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Abstract

Wave energy is a promising renewable energy source, but its commercial utilisation is
low compared to wind and solar energy. This paper proposes an explicit model predictive
control (EMPC) strategy to reduce the high computational burden associated with online
computation. Realistic wave data collected from the coast of Cornwall, UK, together with
realistic single-point absorber parameters, are utilised. The dynamic response of the floating
system is controlled, and a disturbance observer and an autoregressive model are designed
for wave prediction. This paper aims to identify the most effective strategy to achieve optimal
trajectory tracking, rapid prediction, efficient optimisation, and maximum energy capture.
The results of numerical simulations show impressive effects of trajectory tracking, wave
prediction, and maximum energy capture, with rapid prediction and low computational
demand. These results demonstrate the effectiveness of the proposed EMPC method in wave
energy converters (WECs).

1. Introduction
In the coming decades, the world’s energy consumption will grow significantly. Fossil fuel resources are

depleting, and environmental problems such as global warming, rising sea levels, and extreme weather frequently
occur. Therefore, the development of clean energy has become a global challenge and shared goal (Clément et al.,
2002). The ocean is the world’s largest ecosystem, covering 71% of the Earth’s surface and holding abundant energy
resources. The energy obtained from ocean waves can reach about 32,000 kWh/year (Faedo et al., 2017). Wave
energy is a widely distributed and unbalanced renewable resource with high energy density and the potential for a
continuous power supply. Resource-intensive areas are mainly concentrated in mid- and high-latitude waters, such
as the west coast of North America, southern Australia, the British Isles, the west coast of Europe, southern Chile,
and New Zealand (Drew et al., 2009) (Barstow et al., 2011). Compared with renewable energy sources such as wind
and solar energy, wave energy has higher energy density and stability. Furthermore, it has been demonstrated that
wave prediction can improve control performance (Falnes and Kurniawan, 2020). The annual power generation
potential of ocean tidal, seepage, wave, and thermal energy is 800 TWh, 2,000 TWh, 8,000 to 80,000 TWh, and
10,000 to 87,600 TWh, respectively. The potential far exceeds the annual global electricity demand of about 16,000
TWh (Khan et al., 2017).

As technology advances and costs decrease, marine renewable energy has broad prospects and helps promote
optimisation of the global energy structure (Qiu et al., 2019). However, despite its advantages, wave energy faces
significant technical challenges in harnessing its potential. The main difficulty in obtaining wave energy is that
exploiting the irregular reciprocating motion of the ocean is not as simple as obtaining energy from the wind
(Ringwood et al., 2014). Early systems used the natural movement of floats with the waves to achieve passive
conversion of wave energy, and a variety of floating wave energy converters (WECs) have been developed for
wave energy harvesting (Xu et al., 2019). Active control systems apply external forces to adjust the movement
of floats to keep them in sync with the wave frequency. The control strategy based on the combination of Model
Predictive Control (MPC) and an active valve control mechanism is simple to operate and has the best performance
compared to other control methods (Jusoh et al., 2019). However, realistic waves are not single-frequency; they
change over time. To achieve automatic adjustment of the ocean’s natural frequency, it is essential to implement
advanced dynamic control technology under realistic ocean conditions (Yang et al., 2021).

WECs such as point absorbers, oscillating water columns, and attenuators have been studied and developed
(Jariwala et al., 2025). Wave prediction methods such as the Extended Kalman Filter (EKF), artificial neural
network, and deterministic sea wave prediction (DSWP) all introduce certain prediction errors (Zhang and Li,
2019). Point absorbers have been widely studied in the field of WEC control and are often used as a benchmark
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problem for wave excitation force estimation. It is smaller than the wavelength and uses the up-and-down motion of
the float to capture wave energy from waves that are larger than the physical size of the device itself, making it less
likely to be damaged in the harsh marine environments (Zhang et al., 2019) (Faizal et al., 2014). Based on the simple
control method (SCM) (Fusco and Ringwood, 2012) (Korde and Ringwood, 2016), practical prediction techniques
are improved and used for wave observations to almost accurately and simultaneously predict the hydrodynamic
forces on the WECs at all times. When designing a point absorber-type wave energy generator, the choice of
control system has an important impact on improving the power generation efficiency in actual sea areas (Li et al.,
2020). Furthermore, a point absorber wave energy converter (PA-WEC) is a type of WEC that directly uses the
changes in the magnetic field caused by the relative motion of the coil and the floating moving part with permanent
magnets to generate electricity (Murai and Sakamoto, 2022). The power generation of a multi-PA-WEC array can
be maximised by employing analytical background and numerical methods for deriving the optimal control force
parameters (Murai et al., 2021). However, point absorption-type WECs have a narrow frequency response and
perform unsatisfactorily in realistic ocean conditions unless their motion is actively controlled (Hals et al., 2011).

MPC is applied to wave energy generation systems to deal with problems such as strong system dynamics
and complex constraints. However, many existing MPC strategies do not consider terminal stability constraints or
disturbance feedback mechanisms. The control structure relies mostly on open-loop prediction, lacking the ability to
handle disturbances and uncertainties in a closed loop. This makes it difficult to ensure recursive feasibility during
actual operation, potentially leading to unsolvable optimisation problems at certain times. The general approach
is to design a robust MPC (RMPC) that ensures recursive feasibility for all possible realisations of stochastic
uncertainty, either by adopting a min-max strategy for the worst-case evaluation of the cost function (Kothare et al.,
1996) (Evans et al., 2014) or by parameterizing a partially separable feedback control law through a tube-based
approach (Yu et al., 2013) (Lasheen et al., 2017). There is a conflict between maximizing captured energy and
ensuring the range of sea conditions for the safe operation of the system. The trade-off between them is difficult to
achieve and reduces the operating range and energy conversion efficiency (Zhan et al., 2019a). AHMPC develops
an efficient cascade estimation algorithm at the top level to adaptively identify and update the WEC model online
according to the sea state changes. At the bottom level, a specially customised MPC controller is implemented
based on the updated WEC model to energy capture (Zhan et al., 2018). The economic feedback MPC control law
includes the state feedback gain offline design to maximise the working range and online calculation to maximise
capture energy (Zhan et al., 2019a) and optimise the energy conversion efficiency of WECs.

The control of WECs is a noncausal control problem that requires a lot of online computing, and future waves
determine the current control decisions (Wang et al., 2024). The above methods cannot effectively alleviate the
problem of excessive computational workload during the online calculation of WECs, and it remains a challenge
to meet the real-time requirements. They are restricted when computing resources are limited, the computational
demand is too high, and they have limited adaptability to dynamically changing sea conditions. This paper proposes
an explicit model predictive control (EMPC) solution for the control problem of WECs. Based on multi-parameter
planning technology, EMPC calculates the optimal control behaviour offline, expresses it as an explicit function,
and predicts the future state of the system. When online, it is simplified to a regional piecewise linear controller
to avoid online solutions. Each region corresponds to a different equation, and a simple function evaluation is
performed to reduce a lot of computational burden while achieving rapid prediction and efficient optimisation
(Bank et al., 1982) (Alessio and Bemporad, 2009). The disturbance observer and autoregressive model perform
wave prediction to maximise energy. In the power sector, EMPC is applied to the frequency control of a real
isolated power system in Inner Mongolia, and its explicit control law restores the system frequency to the nominal
value under large disturbances (Jiang et al., 2016). When EMPC is applied to a hybrid battery-supercapacitor
power supply, the EMPC system requires less computation than the traditional MPC system for low-order systems.
When implemented on a DSPACE DS1104 controller board, the EMPC system operates approximately 25 times
faster than the traditional MPC system (Hredzak et al., 2015). When EMPC is applied to a vehicle semi-active
suspension system, it copes with the strong coupling, actuator constraints, and fast dynamic characteristics of the
system. Simulation results show that EMPC has a shorter computation time than traditional MPC while maintaining
the same performance as MPC. EMPC significantly improves the control performance of the vehicle semi-active
suspension system with low computational effort (Houzhong et al., 2020). This paper aims to apply EMPC to the
problem of WEC control for the first time. Many active control strategies require knowledge of the wave excitation
forces acting on the WECs, which are usually assumed to be accurately known and require forward predictions of
several seconds. These conditions are unrealistic for operating WECs, resulting in actual performance degradation.
Therefore, when using EMPC, the control strategy must be robust to modelling errors and other uncertainties (Hillis
et al., 2020). The main novelties and contributions of this paper are as follows:

1. EMPC is proposed to control WECs under complex constraints, reducing the number of online calculations
of MPC and solving problems of optimal trajectory tracking, rapid prediction, and efficient optimisation.
This is the first application of EMPC in WEC control.

Teng Gao, Yao Zhang, Tahsin Tezdogan: Preprint submitted to Elsevier Page 2 of 22



Noncausal Explicit Model Predictive Control of Wave Energy Converters

2. In the EMPC application process, to achieve visualisation and reduce the computational effort, this paper
adopts the balanced truncation method to reduce the order of the tenth-order model and achieve model
matching, and uses the second-order model to equivalently replace the tenth-order model in the low-
frequency range.

3. This paper designs a wave observer and an autoregressive model for wave prediction to achieve energy
maximisation since WEC control is a noncausal control problem.

4. This article uses realistic wave data gathered from the coast of Cornwall, UK (Zhang et al., 2019) (Li and
Belmont, 2014), to verify the effectiveness of EMPC in WEC control.

The paper proceeds as follows: Section II is the mathematical modelling of the WEC dynamic system. Section
III analyses the EMPC for energy capture maximisation. Section IV presents the simulation results and analysis.
Section V provides an overall conclusion of this paper.

Figure 1: Schematic diagram of point absorber.

2. Mathematical Modelling of WEC Dynamic System
This section introduces the dynamic model of a single-point absorber. In Section 2.1, the hydrodynamic model

is transformed into a state-space model to design the controller, which introduces modelling uncertainty. Section
2.2 presents the process of transforming the hydrodynamic model into a state-space model and model matching.
Section 2.3 gives the optimal trajectory generation to the noncausal WEC control problem of an accurately modeled
point absorber.

2.1. Dynamical Model of WECs
Figure 1 shows part of the hydraulic power take-off (PTO) design, where a hydraulic cylinder is mounted

vertically below a float and fixed to the bottom of the seabed. More details of this design can be found in (Weiss
et al., 2012). 𝑧𝑤 is the sea wave elevation and 𝑧𝑣 is the height of the midpoint of the float. The current research
mainly considers the actual sea conditions in deep water and does not consider the shallow water conditions. In
this environment, the PTO displacement of the WECs is usually regarded as the heave displacement 𝑧𝑣. The PTO
torque is proportional to the force 𝑓𝑢 acting on the piston in the cylinder. The output power 𝑃 is defined as:

𝑃 ∶= −𝑓𝑢𝑧𝑣 (1a)

The energy absorbed during the period [𝑡0, 𝑡1] is expressed as:

𝐸 = ∫

𝑡1

𝑡0
𝑃 (𝑡) 𝑑𝑡 (1b)

The heave motion of the buoy is restricted to ensure safe operation. The constraint is expressed as:

|𝑧𝑣| ≤ Φmax (2a)

where Φmax is the float heave motion limits. The WEC is subject to PTO force limitations:

|𝑓𝑢| ≤ 𝑢max (2b)

The objective of the controller design is to maximise the energy (1b) subject to the state constraints (2a) and
the input constraints (2b) (Zhan and Li, 2018). The dynamic equations (Yu and Falnes, 1995) for the float of the
point absorber are given by Newton’s second law:

𝑚𝑠𝑧̈𝑣 = −𝑓𝑠 − 𝑓𝑟 + 𝑓𝑒 + 𝑓𝑢 (3)
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where 𝑚𝑠 is the float mass. The restoring force 𝑓𝑠 is:

𝑓𝑠 = 𝑘𝑠𝑧𝑣 (4)

where the hydrostatic stiffness is given by 𝑘𝑠 = 𝜌𝑔𝑠, 𝜌 is the water density, 𝑔 is the standard gravity, and 𝑠 is the
cross-sectional area of the float. The radiation force 𝑓𝑟 is defined as:

𝑓𝑟 = 𝑚∞𝑧̈𝑣 + ∫

∞

−∞
ℎ𝑟(𝜏)𝑧̇𝑣(𝑡 − 𝜏) 𝑑𝜏 (5)

where 𝑚∞ is the added mass, ℎ𝑟 is the radiation force kernel, which can be computed via hydraulic software
packages. The convolutional term in (5) can be approximated as 𝑓𝑟 ∶= ∫ ∞

−∞ ℎ𝑟(𝜏)𝑧̇𝑣(𝑡 − 𝜏) 𝑑𝜏 by a causal finite-
dimensional state-space model (Yu and Falnes, 1995).

𝑥̇𝑟 = 𝐴𝑟𝑥𝑟 + 𝐵𝑟𝑧𝑣 (6a)

𝑦𝑟 = 𝑓𝑟 = 𝐶𝑟𝑥𝑟 ≈ ∫

𝑡

−∞
ℎ𝑟(𝜏)𝑧̇𝑣(𝑡 − 𝜏) 𝑑𝜏 (6b)

where 𝑥𝑟 ∈ ℝ𝑛𝑟 is the state, and (𝐴𝑟, 𝐵𝑟, 𝐶𝑟, 0) are the state-space realisations. According to (Yu and Falnes, 1995),
the wave excitation force 𝑓𝑒 can be determined:

𝑓𝑒 = ∫

∞

−∞
ℎ𝑒(𝜏)𝑧𝑤(𝑡 − 𝜏) 𝑑𝜏 (7)

where ℎ𝑒 is the kernel of the excitation force, and the state-space approximation is given by:

𝑥̇𝑒 = 𝐴𝑒𝑥𝑒 + 𝐵𝑒𝑧𝑤 (8a)

𝑦𝑒 = 𝑓𝑒 = 𝐶𝑒𝑥𝑒 ≈ ∫

∞

−∞
ℎ𝑒(𝜏)𝑧𝑤(𝑡 − 𝜏) 𝑑𝜏 (8b)

where 𝑥𝑒 ∈ ℝ𝑛𝑒 is the state, and (𝐴𝑒, 𝐵𝑒, 𝐶𝑒, 0) are the state-space realisations.

2.2. State-space Model
With the realisations of (6a), (6b), (8a) and (8b), the state–space model of (3) can be represented by:

𝑥̇ = 𝐴𝑐𝑥 + 𝐵𝑢𝑐𝑢 + 𝐵𝑤𝑐𝑤 + 𝜖 (9a)

𝑦 = 𝐶𝑐𝑥 (9b)

where 𝑤 ∶= 𝑧𝑤 is the wave elevation whose prediction is incorporated into the controller design, 𝑦 ∶= 𝑧𝑣,
𝑥 ∶= [𝑧𝑣, 𝑧̇𝑣, 𝑥𝑟, 𝑥𝑒], and 𝑢 ∶= 𝑓𝑢. 𝜖 represents the model uncertainty caused by wave force approximations in
equations (6b) and (8b). And

𝐴𝑐 =

⎡

⎢

⎢

⎢

⎢

⎣

0 1 0 0

−𝑘𝑠
𝑚 −𝐷𝑓

𝑚
𝐶𝑟
𝑚 −𝐶𝑒

𝑚
0 𝐵𝑟 𝐴𝑟 0
0 0 0 𝐴𝑒

⎤

⎥

⎥

⎥

⎥

⎦

𝐵𝑢𝑐 =

⎡

⎢

⎢

⎢

⎢

⎣

0
1000
𝑚
0
0

⎤

⎥

⎥

⎥

⎥

⎦

𝐵𝑤𝑐 =

⎡

⎢

⎢

⎢

⎢

⎣

0
0
0
𝐵𝑒

⎤

⎥

⎥

⎥

⎥

⎦

𝐶𝑐 =
[

0 1 01×(𝑛𝑒+𝑛𝑟)
]

with 𝑚 ∶= 𝑚𝑠 + 𝑚∞. The balanced truncation method is used to reduce the order of the tenth-order model and
verify the model’s matching. The parameters are gradually optimised to establish a second-order model to achieve
an equivalent replacement for the tenth-order model in the low-frequency range:

𝐴𝑐 =

[

0 1

−𝑘𝑠
𝑚 −𝐷𝑟

𝑚

]

𝐵𝑢𝑐 =

[

0
1
𝑚

]

𝐵𝑤𝑐 =

[

0
𝐷𝑒
𝑚

]

𝐶𝑐 =
[

0 1
]
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The continuous-time model (9a) and (9b) can be converted to a discrete-time model (10a) and (10b).

𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝐵𝑢𝑢𝑘 + 𝐵𝑤𝑤𝑘 + 𝜖𝑘 (10a)

𝑦𝑘 = 𝐶𝑥𝑘 (10b)

where the quadruple (𝐴,𝐵𝑢, 𝐵𝑤, 𝐶) is the discrete-time form of the quadruple (𝐴𝑐 , 𝐵𝑢𝑐 , 𝐵𝑤𝑐 , 𝐶𝑐).
The balanced truncation method was first proposed by Moore (1981) and is an effective model simplification

method for linear systems. In the balanced truncation process, high-dimensional stable structures may be both
controllable and observable. In most cases, a transformation is established, as described in Moore (1981), which
transforms the system into a unique form where the controllability and observability Gramians are equal. This
produces a diagonal matrix Σ with the Hankel singular values on the diagonal arranged in descending order of
dominance (Suman and Kumar, 2021). For nonlinear systems, balanced truncation based on algebraic Gramians
can be achieved by solving Lyapunov-type equations (Gray and Verriest, 2006).

To reduce the computational demand of the tenth-order model and allow EMPC to operate on offshore devices
with limited capability, the balanced truncation method is introduced to reduce the order of the tenth-order model.
The order of the reduced-order model is second order. The main dynamic and energy capture characteristics of
the tenth-order model are preserved, ensuring that the reduced-order model remains highly consistent with the
tenth-order model in terms of position and energy capture. The performance of the reduced-order model closely
matches that of the tenth-order model in terms of dynamic response, velocity, and PTO force.

A second-order model is established by optimizing parameters and compared with reduced-order and tenth-
order models. The second-order model achieves performance nearly identical to the tenth-order model in terms
of position and energy. In terms of velocity and PTO force, it shows a higher approximation than the reduced-
order model, aligning more closely with the tenth-order model. The second-order model accurately captures
the key dynamic behaviours of the system and achieves an equivalent replacement for the tenth-order model,
which significantly reduces the computational demand. To verify the effectiveness of the reduced-order model,
comparison results in both the frequency and time domains are shown in the simulation section, demonstrating
model matching verification after reduction from the tenth-order model and the equivalent substitution achieved
by the second-order model.

2.3. Optimal Trajectory Generation
This paper uses EMPC to track the optimal trajectory and maximise energy capture. The optimal trajectory of

WECs is:

min
𝑢

1
𝑁

𝑁−1
∑

𝑘=0
𝐿𝑘(𝑥𝑘, 𝑢𝑘) (11a)

s.t.

x𝑘+1 = 𝐴𝑥𝑘 + 𝐵𝑢𝑢𝑘 + 𝐵𝑤𝑤𝑘 (11b)

𝑦𝑘 = 𝐶𝑐𝑥𝑘 (11c)

where 𝑁 is the number of prediction steps and 𝐿𝑘 is the stage cost:

𝐿𝑘 = 1
2
𝑥𝑇𝑘𝑄

′𝑥𝑘 + 𝑦𝑘𝑢𝑘 +
1
2
𝑅′𝑢2𝑘 (12)

where 1
2𝑥

𝑇
𝑘𝑄

′𝑥𝑘 represents the weighted penalty term on the system state, 𝑄′ and 𝑅′ are positive definite matrices,
𝑄′ influences the stability of the control system and serves as a tuning parameter for addressing state constraints
(2a), −𝑦𝑘𝑢𝑘 represents the power that the power take-off (PTO) mechanism can capture, minimizing 𝑦𝑘𝑢𝑘 is
maximizing energy output, 1

2𝑅
′𝑢2𝑘 is introduced to penalise the input, 𝑅′ affects the stability of the control system,

and is a tuning parameter for handling the input constraint (2b) (Zhan and Li, 2018).

3. Explicit MPC for Energy Maximisation
This section describes the proposed EMPC. Section 3.1 introduces the overall strategy of the proposed

controller. In Section 3.2, EMPC is used to achieve optimal trajectory tracking and maximise energy capture.
Section 3.3 presents the design of the disturbance observer. Section 3.4 presents the wave prediction through the
autoregressive model.
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3.1. Overall Strategy
The overall strategy of this paper is as follows: The tenth-order model of the point absorber is reduced and

equivalently replaced by a second-order model in the low-frequency range. The EMPC control error approaches
zero. The plant generates predicted float position and velocity based on the wave, PTO force, and white noise.
The disturbance observer and autoregressive model are used for wave prediction to achieve optimal trajectory
tracking and maximum energy capture. The block diagram of the proposed EMPC scheme is shown in Figure 2.
The disturbance observer processes the output trajectory data from the plant and generates an estimated value of
disturbance, which is then fed into the autoregressive model. The autoregressive model predicts the wave data to
minimise the error. Both the disturbance observer and the autoregressive model use first-order models. The first-
order model is sufficient to meet the needs of disturbance estimation and wave prediction and can effectively support
optimal trajectory tracking and energy capture. The complexity of the model is reduced through the balanced
truncation method, ensuring the control system’s real-time performance. The optimal model generates the optimal
state trajectory and control input by solving the optimal control problem, utilizing realistic wave data to promote
subsequent control operations.

Figure 2: Block diagram of the proposed EMPC scheme.

3.2. Explicit Model Predictive Control
The dependency of the PTO force 𝑢𝑡 on the system state 𝑥𝑡 is explicit, and the online calculation is simplified to

a simple equation evaluation, which improves the applicability of MPC in rapid sampling applications. The offline
computational control law of EMPC is:

𝑢𝑡 = 𝑓 (𝑥𝑡) (13)

where 𝑢𝑡 is the control signal of the system (13), 𝑥𝑡 is the state vector of the system (13) at time 𝑡, 𝑓 (⋅) is the
mapping function, which represents the relationship between the PTO force and the system state. The quadratic
cost function is:

𝐽 =
𝑁−1
∑

𝑘=0

(

(𝑥∗𝑘 − 𝑥𝑘)𝑇𝑄(𝑥∗𝑘 − 𝑥𝑘) + 𝑢𝑇𝑘𝑅𝑢𝑘
)

(14)

where 𝐽 is the total cost over the prediction time, 𝑘 is the time step, ranging from 0 to N-1, 𝑥𝑘 is the system state
at time step 𝑘, 𝑥∗𝑘 is the desired reference state, (𝑥𝑘 − 𝑥∗𝑘)

𝑇 is the state vector at step 𝑘, 𝑢𝑘 is the PTO force at step
𝑘, 𝑁 is the prediction step size, 𝑄 and 𝑅 are the weight matrices for the output error and PTO force (Privara et al.,
2011), which directly affect how the system responds to state errors and control energy. In the state-space model
of system (9a), the state 𝑥 and PTO force 𝑢 constraints are:

𝑥𝑚𝑖𝑛 ⪯ 𝑥 ⪯ 𝑥𝑚𝑎𝑥 (15)

𝑢𝑚𝑖𝑛 ≤ 𝑢 ≤ 𝑢𝑚𝑎𝑥 (16)

where 𝑥min and 𝑥max are the minimum and maximum values of the state (15), 𝑢min and 𝑢max are the minimum and
maximum values of the PTO force (16). The controller runs in discrete time and uses the zero-order hold method
to discretise the continuous-time state space model with a sampling time of 𝑇s = 0.1𝑠.

Teng Gao, Yao Zhang, Tahsin Tezdogan: Preprint submitted to Elsevier Page 6 of 22



Noncausal Explicit Model Predictive Control of Wave Energy Converters

All parameters of the system (mass, stiffness, and damping) are measured and determined. The motion of the
floating object is described by Newton’s second law, and the position and velocity are defined as state variables to
establish the dynamic model of the floating object, and its equation is given by:

𝑚𝑧̈ = −𝑘𝑠𝑧 −𝐷𝑟𝑧̇ +𝐷𝑒 (17)

where 𝑚 = 𝑚𝑠 + 𝑚∞ is the total mass of the floating object, including the mass of the floating body 𝑚𝑠 and the
added mass 𝑚∞, 𝑧 is the displacement of the floating object on the water surface, 𝑧̇ is the velocity of the floating
object, 𝑧̈ is the acceleration of the floating object, 𝑘𝑠 is the stiffness parameter of the system, 𝐷𝑟 is the damping
coefficient, and 𝐷𝑒 is the external excitation force on the system.

EMPC controls the position and velocity of the float so that it follows 𝑧∗ and 𝑣∗. 𝑥pred is [𝑧pred, 𝑣pred]. The
position and velocity are represented by 𝑧pred and 𝑣pred, respectively. The system considers the desired state,
excitation force, white noise interference, and model uncertainty when performing control. The discrepancies
between 𝑧pred and 𝑧∗, as well as between 𝑣pred and 𝑣∗, are considered as errors:

𝑧err = 𝑧∗ − 𝑥pred(1) (18)

𝑣err = 𝑣∗ − 𝑥pred(2) (19)

EMPC controls error, and the generated PTO force is denoted as 𝑢err. The PTO force limit is given by:

𝑢err = min(max(𝑢err,−𝑢max), 𝑢max). (20)

For each time step 𝑘, the PTO force 𝑢pred is given by:

𝑢pred = 𝑢err + 𝑈loc(𝑘) (21)

where 𝑈loc is the PTO force of the optimal model and 𝑢pred is the PTO force of the predicted model.
The powers of noncausal and causal control are defined as 𝑃loc = −𝑢loc𝑦loc𝑇𝑠 and 𝑃cau = −𝑢cau𝑦cau𝑇𝑠,

respectively, where 𝑢loc and 𝑢cau are the PTO force under noncausal and causal control, and 𝑦loc and 𝑦cau are the
velocity under noncausal and causal control. 𝑇𝑠 denotes the sampling interval. A negative value indicates energy
consumption.

The cumulative energy of noncausal and causal control is given by 𝐸loc(𝑖) = 𝐸loc(𝑖 − 1) + 𝑃loc(𝑖) and
𝐸cau(𝑖) = 𝐸cau(𝑖 − 1) + 𝑃cau(𝑖), where 𝑖 denotes the time step. The instantaneous power at time 𝑖, denoted as
𝑃 (𝑖), represents the rate of energy transfer caused by the PTO force 𝑢loc and 𝑢cau. The corresponding energy at
time 𝑖 , denoted as 𝐸(𝑖).

For both accurate and inaccurate models, the instantaneous powers at each time step 𝑖 are given by 𝑃loc2(𝑖) =
−𝑢loc2(𝑖)𝑦loc2(𝑖)𝑇𝑠 and 𝑃loc3(𝑖) = −𝑢loc3(𝑖)𝑦loc3(𝑖)𝑇𝑠, where 𝑢loc2 and 𝑢loc3 represent the PTO forces and velocities
in the accurate and inaccurate models, respectively.

The cumulative energies are obtained as 𝐸loc2 =
∑𝑁𝑚

𝑖=1 𝑃loc2(𝑖) and 𝐸loc3 =
∑𝑁𝑚

𝑖=1 𝑃loc3(𝑖), respectively, where
𝑁𝑚 denotes the total number of simulation steps. The time-varying cumulative energies 𝐸loc2(𝑖) and 𝐸loc3(𝑖)
represent the energy accumulated at each time step 𝑖 for the accurate and inaccurate models, respectively.

3.3. Disturbance Observer Design
A disturbance observer is designed to estimate the disturbance 𝑑(𝑡) in the system, where the controller uses the

estimated disturbance to counteract its effects (Nian et al., 2020). The observer estimates the excitation force, and by
accurately estimating the upper bound of the prediction error, the compensator effectively corrects the estimation
error (Zhang et al., 2020). Linear feedback control requires a high gain to suppress the effects of model uncertainty
and external disturbances (Zhang et al., 2017). An appropriate switching gain can prevent the jitter phenomenon
associated with the traditional observer. The update of the disturbance estimation is given by:

𝑑𝑘+1 = (1 −𝐾𝑐)𝑑𝑘 +𝐾𝑒𝐶𝑐𝑥𝑘,pred − 𝛽
∑

𝐶𝑐𝑥𝑘,pred (22)

where 𝑑𝑘+1 is the estimated value of the disturbance at the next time step 𝑘 + 1, 𝑑𝑘 is the estimated value of the
disturbance at the current time step 𝑘, 𝐾𝑐 is the observer gain used to control the convergence velocity of the
disturbance estimation term 𝑑, 𝐾𝑒 is the gain used to adjust the error feedback, 𝐶𝑐 is the output matrix, and 𝛽 is the
gain coefficient, which adjusts the error correction term. The wave is estimated by the disturbance observer, and
the update of the disturbance observer is given by:

𝑤̂ = 𝐶𝑐𝑥pred + 𝑑 (23)
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where 𝑤̂ is the estimated wave and 𝑑 is the disturbance estimation. The estimated value serves as an input for
controller design. It is not practical to directly measure all states of the WECs. A state observer needs to be designed
to solve this problem (Zhan et al., 2019b). The feedback noncausal MPC control algorithm is designed based on
the assumption that all information about 𝑥pred is available.

3.4. Wave Prediction by Autoregressive Model
Recursive least squares (RLS) is a commonly used parameter estimation algorithm Xiao et al. (2008), which is

used to train an autoregressive model for wave data prediction to minimise the model error. The sampling time is
𝑇s. The training segment duration of the model training is 𝑇train. The prediction segment duration is 𝑇predict. After
each 5-second training cycle, a 1-second prediction is performed. The total prediction time is 𝑇total. The number
of prediction points in each prediction segment is 𝑁pred. The training-prediction cycle time offset 𝑁shift represents
the time interval from training to prediction. The number of points in the prediction segment is 𝑁shift. The initial
regularisation coefficient is 𝛼base. To ensure a uniform scale of the training data, the data is normalised:

𝑤̃ =
𝑤 − 𝜇
𝜎

(24)

where 𝑤̃ is the standardised training value, 𝜇 is the mean of 𝑤, and 𝜎 is the standard deviation of 𝑤. Before
performing multi-step prediction, initialise an initial input vector 𝜙 that contains past observations used for
prediction. The input vector is represented as:

𝜙 =
[

𝑤̃𝑁train
𝑤̃𝑁train−1 ⋯ 𝑤̃𝑁train−𝑝+1

]⊤ (25)

where the first 𝑝 data points are extracted from the training data and reversed to form the input vector 𝜙 of the
autoregressive model, 𝑝 denotes the order of the autoregressive model, indicating that each prediction relies on 𝑝
past data points. The predicted value is given by:

𝑤pred = 𝜃𝜙 (26)

where 𝜙 is the set of input vectors, 𝑤pred is the predicted value, and the parameter vector 𝜃 represents the weights
of the model, its initial value set to the zero vector. Through the RLS algorithm, 𝜃 is updated progressively to
minimise the prediction error. The predicted error 𝑒pred is given by:

𝑒pred = 𝑤̃ −𝑤pred (27)

where 𝑤pred is the predicted value and 𝑒pred is the predicted error, defined as the difference between the predicted
value and the true value. By following these steps, obtain the multi-step prediction results over a specified time
period:

𝛼dynamic = 𝛼dynamic(1 + |𝑒pred|) (28)

where the dynamic regularisation coefficient 𝛼dynamic is initially equal to 𝛼base, 𝛼dynamic is adjusted at each step
to control the strength of the updates and |𝑒pred| is the prediction error. When |𝑒pred| is large, the regularisation
coefficient is amplified to reduce the magnitude of parameter updates. The Kalman gain 𝐾 is given by:

𝐾 =
𝑃𝜙′

𝜆rls + 𝜙𝑃𝜙′ + 𝛼dynamic + 𝑙
(29)

where 𝑃𝜙′ represents the incremental information from the past, and the denominator includes the forgetting factor
𝜆rls and the regularisation term to ensure stable updates. 𝜆rls attenuates the influence of old data, 𝑃 is the covariance
matrix used for updating the parameter calculations, and 𝑙 is the regularisation parameter used to prevent overfitting.
The parameter update equation for the parameter 𝜃 is given by:

𝜃𝑘 = 𝜃𝑘−1 +𝐾𝑒𝑘,pred (30)

The update equation for the covariance matrix 𝑃 is given by:

𝑃𝑘 =
(1 −𝐾𝜙𝑘−1)𝑃𝑘−1

𝜆rls
(31)

where 𝑃 gradually converges as time progresses, reducing the model’s sensitivity to historical data and enhancing
the stability and accuracy of predictions.

𝐸(𝑝)
cv = 1

𝑁train − 𝑝

𝑁train
∑

𝑘=𝑝+1
|𝑒pred| (32)
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where 𝐸(𝑝)
cv denotes the cross-validation error of the autoregressive model with the order 𝑝, used to measure the

model fitting performance at different orders: a smaller value indicates better model fitting,𝑁train is the total number
of samples in the training data, 𝑁train − 𝑝 is the number of observations used to compute the error, 𝑘 is an index
variable used to iterate over the samples in the training dataset with a range from 𝑝+1 to 𝑁train, ensuring sufficient
historical data is available for prediction, and |𝑒pred| represents the absolute error between the predicted and true
value.

Traditional modelling sequential estimation methods include the Akaike Information Criterion (AIC) and
Bayesian Information Criterion (BIC) (Atyabi et al., 2016). AIC avoids overfitting and penalises complex models
by balancing goodness of fit and model complexity:

𝐴𝐼𝐶𝑝 = 𝑁train log

(

1
𝑁train

𝑁train
∑

𝑘=𝑝+1
𝑒2pred

)

+ 2𝑝 (33)

𝐵𝐼𝐶𝑝 =𝑁train log

(

1
𝑁train

𝑁train
∑

𝑘=𝑝+1
𝑒2pred

)

+ 𝑝 log(𝑁train) (34)

where 𝐴𝐼𝐶𝑝 and 𝐵𝐼𝐶𝑝 denote the AIC value and the BIC values, respectively, for a model with order 𝑝, a smaller
value indicates a better-fitting model, 𝑁train is the number of training samples, log is used to capture data growth
rates and assess model complexity,

∑𝑁train
𝑘=𝑝+1 𝑒

2
pred denotes the total squared prediction errors, 2𝑝 is the penalty term

for model complexity in AIC, and 𝑝 log(𝑁train) is the penalty term in BIC, which increases with the sample size. It
indicates that higher-order models receive stronger penalties under BIC, which thus tends to choose simple models
to avoid overfitting. BIC is stricter than AIC in penalizing complex models.

To perform multi-step prediction, the first predicted value 𝑤̂1,pred is appended to the input vector 𝜙pred and used
as the most recent observation for subsequent multi-step predictions:

𝜙pred =
[

𝑤̂1,pred 𝑤̃𝑁train
𝑤̃𝑁train−1 ⋯ 𝑤̃𝑁train−𝑝+2

]⊤ (35)

Using the parameter vector 𝜃 and the input vector 𝜙pred, multi-step prediction is performed. The model output
𝑤̂pred is calculated as follows:

𝑤̂pred = 𝜃𝜙pred (36)

where 𝑤̂pred represents the predicted normalised value. To predict values for multiple time steps, the prediction
output is repeated, and the input vector is updated at each prediction step 𝑘:

1. Generate the new prediction (36).
2. Update 𝜙pred:

𝜙pred =
[

𝑤̂1,pred 𝜙1∶end−1,pred
]⊤ (37)

where the input vector 𝜙pred contains the most recent predicted value along with the previous actual observations.
After performing multi-step predictions, this paper denormalises the predicted results to convert the normalised
predictions back to the original scale:

𝑤̄ = 𝑤̂pred𝜎 + 𝜇 (38)

where 𝑤̄ is the prediction result after denormalisation. If it is the first prediction, the predicted segment is directly
appended to the total prediction results. Otherwise, to ensure continuity, the first value of the new segment is set
to the last predicted value of the previous segment, and the segments are concatenated:

𝑤p,all =
[

𝑤p,all, 𝑤̄
]

(39)

where 𝑤p,all represents the cumulative predicted value. After each prediction, the timestamp is updated:

𝑡p,all =
[

𝑡p,all, 𝑡pi
]

(40)

where 𝑡p,all is a cumulative predicted time, and 𝑡pi is the time series of the current predicted segment.
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Algorithm 1 Implementation of the WEC control
1: Obtain the system state 𝑥 and the wave 𝑤.
2: The EMPC generates the error PTO force 𝑢err. The optimal model provides the PTO force 𝑈loc. The predicted

PTO force 𝑢pred is obtained based on the equation (21).
3: The predicted system state 𝑥pred is the sum of the state error 𝑥err and the system state 𝑥. The energy of the

accurate and inaccurate models is captured in 𝐸loc2 and 𝐸loc3, respectively.
4: The disturbance observer generates an estimated wave 𝑤̂ in (23). The autoregressive model generates the

predicted wave 𝑤̂pred in equation (36).
5: Repeat steps 1 to 4.

4. Simulation Results and Analysis
This section shows the simulation results generated using MATLAB R2023b. The computer model is the

Lenovo ThinkPad X13 Gen 2. This paper uses real wave data collected from the coast of Cornwall, UK. The
wave heights from 0 to 200 seconds are shown in Figure 3, and the physical parameters are listed in Table 1.
The significant wave height of the wave is 2.003m. The wave period range is 1.40 seconds to 10.80 seconds. The
average wave period is 5.791 seconds. The model’s natural period of the system is 24.1213 seconds. The model’s
natural period of the system is larger than the wave period range. Because the wave frequency is lower than the
natural frequency of the system, the system does not resonate. This avoids loss of stability and generation of a large
response. The operations of standard MPC and EMPC are implemented using MATLAB R2023b. The results
show that the running time of EMPC is 61.16 seconds, while the running time of standard MPC is 926.64 seconds.
Compared with MPC, EMPC has higher computational efficiency while maintaining similar control performance.

Figure 3: Wave height data gathered from the coast of Cornwall, UK (Zhang et al., 2019) (Li and Belmont, 2014).

The state space matrix of the impulse function for calculating the radiation force is:

𝐴𝑟 =

⎡

⎢

⎢

⎢

⎣

0 0 −17.9
1 0 −17.7
0 1 −4.41

⎤

⎥

⎥

⎥

⎦

𝐵𝑟 =

⎡

⎢

⎢

⎢

⎣

36.5
394
75.1

⎤

⎥

⎥

⎥

⎦

𝐶𝑟 =
[

0 0 1
]

The state space matrix of the impulse function for calculating the wave excitation force is:

𝐴𝑒 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

0 0 0 0 −400
1 0 0 0 −459
0 1 0 0 −226
0 0 1 0 −64
0 0 0 1 −9.96

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

𝐵𝑒 =

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1549886
−116380
24748
−644
19.3

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

𝐶𝑒 =
[

0 0 0 0 1
]

The accurate and inaccurate 𝑄 and 𝑅 are:

𝑄acc =

[

101 0
0 101

]

𝑄inacc =

[

101 0
0 101

]

𝑅acc = 10−3 𝑅inacc = 10−3
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Table 1: Physical parameters of wave energy devices.

Description Notation Value

Physical parameters 𝑇𝑠 0.1 s

Gravity acceleration 𝑔 9.8 m/s2

Radius 𝑟 0.35 m

Average density of seawater 𝜌 1025 kg/m3

Total mass 𝑚 325.5 kg

Stiffness 𝑘𝑠 3866 N/m

Damping coefficient 𝐷 2 × 105 N ⋅ s/m

Damping (viscous) 𝐷𝑣 0

Damping (friction) 𝐷𝑓 0

Device width 𝐷𝑤 0.7m

Prediction time 𝑃time 50 s

Prediction Steps 𝑃step 500 steps

White noise interference comes from environmental fluctuations and measurement errors. The system resists
this interference through robust control, which helps maintain stability in complex environments. Parameter
variations lead to deviations between expected and actual system behaviour. The control strategy takes these
uncertainties into account and adjusts the inputs in real time. White noise is defined as: 𝜖 = 𝑐𝜎′, where 𝜖 represents
white noise, 𝑐 is the colored noise, and 𝜎′ is the time-varying standard deviation.

Wave energy systems usually work in the low-frequency range, where most of the energy is concentrated.
Therefore, the dynamic behaviour of the system is primarily dominated by low-frequency characteristics. Based
on this, the balanced truncation method is introduced to reduce the tenth-order model into a reduced-order model
of second order. Figure 4 demonstrates the Bode diagrams of both the tenth-order and reduced-order models. The
amplitude responses of the two models show a close match in the frequency range of 0.1 to 1 rad/s, indicating that
the reduced-order model effectively preserves the gain characteristics of the original system. Although there are
some deviations in the phase response, especially at lower frequencies, the overall phase trend remains consistent,
which demonstrates that the reduced-order model can accurately capture the essential dynamic behaviour of the
original system and is suitable for subsequent analysis and control design.

Figure 4: Bode diagram for model fidelity check.

On this basis, the second-order model is constructed by gradually adjusting the parameters. By comparing key
output indicators such as displacement, velocity, control input, and energy, it is verified that the second-order model,
reduced-order model, and tenth-order model have high consistency in time domain response, as shown in Figure 5.
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The second-order model is highly consistent with the reduced-order and tenth-order models in key aspects such as
energy transfer and system response, successfully capturing the primary dynamic behaviour of the system within
the low-frequency range. Without losing the important characteristics of the system, the computational demand of
the model is simplified, and the corresponding parameters are determined. Based on the verification and comparison
of low-frequency matching and time-domain response, it is fully demonstrated that the second-order model can
effectively achieve equivalent substitution for both the reduced-order model and the tenth-order model in terms of
dynamic behaviour within the low-frequency range.

(a) Position comparison. (b) Velocity comparison.

(c) PTO force comparison. (d) Energy comparison.

Figure 5: (a) Position comparison. (b) Velocity comparison. (c) PTO force comparison. (d) Energy comparison.
Blue solid line: tenth-order model. Black solid line: second-order model. Red solid line: reduced-order model.

Energy and PTO force are shown in Figure 6. Energy output increases with the wave’s energy content. The
noncausal system accumulates more energy than the causal system does. The PTO force is constrained to an upper
limit of 6 Newtons.

(a) Energy. (b) PTO force.

Figure 6: (a) Energy. (b) PTO force. Blue solid line: noncasual model. Black solid line: casual model.
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Figure 7 demonstrates the energy and power comparisons. The accurate model captures more energy than
the inaccurate model. The accurate model achieves the best energy capture effect, and the model accuracy has
a clear positive impact on the control effect. Although the energy capture performance of the inaccurate model
is reduced due to modelling errors and differs from the accurate model, the overall energy capture effect is still
within an acceptable range. The power ranges from -0.05 to 0.25, following a similar trend, with the accurate
model having higher power than the inaccurate model. Figure 8 demonstrates the position error and velocity error
of the model. The position error ranges between -0.04 and 0.04, while the velocity error ranges between -0.06
and 0.08. The errors fluctuate within the acceptable range. Figure 9 demonstrates that the accurate and inaccurate
models have similar PTO forces and consistent model training processes. The accurate model is more suitable for
applications with high requirements for energy capture efficiency and control accuracy. Although the inaccurate
model has a certain deviation from the accurate model, the control performance still meets the actual needs. The
EMPC strategy demonstrates excellent fault tolerance and robustness in the application. Furthermore, it effectively
addresses modelling uncertainty, which contributes to improving the applicability and operational stability of the
system.

(a) Energy comparison. (b) Power comparison.

Figure 7: (a) Energy comparison. (b) Power comparison. Red solid line: accurate model. Blue dashed line:
inaccurate model 1. Green dashed line: inaccurate model 2.

(a) Position error comparison. (b) Velocity error comparison.

Figure 8: (a) Position error comparison. (b) Velocity error comparison. Red solid line: accurate model. Black
dashed line: inaccurate model 1. Blue dashed line: inaccurate model 2.

Figure 10 demonstrates the partitioning of the system. The regional piecewise linear controller adopts
corresponding control strategies in different regions based on the partitioning. Each region uses a specific
calculation equation, which significantly reduces the computational burden. The partitioning range of the accurate
model and the inaccurate model is the same, but the number of regions is different. The accurate model includes
111 regions, while the inaccurate model includes 109 regions. Both use similar control strategies in most regions,
and there are differences only in a few regions.

The Monte Carlo method is used to set different initial predicted positions and initial predicted velocities,
and multiple sets of predicted positions and predicted velocities are generated for comparison. From Figure 11
and Figure 12, based on the comparison of the position tracking and velocity tracking results of the accurate and
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Figure 9: PTO force comparison. Red solid line: accurate model. Black dashed line: inaccurate model 1. Blue
dashed line: inaccurate model 2.

(a) State space partition graphs of the accurate model. (b) State space partition graphs of the inaccurate model.

Figure 10: (a) State space partition graphs of the accurate model. (b) State space partition graphs of the inaccurate
model.

inaccurate models, it can be observed that no matter what initial point the predicted position and velocity start
from, the predicted results are eventually close to the position and velocity of the float. This shows that the system
has an impressive ability to track the position and velocity of the float. The WEC parameters of the accurate and
inaccurate models are shown in Table 2.

Table 2: WEC parameters of accurate model and inaccurate model.

Description Notation Value

Stiffness 𝐾acc
𝑠 3866N/m

Float mass 𝑚acc
𝑠 320 kg

Added mass 𝑚acc
∞ 5.5 kg

Total mass 𝑚acc 325.5 kg

Radiation coefficient 𝐷acc
𝑟 1000 kg/s

Excitation coefficient 𝐷acc
𝑒 676 kg/s2

Description Notation Value 1 Value 2

Stiffness 𝐾 inacc
𝑠 3750N/m 3800N/m

Float mass 𝑚inacc
𝑠 295 kg 300 kg

Added mass 𝑚inacc
∞ 2 kg 3 kg

Total mass 𝑚inacc 297 kg 303 kg

Radiation coefficient 𝐷inacc
𝑟 970 kg/s 990 kg/s

Excitation coefficient 𝐷inacc
𝑒 656 kg/s2 666 kg/s2
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(a) Comparison of float postion for accurate model. (b) Comparison of float postion for inaccurate model.

Figure 11: (a) Comparison of float position for an accurate model. (b) Comparison of float position for an inaccurate
model. The float position is tracked from five different starting points.

(a) Comparison of float velocity for accurate model. (b) Comparison of float velocity for inaccurate model.

Figure 12: (a) Comparison of float velocity for an accurate model. (b) Comparison of float velocity for an inaccurate
model. The float velocity is tracked from five different starting points.

In the three cases of𝑄 and𝑅 in Table 3, the inaccurate model produces an energy of 34.3345 KJ. The model uses
multi-parameter piecewise linear control segmentation, with case I involving 109 regions, and cases II and III both
involving 163 regions. The results are shown in the Figure 13. Adjust the values of 𝑄 and 𝑅 and perform multiple
simulations. It is found that the final value of energy capture is affected by the values of 𝑄 and 𝑅. The final energy
capture of Case I is 34.1534 KJ. The final energy capture of Case II is 34.2724 KJ. The final energy capture of Case
III is 34.2690 KJ. Comparing Case I (green dashed line) and Case II (red dashed line), the larger the 𝑄 matrix value,
the greater the energy capture. Comparing Case I (green dashed line) and Case III (blue dashed line), the larger
the 𝑅 value, the lower the energy capture. As the 𝑄 increases and 𝑅 decreases, the number of regional divisions
in the system partition diagram increases. The control strategy is more detailed, and the system’s anti-interference
ability is enhanced.

Table 3: 𝑄 and 𝑅 three cases.

𝑄 and 𝑅 Case I Case II Case III

𝑄inacc

⎡

⎢

⎢

⎣

101 0

0 101

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

103 0

0 103

⎤

⎥

⎥

⎦

⎡

⎢

⎢

⎣

101 0

0 101

⎤

⎥

⎥

⎦

𝑅inacc 10−3 10−3 10−5

Figure 14 demonstrates the comparison between the estimated wave and the wave height. It can be found that
the estimated wave is similar to the wave height in amplitude and trend, with more fluctuations. Although there is a
certain error, the estimation effect is well achieved. From Figure 15, the difference between the estimated wave and
the predicted wave is compared. It can be seen that although there are certain errors, the overall trend is similar and
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Figure 13: Comparison of energy and state space partitioning for three cases of Q and R. Green dashed line: first
case. Red dashed line: second case. Blue dashed line: third case.

the error range is small, indicating that the prediction effect is impressive. The physical parameters of constraints,
disturbance observer, and autoregressive model are shown in Table 4.

This study uses different wave data for testing. These waves are simulated using EMPC, and the corresponding
energy output is generated. As shown in Figure 16, EMPC demonstrates impressive control and energy capture
abilities under different wave conditions. This verifies its robustness and potential for practical application.

To compare the control performance under various sea conditions, wave profiles defined by significant wave
height 𝐻𝑠 and wave peak period 𝑇𝑝 are simulated. The capture width ratio (CWR) is calculated to evaluate the
energy conversion capability of the system in a real environment. The CWR is calculated as: 𝐶𝑊𝑅 = 𝑃𝑎𝑣

𝐷𝑤⋅𝑃𝑤
. 𝑃𝑎𝑣

is the average mechanical power, 𝐷𝑤 is the device width, and 𝑃𝑤 is the wave power per meter of crest width. For
the point absorber with parameters shown in Table 1, the device width is 𝐷𝑊 = 0.7𝑚.

Figure 17 demonstrates the CWR of the point absorber obtained from a large-scale simulation under the
JONSWAP (Joint North Sea Wave Project) wave model with a spectral peakedness factor of unity to generate
irregular wavespectra (Zhang and Li, 2019). The significant wave heights are 𝐻𝑠 = 1𝑚 and 𝐻𝑠 = 1.5𝑚,
respectively. The wave crest period ranges from 1𝑠 to 12𝑠 with an interval of 1𝑠. Model uncertainties and prediction
errors are considered. The results show that the CWR shows a trend of increasing and then decreasing with the
increase of the wave peak period. When the wave peak period is 4 seconds, the CWR reaches its maximum value.
Then, as the wave peak period continues to increase, the CWR begins to decrease. Under different effective wave
heights, the CWR maintains the same increasing and decreasing trend. The system’s response under different wave
heights generally exhibits a linear relationship, and the CWR values remain approximately consistent across varying
wave height conditions. The proposed EMPC is able to cope with both prediction errors and model uncertainties
in different ocean environments.

EMPC utilises multi-parametric quadratic programming to transform the online optimisation problem of
traditional MPC into an equivalent, pre-computed piecewise explicit control law. At runtime, the appropriate
control action is applied by identifying the region corresponding to the current system state, thereby eliminating
the need to solve a quadratic programming problem at each time step. This significantly enhances real-time
performance and computational efficiency.

Compared to traditional MPC, which depends on online optimisation, EMPC offers distinct advantages when
applied to WEC systems:

1. Severe wave environment with high real-time control requirements:
The WEC system operates in a dynamic and uncertain marine environment. Rapid changes in waves
cause drastic fluctuations in the system state, placing extremely high demands on the controller’s real-time
response capability. EMPC avoids the high computational burden of solving complex optimisation problems
in real time by pre-calculating the control law offline. This method meets the stringent real-time control
requirements of WEC systems and improves the dynamic performance and operational safety of the system.

2. Embedded platform with limited computing resources:
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The WEC system mostly uses embedded microprocessors with limited computing resources. Traditional
MPC relies on real-time quadratic programming solutions, which makes it difficult to meet the needs of
high-frequency control under limited computing resources and energy consumption constraints. EMPC
makes the control law explicit and realises fast calculation based on table lookup, significantly reduces
the computational burden, and ensures the real-time operation of the controller on the embedded platform.
EMPC expands the application of MPC in actual marine energy equipment.

3. Marine environment with predictable external disturbances:
When disturbances such as wave forces are effectively predicted through modelling and observation, EMPC
fully considers the impact of disturbances when calculating the control law offline. This improves the
robustness and stability of the control strategy in dynamic environments and further improves the energy
capture efficiency and safety of equipment operation.

Although in recent years, a variety of research methods have been devoted to improving the performance of
traditional MPC online solvers and have performed well in specific scenarios, such as the active-set method (Ricker,
1985) (Bemporad, 2015), the interior-point method (Wang and Boyd, 2009), the fast gradient-projection method
(Patrinos and Bemporad, 2013), and the alternating direction method of multipliers (Banjac et al., 2017). However,
for systems like WEC that have limited computational resources and are highly sensitive to control delays, EMPC
has a clear advantage due to its explicit control law representation (Bemporad, 2021).

In summary, EMPC achieves an excellent balance between control performance and computational complexity.
It is especially suitable for control environments with limited computing resources and strict requirements on the
response time from state measurement to control execution, such as WEC systems. EMPC significantly reduces
the online computational burden by pre-solving the control law offline, thereby improving the real-time security
and stability of the system and providing solid technical support for the safe and efficient operation of the WEC
system.

Figure 14: Wave height and estimated wave. Pink dashed line: wave height. Red solid line: estimated wave of the
accurate model. Blue dashed line: estimated wave of the inaccurate model.
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Figure 15: Estimated and predicted wave comparison. Pink dashed line: estimated wave. Red solid line: predicted
wave of the accurate model. Blue dashed line: predicted wave of the inaccurate model.

Table 4: Physical parameters of constraints, disturbance observer, and autoregressive model.

Description Notation Value

Input force limit 𝑢max 0.1 kN

Float heave coefficient 𝑧max 0.1m

Heave velocity limit 𝑣max 0.1m/s

Observer gain 𝐾𝑐 1.5

Error feedback gain 𝐾𝑒 6

Error correction gain 𝛽 0.5

Forgetting factor 𝜆rls 0.99

Initial regularisation coefficient 𝛼base 10−8

Regularisation parameter 𝓁 10−8

Sampling time 𝑇s 0.1 s

Training duration 𝑇train 5 s

Prediction duration 𝑇predict 1 s

Total prediction time 𝑇total 200 s

Prediction points 𝑁pred 11

Cycle time offset 𝑁shift 10

Covariance matrix 𝑃 107 × 𝐼𝑝

Identity matrix 𝐼𝑝

⎡

⎢

⎢

⎢

⎢

⎢

⎢

⎣

1 0 ⋯ 0

0 1 ⋯ 0

⋮ ⋮ ⋱ ⋮

0 0 ⋯ 1

⎤

⎥

⎥

⎥

⎥

⎥

⎥

⎦

𝑝×𝑝
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Figure 16: Energy comparison of different wave heights and average wave periods. WH is the wave height. AWP
is the average wave period.
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Figure 17: Capture width ratio (𝐻𝑠 = 1𝑚 and 𝐻𝑠 = 1.5𝑚).

5. Conclusions
For the control problem of wave energy converters (WECs), this paper has introduced explicit model predictive

control (EMPC) for the first time, taking into account the computational limitations typical of embedded systems.
A tenth-order system model was reduced using the balanced truncation method, and a second-order model was
adopted as an equivalent substitute in the low-frequency range. A control performance comparison was conducted
between accurate and inaccurate models of WECs, and the modelling error was subsequently established and
controlled. Wave prediction was implemented using a disturbance observer in conjunction with an autoregressive
model.

The results clearly demonstrated that the accuracy of the system model directly influences key performance
indicators such as energy output, power, position, and velocity. A disturbance observer based on wave height
was used for real-time state estimation and monitoring, while system parameters were identified using the
RLS algorithm within the autoregressive model framework. Based on the estimated wave conditions, 1-second
predictions were made following a 5-second learning period, with the wave data predicted in segments to reduce
the computational burden.

The simulation results demonstrated that the EMPC method achieved excellent tracking performance in wave
energy conversion, enabling fast operation and efficient optimisation of the system. This led to improved system
performance and tracking accuracy, thereby enhancing the effective capture and utilisation of wave energy. These
findings verify the importance of accurate modelling in WEC control and demonstrate that EMPC can maintain
robust performance even in the presence of reasonable modelling errors.

In conclusion, this study has made significant advancements in the control of WEC through the application
of EMPC. Compared to traditional control methods, EMPC effectively reduces the computational burden while
maintaining a balance between rapid prediction and efficient optimisation under resource constraints and multiple
system limitations. This approach ensures both high performance and real-time responsiveness.

EMPC is expected to enhance the efficiency of WECs, support the sustainable development and utilisation of
wave energy, and maximise energy capture. By incorporating disturbance observers and autoregressive models, the
system’s ability to perceive and predict dynamic environmental changes was strengthened, enabling more accurate
control.

Overall, this study focuses on achieving real-time EMPC implementation on platforms with limited com-
putational resources and contributes to the broader adoption of intelligent control strategies in harsh marine
environments.

While EMPC demonstrated strong control performance, it also has certain limitations. Its application has
primarily been confined to linear systems, with control laws typically designed based on linear system models.
This study extended the applicability of EMPC in practise by effectively controlling wave energy under varying
wave heights, thereby achieving reliable energy capture and demonstrating its potential in practical scenarios.

Future work will focus on expanding EMPC to nonlinear systems and developing customised control strategies
that reflect the dynamic characteristics of the system. The goal is to enhance the adaptability and reliability
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of EMPC in complex engineering environments, while also improving computational efficiency and further
reducing the computational burden. These advancements will support more robust system operation and improved
adaptability under diverse operating conditions.

In addition, future research will explore the integration of EMPC with various renewable energy sources, such as
wave energy, and undertake long-term reliability testing to validate the stability and effectiveness of EMPC-based
systems in real-world environments.

Acknowledgment
This work was funded by the Wave Energy Scotland Direct Generation Competition and the UK Royal Society

IEC-NSFC (223485).

References
Alessio, A., Bemporad, A., 2009. A survey on explicit model predictive control. Nonlinear Model Predictive Control: Towards New Challenging

Applications , 345–369.
Atyabi, A., Shic, F., Naples, A., 2016. Mixture of autoregressive modeling orders and its implication on single trial eeg classification. Expert

systems with applications 65, 164–180.
Banjac, G., Stellato, B., Moehle, N., Goulart, P., Bemporad, A., Boyd, S., 2017. Embedded code generation using the osqp solver, in: 2017

IEEE 56th Annual Conference on Decision and Control (CDC), IEEE. pp. 1906–1911.
Bank, B., Guddat, J., Klatte, D., Kummer, B., Tammer, K., 1982. Non-linear parametric optimization. volume 58. Walter de Gruyter GmbH

& Co KG.
Barstow, S., Mørk, G., Lønseth, L., Mathisen, J.P., 2011. Worldwaves wave energy resource assessments from the deep ocean to the coast.

Journal of Energy and Power Engineering 5, 730–742.
Bemporad, A., 2015. A quadratic programming algorithm based on nonnegative least squares with applications to embedded model predictive

control. IEEE Transactions on Automatic Control 61, 1111–1116.
Bemporad, A., 2021. Explicit model predictive control, in: Encyclopedia of systems and control. Springer, pp. 744–751.
Clément, A., McCullen, P., Falcão, A., Fiorentino, A., Gardner, F., Hammarlund, K., Lemonis, G., Lewis, T., Nielsen, K., Petroncini, S., et al.,

2002. Wave energy in europe: current status and perspectives. Renewable and sustainable energy reviews 6, 405–431.
Drew, B., Plummer, A.R., Sahinkaya, M.N., 2009. A review of wave energy converter technology.
Evans, M.A., Cannon, M., Kouvaritakis, B., 2014. Robust mpc tower damping for variable speed wind turbines. IEEE Transactions on Control

Systems Technology 23, 290–296.
Faedo, N., Olaya, S., Ringwood, J.V., 2017. Optimal control, mpc and mpc-like algorithms for wave energy systems: An overview. IFAC

Journal of Systems and Control 1, 37–56.
Faizal, M., Ahmed, M.R., Lee, Y.H., 2014. A design outline for floating point absorber wave energy converters. Advances in Mechanical

Engineering 6, 846097.
Falnes, J., Kurniawan, A., 2020. Ocean waves and oscillating systems: linear interactions including wave-energy extraction. volume 8.

Cambridge university press.
Fusco, F., Ringwood, J.V., 2012. A simple and effective real-time controller for wave energy converters. IEEE Transactions on sustainable

energy 4, 21–30.
Gray, W.S., Verriest, E.I., 2006. Algebraically defined gramians for nonlinear systems, in: Proceedings of the 45th IEEE Conference on Decision

and Control, IEEE. pp. 3730–3735.
Hals, J., Falnes, J., Moan, T., 2011. A comparison of selected strategies for adaptive control of wave energy converters .
Hillis, A., Whitlam, C., Brask, A., Chapman, J., Plummer, A., 2020. Active control for multi-degree-of-freedom wave energy converters with

load limiting. Renewable Energy 159, 1177–1187.
Houzhong, Z., Jiasheng, L., Chaochun, Y., Xiaoqiang, S., Yingfeng, C., 2020. Application of explicit model predictive control to a vehicle

semi-active suspension system. Journal of Low Frequency Noise, Vibration and Active Control 39, 772–786.
Hredzak, B., Agelidis, V.G., Demetriades, G., 2015. Application of explicit model predictive control to a hybrid battery-ultracapacitor power

source. Journal of Power Sources 277, 84–94.
Jariwala, A.M., Dash, S.K., Sahu, U.K., Mohan, H.M., 2025. Performance optimization techniques on point absorber and oscillating water

column wave energy converter: A comprehensive review. IEEE Access .
Jiang, H., Lin, J., Song, Y., You, S., Zong, Y., 2016. Explicit model predictive control applications in power systems: an agc study for an

isolated industrial system. IET Generation, Transmission & Distribution 10, 964–971.
Jusoh, M.A., Ibrahim, M.Z., Daud, M.Z., Albani, A., Mohd Yusop, Z., 2019. Hydraulic power take-off concepts for wave energy conversion

system: A review. Energies 12, 4510.
Khan, N., Kalair, A., Abas, N., Haider, A., 2017. Review of ocean tidal, wave and thermal energy technologies. Renewable and Sustainable

Energy Reviews 72, 590–604.
Korde, U.A., Ringwood, J., 2016. Hydrodynamic control of wave energy devices. Cambridge University Press.
Kothare, M.V., Balakrishnan, V., Morari, M., 1996. Robust constrained model predictive control using linear matrix inequalities. Automatica

32, 1361–1379.
Lasheen, A., Saad, M.S., Emara, H.M., Elshafei, A.L., 2017. Continuous-time tube-based explicit model predictive control for collective

pitching of wind turbines. Energy 118, 1222–1233.
Li, G., Belmont, M.R., 2014. Model predictive control of sea wave energy converters–part i: A convex approach for the case of a single device.

Renewable Energy 69, 453–463.
Li, Q., Murai, M., Kitazawa, D., 2020. Short-time wave force prediction and control strategy for a point-absorber wec. Ocean Engineering

218, 108000.
Moore, B., 1981. Principal component analysis in linear systems: Controllability, observability, and model reduction. IEEE transactions on

automatic control 26, 17–32.

Teng Gao, Yao Zhang, Tahsin Tezdogan: Preprint submitted to Elsevier Page 21 of 22



Noncausal Explicit Model Predictive Control of Wave Energy Converters

Murai, M., Li, Q., Funada, J., 2021. Study on power generation of single point absorber wave energy converters (pa-wecs) and arrays of pa-wecs.
Renewable Energy 164, 1121–1132.

Murai, M., Sakamoto, S., 2022. A basic study on the effect of deep learning to determine the control force to maximize the power generation of
pa-wec in irregular waves, in: International Conference on Offshore Mechanics and Arctic Engineering, American Society of Mechanical
Engineers. p. V004T05A015.

Nian, X., Fu, X., Chu, X., Xiong, H., Wang, H., 2020. Disturbance observer-based distributed sliding mode control of multimotor web-winding
systems. IET Control Theory & Applications 14, 614–625.

Patrinos, P., Bemporad, A., 2013. An accelerated dual gradient-projection algorithm for embedded linear model predictive control. IEEE
Transactions on Automatic Control 59, 18–33.
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