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1. Introduction

Volatility-of-volatility (VV) is a key parameter in stochastic volatil-
ity models, capturing higher-moment risks in asset returns (Heston,
1993). Recent research suggests that VV risk is priced in various mar-
kets, including index (Hollstein and Prokopczuk, 2017; Huang et al.,
2019; Kaeck, 2018; Branger et al., 2017) and crude oil markets (Roh
et al,, 2021). The VVIX index, constructed by the Chicago Board
Options Exchange (CBOE), is a widely used estimate of VV (Zang
et al., 2017; Cheng, 2019).! VVIX, however, adopts the VIX’s complex
formula, which limits its use beyond the S&P500 due to extensive
data requirements.? This limitation highlights the need for simpler
VV estimates/measures applicable to diverse financial markets. We
compare four VV estimates adaptable to individual stocks and assess
their alignment with VVIX. Identifying the VV estimate closest to VVIX
can enhance VV research and applications beyond the S&P500.

This study examines four estimates of volatility-of-volatility (VV),
categorized into three groups. First, the model-based estimate, Risk-
Neutral Volatility-of-Volatility (RNVV), proposed by Carr and Wu (2020),
relies on the theoretical curvature of the implied volatility surface
to estimate VV. Second, the hybrid estimates, including Volatility-
of-Volatility in the EWMA Model (EMVV) by Roh et al. (2021) and
Moving Average Implied Volatility-of-Volatility (MIVV) by Baltussen
et al. (2018), combine statistical frameworks with model-derived in-
puts, leveraging both historical data and implied volatility. Third, the
historical measure, Statistical Volatility-of-Volatility (STVV), utilizes re-
alized volatility data (instead of implied) to provide a purely statistical
approach.

* Corresponding author.

2. Estimates of volatility-of-volatility

The model-based estimate assumes stochastic volatility processes,
unlike historical measures derived statistically from data with fewer
assumptions. Hybrid estimates blend theoretical and historical inputs
to estimate VV.

2.1. Model-based estimate

Risk-Neutral Volatility-of-Volatility (RNVV)

Carr and Wu (2020) propose a top-down valuation framework in
which the curvature coefficient of the option-implied volatility sur-
face is used to estimate risk-neutral VV. This framework assumes
that changes in at-the-money (ATM) implied volatility reflect similar
changes in other implied volatilities across the volatility surface. Em-
pirically, the RNVV is estimated by regressing the difference between
the implied volatility at a given strike price (/V;) and the ATM implied
volatility (IV, 47,,) on moneyness variables (k,, k,), as follows:

IV, =1V, grm = @ + Bk +vky + 6, (D)

where: y represents the curvature coefficient, which serves as the
estimate of risk-neutral VV. k; and k, are upward-adjusted moneyness
and downward-adjusted moneyness, respectively. The formulas for k;
and k, are:

S (T -1)-1V? S (T -1)-1V?
k=ln(ZL)+——", ky=ln(ZL)-—F 1
S, 2 S, 2
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1 VVIX estimates the expected volatility of the 30-day forward price of VIX, a benchmark index to estimate the market’s expectation of future volatility. More
details are available at https://www.cboe.com/tradable_products/vix/ (VIX) and https://www.cboe.com/us/indices/dashboard/vvix/ (VVIX).
2 For example, the VIX formula requires dense strikes and a forward index level. We detail the issue of sparse strikes in the discussion.
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where S, is the stock price on trading day ¢, and Sy is the stock price
on expiration date T'.

Referring to Carr and Wu (2020), we use the restricted least squares
method to constrain the curvature coefficient y to be non-negative.
RNVV assumes a well-behaved implied volatility surface with uniform
ATM changes across strikes, an assumption that may fail in stressed
markets. Fig. 1 shows deviations during such periods.

2.2. Hybrid estimates

Volatility-of-volatility in the EWMA model (EMVV)
Roh et al. (2021) provide an alternative approach to capture the
dynamic nature of volatility fluctuations. The EMVV is calculated as:

EMVV, = AEMVV,_; +(1 - D>, 2

where: 4 = 0.94 is the smoothing parameter,® which assigns greater
weight to more recent data; EMVV, = 0 is the initial value; r,
represents the log return of the VIX index at time 7.

This method leverages the forward-looking nature of the VIX index
to estimate future VV. The EWMA framework inherently prioritizes
recent observations, allowing the method to adapt quickly to changing
market conditions. However, due to its reliance on historical volatility
components, the EMVV may be disproportionately influenced by large
shocks or abrupt movements in the recent past. Such disturbances can
lead to the overestimation of future VV, particularly in highly volatile
markets.

Moving Average Implied Volatility-of-Volatility (MIVV)

Baltussen et al. (2018) introduce the Moving Average Implied
Volatility-of-Volatility (MIVV) as a hybrid estimate that combines the
forward-looking properties of implied volatility with historical volatil-
ity patterns. It is calculated as the moving average of squared deviations
of implied volatilities:

MIVV, = % 3 (v - 17,)%, 3)

i=1

where the mean implied volatility IV, is defined as:
1 n
.= Z‘f v,
iz

Here, IV,_; represents the implied volatilities of options observed over
the past n periods at time z. This method emphasizes historical devia-
tions in implied volatility, capturing both short-term fluctuations and
broader trends in VV.

2.3. Historical measure

Statistical Volatility of Volatility (STVV)

Unlike hybrid or model-based approaches, STVV relies purely on
historical data and avoids assumptions about forward-looking dynam-
ics. Historical variance HV;, is calculated as:

n
1 _
HVt:ﬂ_IZ(ri't_rt)z’

i=1

where r;, represents the log-returns of the underlying asset, and 7, is
the average return over the period.
STVV is then computed as the moving variance of HV:

n
1 — N2
STVV, = — ; (HV,_; - HV,)", 4

3 The value 1 = 0.94 is adopted from Roh et al. (2021), and 0.94 is also
considered as a benchmark value for market practitioners (Longerstaey and
Zangari, 1996).
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Table 1

Descriptive statistics for volatility-of-volatility estimates.
Method Obs. Mean SD Min Median Max
VVIX 4176 0.893 0.349 0.025 0.809 4.309
RNVV 4176 1.366 1.263 0.000 1.139 7.071
EMVV 4176 0.571 1.266 0.000 0.185 17.554
MIVV 4176 0.143 0.195 0.006 0.089 2.475
STVV 4176 0.150 0.159 0.012 0.109 1.611

Notes: VVIX is normalized based on the value from CBOE, ie, VVIX =
(VVIXcpor/100)* to be comparable with other estimates.

where HV, is the average historical variance over the moving window.

This measure is entirely backward-looking, capturing VV through
observed market fluctuations without relying on implied volatility or
other theoretical models. The delay in response due to the lack of incor-
porating market expectations may cause this measure to underestimate
VV during periods of rapidly increasing volatility.

3. Empirical results
3.1. Data and descriptive statistics

This study employs S&P500 option data from OptionMetrics (March
6, 2006-December 30, 2022). Standard filters, excluding deep out-of-
the-money and illiquid options (Roh et al., 2021; Baltussen et al., 2018),
yield a dataset of 2,573,032 calls and 3,850,449 puts.

Fig. 1 illustrates the time series of VV estimates derived from the
four methods alongside the VVIX index, highlighting their evolution
over the sample period. Table 1 provides descriptive statistics for these
methods, summarizing their distributional characteristics.

3.2. Measuring deviations

We assess the predictive accuracy of these four VV estimates by
analyzing their deviations from VVIX across volatility levels, using both
point estimates for numerical accuracy and trend estimates for directional
alignment.

3.2.1. Point estimates

Table 2 provides detailed metrics for point estimates across different
volatility regimes (low, medium, and high), and for the full sample.
The metrics reported include the following: The Mean Absolute Error
(MAE) quantifies the average magnitude of errors, emphasizing overall
deviations without disproportionately penalizing outliers. The Mean
Squared Error (MSE) emphasizes larger deviations by squaring individ-
ual errors, offering insights into extreme variations. The Mean Absolute
Percentage Error (MAPE) expresses errors as a percentage of observed
values, enhancing interpretability and comparability across methods.
Lastly, the Weighted Mean Absolute Percentage Error (WMAPE) adjusts
for the relative importance of individual observations, providing a
balanced assessment of error magnitude.

Table 2 presents several critical insights. First, estimates incor-
porating historical data generally outperform model-based estimates,
which rely more heavily on forward-looking expectations. Specifically,
MIVV and STVV exhibit lower deviations across the full sample, with
particularly strong performance in medium- and high-volatility periods.
In contrast, under low-volatility conditions, EMVV demonstrates the
smallest deviation, highlighting its relative accuracy in stable market
environments.

Second, for most estimates (excluding RNVV), point-to-point devi-
ations from VVIX increase with rising volatility. This trend is evident
across Panels A, B, and C, where the errors in low-volatility regimes
remain consistently lower than those observed in medium- and high-
volatility periods. This pattern underscores the inherent difficulty in
accurately estimating VV during heightened uncertainty.
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Fig. 1. Time series trends of volatility-of-volatility estimates. Notes: VVIX is normalized based on the value from CBOE, i.e., VVIX = (VVIXcpor/100)* to be comparable with

other estimates.

Interpretation of RNVV results should be made with caution. Due
to the volatility coefficients being constrained to be non-negative, a
substantial proportion of values that would otherwise be negative are
truncated to zero. Specifically, in the full sample, 20.43% of the RNVV
estimates are zero, with 5.16%, 19.89%, and 36.28% zeros in the
low-, medium-, and high-volatility subsamples, respectively. This un-
even distribution across subsamples complicates comparisons of RNVV
point deviations across different volatility regimes and raises concerns
about its applicability in stressed market conditions.

3.2.2. Correlation analysis

The correlation analysis aims to evaluate the trend alignment. Two
key methodologies are employed: Spearman correlation and copula-
based analysis. Spearman correlation ranks data points, making it
robust to outliers and applicable when variables exhibit non-linear
dependencies. Copula, on the other hand, provides a deeper under-
standing of dependency structures, capturing non-linear and tail depen-
dencies. We adopted three popular Archimedean copulas — Clayton,
Gumbel, and Frank — since we expect asymmetric and nonlinear
relationships, as well as potential differences in tail dependency (Genest

and Rivest, 1993).* By visualizing the joint distributions of VV methods
and VVIX, copulas show how closely these estimates align with VVIX
under varying conditions.

Spearman

Table 3 reports the Spearman correlation coefficients for all esti-
mates.® First, hybrid estimates (EMVV and MIVV) exhibit higher pos-
itive correlations with VVIX across most regimes, indicating stronger
alignment with the trends in VVIX. Specifically, MIVV achieves the
highest correlation with VVIX in all volatility regimes, underscoring
its robustness in capturing VV. STVV also maintains moderate positive
correlations across all subsamples.

4 The Clayton copula emphasizes lower tail dependence, making it suitable
for analyzing co-movements during periods of low volatility. The Gumbel
copula captures upper tail dependence, focusing on relationships during high
volatility. The Frank copula exhibits symmetric dependence with no specific
emphasis on either tail.

5 We cautiously interpret the Spearman correlation results for subsamples.
Since the subsamples were divided based on VIX values, the timeline is
disrupted, resulting in a loss of temporal continuity.
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Table 2 Table 4
Pointwise deviations across volatility regimes. Copulas results and goodness-of-fit.
MAE MSE MAPE WMAPE Method  Clayton Frank Gumbel Kendall =

Panel A: Low volatility 0 AIC [4 AIC [4 AIC

RNVV 1.658 4.083 2.473 2.307 RNVV  -015 -17411 -075 -17431 092 -17298 —0.08

EMVV 0.587 0562 0.826 0.817 EMVV 054 6260 199  -6061 127 -6356  0.21

MIvV 0613 0.405 0.852 0.853 MIVV 089  -6858  3.00  -6652  1.44 -6801  0.31

STVV 0.627 0.423 0.867 0.872 STV 033  -7153 131  -7056 117 7140  0.14

Panel B: Medium volatility Notes: The table reports copula parameters 6, AIC (Akaike Information Criterion), and

RNVV 0.853 1.091 0.984 0.939 s s §

EMVV 0.786 1.395 0.853 0.865 Kendall’s = values for three copula families (Clayton, Frank, and Gumbel) fitted to the
dependency structure between VVIX and four VV estimates. 0 represents the copula-

MIVV 0.768 0.648 0.850 0.846 . . o .

STVV 0779 0676 0.847 0.858 specific parameter: for Clayton (¢ > 0), higher values indicate stronger lower-tail
dependence; for Gumbel (6 > 1), higher values indicate stronger upper-tail dependence;

Panel C: High volatility and for Frank (0 # 0), it models symmetric dependencies. Lower AIC values indicate a

RNVV 0.809 0.943 0.791 0.769 better fit. Kendall’s = quantifies the overall monotonic dependency, directly comparable

EMVV 0.961 2.660 0.882 0.914 between different copulas families.

MIVV 0.873 0.902 0.848 0.830

STVV 0.823 0.858 0.773 0.783

Panel D: Full sample

RNVV 1.106 2.04 1.417 1.24 =

EMVV 0.778 1.539 0.853 0.871

MIVV 0.751 0.652 0.850 0.842

STVV 0.743 0.652 0.829 0.832

Notes: Panels A, B, and C show deviations for three equally-split subsamples based
on VIX representing low, middle, and high market volatility, respectively. Panel D
presents the results of the full sample. The measures include the mean absolute error
(MAE), MAE = 1 3 |VV, - VVIX,|; mean squared error (MSE), MSE = 1 3" (V'V;—

VVIX,)*; mean absolute percentage error (MAPE), MAPE = iz" Wy vvix,

Ll
1=1 vvix, and

weighted mean absolute percentage error (WMAPE), W M APE = w Where
- f
V'V, is the respective VV estimate, V'V IX, is the normalized VVIX, n is the number of

observations.

Table 3
Spearman correlation coefficients (%).

VVIX RNVV EMVV MIVV STVV
Panel A: Low volatility
VVIX 100 20.21 14.49 25.44 0.92
RNVV 20.21 100 -10.16 0.23 -7.57
EMVV 14.49 -10.16 100 2.44 0.88
MIVV 25.44 0.23 2.44 100 27.48
STVV 0.92 -7.57 0.88 27.48 100
Panel B: Middle volatility
VVIX 100 6.81 27.93 41.32 1.57
RNVV 6.81 100 —-20.35 -16.71 —4.64
EMVV 27.93 -20.35 100 18.36 0.25
MIVV 41.32 -16.71 18.36 100 22.72
STVV 1.57 —4.64 0.25 22.72 100
Panel C: High volatility
VVIX 100 3.23 35.94 56.91 21.51
RNVV 3.23 100 -10.43 -15.84 -1.46
EMVV 35.94 -10.43 100 34.17 8.79
MIVV 56.91 -15.84 34.17 100 31.19
STVV 21.51 -1.46 8.79 31.19 100
Panel D: Full sample
VVIX 100 -11.64 31.61 44.39 21.23
RNVV -11.64 100 -21.44 -17.49 -24.91
EMVV 31.61 -21.44 100 20.85 9.64
MIVV 44.39 -17.49 20.85 100 28.58
STVV 21.23 —-24.91 9.64 28.58 100

Notes: The table reports Spearman correlation coefficients in percentage.

In contrast, RNVV shows negative correlations with VVIX in the
full sample (—11.64%). This suggests that RNVV may be less reli-
able in replicating the directional behavior of VVIX. Additionally, the
truncated zero values in RNVV further complicate its interpretability.

Copula

Table 4 presents the Archimedean copulas results. We also include a
goodness-of-fit metric, AIC, to provide insights into which copula best
captures the dependency structure. Several findings emerge from the

Fig. 2. Gumbel copula scatter plots.

table. First, RNVV exhibits weak or non-meaningful dependency with
VVIX across both tails and symmetric relationships. This is evidenced
by the invalid 6 values for the Clayton (¢ = —0.15) and Gumbel (0 =
0.92) copulas, as well as the negative 6 value for the Frank copula
(6 = —0.75). These findings are consistent with the negative Kendall’s
7 = —0.08, indicating a lack of meaningful alignment between RNVV
and VVIX.

Second, hybrid estimates demonstrate the strongest alignment with
VVIX, with the highest Kendall’s = = 0.31 for MIVV and z = 0.21 for
EMVV. An interesting difference between MIVV and EMVV emerges
from the AIC values: the lowest AIC for MIVV is achieved with the
Clayton copula, indicating stronger lower-tail dependencies, while the
lowest AIC for EMVV is achieved with the Gumbel copula, highlighting
higher-tail co-movement. Despite the overall alignment being stronger
for MIVV, EMVV may hold practical importance for studying VV during
periods of high market volatility, while MIVV may be more suitable for
analyzing VV in low-volatility markets. Third, STVV shows moderate
alignment (r = 0.14) with similar AIC values for the Gumbel and
Clayton copulas, indicating partial sensitivity to both upper-tail and
lower-tail dependencies. Fig. 2 visualizes the Gumbel copula scatter
plots, illustrating the dependency structures.® The visual patterns align
with the findings in Table 4, confirming the stronger upper-tail de-
pendencies captured by the Gumbel copula, particularly for MIVV and
EMVV.

6 Scatter plots for other copula families (e.g., Clayton, Frank) are available
upon request.
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4. Discussion and conclusion

VVIX represents a market-implied proxy for VIX variability rather
than a direct statistical measure of realized VV. The VVIX calculation
follows an approximation formula identical to that of VIX. Therefore,
it inherits limitations from the VIX framework, particularly its appli-
cability to other markets with sparse strikes. Theoretically, risk-neutral
variance calculation requires a continuous range of strike prices from
zero to infinity. In practice, the VIX employs a discrete subset of out-
of-the-money S&P 500 options, assuming this finite set approximates
the continuous integral. While this may hold for the S&P 500’s dense
strikes, it is less reliable for assets with sparser strikes, such as in-
dividual stocks. Heston et al. (2022) demonstrate that strike sparsity
can distort the VIX’s volatility estimates, while Heston and Todorov
(2023) reveal that the standard VIX formula may yield negative implied
volatility values when applied to other markets. Furthermore, Li (2018)
notes that the VIX structure tends to overestimate implied variances,
a minor issue for VIX but more pronounced for VVIX due to sparser
strikes.

We conclude by attending to the practical challenges posed by
sparse strikes for the four VV estimates examined. For RNVV, the
variance of implied volatility is estimated through the curvature of
the implied volatility surface, a process that relies on multiple, closely
spaced strikes. Thus, sparse strikes can compromise the precision of
this estimate. To address this issue, Carr and Wu (2020) employ in-
terpolation to a fixed moneyness grid to limit the impact. Similarly,
applying hybrid methods like EMVV and MIVV to individual stocks
requires implied volatility as inputs, which could also be vulnerable
to sparse strikes.” In contrast, STVV circumvents these challenges en-
tirely by relying on realized volatility rather than option data. When
implied volatility is employed, Heston et al. (2022) propose a promising
practical solution that modifies the VIX methodology by incorporating
a refined version of Simpson’s rule. This adaptation improves con-
vergence with sparse data, thereby enhancing the applicability of VV
estimates in contexts where strike density is limited.

7 OptionMetrics provides a widely used estimate of implied volatility for
individual stocks, derived through Black-Scholes inversion. This calculation
relies on interpolated values, such as at-the-money implied volatility, and is
thus susceptible to sparse strikes, which may diminish interpolation accuracy.

Economics Letters 250 (2025) 112298

To summarize, this study compares four volatility-of-volatility esti-
mates with VVIX using S&P500 data. Overall, hybrid estimates, espe-
cially MIVV, align best with VVIX.

Data availability

The authors do not have permission to share data.
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