybase) value of the variable given in varname at the threshold of the tail, that
is, the upper-order statistic associated with the lowest AMSE
e(kbase) index k associated with e(Ybase), that is, the index associated with
the minimum value of the AMSE
e (AMSE) minimum value of the AMSE
e(df_r) residual degrees of freedom after estimation used for testing
e(gamma) value of the estimated extreme-value index
e(gamma_SE) value of the standard error of the estimated extreme-value index
e(gamma_lo) lower value of the 95% CI of the estimated extreme-value index
e(gamma_hi) upper value of the 95% CI of the estimated extreme-value index
Macros
e(cmd) beyondpareto
Matrices
e(b) matrix containing the estimated extreme-value index
e(V) matrix containing the variance of the extreme-value index

4 The pqqplot command

The Pareto QQ plot can be generated separately using the pggplot command.

4.1 Syntax

pagplot runs in Stata 11.2 and later versions. The syntax is

pagplot wvarname [zf] [m] [wez’ght], gamma (#) base(#) [save(stm’ng)
maxk (#) size(string) hidden_plots}
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The command shows a custom Pareto QQ plot with an assumed v and a chosen threshold
upper-order statistic k. Essentially, the requirements are as with beyondpareto: the
command requires one variable with numerical data of values greater than zero. Weights
are assumed to be survey weights as described in section 2. pweights are allowed; see
[U] 11.1.6 weight.

4.2 Options

gamma (#) specifies the assumed extreme-value index used to plot a line for the upper
tail of the data. gamma() is required.

base(#) specifies the threshold upper-order statistic beyond which the data are as-
sumed to become linear. The plotted line depending on gamma () also starts only at
the specified base. base () is required.

save (string) specifies that the plot be saved under a supplied filename, which needs to
be given as newfilename. suffiz, where suffiz can be chosen from the list of formats
given in graph export, along with other options.

maxk (#) specifies up to which upper-order statistic the graph should be plotted.

size (string) specifies the size of the graph. The syntax is identical to [G-3] region__op-
tions, and one can set size(xsize(#)), size(ysize(#)), or both via
size(xsize(#) ysize(#)).

hidden_plots plots the graph with the nodraw option so that the graph is not visible.

5 Applications

This section provides several applications. The first application is an illustration based
on synthetic data capturing the standard empirical challenge that practitioners face
when fitting heavy-tailed distributions. The second application uses wealth data from
Germany and demonstrates the differences between shape parameters from ad hoc selec-
tions of lower thresholds and the optimal threshold. The third example is a replication
of Schluter (2021), focusing on city-size distribution in Germany.
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5.1 Synthetic data examples
5.1.1 Example 1la: Performance evidence for the lognormal-Pareto model

A popular parametric model for income, wealth, and city-size data consists of assuming
that a Pareto upper tail is smoothly pasted on a lognormal body (a so-called lognormal-
Pareto [LN-P] model).> See Jenkins (2017) for an example focusing on top incomes, while
Vermeulen (2018) considers top wealth and Ioannides and Skouras (2013) consider the
city-size distribution.

The data-generating process (DGP) is as follows (the replication code is included
in the help file for beyondpareto): We draw a synthetic dataset of 3,000 observations
following a lognormal distribution. The mean of the underlying normal variate is 5,
and the standard deviation is 2. An additional 2,000 observations populate the upper
tail and follow a Pareto distribution; that is, F(y) = 1 — (y/Ybase)_l/V for y > Yiase
and 0 otherwise, with v = 1/0.85 = 1.176 and threshold Yiase = 242.51. Hence, by
construction, the threshold value that marks the beginning of the Pareto tail is known
such that the evaluation of the performance of beyondpareto is straightforward.

15 20

Log (Y/Ymin)
10

T
0 2 4 6 8
Relative Rank

Figure 1. Pareto QQ plot for example 1a
NOTES: The DGP is LN-P as described in the main text, with v = 1.176 and Ybase = 242.51. Yhase is the

minimum observed in the data.

5. In related work, Davidson and Flachaire (2007) use a semiparametric bootstrap procedure that
includes a smoothly pasted parametric Pareto tail based on the approach of Schluter and Trede
(2002), who use model (1).
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Figure 1 shows the Pareto QQ plot for example la. The z axis gives the relative
rank of each observation as defined in section 2, while the y axis gives the log of relative
income (income relative to minimum y in the dataset). The Pareto QQ plot becomes
eventually linear, but it is not immediately apparent from visual inspection at which
precise relative rank that is. Executing

beyondpareto y, nrange(10,5000) rho(-0.5) plot(all)

in Stata yields a regression table and a figure with three graphs. Table 1 displays the
regression. The selected threshold of k£* = 2,009 is very close to actual threshold value of
2,000. The 95% CI of the estimated shape parameter [1.128,1.245] is tight and contains
the underlying true value of 1.176.

Table 1. Estimates for example la based on
beyondpareto

k*  Yiase A Std. error 95% c1
2,009 240.81 1.186 0.030 [1.12871.245]

NOTES: The DGP is LN-P as described in the main text,
with v = 1.176 and Ypase = 242.51, the Pareto tail contain-
ing 2,000 observations. The table shows the output from the
beyondpareto command. k* is the upper-order statistic asso-
ciated with the minimum AMSE, that is, e(kbase) from the
stored results.

Log (¥i¥base)
s 0

Figure 2. Diagnostic plots for example la
NOTES: The figure shows the three diagnostic plots (Pareto QQ-plot, v, and AMSE) for example la
generated by beyondpareto. The dashed vertical line depicts the optimal threshold k* = 2,009.

Figure 2 provides the three automatically generated diagnostic plots (Pareto QQ plot,
v, and AMSE). The left-hand graph corresponds, up to a constant shift on the y axis,
to the Pareto QQ plot from figure 1. In addition, the vertical line indicates the optimal
threshold, and the slope of the black straight line corresponds to 4. This plot indicates
that k* has been chosen at a point where the Pareto QQ plot just starts to become
linear [estimated relative rank equals about 0.912 (true: 0.916)] and that the estimated
shape parameter nicely fits the tail. The graph in the middle of the figure shows the
variability of the estimates of the shape parameter, «, with respect to threshold values
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k. For thresholds between 1,000 and 2,000, the estimates are rather stable, and the
optimal value k* lies at the very end of that flat segment of the plot, thus minimizing
the variance of the estimator in this range. The right-hand graph gives the AMSE as a
function of thresholds, k. It is small and has a long flat segment that slowly starts to
rise for thresholds exceeding 2,000. In sum, the three plots are reassuring in that the
procedure 1) correctly identifies the lower threshold of the Pareto tail and 2) estimates
an extreme-value index that nicely fits this tail.

To close the example, we consider whether beyondpareto performs well at over 1,000
Monte Carlo draws of the LN-P DGP and at different sample sizes. In table 2, we show
the Monte Carlo average of k*, 4, and the variance of 4 over the Monte Carlo draws.
Throughout, 7 is well estimated.

Table 2. Monte Carlo evidence for
the LN-P model

N k* A Var(¥)
10,000 3,653 1.180 0.001

5000 1,812 1.184  0.002
1,000 367 1.184 0.012

NOTES: The true value is v = 1.176.
The Monte Carlo design involves 1,000
repetitions, drawing samples of size N
in each experiment, and the largest 40%
are drawn from the Pareto distribution.
The table shows the average k* and 4
across each set of experiments. Further-
more, Var(9) gives the variance of 4 over
the 1,000 Monte Carlo draws. Because
k* wvaries in each iteration, the reported
Var(9) does not equal the analytical esti-
mated squared standard deviation. The
results are based on the beyondpareto
command.
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Last, we compare beyondpareto with two existing implementations: paretofit and
extreme (see footnote 1). In both cases, the threshold value for inclusion of the upper-
order statistics needs to be supplied by the user. Following many applied researchers, we
choose the top 10% or 5% quantiles as cutoffs. If, for a particular dataset, these cutoff
choices exceed beyondpareto’s k*, then all three functions will usually yield similar
point estimates. If not, the resulting extreme-value index estimates are likely to be
distorted. Table 3 illustrates this situation for the LN-P setting assuming v = 1.67.
beyondpareto’s optimal choice of k* = 193, implying Yyase = 437.5, yields a v estimate
of 1.75. However, the estimates of v by paretofit and extreme are distorted: For
Py (implying Yphase = 322.6), the v estimates for paretofit and extreme are 0.828
and 1.838, respectively; for Pos (implying Yhase = 401.8), these estimates are 1.332 and
2.481. By contrast, using beyondpareto’s optimal choice £* = 193, all three methods
yield estimates of v close to the population value.

Table 3. Comparisons of 4 estimates:
beyondpareto, paretofit, and extreme

threshold  Pyg Pys optimal
k500 250 193
Yhase 322.6 401.8  437.5
paretofit 4 0.828 1.332 1.633
extreme 4 1.838 2.481 1.699
beyondpareto ¥ 1.749

NOTES: The DGP is the LN-P model. We draw 4,800
observations from the lognormal distribution. The mean
of the underlying normal variate is 5, and the standard
deviation is 0.6. An additional 200 observations follow
a Pareto distribution with v = 1/0.6 = 1.67. Column
“optimal” refers to the optimal threshold determined by
beyondpareto.

5.1.2 Example 1b: Performance evidence for the Burr model

Consider next the Burr distribution 1 — F(, ,)(y) = (1 + y~ /MNP with v > 0 and
p < 0 (the latter being in fact the second-order parameter of regular variation). In the
inequality literature, it is also known as the Singh-Maddala distribution (Singh and
Maddala 1976). For large y, the distribution can be expanded as y~Y/7{1+ (1/p)y?/*},
which reveals the Burr distribution to be a member of the Hall class. Its tail quantile

isU(y) =y {1+ (v/p)y” +o(y")}.
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The study of the estimator of v in the Burr case is instructive of the empirical
challenges given by a slow convergence to the Pareto limit, parameterized here by p.
Table 4 presents some Monte Carlo performance evidence for various values of p and
sample sizes based on beyondpareto. For p = —2, the estimator is well behaved even
for samples of size 1,000. However, as the magnitude of p falls to —0.5, the performance
of the estimator deteriorates. Balancing the tradeoff between bias and variance, the
AMSE-based choice leads to a sharply decreasing k*.

Table 4. Monte Carlo evidence for Burr model

N  k* A Var(y)  k* A Var(y) k* A Var(9)
10,000 2,699 0.607 0.001 1,175 0.620 0.002 475 0.667 0.005

5,000 1,518 0.610 0.001 726  0.626 0.002 316 0.674 0.008
1,000 336 0.611 0.005 225 0.640 0.009 119 0.716 0.018

NOTES: The true value is v = 0.6. The Monte Carlo design involves 1,000 repetitions, drawing
samples of size N in each experiment. The table shows the average k* and 4 across each set of
experiments. Further, Var(9) gives the variance of 4 over the 1,000 Monte Carlo draws. The
results are based on the beyondpareto command.

5.1.3 Example 1c: Top-censoring in the GB2 model

Next we illustrate the merit of our weighting procedure in the context of top-censoring.
Administrative earnings data are often top-coded. For instance, earnings in the well-
known German Sample of Integrated Labour Market Biographies data are censored at
the social security contribution threshold, leading to an average censoring incidence of
about 12% in the earnings distribution of prime-aged male workers in West Germany
in recent years. For this population, Schluter and Trede (2024) demonstrate that the
heavy-tailed GB2 distribution provides an excellent fit to earnings data at the national
level (as well as at the level of cities). The GB2 density has four parameters and is given
by f(z;a,b,p,q) = a1 /[b*? B(p,q){1 + (x/b)*}P*+9], where B(.,.) denotes the beta
distribution. It is well known that v = 1/(ag). In the following experiment, we use
parameter estimates from Schluter and Trede (2024). Specifically, the parameter vector
is (5.18,32754,0.518,0.509), implying a population extreme-value index of v = 0.3793.
In the first step, we verify that the estimator performs well in this setting. For a random
sample of 140,000 observations, typing

beyondpareto income, fracrange(.0001,.2) rho(-0.5)

yields the results reported in table 5.
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Table 5. Estimates for example 1c based on
beyondpareto—Uncensored

k* Yhase o Std. error 95% cCI1
20,545 57,273.71 0.383 0.003 [0.3771,0.3888]

NOTES: The DGP is GB2 as described in the main text, with v =
0.3793. The table shows the output from the beyondpareto command.
k* is the upper-order statistic associated with the minimum AMSE,
that is, e(kbase) from the stored results.

Next we investigate the effect of top-censoring on the estimator, imposing a cen-
soring incidence of 12% (as in the administrative Sample of Integrated Labour Market
Biographies data). Because the distribution now has a mass point at the censoring
threshold, we adjust the weight of one such worker by adding the total weight of all
censored individuals and drop the remaining censored observations. Executing

beyondpareto income [w=weight], fracrange(.003,.2) rho(-0.5)

yields the results reported in table 6. Despite such a large censoring incidence, the
weighted rank-size estimator performs well. By contrast, if the censoring problem is not
properly addressed (by either ignoring it or dropping all censored observations), it can
be easily verified that the estimator is then biased.

Table 6. Estimates for example 1c based on
beyondpareto—Censored

k* Yiase 4 Std. error 95% cI
558 61,107.89 0.368 0.0174 [0.3340,0.4023]

NOTES: The DGP is GB2 as described in the main text, with v =
0.3793, n = 140,000, and top-censoring of 12%. The table shows
the output from the beyondpareto command. k* is the upper-order
statistic associated with the minimum AMSE, that is, e(kbase)
from the stored results.

5.2 Example 2: Top wealth in Germany

Our next example builds on Kénig, Schluter, and Schroder (2023) and uses data from
the German Socio-Economic Panel (SOEP) to examine the top tail of the German wealth
distribution in 2019,% when the SOEP collected household net wealth for its regular sam-
ples and for a newly launched top wealth sample (SOEP-P). SOEP-P was collected from a
sampling frame building on register data on firm ownership in Germany (Schroder et al.
2020). The sample is fully integrated into the panel and is equipped with appropriately
constructed survey weights. As detailed in Konig, Schluter, and Schroder (2023), the

6. Because the data are available only after the signing of the standard SOEP data contract, we can
provide only the full replication code but not the data.
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oversampling of the wealthy, especially of multimillionaires was successful, thus address-
ing the well-known “missing rich” problem in standard survey data. However, because
SOEP-P did not achieve full coverage in the range of (multi)billionaires, it is appropriate
to construct inequality statistics based on a (parametric) model of the upper tail of
the wealth distribution. See Konig, Schluter, and Schroder (2023) for full details of the
procedure and performance evidence.
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Figure 3. Pareto QQ plot for SOEP wealth data
NOTES: Based on SOEPv36. Data are household net wealth observations for 2019 as detailed in Konig,
Schluter, and Schroéder (2023). The figure shows the Pareto QQ plot (for wealth above 1M euros) for the
SOEP-P sample (+) and the rest of the SOEP sample (gray circles), the latter having been shifted vertically
down for better visibility, and we have zoomed into the upper tail. For the complete QQ plot, see figure 4

below.

Figure 3 provides the Pareto QQ plot of (nonnormalized) household net wealth, with
+ signs indicating observations from the SOEP-P sample, where we have zoomed into
the upper tail for better visual clarity. SOEP-P clearly clusters in the upper tail of the
distribution and thickens the upper tail of the net wealth distribution as observed in
the SOEP. Apart from infilling, the SOEP-P sample also appends an upper tail.

Because the SOEP has a complex survey design, sample weights can and should
be used (thus the function call extends example 1 above). Let weight denote SOEP
household weights and wealth household net wealth. Executing

beyondpareto wealth [w=weight], fracrange(.00071813,0.51) rho(-0.5) plot(all)

in Stata produces table 7 and figure 4. Similarly to the synthetic data example, the
Pareto QQ plot becomes linear eventually, but the precise location is not immediately
obvious.
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Table 7. Estimates for example 2 based on
beyondpareto

k* Yhase A Std. error 95% CI1
3,370 402,200 0.601 0.012 [0.578,0.623]

NOTES: Data are household net wealth observations for 2019
from SOEPv36 as detailed in Koénig, Schluter, and Schréder
(2023). Table shows the output from the beyondpareto com-
mand. k* is the upper-order statistic associated with the mini-
mum AMSE, that is, e(kbase) from the stored results.

At slightly more than 400,000 euros, the optimal threshold is lower than usual prac-
titioners’ ad hoc threshold choices (one or two million euros in the German context;
see Vermeulen [2018], Bach, Thiemann, and Zucco [2019]). The associated Pareto co-
efficient is a tightly estimated 1/0.601 = 1.664 (95% CI: [1.605, 1.730]), indicating that
wealth concentration in Germany is high. The Pareto QQ plot indicates that the Pareto
distribution is a reasonable approximation of household net wealth in Germany. The ~
and AMSE plots show that the selected thresholds imply an estimate of + from a stable
and flat region. Pareto coefficients for practitioner thresholds of one and two million
euros are 1.671 (95% cr: [1.576,1.779]) and 1.518 (95% CI: [1.396, 1.664]), respectively,
which suggests for one million slightly lower and for two million slightly higher wealth
concentration. Note, however, that the confidence bands are somewhat wider.
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Figure 4. Diagnostic plots for example 2
NOTES: Data are household net wealth observations for 2019 based on SOEPv36 as detailed in Konig,
Schluter, and Schréder (2023). The figure shows the three diagnostic plots (Pareto QQ plot, v, and AMSE)
for these data. Ypase is 402,200. The vertical dashed line depicts k™ = 3,370, and 4 = 0.601.
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5.3 Example 3: The German city-size distribution

The last example replicates the results reported in Schluter (2021), and the full replica-
tion code is included in the help file for beyondpareto. We consider the size distribution
of cities in Germany in 2000, using administrative data provided by the German Federal
Statistical Office. These administrative data are highly accurate because of the legal
obligation of citizens to register with the authorities. The unit of analysis is the “city”
or, more precisely, the municipality or settlement (“Gemeinden”).

Downloading the data as detailed in beyondpareto’s help file and calling the function
beyondpareto citysize, fracrange(0.001,0.5) rho(-0.5) plot(all)

as before, yields the results reported in table 8 and the plots of figure 5. The optimal
threshold is k* = 903, which seems a very sensible choice because the plot of 4(k) in the
interval [350, k*] appears fairly flat, so the best choice in this interval is then the largest
one to minimize the variance. The estimate of the extreme-value index is 4 = 0.762,
and the precision of the estimate permits a sound rejection of Zipf’s “law”, that is, the
hypothesis that v be unity.

Table 8. Estimates for example 3 based on
beyondpareto

k*  Yiase A Std. error 95% cI
903 16,042 0.762 0.028 [0.706,0.817]

NOTES: Table shows the output from the beyondpareto com-
mand. k* is the upper-order statistic associated with the
minimum AMSE, that is, e(kbase) from the stored results.

L

Figure 5. Diagnostic plots for example 3

NOTES: The figure shows the three diagnostic plots (Pareto QQ plot, v, and AMSE) for these data.

Finally, it is also of substantive interest to observe that the tail index of the city size
distribution is very stable. When we adjust the online data access path as detailed in
beyondpareto’s help file, the analysis is easily repeated for other years. In particular,
we obtain for the year 2010 4(k) = 0.77 with optimal threshold value k* = 1,336 and
for the year 2020 4(k) = 0.76 with optimal threshold value k* = 1,220.
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6 Conclusion

The core functionality of beyondpareto is the (fast, Mata-coded) estimation of the
extreme-value index for heavy-tailed distributions, allowing for complex survey design.
Interest in the behavior of size distributions spans many fields, and we have provided
applications to wealth, earnings, and city-size distributions. All of these examples are
Pareto-like, so the associated Pareto QQ plot becomes linear only eventually, rendering
the estimation of its slope parameter using existing software implementations and ad
hoc threshold selection problematic. Our choice of the threshold parameter for data
inclusion in the tail index estimation is optimal in the AMSE sense; we provide several
diagnostic plots for transparency so that the user can critically examine goodness of
fit and sensitivities. The workflow is automatized for ease of use. Based on this core
functionality, beyondpareto is evolving, including the computation of wealth shares at
the top (as in Konig, Schluter, and Schroder [2023] using the newly launched top wealth
sample of the SOEP) and imputation methods for top-censored administrative earnings
data (see Beckmannshagen et al. [2024] for an application on the record-linked SOEP-RV
data).
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8 Programs and supplemental material

To install the software files as they existed at the time of publication of this article,
type
. net sj 25-1

. net install st0770 (to install program files, if available)
. net get st0770 (to install ancillary files, if available)
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