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 A B S T R A C T

This paper compares four volatility-of-volatility estimates with the CBOE’s VVIX index for prediction accuracy. 
Hybrid estimates, combining historical and model-based components, show closer alignment with VVIX. 
Practical limitations are briefly noted.
1. Introduction

Volatility-of-volatility (VV) is a key parameter in stochastic volatil-
ity models, capturing higher-moment risks in asset returns (Heston, 
1993). Recent research suggests that VV risk is priced in various mar-
kets, including index (Hollstein and Prokopczuk, 2017; Huang et al., 
2019; Kaeck, 2018; Branger et al., 2017) and crude oil markets (Roh 
et al., 2021). The VVIX index, constructed by the Chicago Board 
Options Exchange (CBOE), is a widely used estimate of VV (Zang 
et al., 2017; Cheng, 2019).1 VVIX, however, adopts the VIX’s complex 
formula, which limits its use beyond the S&P500 due to extensive 
data requirements.2 This limitation highlights the need for simpler 
VV estimates/measures applicable to diverse financial markets. We 
compare four VV estimates adaptable to individual stocks and assess 
their alignment with VVIX. Identifying the VV estimate closest to VVIX 
can enhance VV research and applications beyond the S&P500.

This study examines four estimates of volatility-of-volatility (VV), 
categorized into three groups. First, the model-based estimate, Risk-
Neutral Volatility-of-Volatility (RNVV), proposed by Carr and Wu (2020), 
relies on the theoretical curvature of the implied volatility surface 
to estimate VV. Second, the hybrid estimates, including Volatility-
of-Volatility in the EWMA Model (EMVV) by Roh et al. (2021) and 
Moving Average Implied Volatility-of-Volatility (MIVV) by Baltussen 
et al. (2018), combine statistical frameworks with model-derived in-
puts, leveraging both historical data and implied volatility. Third, the 
historical measure, Statistical Volatility-of-Volatility (STVV), utilizes re-
alized volatility data (instead of implied) to provide a purely statistical 
approach.
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1 VVIX estimates the expected volatility of the 30-day forward price of VIX, a benchmark index to estimate the market’s expectation of future volatility. More 
details are available at https://www.cboe.com/tradable_products/vix/ (VIX) and https://www.cboe.com/us/indices/dashboard/vvix/ (VVIX).

2 For example, the VIX formula requires dense strikes and a forward index level. We detail the issue of sparse strikes in the discussion.

2. Estimates of volatility-of-volatility

The model-based estimate assumes stochastic volatility processes, 
unlike historical measures derived statistically from data with fewer 
assumptions. Hybrid estimates blend theoretical and historical inputs 
to estimate VV.

2.1. Model-based estimate

Risk-Neutral Volatility-of-Volatility (RNVV)
Carr and Wu (2020) propose a top-down valuation framework in 

which the curvature coefficient of the option-implied volatility sur-
face is used to estimate risk-neutral VV. This framework assumes 
that changes in at-the-money (ATM) implied volatility reflect similar 
changes in other implied volatilities across the volatility surface. Em-
pirically, the RNVV is estimated by regressing the difference between 
the implied volatility at a given strike price (𝐼𝑉𝑡) and the ATM implied 
volatility (𝐼𝑉𝑡,𝐴𝑇𝑀 ) on moneyness variables (𝑘1, 𝑘2), as follows: 

𝐼𝑉𝑡 − 𝐼𝑉𝑡,𝐴𝑇𝑀 = 𝛼 + 𝛽𝑘1 + 𝛾𝑘2 + 𝜖, (1)

where: 𝛾 represents the curvature coefficient, which serves as the 
estimate of risk-neutral VV. 𝑘1 and 𝑘2 are upward-adjusted moneyness 
and downward-adjusted moneyness, respectively. The formulas for 𝑘1
and 𝑘2 are:
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where 𝑆𝑡 is the stock price on trading day 𝑡, and 𝑆𝑇  is the stock price 
on expiration date 𝑇 .

Referring to Carr and Wu (2020), we use the restricted least squares 
method to constrain the curvature coefficient 𝛾 to be non-negative. 
RNVV assumes a well-behaved implied volatility surface with uniform 
ATM changes across strikes, an assumption that may fail in stressed 
markets. Fig.  1 shows deviations during such periods.

2.2. Hybrid estimates

Volatility-of-volatility in the EWMA model (EMVV)
Roh et al. (2021) provide an alternative approach to capture the 

dynamic nature of volatility fluctuations. The EMVV is calculated as: 
𝐸𝑀𝑉 𝑉𝑡 = 𝜆𝐸𝑀𝑉 𝑉𝑡−1 + (1 − 𝜆)𝑟2𝑡−1, (2)

where: 𝜆 = 0.94 is the smoothing parameter,3 which assigns greater 
weight to more recent data; 𝐸𝑀𝑉 𝑉0 = 0 is the initial value; 𝑟𝑡
represents the log return of the VIX index at time 𝑡.

This method leverages the forward-looking nature of the VIX index 
to estimate future VV. The EWMA framework inherently prioritizes 
recent observations, allowing the method to adapt quickly to changing 
market conditions. However, due to its reliance on historical volatility 
components, the EMVV may be disproportionately influenced by large 
shocks or abrupt movements in the recent past. Such disturbances can 
lead to the overestimation of future VV, particularly in highly volatile 
markets.

Moving Average Implied Volatility-of-Volatility (MIVV)
Baltussen et al. (2018) introduce the Moving Average Implied 

Volatility-of-Volatility (MIVV) as a hybrid estimate that combines the 
forward-looking properties of implied volatility with historical volatil-
ity patterns. It is calculated as the moving average of squared deviations 
of implied volatilities: 

𝑀𝐼𝑉 𝑉𝑡 =
1
𝑛

𝑛
∑

𝑖=1

(

𝐼𝑉𝑡−𝑖 − ̄𝐼𝑉 𝑡
)2 , (3)

where the mean implied volatility ̄𝐼𝑉 𝑡 is defined as:

̄𝐼𝑉 𝑡 =
1
𝑛

𝑛
∑

𝑖=1
𝐼𝑉𝑡−𝑖.

Here, 𝐼𝑉𝑡−𝑖 represents the implied volatilities of options observed over 
the past 𝑛 periods at time 𝑡. This method emphasizes historical devia-
tions in implied volatility, capturing both short-term fluctuations and 
broader trends in VV.

2.3. Historical measure

Statistical Volatility of Volatility (STVV)
Unlike hybrid or model-based approaches, STVV relies purely on 

historical data and avoids assumptions about forward-looking dynam-
ics. Historical variance 𝐻𝑉𝑡 is calculated as:

𝐻𝑉𝑡 =
1

𝑛 − 1

𝑛
∑

𝑖=1

(

𝑟𝑖,𝑡 − 𝑟̄𝑡
)2 ,

where 𝑟𝑖,𝑡 represents the log-returns of the underlying asset, and 𝑟̄𝑡 is 
the average return over the period.

STVV is then computed as the moving variance of 𝐻𝑉𝑡: 

𝑆𝑇𝑉 𝑉𝑡 =
1

𝑛 − 1

𝑛
∑

𝑖=1

(

𝐻𝑉𝑡−𝑖 −𝐻𝑉 𝑡
)2 , (4)

3 The value 𝜆 = 0.94 is adopted from Roh et al. (2021), and 0.94 is also 
considered as a benchmark value for market practitioners (Longerstaey and 
Zangari, 1996).
2 
Table 1
Descriptive statistics for volatility-of-volatility estimates.
 Method Obs. Mean SD Min Median Max  
 VVIX 4176 0.893 0.349 0.025 0.809 4.309  
 RNVV 4176 1.366 1.263 0.000 1.139 7.071  
 EMVV 4176 0.571 1.266 0.000 0.185 17.554 
 MIVV 4176 0.143 0.195 0.006 0.089 2.475  
 STVV 4176 0.150 0.159 0.012 0.109 1.611  
Notes: VVIX is normalized based on the value from CBOE, i.e., 𝑉 𝑉 𝐼𝑋 =
(𝑉 𝑉 𝐼𝑋𝐶𝐵𝑂𝐸∕100)2 to be comparable with other estimates.

where 𝐻𝑉 𝑡 is the average historical variance over the moving window.
This measure is entirely backward-looking, capturing VV through 

observed market fluctuations without relying on implied volatility or 
other theoretical models. The delay in response due to the lack of incor-
porating market expectations may cause this measure to underestimate 
VV during periods of rapidly increasing volatility.

3. Empirical results

3.1. Data and descriptive statistics

This study employs S&P500 option data from OptionMetrics (March 
6, 2006–December 30, 2022). Standard filters, excluding deep out-of-
the-money and illiquid options (Roh et al., 2021; Baltussen et al., 2018), 
yield a dataset of 2,573,032 calls and 3,850,449 puts.

Fig.  1 illustrates the time series of VV estimates derived from the 
four methods alongside the VVIX index, highlighting their evolution 
over the sample period. Table  1 provides descriptive statistics for these 
methods, summarizing their distributional characteristics.

3.2. Measuring deviations

We assess the predictive accuracy of these four VV estimates by 
analyzing their deviations from VVIX across volatility levels, using both
point estimates for numerical accuracy and trend estimates for directional 
alignment.

3.2.1. Point estimates
Table  2 provides detailed metrics for point estimates across different 

volatility regimes (low, medium, and high), and for the full sample. 
The metrics reported include the following: The Mean Absolute Error 
(MAE) quantifies the average magnitude of errors, emphasizing overall 
deviations without disproportionately penalizing outliers. The Mean 
Squared Error (MSE) emphasizes larger deviations by squaring individ-
ual errors, offering insights into extreme variations. The Mean Absolute 
Percentage Error (MAPE) expresses errors as a percentage of observed 
values, enhancing interpretability and comparability across methods. 
Lastly, the Weighted Mean Absolute Percentage Error (WMAPE) adjusts 
for the relative importance of individual observations, providing a 
balanced assessment of error magnitude.

Table  2 presents several critical insights. First, estimates incor-
porating historical data generally outperform model-based estimates, 
which rely more heavily on forward-looking expectations. Specifically, 
MIVV and STVV exhibit lower deviations across the full sample, with 
particularly strong performance in medium- and high-volatility periods. 
In contrast, under low-volatility conditions, EMVV demonstrates the 
smallest deviation, highlighting its relative accuracy in stable market 
environments.

Second, for most estimates (excluding RNVV), point-to-point devi-
ations from VVIX increase with rising volatility. This trend is evident 
across Panels A, B, and C, where the errors in low-volatility regimes 
remain consistently lower than those observed in medium- and high-
volatility periods. This pattern underscores the inherent difficulty in 
accurately estimating VV during heightened uncertainty.
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Fig. 1. Time series trends of volatility-of-volatility estimates. Notes: VVIX is normalized based on the value from CBOE, i.e., 𝑉 𝑉 𝐼𝑋 = (𝑉 𝑉 𝐼𝑋𝐶𝐵𝑂𝐸∕100)2 to be comparable with 
other estimates.
Interpretation of RNVV results should be made with caution. Due 
to the volatility coefficients being constrained to be non-negative, a 
substantial proportion of values that would otherwise be negative are 
truncated to zero. Specifically, in the full sample, 20.43% of the RNVV 
estimates are zero, with 5.16%, 19.89%, and 36.28% zeros in the
low-, medium-, and high-volatility subsamples, respectively. This un-
even distribution across subsamples complicates comparisons of RNVV 
point deviations across different volatility regimes and raises concerns 
about its applicability in stressed market conditions.

3.2.2. Correlation analysis
The correlation analysis aims to evaluate the trend alignment. Two 

key methodologies are employed: Spearman correlation and copula-
based analysis. Spearman correlation ranks data points, making it 
robust to outliers and applicable when variables exhibit non-linear 
dependencies. Copula, on the other hand, provides a deeper under-
standing of dependency structures, capturing non-linear and tail depen-
dencies. We adopted three popular Archimedean copulas — Clayton, 
Gumbel, and Frank — since we expect asymmetric and nonlinear 
relationships, as well as potential differences in tail dependency (Genest 
3 
and Rivest, 1993).4 By visualizing the joint distributions of VV methods 
and VVIX, copulas show how closely these estimates align with VVIX 
under varying conditions.

Spearman
Table  3 reports the Spearman correlation coefficients for all esti-

mates.5 First, hybrid estimates (EMVV and MIVV) exhibit higher pos-
itive correlations with VVIX across most regimes, indicating stronger 
alignment with the trends in VVIX. Specifically, MIVV achieves the 
highest correlation with VVIX in all volatility regimes, underscoring 
its robustness in capturing VV. STVV also maintains moderate positive 
correlations across all subsamples.

4 The Clayton copula emphasizes lower tail dependence, making it suitable 
for analyzing co-movements during periods of low volatility. The Gumbel 
copula captures upper tail dependence, focusing on relationships during high 
volatility. The Frank copula exhibits symmetric dependence with no specific 
emphasis on either tail.

5 We cautiously interpret the Spearman correlation results for subsamples. 
Since the subsamples were divided based on VIX values, the timeline is 
disrupted, resulting in a loss of temporal continuity.
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Table 2
Pointwise deviations across volatility regimes.
 MAE MSE MAPE WMAPE 
 Panel A: Low volatility
 RNVV 1.658 4.083 2.473 2.307  
 EMVV 0.587 0.562 0.826 0.817  
 MIVV 0.613 0.405 0.852 0.853  
 STVV 0.627 0.423 0.867 0.872  
 Panel B: Medium volatility
 RNVV 0.853 1.091 0.984 0.939  
 EMVV 0.786 1.395 0.853 0.865  
 MIVV 0.768 0.648 0.850 0.846  
 STVV 0.779 0.676 0.847 0.858  
 Panel C: High volatility
 RNVV 0.809 0.943 0.791 0.769  
 EMVV 0.961 2.660 0.882 0.914  
 MIVV 0.873 0.902 0.848 0.830  
 STVV 0.823 0.858 0.773 0.783  
 Panel D: Full sample
 RNVV 1.106 2.04 1.417 1.24  
 EMVV 0.778 1.539 0.853 0.871  
 MIVV 0.751 0.652 0.850 0.842  
 STVV 0.743 0.652 0.829 0.832  
Notes: Panels A, B, and C show deviations for three equally-split subsamples based 
on VIX representing low, middle, and high market volatility, respectively. Panel D 
presents the results of the full sample. The measures include the mean absolute error 
(MAE), 𝑀𝐴𝐸 = 1

𝑛

∑𝑛
𝑡=1 |𝑉 𝑉𝑡 − 𝑉 𝑉 𝐼𝑋𝑡|; mean squared error (MSE), 𝑀𝑆𝐸 = 1

𝑛

∑𝑛
𝑡=1(𝑉 𝑉𝑡−

𝑉 𝑉 𝐼𝑋𝑡)2; mean absolute percentage error (MAPE), 𝑀𝐴𝑃𝐸 = 1
𝑛

∑𝑛
𝑡=1

|𝑉 𝑉𝑡−𝑉 𝑉 𝐼𝑋𝑡 |

𝑉 𝑉 𝐼𝑋𝑡
; and 

weighted mean absolute percentage error (WMAPE), 𝑊𝑀𝐴𝑃𝐸 =
∑𝑛

𝑡=1 |𝑉 𝑉𝑡−𝑉 𝑉 𝐼𝑋𝑡 |
∑𝑛

𝑡=1 𝑉 𝑉 𝐼𝑋𝑡
. Where 

𝑉 𝑉𝑡 is the respective VV estimate, 𝑉 𝑉 𝐼𝑋𝑡 is the normalized VVIX, 𝑛 is the number of 
observations.

Table 3
Spearman correlation coefficients (%).
 VVIX RNVV EMVV MIVV STVV  
 Panel A: Low volatility
 VVIX 100 20.21 14.49 25.44 0.92  
 RNVV 20.21 100 −10.16 0.23 −7.57  
 EMVV 14.49 −10.16 100 2.44 0.88  
 MIVV 25.44 0.23 2.44 100 27.48  
 STVV 0.92 −7.57 0.88 27.48 100  
 Panel B: Middle volatility
 VVIX 100 6.81 27.93 41.32 1.57  
 RNVV 6.81 100 −20.35 −16.71 −4.64  
 EMVV 27.93 −20.35 100 18.36 0.25  
 MIVV 41.32 −16.71 18.36 100 22.72  
 STVV 1.57 −4.64 0.25 22.72 100  
 Panel C: High volatility
 VVIX 100 3.23 35.94 56.91 21.51  
 RNVV 3.23 100 −10.43 −15.84 −1.46  
 EMVV 35.94 −10.43 100 34.17 8.79  
 MIVV 56.91 −15.84 34.17 100 31.19  
 STVV 21.51 −1.46 8.79 31.19 100  
 Panel D: Full sample
 VVIX 100 −11.64 31.61 44.39 21.23  
 RNVV −11.64 100 −21.44 −17.49 −24.91 
 EMVV 31.61 −21.44 100 20.85 9.64  
 MIVV 44.39 −17.49 20.85 100 28.58  
 STVV 21.23 −24.91 9.64 28.58 100  
Notes: The table reports Spearman correlation coefficients in percentage.

In contrast, RNVV shows negative correlations with VVIX in the 
full sample (−11.64%). This suggests that RNVV may be less reli-
able in replicating the directional behavior of VVIX. Additionally, the 
truncated zero values in RNVV further complicate its interpretability.

Copula
Table  4 presents the Archimedean copulas results. We also include a 

goodness-of-fit metric, AIC, to provide insights into which copula best 
captures the dependency structure. Several findings emerge from the 
4 
Table 4
Copulas results and goodness-of-fit.
 Method Clayton Frank Gumbel Kendall 𝜏 
 𝜃 AIC 𝜃 AIC 𝜃 AIC  
 RNVV −0.15 −17411 −0.75 −17431 0.92 −17298 −0.08  
 EMVV 0.54 −6260 1.99 −6061 1.27 −6356 0.21  
 MIVV 0.89 −6858 3.00 −6652 1.44 −6801 0.31  
 STVV 0.33 −7153 1.31 −7056 1.17 −7140 0.14  
Notes: The table reports copula parameters 𝜃, AIC (Akaike Information Criterion), and 
Kendall’s 𝜏 values for three copula families (Clayton, Frank, and Gumbel) fitted to the 
dependency structure between VVIX and four VV estimates. 𝜃 represents the copula-
specific parameter: for Clayton (𝜃 > 0), higher values indicate stronger lower-tail 
dependence; for Gumbel (𝜃 ≥ 1), higher values indicate stronger upper-tail dependence; 
and for Frank (𝜃 ≠ 0), it models symmetric dependencies. Lower AIC values indicate a 
better fit. Kendall’s 𝜏 quantifies the overall monotonic dependency, directly comparable 
between different copulas families.

Fig. 2. Gumbel copula scatter plots.

table. First, RNVV exhibits weak or non-meaningful dependency with 
VVIX across both tails and symmetric relationships. This is evidenced 
by the invalid 𝜃 values for the Clayton (𝜃 = −0.15) and Gumbel (𝜃 =
0.92) copulas, as well as the negative 𝜃 value for the Frank copula 
(𝜃 = −0.75). These findings are consistent with the negative Kendall’s 
𝜏 = −0.08, indicating a lack of meaningful alignment between RNVV 
and VVIX.

Second, hybrid estimates demonstrate the strongest alignment with 
VVIX, with the highest Kendall’s 𝜏 = 0.31 for MIVV and 𝜏 = 0.21 for 
EMVV. An interesting difference between MIVV and EMVV emerges 
from the AIC values: the lowest AIC for MIVV is achieved with the 
Clayton copula, indicating stronger lower-tail dependencies, while the 
lowest AIC for EMVV is achieved with the Gumbel copula, highlighting 
higher-tail co-movement. Despite the overall alignment being stronger 
for MIVV, EMVV may hold practical importance for studying VV during 
periods of high market volatility, while MIVV may be more suitable for 
analyzing VV in low-volatility markets. Third, STVV shows moderate 
alignment (𝜏 = 0.14) with similar AIC values for the Gumbel and 
Clayton copulas, indicating partial sensitivity to both upper-tail and 
lower-tail dependencies. Fig.  2 visualizes the Gumbel copula scatter 
plots, illustrating the dependency structures.6 The visual patterns align 
with the findings in Table  4, confirming the stronger upper-tail de-
pendencies captured by the Gumbel copula, particularly for MIVV and 
EMVV.

6 Scatter plots for other copula families (e.g., Clayton, Frank) are available 
upon request.
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4. Discussion and conclusion

VVIX represents a market-implied proxy for VIX variability rather 
than a direct statistical measure of realized VV. The VVIX calculation 
follows an approximation formula identical to that of VIX. Therefore, 
it inherits limitations from the VIX framework, particularly its appli-
cability to other markets with sparse strikes. Theoretically, risk-neutral 
variance calculation requires a continuous range of strike prices from 
zero to infinity. In practice, the VIX employs a discrete subset of out-
of-the-money S&P 500 options, assuming this finite set approximates 
the continuous integral. While this may hold for the S&P 500’s dense 
strikes, it is less reliable for assets with sparser strikes, such as in-
dividual stocks. Heston et al. (2022) demonstrate that strike sparsity 
can distort the VIX’s volatility estimates, while Heston and Todorov 
(2023) reveal that the standard VIX formula may yield negative implied 
volatility values when applied to other markets. Furthermore, Li (2018) 
notes that the VIX structure tends to overestimate implied variances, 
a minor issue for VIX but more pronounced for VVIX due to sparser 
strikes.

We conclude by attending to the practical challenges posed by 
sparse strikes for the four VV estimates examined. For RNVV, the 
variance of implied volatility is estimated through the curvature of 
the implied volatility surface, a process that relies on multiple, closely 
spaced strikes. Thus, sparse strikes can compromise the precision of 
this estimate. To address this issue, Carr and Wu (2020) employ in-
terpolation to a fixed moneyness grid to limit the impact. Similarly, 
applying hybrid methods like EMVV and MIVV to individual stocks 
requires implied volatility as inputs, which could also be vulnerable 
to sparse strikes.7 In contrast, STVV circumvents these challenges en-
tirely by relying on realized volatility rather than option data. When 
implied volatility is employed, Heston et al. (2022) propose a promising 
practical solution that modifies the VIX methodology by incorporating 
a refined version of Simpson’s rule. This adaptation improves con-
vergence with sparse data, thereby enhancing the applicability of VV 
estimates in contexts where strike density is limited.

7 OptionMetrics provides a widely used estimate of implied volatility for 
individual stocks, derived through Black–Scholes inversion. This calculation 
relies on interpolated values, such as at-the-money implied volatility, and is 
thus susceptible to sparse strikes, which may diminish interpolation accuracy.
5 
To summarize, this study compares four volatility-of-volatility esti-
mates with VVIX using S&P500 data. Overall, hybrid estimates, espe-
cially MIVV, align best with VVIX.

Data availability

The authors do not have permission to share data.
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