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 a b s t r a c t

Wave energy is a promising renewable energy source, but its commercial utilisation is low compared to wind 
and solar energy. This paper proposes an explicit model predictive control (EMPC) strategy to reduce the high 
computational burden associated with online computation. Realistic wave data collected from the coast of Corn-
wall, UK, together with realistic single-point absorber parameters, are utilised. The dynamic response of the 
floating system is controlled, and a disturbance observer and an autoregressive model are designed for wave 
prediction. This paper aims to identify the most effective strategy to achieve optimal trajectory tracking, rapid 
prediction, efficient optimisation, and maximum energy capture. The results of numerical simulations show im-
pressive effects of trajectory tracking, wave prediction, and maximum energy capture, with rapid prediction and 
low computational demand. These results demonstrate the effectiveness of the proposed EMPC method in wave 
energy converters (WECs).

1.  Introduction

In the coming decades, the world’s energy consumption will grow 
significantly. Fossil fuel resources are depleting, and environmental 
problems such as global warming, rising sea levels, and extreme weather 
frequently occur. Therefore, the development of clean energy has be-
come a global challenge and shared goal (Clément et al., 2002). The 
ocean is the world’s largest ecosystem, covering 71% of the Earth’s sur-
face and holding abundant energy resources. The energy obtained from 
ocean waves can reach about 32,000 kWh/year (Faedo et al., 2017). 
Wave energy is a widely distributed and unbalanced renewable resource 
with high energy density and the potential for a continuous power sup-
ply. Resource-intensive areas are mainly concentrated in mid- and high-
latitude waters, such as the west coast of North America, southern Aus-
tralia, the British Isles, the west coast of Europe, southern Chile, and 
New Zealand (Drew et al., 2009; Barstow et al., 2011). Compared with 
renewable energy sources such as wind and solar energy, wave energy 
has higher energy density and stability. Furthermore, it has been demon-
strated that wave prediction can improve control performance (Falnes 
and Kurniawan, 2020). The annual power generation potential of ocean 
tidal, seepage, wave, and thermal energy is 800 TWh, 2000 TWh, 8000 
to 80,000 TWh, and 10,000 to 87,600 TWh, respectively. The potential 
far exceeds the annual global electricity demand of about 16,000 TWh 
(Khan et al., 2017).

As technology advances and costs decrease, marine renewable en-
ergy has broad prospects and helps promote optimisation of the global 

∗ Corresponding author.
 E-mail address: yao.zhang@ucl.ac.uk (Y. Zhang).

energy structure (Qiu et al., 2019). However, despite its advantages, 
wave energy faces significant technical challenges in harnessing its po-
tential. The main difficulty in obtaining wave energy is that exploiting 
the irregular reciprocating motion of the ocean is not as simple as ob-
taining energy from the wind (Ringwood et al., 2014). Early systems 
used the natural movement of floats with the waves to achieve passive 
conversion of wave energy, and a variety of floating wave energy con-
verters (WECs) have been developed for wave energy harvesting (Xu 
et al., 2019). Active control systems apply external forces to adjust the 
movement of floats to keep them in sync with the wave frequency. The 
control strategy based on the combination of Model Predictive Control 
(MPC) and an active valve control mechanism is simple to operate and 
has the best performance compared to other control methods (Jusoh 
et al., 2019). However, realistic waves are not single-frequency; they 
change over time. To achieve automatic adjustment of the ocean’s nat-
ural frequency, it is essential to implement advanced dynamic control 
technology under realistic ocean conditions (Yang et al., 2021).

WECs such as point absorbers, oscillating water columns, and atten-
uators have been studied and developed (Jariwala et al., 2025). Wave 
prediction methods such as the Extended Kalman Filter (EKF), artificial 
neural network, and deterministic sea wave prediction (DSWP) all in-
troduce certain prediction errors (Zhang and Li, 2019). Point absorbers 
have been widely studied in the field of WEC control and are often 
used as a benchmark problem for wave excitation force estimation. It 
is smaller than the wavelength and uses the up-and-down motion of the 
float to capture wave energy from waves that are larger than the physical 
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\begin {equation}P := -f_u {z}_v \label {Xeqn1-1a}\end {equation}


$[t_0, t_1]$


\begin {equation}\label {iipp} E=\int _{t_0}^{t_1} P(t) \, dt\end {equation}


\begin {equation}\label {ppii} |z_v| \leq \Phi _{\text {max}}\end {equation}


$\Phi _{\text {max}}$


\begin {equation}\label {tgtg} |f_u| \leq u_{\text {max}}\end {equation}


\begin {equation}\label {90} m_s \ddot {z}_v = -f_s - f_r + f_e + f_u\end {equation}


$m_s$


$f_s$


\begin {equation}f_s = k_s z_v \label {Xeqn6-4}\end {equation}


$k_s = \rho g s$
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$f_r$


\begin {equation}\label {44} f_r = m_\infty \ddot {z}_v + \int _{-\infty }^{\infty } h_r(\tau ) \dot {z}_v(t - \tau ) \, d\tau \end {equation}


$m_\infty $


$h_r$


$f_r := \int _{-\infty }^{\infty } h_r(\tau ) \dot {z}_v(t - \tau ) \, d\tau $


\begin {align}\label {1} & \dot {x}_r = A_r x_r + B_r z_v \\ \label {2} & {y}_r = f_r = C_r x_r \approx \int _{-\infty }^{t} h_r(\tau ) \dot {z}_v(t - \tau ) \, d\tau \end {align}


$x_r \in \mathbb {R}^{n_r}$
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\begin {equation}\label {222} f_e = \int _{-\infty }^{\infty } h_e(\tau ) z_w(t - \tau ) \, d\tau \end {equation}


$h_e$


\begin {align}\label {3} & \dot {x}_e = A_e x_e + B_e z_w \\ \label {4} & {y}_e = f_e=C_e x_e\approx \int _{-\infty }^{\infty } h_e(\tau ) z_w(t - \tau ) \, d\tau \end {align}


$x_e \in \mathbb {R}^{n_e}$


$(A_e, B_e, C_e, 0)$


\begin {align}\label {gt} & \dot {x} = A_c x + B_{uc} u + B_{wc} w+ \epsilon \\ \label {tg} & y = C_c x\end {align}


$w:= z_w$


$y:= {z}_v$


$x:= [z_v, \dot {z}_v, x_r, x_e]$


$u:= f_u$
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\begin {align*}& A_c = \begin {bmatrix} 0 & 1 & 0& 0 \\ -\frac {k_s}m & -\frac {D_f}m & \frac {C_r}m& -\frac {C_e}m \\ 0& B_r& A_r& 0 \\ 0 & 0& 0& A_e& \end {bmatrix} \quad B_{uc} = \begin {bmatrix} 0 \\ \frac {1000}m \\ 0 \\ 0 \end {bmatrix} \quad B_{wc} = \begin {bmatrix} 0 \\ 0 \\ 0 \\ B_e \end {bmatrix} \\ & C_c = \begin {bmatrix} 0 & 1 & 0_{1 \times (n_e + n_r)} \end {bmatrix}\end {align*}


$m := m_s + m_\infty $


\begin {equation*}A_c = \begin {bmatrix} 0 & 1 \\ -\frac {k_s}m& -\frac {D_r}m \end {bmatrix} \quad B_{uc} = \begin {bmatrix} 0 \\ \frac {1}m \end {bmatrix} \quad B_{wc} = \begin {bmatrix} 0 \\ \frac {D_e}m \end {bmatrix} \quad C_c=\begin {bmatrix} 0& 1 \end {bmatrix}\end {equation*}


\begin {align}\label {21} & x_{k + 1} = A x_k + B_u u_k + B_w w_k + \epsilon _k\\ \label {31} & y_k = C x_k\end {align}
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\begin {equation}\min _{u} \frac {1}{N} \sum _{k=0}^{N-1} L_k(x_k, u_k) \label {Xeqn17-11a}\end {equation}


\begin {align}\label {5561} & \text x_{k+1} = A x_k + B_u u_k + B_w w_k\\ \label {7781} & y_{k} = C_c x_k\end {align}
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$L_k$


\begin {equation}L_k = \frac {1}{2} x_k^T Q' x_k + y_k u_k + \frac {1}{2} R' u_k^2 \label {Xeqn20-12}\end {equation}
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\begin {equation}\label {eer} u_t = f(x_t)\end {equation}
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\begin {equation}J = \sum _{k=0}^{N-1} \left ( ( x_k^*-x_k )^T Q ( x_k^*-x_k ) + u_k^T R u_k \right )\end {equation}
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\begin {align}\label {ttu} & x_{min} \preceq x \preceq x_{max}\\ \label {utt} & u_{min} \leq u \leq u_{max} \
\end {align}
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$T_{\text {s}} = 0.1s$


\begin {equation}\label {159} m \ddot {z} = -k_s z - D_r \dot {z} + D_e\end {equation}
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\begin {align}\label {Xeqn26-18} & z_{\text {err}}= z_{*} -x_{\text {pred}}(1) \\ & v_{\text {err}}= v_{*} -x_{\text {pred}}(2) \label {Xeqn27-19}\end {align}
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\begin {equation}u_{\text {err}}= \min (\max (u_{\text {err}}, -u_{\text {max}}), u_{\text {max}}). \label {Xeqn28-20}\end {equation}
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\begin {equation}\label {lpcontours 1231} u_{\text {pred}} = u_{\text {err}} + U_{\text {loc}}(k)\end {equation}
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\begin {equation}\hat {d}_{k+1} = (1 - K_c) \hat {d}_k + K_e C_c x_{k,\text {pred}} - \beta \sum C_c x_{k,\text {pred}} \label {Xeqn30-22}\end {equation}
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\begin {equation}\label {334455} \hat {w} = C_c x_\text {pred} + \hat {d} \
\end {equation}
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\begin {equation}\tilde {w} = \frac {w - \mu }{\sigma } \label {Xeqn32-24}\end {equation}
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\begin {equation}\phi = \begin {bmatrix} \tilde w_{N_{\text {train}}} &\tilde w_{N_{\text {train}}-1} & \cdots & \tilde w_{N_{\text {train}}-p+1} \end {bmatrix}^\top \label {Xeqn33-25}\end {equation}


$p$


$\phi $


$p$


$p$


\begin {equation}{w}_\text {pred} = \theta \phi \label {Xeqn34-26}\end {equation}
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\begin {equation}e_\text {pred} = \tilde {w} - {w}_\text {pred} \label {Xeqn35-27}\end {equation}
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\begin {equation}\alpha _{\text {dynamic}} = \alpha _{\text {dynamic}} (1 + |e_\text {pred} |) \label {Xeqn36-28}\end {equation}
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\begin {equation}K = \frac {P \phi '}{\lambda _{\text {rls}} + \phi P \phi ' + \alpha _{\text {dynamic}} + l } \label {Xeqn37-29}\end {equation}
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\begin {equation}\theta _k = \theta _{k-1} + K e_{k,\text {pred}} \label {Xeqn38-30}\end {equation}
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\begin {equation}E_{\text {cv}}^{(p)} = \frac {1}{N_{\text {train}} - p} \sum _{k=p+1}^{N_{\text {train}}} |e_\text {pred} | \label {Xeqn40-32}\end {equation}
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\begin {align}\label {Xeqn41-33} & AIC_p = N_{\text {train}} \log \left (\frac {1}{N_{\text {train}}} \sum _{k=p+1}^{N_{\text {train}}} e_\text {pred} ^{2}\right ) + 2p\\ & BIC_p = \ N_{\text {train}} \log \left (\frac {1}{N_{\text {train}}} \sum _{k=p+1}^{N_{\text {train}}} e_\text {pred} ^{2}\right ) + p \log (N_{\text {train}}) \label {Xeqn42-34}\end {align}
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size of the device itself, making it less likely to be damaged in the harsh 
marine environments (Zhang et al., 2019; Faizal et al., 2014). Based 
on the simple control method (SCM) (Fusco and Ringwood, 2012; Ko-
rde and Ringwood, 2016), practical prediction techniques are improved 
and used for wave observations to almost accurately and simultaneously 
predict the hydrodynamic forces on the WECs at all times. When design-
ing a point absorber-type wave energy generator, the choice of control 
system has an important impact on improving the power generation 
efficiency in actual sea areas (Li et al., 2020). Furthermore, a point ab-
sorber wave energy converter (PA-WEC) is a type of WEC that directly 
uses the changes in the magnetic field caused by the relative motion 
of the coil and the floating moving part with permanent magnets to 
generate electricity (Murai and Sakamoto, 2022). The power genera-
tion of a multi-PA-WEC array can be maximised by employing analyti-
cal background and numerical methods for deriving the optimal control 
force parameters (Murai et al., 2021). However, point absorption-type 
WECs have a narrow frequency response and perform unsatisfactorily 
in realistic ocean conditions unless their motion is actively controlled
(Hals et al., 2011).

MPC is applied to wave energy generation systems to deal with prob-
lems such as strong system dynamics and complex constraints. How-
ever, many existing MPC strategies do not consider terminal stability 
constraints or disturbance feedback mechanisms. The control structure 
relies mostly on open-loop prediction, lacking the ability to handle dis-
turbances and uncertainties in a closed loop. This makes it difficult to 
ensure recursive feasibility during actual operation, potentially leading 
to unsolvable optimisation problems at certain times. The general ap-
proach is to design a robust MPC (RMPC) that ensures recursive fea-
sibility for all possible realisations of stochastic uncertainty, either by 
adopting a min-max strategy for the worst-case evaluation of the cost 
function (Kothare et al., 1996; Evans et al., 2014) or by parameterizing a 
partially separable feedback control law through a tube-based approach 
(Yu et al., 2013; Lasheen et al., 2017). There is a conflict between max-
imizing captured energy and ensuring the range of sea conditions for 
the safe operation of the system. The trade-off between them is diffi-
cult to achieve and reduces the operating range and energy conversion 
efficiency (Zhan et al., 2019a). AHMPC develops an efficient cascade 
estimation algorithm at the top level to adaptively identify and update 
the WEC model online according to the sea state changes. At the bot-
tom level, a specially customised MPC controller is implemented based 
on the updated WEC model to energy capture (Zhan et al., 2018). The 
economic feedback MPC control law includes the state feedback gain 
offline design to maximise the working range and online calculation to 
maximise capture energy (Zhan et al., 2019a) and optimise the energy 
conversion efficiency of WECs.

The control of WECs is a noncausal control problem that requires a 
lot of online computing, and future waves determine the current con-
trol decisions (Wang et al., 2024). The above methods cannot effectively 
alleviate the problem of excessive computational workload during the 
online calculation of WECs, and it remains a challenge to meet the real-
time requirements. They are restricted when computing resources are 
limited, the computational demand is too high, and they have limited 
adaptability to dynamically changing sea conditions. This paper pro-
poses an explicit model predictive control (EMPC) solution for the con-
trol problem of WECs. Based on multi-parameter planning technology, 
EMPC calculates the optimal control behaviour offline, expresses it as 
an explicit function, and predicts the future state of the system. When 
online, it is simplified to a regional piecewise linear controller to avoid 
online solutions. Each region corresponds to a different equation, and 
a simple function evaluation is performed to reduce a lot of computa-
tional burden while achieving rapid prediction and efficient optimisa-
tion (Bank et al., 1982; Alessio and Bemporad, 2009). The disturbance 
observer and autoregressive model perform wave prediction to max-
imise energy. In the power sector, EMPC is applied to the frequency 
control of a real isolated power system in Inner Mongolia, and its ex-
plicit control law restores the system frequency to the nominal value 

under large disturbances (Jiang et al., 2016). When EMPC is applied to a 
hybrid battery-supercapacitor power supply, the EMPC system requires 
less computation than the traditional MPC system for low-order systems. 
When implemented on a DSPACE DS1104 controller board, the EMPC 
system operates approximately 25 times faster than the traditional MPC 
system (Hredzak et al., 2015). When EMPC is applied to a vehicle semi-
active suspension system, it copes with the strong coupling, actuator 
constraints, and fast dynamic characteristics of the system. Simulation 
results show that EMPC has a shorter computation time than traditional 
MPC while maintaining the same performance as MPC. EMPC signifi-
cantly improves the control performance of the vehicle semi-active sus-
pension system with low computational effort (Houzhong et al., 2020). 
This paper aims to apply EMPC to the problem of WEC control for the 
first time. Many active control strategies require knowledge of the wave 
excitation forces acting on the WECs, which are usually assumed to be 
accurately known and require forward predictions of several seconds. 
These conditions are unrealistic for operating WECs, resulting in ac-
tual performance degradation. Therefore, when using EMPC, the con-
trol strategy must be robust to modelling errors and other uncertainties 
(Hillis et al., 2020). The main novelties and contributions of this paper 
are as follows:

1. EMPC is proposed to control WECs under complex constraints, re-
ducing the number of online calculations of MPC and solving prob-
lems of optimal trajectory tracking, rapid prediction, and efficient 
optimisation. This is the first application of EMPC in WEC control.

2. In the EMPC application process, to achieve visualisation and reduce 
the computational effort, this paper adopts the balanced truncation 
method to reduce the order of the tenth-order model and achieve 
model matching, and uses the second-order model to equivalently 
replace the tenth-order model in the low-frequency range.

3. This paper designs a wave observer and an autoregressive model for 
wave prediction to achieve energy maximisation since WEC control 
is a noncausal control problem.

4. This article uses realistic wave data gathered from the coast of Corn-
wall, UK (Zhang et al., 2019; Li and Belmont, 2014), to verify the 
effectiveness of EMPC in WEC control.

The paper proceeds as follows: Section 2 is the mathematical mod-
elling of the WEC dynamic system. Section 3 analyses the EMPC for 
energy capture maximisation. Section 4 presents the simulation results 
and analysis. Section 5 provides an overall conclusion of this paper.

2.  Mathematical modelling of WEC dynamic system

This section introduces the dynamic model of a single-point ab-
sorber. In Section 2.1, the hydrodynamic model is transformed into a 
state-space model to design the controller, which introduces modelling 
uncertainty. Section 2.2 presents the process of transforming the hy-
drodynamic model into a state-space model and model matching. Sec-
tion 2.3 gives the optimal trajectory generation to the noncausal WEC 
control problem of an accurately modeled point absorber.

2.1.  Dynamical model of WECs

Fig. 1 shows part of the hydraulic power take-off (PTO) design, 
where a hydraulic cylinder is mounted vertically below a float and fixed 
to the bottom of the seabed. More details of this design can be found in 
Weiss et al. (2012). 𝑧𝑤 is the sea wave elevation and 𝑧𝑣 is the height of 
the midpoint of the float. The current research mainly considers the ac-
tual sea conditions in deep water and does not consider the shallow wa-
ter conditions. In this environment, the PTO displacement of the WECs 
is usually regarded as the heave displacement 𝑧𝑣. The PTO torque is pro-
portional to the force 𝑓𝑢 acting on the piston in the cylinder. The output 
power 𝑃  is defined as: 
𝑃 ∶= −𝑓𝑢𝑧𝑣 (1a)
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Fig. 1. Schematic diagram of point absorber.

The energy absorbed during the period [𝑡0, 𝑡1] is expressed as:

𝐸 = ∫

𝑡1

𝑡0
𝑃 (𝑡) 𝑑𝑡 (1b)

The heave motion of the buoy is restricted to ensure safe operation. 
The constraint is expressed as: 
|𝑧𝑣| ≤ Φmax (2a)

where Φmax is the float heave motion limits. The WEC is subject to PTO 
force limitations:
|𝑓𝑢| ≤ 𝑢max (2b)

The objective of the controller design is to maximise the energy 
Eq. (1b) subject to the state constraints Eq. (2a) and the input constraints 
Eq. (2b) (Zhan and Li, 2018). The dynamic equations (Yu and Falnes, 
1995) for the float of the point absorber are given by Newton’s second 
law:

𝑚𝑠𝑧̈𝑣 = −𝑓𝑠 − 𝑓𝑟 + 𝑓𝑒 + 𝑓𝑢 (3)

where 𝑚𝑠 is the float mass. The restoring force 𝑓𝑠 is:
𝑓𝑠 = 𝑘𝑠𝑧𝑣 (4)

where the hydrostatic stiffness is given by 𝑘𝑠 = 𝜌𝑔𝑠, 𝜌 is the water den-
sity, 𝑔 is the standard gravity, and 𝑠 is the cross-sectional area of the 
float. The radiation force 𝑓𝑟 is defined as:

𝑓𝑟 = 𝑚∞𝑧̈𝑣 + ∫

∞

−∞
ℎ𝑟(𝜏)𝑧̇𝑣(𝑡 − 𝜏) 𝑑𝜏 (5)

where 𝑚∞ is the added mass, ℎ𝑟 is the radiation force kernel, which can 
be computed via hydraulic software packages. The convolutional term 
in Eq. (5) can be approximated as 𝑓𝑟 ∶= ∫ ∞

−∞ ℎ𝑟(𝜏)𝑧̇𝑣(𝑡 − 𝜏) 𝑑𝜏 by a causal 
finite-dimensional state-space model (Yu and Falnes, 1995). 
𝑥̇𝑟 = 𝐴𝑟𝑥𝑟 + 𝐵𝑟𝑧𝑣 (6a)

𝑦𝑟 = 𝑓𝑟 = 𝐶𝑟𝑥𝑟 ≈ ∫

𝑡

−∞
ℎ𝑟(𝜏)𝑧̇𝑣(𝑡 − 𝜏) 𝑑𝜏 (6b)

where 𝑥𝑟 ∈ ℝ𝑛𝑟  is the state, and (𝐴𝑟, 𝐵𝑟, 𝐶𝑟, 0) are the state-space realisa-
tions. According to Yu and Falnes (1995), the wave excitation force 𝑓𝑒
can be determined:

𝑓𝑒 = ∫

∞

−∞
ℎ𝑒(𝜏)𝑧𝑤(𝑡 − 𝜏) 𝑑𝜏 (7)

where ℎ𝑒 is the kernel of the excitation force, and the state-space ap-
proximation is given by: 
𝑥̇𝑒 = 𝐴𝑒𝑥𝑒 + 𝐵𝑒𝑧𝑤 (8a)

𝑦𝑒 = 𝑓𝑒 = 𝐶𝑒𝑥𝑒 ≈ ∫

∞

−∞
ℎ𝑒(𝜏)𝑧𝑤(𝑡 − 𝜏) 𝑑𝜏 (8b)

where 𝑥𝑒 ∈ ℝ𝑛𝑒  is the state, and (𝐴𝑒, 𝐵𝑒, 𝐶𝑒, 0) are the state-space
realisations.

2.2.  State-space model

With the realisations of Eqs. (6a), (6b), (8a) and (8b), the state-space 
model of Eq. (3) can be represented by: 
𝑥̇ = 𝐴𝑐𝑥 + 𝐵𝑢𝑐𝑢 + 𝐵𝑤𝑐𝑤 + 𝜖 (9a)

𝑦 = 𝐶𝑐𝑥 (9b)

where 𝑤 ∶= 𝑧𝑤 is the wave elevation whose prediction is incorporated 
into the controller design, 𝑦 ∶= 𝑧𝑣, 𝑥 ∶= [𝑧𝑣, 𝑧̇𝑣, 𝑥𝑟, 𝑥𝑒], and 𝑢 ∶= 𝑓𝑢. 𝜖 rep-
resents the model uncertainty caused by wave force approximations in 
Eqs. (6b) and (8b). And

𝐴𝑐 =

⎡

⎢

⎢

⎢

⎢

⎣

0 1 0 0
− 𝑘𝑠

𝑚 −𝐷𝑓
𝑚

𝐶𝑟
𝑚 −𝐶𝑒

𝑚
0 𝐵𝑟 𝐴𝑟 0
0 0 0 𝐴𝑒

⎤

⎥

⎥

⎥

⎥

⎦

𝐵𝑢𝑐 =

⎡

⎢

⎢

⎢

⎢

⎣

0
1000
𝑚
0
0

⎤

⎥

⎥

⎥

⎥

⎦

𝐵𝑤𝑐 =

⎡

⎢

⎢

⎢

⎢

⎣

0
0
0
𝐵𝑒

⎤

⎥

⎥

⎥

⎥

⎦

𝐶𝑐 =
[

0 1 01×(𝑛𝑒+𝑛𝑟)
]

with 𝑚 ∶= 𝑚𝑠 + 𝑚∞. The balanced truncation method is used to reduce 
the order of the tenth-order model and verify the model’s matching. The 
parameters are gradually optimised to establish a second-order model 
to achieve an equivalent replacement for the tenth-order model in the 
low-frequency range:

𝐴𝑐 =

[

0 1
− 𝑘𝑠

𝑚 −𝐷𝑟
𝑚

]

𝐵𝑢𝑐 =

[

0
1
𝑚

]

𝐵𝑤𝑐 =

[

0
𝐷𝑒
𝑚

]

𝐶𝑐 =
[

0 1
]

The continuous-time model Eqs. (9a) and (9b) can be converted to a 
discrete-time model Eqs. (10a) and (10b). 
𝑥𝑘+1 = 𝐴𝑥𝑘 + 𝐵𝑢𝑢𝑘 + 𝐵𝑤𝑤𝑘 + 𝜖𝑘 (10a)

𝑦𝑘 = 𝐶𝑥𝑘 (10b)

where the quadruple (𝐴,𝐵𝑢, 𝐵𝑤, 𝐶) is the discrete-time form of the 
quadruple (𝐴𝑐 , 𝐵𝑢𝑐 , 𝐵𝑤𝑐 , 𝐶𝑐 ).

The balanced truncation method was first proposed by Moore (1981) 
and is an effective model simplification method for linear systems. In the 
balanced truncation process, high-dimensional stable structures may be 
both controllable and observable. In most cases, a transformation is es-
tablished, as described in Moore (1981), which transforms the system 
into a unique form where the controllability and observability Grami-
ans are equal. This produces a diagonal matrix Σ with the Hankel singu-
lar values on the diagonal arranged in descending order of dominance 
(Suman and Kumar, 2021). For nonlinear systems, balanced truncation 
based on algebraic Gramians can be achieved by solving Lyapunov-type 
equations (Gray and Verriest, 2006).

To reduce the computational demand of the tenth-order model and 
allow EMPC to operate on offshore devices with limited capability, the 
balanced truncation method is introduced to reduce the order of the 
tenth-order model. The order of the reduced-order model is second or-
der. The main dynamic and energy capture characteristics of the tenth-
order model are preserved, ensuring that the reduced-order model re-
mains highly consistent with the tenth-order model in terms of posi-
tion and energy capture. The performance of the reduced-order model 
closely matches that of the tenth-order model in terms of dynamic re-
sponse, velocity, and PTO force.

A second-order model is established by optimizing parameters and 
compared with reduced-order and tenth-order models. The second-order 
model achieves performance nearly identical to the tenth-order model 
in terms of position and energy. In terms of velocity and PTO force, it 
shows a higher approximation than the reduced-order model, aligning 
more closely with the tenth-order model. The second-order model accu-
rately captures the key dynamic behaviours of the system and achieves 
an equivalent replacement for the tenth-order model, which signifi-
cantly reduces the computational demand. To verify the effectiveness 
of the reduced-order model, comparison results in both the frequency 
and time domains are shown in the simulation section, demonstrating 
model matching verification after reduction from the tenth-order model 
and the equivalent substitution achieved by the second-order model.
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2.3.  Optimal trajectory generation

This paper uses EMPC to track the optimal trajectory and maximise 
energy capture. The optimal trajectory of WECs is: 

min
𝑢

1
𝑁

𝑁−1
∑

𝑘=0
𝐿𝑘(𝑥𝑘, 𝑢𝑘) (11a)

s.t.

x𝑘+1 = 𝐴𝑥𝑘 + 𝐵𝑢𝑢𝑘 + 𝐵𝑤𝑤𝑘 (11b)

𝑦𝑘 = 𝐶𝑐𝑥𝑘 (11c)

where 𝑁 is the number of prediction steps and 𝐿𝑘 is the stage cost:

𝐿𝑘 = 1
2
𝑥𝑇𝑘𝑄

′𝑥𝑘 + 𝑦𝑘𝑢𝑘 +
1
2
𝑅′𝑢2𝑘 (12)

where 1
2𝑥

𝑇
𝑘𝑄

′𝑥𝑘 represents the weighted penalty term on the system 
state, 𝑄′ and 𝑅′ are positive definite matrices, 𝑄′ influences the stability 
of the control system and serves as a tuning parameter for addressing 
state constraints Eq. (2a), −𝑦𝑘𝑢𝑘 represents the power that the power 
take-off (PTO) mechanism can capture, minimizing 𝑦𝑘𝑢𝑘 is maximizing 
energy output, 12𝑅′𝑢2𝑘 is introduced to penalise the input, 𝑅′ affects the 
stability of the control system, and is a tuning parameter for handling 
the input constraint Eq. (2b) (Zhan and Li, 2018).

3.  Explicit MPC for energy maximisation

This section describes the proposed EMPC. Section 3.1 introduces the 
overall strategy of the proposed controller. In Section 3.2, EMPC is used 
to achieve optimal trajectory tracking and maximise energy capture. 
Section 3.3 presents the design of the disturbance observer. Section 3.4 
presents the wave prediction through the autoregressive model.

3.1.  Overall strategy

The overall strategy of this paper is as follows: The tenth-order model 
of the point absorber is reduced and equivalently replaced by a second-
order model in the low-frequency range. The EMPC control error ap-
proaches zero. The plant generates predicted float position and velocity 
based on the wave, PTO force, and white noise. The disturbance ob-
server and autoregressive model are used for wave prediction to achieve 
optimal trajectory tracking and maximum energy capture. The block di-
agram of the proposed EMPC scheme is shown in Fig. 2. The distur-
bance observer processes the output trajectory data from the plant and 
generates an estimated value of disturbance, which is then fed into the 
autoregressive model. The autoregressive model predicts the wave data 
to minimise the error. Both the disturbance observer and the autore-
gressive model use first-order models. The first-order model is sufficient 
to meet the needs of disturbance estimation and wave prediction and 
can effectively support optimal trajectory tracking and energy capture. 
The complexity of the model is reduced through the balanced trunca-
tion method, ensuring the control system’s real-time performance. The 

optimal model generates the optimal state trajectory and control input 
by solving the optimal control problem, utilizing realistic wave data to 
promote subsequent control operations.

3.2.  Explicit model predictive control

The dependency of the PTO force 𝑢𝑡 on the system state 𝑥𝑡 is explicit, 
and the online calculation is simplified to a simple equation evaluation, 
which improves the applicability of MPC in rapid sampling applications. 
The offline computational control law of EMPC is:
𝑢𝑡 = 𝑓 (𝑥𝑡) (13)

where 𝑢𝑡 is the control signal of the system Eq. (13), 𝑥𝑡 is the state vector 
of the system Eq. (13) at time 𝑡, 𝑓 (⋅) is the mapping function, which 
represents the relationship between the PTO force and the system state. 
The quadratic cost function is:

𝐽 =
𝑁−1
∑

𝑘=0

(

(𝑥∗𝑘 − 𝑥𝑘)𝑇𝑄(𝑥∗𝑘 − 𝑥𝑘) + 𝑢𝑇𝑘𝑅𝑢𝑘
)

(14)

where 𝐽 is the total cost over the prediction time, 𝑘 is the time step, 
ranging from 0 to 𝑁 − 1, 𝑥𝑘 is the system state at time step 𝑘, 𝑥∗𝑘 is 
the desired reference state, (𝑥𝑘 − 𝑥∗𝑘)

𝑇  is the state vector at step 𝑘, 𝑢𝑘
is the PTO force at step 𝑘, 𝑁 is the prediction step size, 𝑄 and 𝑅 are 
the weight matrices for the output error and PTO force (Privara et al., 
2011), which directly affect how the system responds to state errors and 
control energy. In the state-space model of system Eq. (9a), the state 𝑥
and PTO force 𝑢 constraints are:
𝑥𝑚𝑖𝑛 ⪯ 𝑥 ⪯ 𝑥𝑚𝑎𝑥 (15)

𝑢𝑚𝑖𝑛 ≤ 𝑢 ≤ 𝑢𝑚𝑎𝑥 (16)

where 𝑥min and 𝑥max are the minimum and maximum values of the state 
Eq. (15), 𝑢min and 𝑢max are the minimum and maximum values of the PTO 
force Eq. (16). The controller runs in discrete time and uses the zero-
order hold method to discretise the continuous-time state space model 
with a sampling time of 𝑇s = 0.1𝑠.

All parameters of the system (mass, stiffness, and damping) are mea-
sured and determined. The motion of the floating object is described by 
Newton’s second law, and the position and velocity are defined as state 
variables to establish the dynamic model of the floating object, and its 
equation is given by:
𝑚𝑧̈ = −𝑘𝑠𝑧 −𝐷𝑟𝑧̇ +𝐷𝑒 (17)

where 𝑚 = 𝑚𝑠 + 𝑚∞ is the total mass of the floating object, including 
the mass of the floating body 𝑚𝑠 and the added mass 𝑚∞, 𝑧 is the dis-
placement of the floating object on the water surface, 𝑧̇ is the velocity 
of the floating object, 𝑧̈ is the acceleration of the floating object, 𝑘𝑠 is 
the stiffness parameter of the system, 𝐷𝑟 is the damping coefficient, and 
𝐷𝑒 is the external excitation force on the system.

EMPC controls the position and velocity of the float so that it follows 
𝑧∗ and 𝑣∗. 𝑥pred is [𝑧pred, 𝑣pred]. The position and velocity are represented 

Fig. 2. Block diagram of the proposed EMPC scheme.
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by 𝑧pred and 𝑣pred, respectively. The system considers the desired state, 
excitation force, white noise interference, and model uncertainty when 
performing control. The discrepancies between 𝑧pred and 𝑧∗, as well as 
between 𝑣pred and 𝑣∗, are considered as errors:
𝑧err = 𝑧∗ − 𝑥pred(1) (18)

𝑣err = 𝑣∗ − 𝑥pred(2) (19)

EMPC controls error, and the generated PTO force is denoted as 𝑢err. 
The PTO force limit is given by:
𝑢err = min(max(𝑢err,−𝑢max), 𝑢max). (20)

For each time step 𝑘, the PTO force 𝑢pred is given by:
𝑢pred = 𝑢err + 𝑈loc(𝑘) (21)

where 𝑈loc is the PTO force of the optimal model and 𝑢pred is the PTO 
force of the predicted model.

The powers of noncausal and causal control are defined as 𝑃loc =
−𝑢loc𝑦loc𝑇𝑠 and 𝑃cau = −𝑢cau𝑦cau𝑇𝑠, respectively, where 𝑢loc and 𝑢cau are 
the PTO force under noncausal and causal control, and 𝑦loc and 𝑦cau are 
the velocity under noncausal and causal control. 𝑇𝑠 denotes the sampling 
interval. A negative value indicates energy consumption.

The cumulative energy of noncausal and causal control is given by 
𝐸loc(𝑖) = 𝐸loc(𝑖 − 1) + 𝑃loc(𝑖) and 𝐸cau(𝑖) = 𝐸cau(𝑖 − 1) + 𝑃cau(𝑖), where 𝑖
denotes the time step. The instantaneous power at time 𝑖, denoted as 
𝑃 (𝑖), represents the rate of energy transfer caused by the PTO force 𝑢loc
and 𝑢cau. The corresponding energy at time 𝑖, denoted as 𝐸(𝑖).

For both accurate and inaccurate models, the instantaneous powers 
at each time step 𝑖 are given by 𝑃loc2(𝑖) = −𝑢loc2(𝑖)𝑦loc2(𝑖)𝑇𝑠 and 𝑃loc3(𝑖) =
−𝑢loc3(𝑖)𝑦loc3(𝑖)𝑇𝑠, where 𝑢loc2 and 𝑢loc3 represent the PTO forces and 
velocities in the accurate and inaccurate models, respectively.

The cumulative energies are obtained as 𝐸loc2 =
∑𝑁𝑚

𝑖=1 𝑃loc2(𝑖) and 
𝐸loc3 =

∑𝑁𝑚
𝑖=1 𝑃loc3(𝑖), respectively, where 𝑁𝑚 denotes the total number 

of simulation steps. The time-varying cumulative energies 𝐸loc2(𝑖) and 
𝐸loc3(𝑖) represent the energy accumulated at each time step 𝑖 for the 
accurate and inaccurate models, respectively.

3.3.  Disturbance observer design

A disturbance observer is designed to estimate the disturbance 𝑑(𝑡)
in the system, where the controller uses the estimated disturbance to 
counteract its effects (Nian et al., 2020). The observer estimates the 
excitation force, and by accurately estimating the upper bound of the 
prediction error, the compensator effectively corrects the estimation er-
ror (Zhang et al., 2020). Linear feedback control requires a high gain 
to suppress the effects of model uncertainty and external disturbances 
(Zhang et al., 2017). An appropriate switching gain can prevent the jit-
ter phenomenon associated with the traditional observer. The update of 
the disturbance estimation is given by:
𝑑𝑘+1 = (1 −𝐾𝑐 )𝑑𝑘 +𝐾𝑒𝐶𝑐𝑥𝑘,pred − 𝛽

∑

𝐶𝑐𝑥𝑘,pred (22)

where 𝑑𝑘+1 is the estimated value of the disturbance at the next time 
step 𝑘 + 1, 𝑑𝑘 is the estimated value of the disturbance at the current 
time step 𝑘, 𝐾𝑐 is the observer gain used to control the convergence ve-
locity of the disturbance estimation term 𝑑, 𝐾𝑒 is the gain used to adjust 
the error feedback, 𝐶𝑐 is the output matrix, and 𝛽 is the gain coeffi-
cient, which adjusts the error correction term. The wave is estimated by 
the disturbance observer, and the update of the disturbance observer is 
given by:
𝑤̂ = 𝐶𝑐𝑥pred + 𝑑 (23)

where 𝑤̂ is the estimated wave and 𝑑 is the disturbance estimation. The 
estimated value serves as an input for controller design. It is not practical 
to directly measure all states of the WECs. A state observer needs to 
be designed to solve this problem (Zhan et al., 2019b). The feedback 
noncausal MPC control algorithm is designed based on the assumption 
that all information about 𝑥pred is available.

3.4.  Wave prediction by autoregressive model

Recursive least squares (RLS) is a commonly used parameter estima-
tion algorithm (Xiao et al., 2008), which is used to train an autoregres-
sive model for wave data prediction to minimise the model error. The 
sampling time is 𝑇s. The training segment duration of the model train-
ing is 𝑇train. The prediction segment duration is 𝑇predict. After each 5-s 
training cycle, a 1-s prediction is performed. The total prediction time 
is 𝑇total. The number of prediction points in each prediction segment 
is 𝑁pred. The training-prediction cycle time offset 𝑁shift represents the 
time interval from training to prediction. The number of points in the 
prediction segment is 𝑁shift. The initial regularisation coefficient is 𝛼base. 
To ensure a uniform scale of the training data, the data is normalised:
𝑤̃ =

𝑤 − 𝜇
𝜎

(24)

where 𝑤̃ is the standardised training value, 𝜇 is the mean of 𝑤, and 𝜎
is the standard deviation of 𝑤. Before performing multi-step prediction, 
initialise an initial input vector 𝜙 that contains past observations used 
for prediction. The input vector is represented as:
𝜙 =

[

𝑤̃𝑁train
𝑤̃𝑁train−1 ⋯ 𝑤̃𝑁train−𝑝+1

]⊤ (25)

where the first 𝑝 data points are extracted from the training data and re-
versed to form the input vector 𝜙 of the autoregressive model, 𝑝 denotes 
the order of the autoregressive model, indicating that each prediction 
relies on 𝑝 past data points. The predicted value is given by:
𝑤pred = 𝜃𝜙 (26)

where 𝜙 is the set of input vectors, 𝑤pred is the predicted value, and 
the parameter vector 𝜃 represents the weights of the model, its initial 
value set to the zero vector. Through the RLS algorithm, 𝜃 is updated 
progressively to minimise the prediction error. The predicted error 𝑒pred
is given by:
𝑒pred = 𝑤̃ −𝑤pred (27)

where 𝑤pred is the predicted value and 𝑒pred is the predicted error, de-
fined as the difference between the predicted value and the true value. 
By following these steps, obtain the multi-step prediction results over a 
specified time period:
𝛼dynamic = 𝛼dynamic(1 + |𝑒pred|) (28)

where the dynamic regularisation coefficient 𝛼dynamic is initially equal 
to 𝛼base, 𝛼dynamic is adjusted at each step to control the strength of the 
updates and |𝑒pred| is the prediction error. When |𝑒pred| is large, the regu-
larisation coefficient is amplified to reduce the magnitude of parameter 
updates. The Kalman gain 𝐾 is given by:

𝐾 =
𝑃𝜙′

𝜆rls + 𝜙𝑃𝜙′ + 𝛼dynamic + 𝑙
(29)

where 𝑃𝜙′ represents the incremental information from the past, and 
the denominator includes the forgetting factor 𝜆rls and the regularisation 
term to ensure stable updates. 𝜆rls attenuates the influence of old data, 𝑃
is the covariance matrix used for updating the parameter calculations, 
and 𝑙 is the regularisation parameter used to prevent overfitting. The 
parameter update equation for the parameter 𝜃 is given by:
𝜃𝑘 = 𝜃𝑘−1 +𝐾𝑒𝑘,pred (30)

The update equation for the covariance matrix 𝑃  is given by:

𝑃𝑘 =
(1 −𝐾𝜙𝑘−1)𝑃𝑘−1

𝜆rls
(31)

where 𝑃  gradually converges as time progresses, reducing the model’s 
sensitivity to historical data and enhancing the stability and accuracy of 
predictions.

𝐸(𝑝)
cv = 1

𝑁train − 𝑝

𝑁train
∑

𝑘=𝑝+1
|𝑒pred| (32)
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where 𝐸(𝑝)
cv  denotes the cross-validation error of the autoregressive 

model with the order 𝑝, used to measure the model fitting performance 
at different orders: a smaller value indicates better model fitting, 𝑁train is 
the total number of samples in the training data, 𝑁train − 𝑝 is the number 
of observations used to compute the error, 𝑘 is an index variable used to 
iterate over the samples in the training dataset with a range from 𝑝 + 1
to 𝑁train, ensuring sufficient historical data is available for prediction, 
and |𝑒pred| represents the absolute error between the predicted and true 
value.

Traditional modelling sequential estimation methods include the 
Akaike Information Criterion (AIC) and Bayesian Information Criterion 
(BIC) (Atyabi et al., 2016). AIC avoids overfitting and penalises complex 
models by balancing goodness of fit and model complexity:

𝐴𝐼𝐶𝑝 = 𝑁train log

(

1
𝑁train

𝑁train
∑

𝑘=𝑝+1
𝑒2pred

)

+ 2𝑝 (33)

𝐵𝐼𝐶𝑝 = 𝑁train log

(

1
𝑁train

𝑁train
∑

𝑘=𝑝+1
𝑒2pred

)

+ 𝑝 log(𝑁train) (34)

where 𝐴𝐼𝐶𝑝 and 𝐵𝐼𝐶𝑝 denote the AIC value and the BIC values, respec-
tively, for a model with order 𝑝, a smaller value indicates a better-fitting 
model, 𝑁train is the number of training samples, log is used to capture 
data growth rates and assess model complexity, ∑𝑁train

𝑘=𝑝+1 𝑒
2
pred denotes 

the total squared prediction errors, 2𝑝 is the penalty term for model 
complexity in AIC, and 𝑝 log(𝑁train) is the penalty term in BIC, which 
increases with the sample size. It indicates that higher-order models re-
ceive stronger penalties under BIC, which thus tends to choose simple 
models to avoid overfitting. BIC is stricter than AIC in penalizing com-
plex models.

To perform multi-step prediction, the first predicted value 𝑤̂1,pred is 
appended to the input vector 𝜙pred and used as the most recent obser-
vation for subsequent multi-step predictions:

𝜙pred =
[

𝑤̂1,pred 𝑤̃𝑁train
𝑤̃𝑁train−1 ⋯ 𝑤̃𝑁train−𝑝+2

]⊤ (35)

Using the parameter vector 𝜃 and the input vector 𝜙pred, multi-step 
prediction is performed. The model output 𝑤̂pred is calculated as follows:
𝑤̂pred = 𝜃𝜙pred (36)

where 𝑤̂pred represents the predicted normalised value. To predict val-
ues for multiple time steps, the prediction output is repeated, and the 
input vector is updated at each prediction step 𝑘:

1. Generate the new prediction Eq. (36).
2. Update 𝜙pred:

𝜙pred =
[

𝑤̂1,pred 𝜙1∶end−1,pred
]⊤ (37)

where the input vector 𝜙pred contains the most recent predicted value 
along with the previous actual observations. After performing multi-step 
predictions, this paper denormalises the predicted results to convert the 
normalised predictions back to the original scale:
𝑤̄ = 𝑤̂pred𝜎 + 𝜇 (38)

where 𝑤̄ is the prediction result after denormalisation. If it is the first 
prediction, the predicted segment is directly appended to the total pre-
diction results. Otherwise, to ensure continuity, the first value of the 
new segment is set to the last predicted value of the previous segment, 
and the segments are concatenated:
𝑤p,all =

[

𝑤p,all, 𝑤̄
]

(39)

where 𝑤p,all represents the cumulative predicted value. After each pre-
diction, the timestamp is updated:
𝑡p,all =

[

𝑡p,all, 𝑡pi
]

(40)

where 𝑡p,all is a cumulative predicted time, and 𝑡pi is the time series of 
the current predicted segment. The working principle of the proposed 
method is shown in Algorithm 1.

Algorithm 1 Implementation of the WEC control.
1: Obtain the system state 𝑥 and the wave 𝑤. 
2: The EMPC generates the error PTO force 𝑢err. The optimal model 
provides the PTO force 𝑈loc. The predicted PTO force 𝑢pred is ob-
tained based on the Equation (21). 

3: The predicted system state 𝑥pred is the sum of the state error 𝑥err
and the system state 𝑥. The energy of the accurate and inaccurate 
models is captured in 𝐸loc2 and 𝐸loc3, respectively. 

4: The disturbance observer generates an estimated wave 𝑤̂ in (23). 
The autoregressive model generates the predicted wave 𝑤̂pred in 
Equation (36). 

5: Repeat steps 1 to 4.

4.  Simulation results and analysis

This section shows the simulation results generated using MATLAB 
R2023b. The computer model is the Lenovo ThinkPad X13 Gen 2. This 
paper uses real wave data collected from the coast of Cornwall, UK. 
The wave heights from 0 to 200 s are shown in Fig. 3, and the physical 
parameters are listed in Table 1. The significant wave height of the wave 
is 2.003m. The wave period range is 1.40 s to 10.80 s. The average wave 
period is 5.791 s. The model’s natural period of the system is 24.1213 s. 
The model’s natural period of the system is larger than the wave period 
range. Because the wave frequency is lower than the natural frequency 
of the system, the system does not resonate. This avoids loss of stability 
and generation of a large response. The operations of standard MPC and 
EMPC are implemented using MATLAB R2023b. The results show that 
the running time of EMPC is 61.16 s, while the running time of standard 
MPC is 926.64 s. Compared with MPC, EMPC has higher computational 
efficiency while maintaining similar control performance.

The state space matrix of the impulse function for calculating the 
radiation force is:

𝐴𝑟 =
⎡

⎢

⎢

⎣

0 0 −17.9
1 0 −17.7
0 1 −4.41

⎤

⎥

⎥

⎦

𝐵𝑟 =
⎡

⎢

⎢

⎣

36.5
394
75.1

⎤

⎥

⎥

⎦

𝐶𝑟 =
[

0 0 1
]

Fig. 3. Wave height data gathered from the coast of Cornwall, UK (Zhang et al., 
2019; Li and Belmont, 2014).

Table 1 
Physical parameters of wave energy devices.
 Description  Notation  Value
 Physical parameters 𝑇𝑠  0.1 s
 Gravity acceleration 𝑔  9.8 m/s2
 Radius 𝑟  0.35 m
 Average density of seawater 𝜌  1025 kg/m3

 Total mass 𝑚  325.5 kg
 Stiffness 𝑘𝑠  3866 N/m
 Damping coefficient 𝐷 2 × 105 N ⋅ s/m
 Damping (viscous) 𝐷𝑣  0
 Damping (friction) 𝐷𝑓  0
 Device width 𝐷𝑤  0.7m
 Prediction time 𝑃time  50 s
 Prediction Steps 𝑃step  500 steps
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The state space matrix of the impulse function for calculating the 
wave excitation force is:

𝐴𝑒 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

0 0 0 0 −400
1 0 0 0 −459
0 1 0 0 −226
0 0 1 0 −64
0 0 0 1 −9.96

⎤

⎥

⎥

⎥

⎥

⎥

⎦

𝐵𝑒 =

⎡

⎢

⎢

⎢

⎢

⎢

⎣

1549886
−116380
24748
−644
19.3

⎤

⎥

⎥

⎥

⎥

⎥

⎦

𝐶𝑒 =
[

0 0 0 0 1
]

The accurate and inaccurate 𝑄 and 𝑅 are:

𝑄acc =
[

101 0
0 101

]

𝑄inacc =
[

101 0
0 101

]

𝑅acc = 10−3 𝑅inacc = 10−3

White noise interference comes from environmental fluctuations and 
measurement errors. The system resists this interference through robust 
control, which helps maintain stability in complex environments. Pa-
rameter variations lead to deviations between expected and actual sys-
tem behaviour. The control strategy takes these uncertainties into ac-
count and adjusts the inputs in real time. White noise is defined as: 
𝜖 = 𝑐𝜎′, where 𝜖 represents white noise, 𝑐 is the colored noise, and 𝜎′ is 
the time-varying standard deviation.

Wave energy systems usually work in the low-frequency range, 
where most of the energy is concentrated. Therefore, the dynamic be-
haviour of the system is primarily dominated by low-frequency charac-
teristics. Based on this, the balanced truncation method is introduced 
to reduce the tenth-order model into a reduced-order model of second 
order. Fig. 4 demonstrates the Bode diagrams of both the tenth-order 
and reduced-order models. The amplitude responses of the two models 
show a close match in the frequency range of 0.1 to 1 rad/s, indicating 
that the reduced-order model effectively preserves the gain character-
istics of the original system. Although there are some deviations in the 
phase response, especially at lower frequencies, the overall phase trend 
remains consistent, which demonstrates that the reduced-order model 
can accurately capture the essential dynamic behaviour of the original 
system and is suitable for subsequent analysis and control design.

On this basis, the second-order model is constructed by gradually 
adjusting the parameters. By comparing key output indicators such as 
displacement, velocity, control input, and energy, it is verified that the 
second-order model, reduced-order model, and tenth-order model have 
high consistency in time domain response, as shown in Fig. 5. The 
second-order model is highly consistent with the reduced-order and 
tenth-order models in key aspects such as energy transfer and system 
response, successfully capturing the primary dynamic behaviour of the 
system within the low-frequency range. Without losing the important 
characteristics of the system, the computational demand of the model is 
simplified, and the corresponding parameters are determined. Based on 
the verification and comparison of low-frequency matching and time-
domain response, it is fully demonstrated that the second-order model 

Fig. 4. Bode diagram for model fidelity check.

can effectively achieve equivalent substitution for both the reduced-
order model and the tenth-order model in terms of dynamic behaviour 
within the low-frequency range.

Energy and PTO force are shown in Fig. 6. Energy output increases 
with the wave’s energy content. The noncausal system accumulates 
more energy than the causal system does. The PTO force is constrained 
to an upper limit of 6 Newtons.

Fig. 7 demonstrates the energy and power comparisons. The accu-
rate model captures more energy than the inaccurate model. The ac-
curate model achieves the best energy capture effect, and the model 
accuracy has a clear positive impact on the control effect. Although the 
energy capture performance of the inaccurate model is reduced due to 
modelling errors and differs from the accurate model, the overall en-
ergy capture effect is still within an acceptable range. The power ranges 
from −0.05 to 0.25, following a similar trend, with the accurate model 
having higher power than the inaccurate model. Fig. 8 demonstrates 
the position error and velocity error of the model. The position error 
ranges between −0.04 and 0.04, while the velocity error ranges between 
−0.06 and 0.08. The errors fluctuate within the acceptable range. Fig. 9 
demonstrates that the accurate and inaccurate models have similar PTO 
forces and consistent model training processes. The accurate model is 
more suitable for applications with high requirements for energy cap-
ture efficiency and control accuracy. Although the inaccurate model has 
a certain deviation from the accurate model, the control performance 
still meets the actual needs. The EMPC strategy demonstrates excellent 
fault tolerance and robustness in the application. Furthermore, it effec-
tively addresses modelling uncertainty, which contributes to improving 
the applicability and operational stability of the system.

Fig. 10 demonstrates the partitioning of the system. The regional 
piecewise linear controller adopts corresponding control strategies in 
different regions based on the partitioning. Each region uses a spe-
cific calculation equation, which significantly reduces the computa-
tional burden. The partitioning range of the accurate model and the 
inaccurate model is the same, but the number of regions is different. 
The accurate model includes 111 regions, while the inaccurate model 
includes 109 regions. Both use similar control strategies in most regions, 
and there are differences only in a few regions.

The Monte Carlo method is used to set different initial predicted po-
sitions and initial predicted velocities, and multiple sets of predicted 
positions and predicted velocities are generated for comparison. From 
Figs. 11 and 12, based on the comparison of the position tracking and 
velocity tracking results of the accurate and inaccurate models, it can 
be observed that no matter what initial point the predicted position 
and velocity start from, the predicted results are eventually close to 
the position and velocity of the float. This shows that the system has 
an impressive ability to track the position and velocity of the float. The 
WEC parameters of the accurate and inaccurate models are shown in
Table 2.

Table 2 
WEC parameters of accurate model and inaccurate model.
 Description  Notation  Value
 Stiffness 𝐾acc

𝑠 3866N/m
 Float mass 𝑚acc𝑠 320 kg
 Added mass 𝑚acc∞ 5.5 kg
 Total mass 𝑚acc 325.5 kg
 Radiation coefficient 𝐷acc

𝑟 1000 kg/s
 Excitation coefficient 𝐷acc

𝑒 676 kg/s2

 Description  Notation  Value 1  Value 2
 Stiffness 𝐾 inacc

𝑠 3750N/m 3800N/m
 Float mass 𝑚inacc𝑠 295 kg 300 kg
 Added mass 𝑚inacc∞ 2 kg 3 kg
 Total mass 𝑚inacc 297 kg 303 kg
 Radiation coefficient 𝐷inacc

𝑟 970 kg/s 990 kg/s
 Excitation coefficient 𝐷inacc

𝑒 656 kg/s2 666 kg/s2
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Fig. 5. (a) Position comparison. (b) Velocity comparison. (c) PTO force comparison. (d) Energy comparison. Blue solid line: tenth-order model. Black solid line: 
second-order model. Red solid line: reduced-order model.

Fig. 6. (a) Energy. (b) PTO force. Blue solid line: noncasual model. Black solid line: casual model.

In the three cases of 𝑄 and 𝑅 in Table 3, the inaccurate model pro-
duces an energy of 34.3345KJ. The model uses multi-parameter piece-
wise linear control segmentation, with case I involving 109 regions, and 
cases II and III both involving 163 regions. The results are shown in the 
Fig. 13. Adjust the values of 𝑄 and 𝑅 and perform multiple simulations. 
It is found that the final value of energy capture is affected by the val-
ues of 𝑄 and 𝑅. The final energy capture of Case I is 34.1534KJ. The 
final energy capture of Case II is 34.2724KJ. The final energy capture of 
Case III is 34.2690KJ. Comparing Case I (green dashed line) and Case II 

(red dashed line), the larger the 𝑄 matrix value, the greater the energy 
capture. Comparing Case I (green dashed line) and Case III (blue dashed 
line), the larger the 𝑅 value, the lower the energy capture. As the 𝑄 in-
creases and 𝑅 decreases, the number of regional divisions in the system 
partition diagram increases. The control strategy is more detailed, and 
the system’s anti-interference ability is enhanced.

Fig. 14 demonstrates the comparison between the estimated wave 
and the wave height. It can be found that the estimated wave is simi-
lar to the wave height in amplitude and trend, with more fluctuations. 
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Fig. 7. (a) Energy comparison. (b) Power comparison. Red solid line: accurate model. Blue dashed line: inaccurate model 1. Green dashed line: inaccurate model 2.

Fig. 8. (a) Position error comparison. (b) Velocity error comparison. Red solid line: accurate model. Black dashed line: inaccurate model 1. Blue dashed line: 
inaccurate model 2.

Fig. 9. PTO force comparison. Red solid line: accurate model. Black dashed line: 
inaccurate model 1. Blue dashed line: inaccurate model 2.

Although there is a certain error, the estimation effect is well achieved. 
From Fig. 15, the difference between the estimated wave and the pre-
dicted wave is compared. It can be seen that although there are certain 
errors, the overall trend is similar and the error range is small, indicat-
ing that the prediction effect is impressive. The physical parameters of 
constraints, disturbance observer, and autoregressive model are shown 
in Table 4.

This study uses different wave data for testing. These waves are sim-
ulated using EMPC, and the corresponding energy output is generated. 

Table 3 
𝑄 and 𝑅 three cases.
𝑄 and 𝑅  Case I  Case II  Case III

𝑄inacc

[

101 0
0 101

] [

103 0
0 103

] [

101 0
0 101

]

𝑅inacc 10−3 10−3 10−5

As shown in Fig. 16, EMPC demonstrates impressive control and en-
ergy capture abilities under different wave conditions. This verifies its 
robustness and potential for practical application.

To compare the control performance under various sea conditions, 
wave profiles defined by significant wave height 𝐻𝑠 and wave peak pe-
riod 𝑇𝑝 are simulated. The capture width ratio (CWR) is calculated to 
evaluate the energy conversion capability of the system in a real envi-
ronment. The CWR is calculated as: 𝐶𝑊𝑅 = 𝑃𝑎𝑣

𝐷𝑤⋅𝑃𝑤
. 𝑃𝑎𝑣 is the average 

mechanical power, 𝐷𝑤 is the device width, and 𝑃𝑤 is the wave power 
per meter of crest width. For the point absorber with parameters shown 
in Table 1, the device width is 𝐷𝑊 = 0.7𝑚.

Fig. 17 demonstrates the CWR of the point absorber obtained from 
a large-scale simulation under the JONSWAP (Joint North Sea Wave 
Project) wave model with a spectral peakedness factor of unity to gen-
erate irregular wavespectra (Zhang and Li, 2019). The significant wave 
heights are 𝐻𝑠 = 1𝑚 and 𝐻𝑠 = 1.5𝑚, respectively. The wave crest period 
ranges from 1𝑠 to 12𝑠 with an interval of 1𝑠. Model uncertainties and 
prediction errors are considered. The results show that the CWR shows 
a trend of increasing and then decreasing with the increase of the wave 
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Fig. 10. (a) State space partition graphs of the accurate model. (b) State space partition graphs of the inaccurate model.

Fig. 11. (a) Comparison of float position for an accurate model. (b) Comparison of float position for an inaccurate model. The float position is tracked from five 
different starting points.

Fig. 12. (a) Comparison of float velocity for an accurate model. (b) Comparison of float velocity for an inaccurate model. The float velocity is tracked from five 
different starting points.

peak period. When the wave peak period is 4 s, the CWR reaches its 
maximum value. Then, as the wave peak period continues to increase, 
the CWR begins to decrease. Under different effective wave heights, the 
CWR maintains the same increasing and decreasing trend. The system’s 
response under different wave heights generally exhibits a linear rela-
tionship, and the CWR values remain approximately consistent across 
varying wave height conditions. The proposed EMPC is able to cope 

with both prediction errors and model uncertainties in different ocean 
environments.

EMPC utilises multi-parametric quadratic programming to transform 
the online optimisation problem of traditional MPC into an equivalent, 
pre-computed piecewise explicit control law. At runtime, the appropri-
ate control action is applied by identifying the region corresponding 
to the current system state, thereby eliminating the need to solve a 
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Fig. 13. Comparison of energy and state space partitioning for three cases of Q 
and R. Green dashed line: first case. Red dashed line: second case. Blue dashed 
line: third case.

Table 4 
Physical parameters of constraints, disturbance observer, and au-
toregressive model.
 Description  Notation  Value
 Input force limit 𝑢max 0.1 kN
 Float heave coefficient 𝑧max 0.1m
 Heave velocity limit 𝑣max 0.1m/s
 Observer gain 𝐾𝑐  1.5
 Error feedback gain 𝐾𝑒  6
 Error correction gain 𝛽  0.5
 Forgetting factor 𝜆rls  0.99
 Initial regularisation coefficient 𝛼base 10−8

 Regularisation parameter 𝓁 10−8

 Sampling time 𝑇s 0.1 s
 Training duration 𝑇train 5 s
 Prediction duration 𝑇predict 1 s
 Total prediction time 𝑇total 200 s
 Prediction points 𝑁pred  11
 Cycle time offset 𝑁shift  10
 Covariance matrix 𝑃 107 × 𝐼𝑝

 Identity matrix 𝐼𝑝

⎡

⎢

⎢

⎢

⎢

⎣

1 0 ⋯ 0
0 1 ⋯ 0
⋮ ⋮ ⋱ ⋮
0 0 ⋯ 1

⎤

⎥

⎥

⎥

⎥

⎦𝑝×𝑝

Fig. 14. Wave height and estimated wave. Pink dashed line: wave height. Red 
solid line: estimated wave of the accurate model. Blue dashed line: estimated 
wave of the inaccurate model.

quadratic programming problem at each time step. This significantly 
enhances real-time performance and computational efficiency.

Compared to traditional MPC, which depends on online optimisa-
tion, EMPC offers distinct advantages when applied to WEC systems:

1. Severe wave environment with high real-time control requirements: 
The WEC system operates in a dynamic and uncertain marine

Fig. 15. Estimated and predicted wave comparison. Pink dashed line: estimated 
wave. Red solid line: predicted wave of the accurate model. Blue dashed line: 
predicted wave of the inaccurate model.

Fig. 16. Energy comparison of different wave heights and average wave peri-
ods. WH is the wave height. AWP is the average wave period.

environment. Rapid changes in waves cause drastic fluctuations in 
the system state, placing extremely high demands on the controller’s 
real-time response capability. EMPC avoids the high computational 
burden of solving complex optimisation problems in real time by 
pre-calculating the control law offline. This method meets the strin-
gent real-time control requirements of WEC systems and improves 
the dynamic performance and operational safety of the system.

2. Embedded platform with limited computing resources: The WEC sys-
tem mostly uses embedded microprocessors with limited computing 
resources. Traditional MPC relies on real-time quadratic program-
ming solutions, which makes it difficult to meet the needs of high-
frequency control under limited computing resources and energy 
consumption constraints. EMPC makes the control law explicit and 
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Fig. 17. Capture width ratio (𝐻𝑠 = 1𝑚 and 𝐻𝑠 = 1.5𝑚).

realises fast calculation based on table lookup, significantly reduces 
the computational burden, and ensures the real-time operation of the 
controller on the embedded platform. EMPC expands the application 
of MPC in actual marine energy equipment.

3. Marine environment with predictable external disturbances: When 
disturbances such as wave forces are effectively predicted through 
modelling and observation, EMPC fully considers the impact of dis-
turbances when calculating the control law offline. This improves 
the robustness and stability of the control strategy in dynamic en-
vironments and further improves the energy capture efficiency and 
safety of equipment operation.

Although in recent years, a variety of research methods have been 
devoted to improving the performance of traditional MPC online solvers 
and have performed well in specific scenarios, such as the active-set 
method (Ricker, 1985; Bemporad, 2015), the interior-point method 
(Wang and Boyd, 2009), the fast gradient-projection method (Patrinos 
and Bemporad, 2013), and the alternating direction method of multipli-
ers (Banjac et al., 2017). However, for systems like WEC that have lim-
ited computational resources and are highly sensitive to control delays, 
EMPC has a clear advantage due to its explicit control law representa-
tion (Bemporad, 2021).

In summary, EMPC achieves an excellent balance between control 
performance and computational complexity. It is especially suitable for 
control environments with limited computing resources and strict re-
quirements on the response time from state measurement to control ex-
ecution, such as WEC systems. EMPC significantly reduces the online 
computational burden by pre-solving the control law offline, thereby 
improving the real-time security and stability of the system and provid-
ing solid technical support for the safe and efficient operation of the 
WEC system.

5.  Conclusions

For the control problem of wave energy converters (WECs), this pa-
per has introduced explicit model predictive control (EMPC) for the first 
time, taking into account the computational limitations typical of em-
bedded systems. A tenth-order system model was reduced using the bal-
anced truncation method, and a second-order model was adopted as an 
equivalent substitute in the low-frequency range. A control performance 
comparison was conducted between accurate and inaccurate models of 
WECs, and the modelling error was subsequently established and con-
trolled. Wave prediction was implemented using a disturbance observer 
in conjunction with an autoregressive model.

The results clearly demonstrated that the accuracy of the system 
model directly influences key performance indicators such as energy 
output, power, position, and velocity. A disturbance observer based on 
wave height was used for real-time state estimation and monitoring, 
while system parameters were identified using the RLS algorithm within 

the autoregressive model framework. Based on the estimated wave con-
ditions, 1-s predictions were made following a 5-s learning period, with 
the wave data predicted in segments to reduce the computational bur-
den.

The simulation results demonstrated that the EMPC method achieved 
excellent tracking performance in wave energy conversion, enabling fast 
operation and efficient optimisation of the system. This led to improved 
system performance and tracking accuracy, thereby enhancing the ef-
fective capture and utilisation of wave energy. These findings verify the 
importance of accurate modelling in WEC control and demonstrate that 
EMPC can maintain robust performance even in the presence of reason-
able modelling errors.

In conclusion, this study has made significant advancements in the 
control of WEC through the application of EMPC. Compared to tra-
ditional control methods, EMPC effectively reduces the computational 
burden while maintaining a balance between rapid prediction and effi-
cient optimisation under resource constraints and multiple system lim-
itations. This approach ensures both high performance and real-time 
responsiveness.

EMPC is expected to enhance the efficiency of WECs, support the 
sustainable development and utilisation of wave energy, and maximise 
energy capture. By incorporating disturbance observers and autoregres-
sive models, the system’s ability to perceive and predict dynamic envi-
ronmental changes was strengthened, enabling more accurate control.

Overall, this study focuses on achieving real-time EMPC implementa-
tion on platforms with limited computational resources and contributes 
to the broader adoption of intelligent control strategies in harsh marine 
environments.

While EMPC demonstrated strong control performance, it also has 
certain limitations. Its application has primarily been confined to linear 
systems, with control laws typically designed based on linear system 
models. This study extended the applicability of EMPC in practise by ef-
fectively controlling wave energy under varying wave heights, thereby 
achieving reliable energy capture and demonstrating its potential in 
practical scenarios.

Future work will focus on expanding EMPC to nonlinear systems 
and developing customised control strategies that reflect the dynamic 
characteristics of the system. The goal is to enhance the adaptabil-
ity and reliability of EMPC in complex engineering environments, 
while also improving computational efficiency and further reducing the 
computational burden. These advancements will support more robust 
system operation and improved adaptability under diverse operating
conditions.

In addition, future research will explore the integration of EMPC with 
various renewable energy sources, such as wave energy, and undertake 
long-term reliability testing to validate the stability and effectiveness of 
EMPC-based systems in real-world environments.

CRediT authorship contribution statement

Teng Gao: Writing – original draft, Validation; Yao Zhang: Writing 
– review & editing, Supervision, Funding acquisition, Formal analysis, 
Conceptualization; Tahsin Tezdogan: Writing – review & editing, Su-
pervision.

Declaration of competing interest

The authors declare that they have no known competing financial 
interests or personal relationships that could have appeared to influence 
the work reported in this paper. 

Acknowledgements

This work was funded by the Wave Energy Scotland Direct Genera-
tion Competition and the UK Royal Society IEC-NSFC (223485). 

Ocean Engineering 338 (2025) 121999 

12 



Gao et al.

References

Alessio, A., Bemporad, A., 2009.  A survey on explicit model predictive control.  Nonlinear 
Model Predictive Control: Towards New Challenging Applications, 345–369. 

Atyabi, A., Shic, F., Naples, A., 2016.  Mixture of autoregressive modeling orders and its 
implication on single trial EEG classification.  Expert Syst. Appl. 65, 164–180. 

Banjac, G., Stellato, B., Moehle, N., Goulart, P., Bemporad, A., Boyd, S., 2017.  Embedded 
code generation using the OSQP solver.  In: 2017 IEEE 56th Annual Conference on 
Decision and Control (CDC). IEEE, pp. 1906–1911. 

Bank, B., Guddat, J., Klatte, D., Kummer, B., Tammer, K., 1982.  Non-Linear Parametric 
Optimization. Vol. 58.  Walter de Gruyter GmbH & Co KG. 

Barstow, S., Mørk, G., Lønseth, L., Mathisen, J.P., 2011.  Worldwaves wave energy re-
source assessments from the deep ocean to the coast.  J. Energy Power Eng. 5 (8), 
730–742. 

Bemporad, A., 2015.  A quadratic programming algorithm based on nonnegative least 
squares with applications to embedded model predictive control.  IEEE Trans. Autom. 
Control 61 (4), 1111–1116. 

Bemporad, A., 2021.  Explicit model predictive control.  In: Encyclopedia of Systems and 
Control. Springer, pp. 744–751. 

Clément, A., McCullen, P., Falcão, A., Fiorentino, A., Gardner, F., Hammarlund, K., Lemo-
nis, G., Lewis, T., Nielsen, K., Petroncini, S., et al., 2002.  Wave energy in Europe: 
current status and perspectives.  Renew. Sustain. Energy Rev. 6 (5), 405–431. 

Drew, B., Plummer, A.R., Sahinkaya, M.N., 2009.  A review of wave energy converter 
technology. 223 (8), 887–902.

Evans, M.A., Cannon, M., Kouvaritakis, B., 2014.  Robust MPC tower damping for variable 
speed wind turbines.  IEEE Trans. Control Syst. Technol. 23 (1), 290–296. 

Faedo, N., Olaya, S., Ringwood, J.V., 2017.  Optimal control, MPC and MPC-like algo-
rithms for wave energy systems: an overview.  IFAC J. Syst. Control 1, 37–56. 

Faizal, M., Ahmed, M.R., Lee, Y.-H., 2014.  A design outline for floating point absorber 
wave energy converters.  Adv. Mech. Eng. 6, 846097. 

Falnes, J., Kurniawan, A., 2020.  Ocean Waves and Oscillating Systems: Linear Interactions 
Including Wave-Energy Extraction. Vol. 8.  Cambridge University Press. 

Fusco, F., Ringwood, J.V., 2012.  A simple and effective real-time controller for wave 
energy converters.  IEEE Trans. Sustain. Energy 4 (1), 21–30. 

Gray, W.S., Verriest, E.I., 2006.  Algebraically defined gramians for nonlinear sys-
tems.  In: Proceedings of the 45th IEEE Conference on Decision and Control. IEEE,
pp. 3730–3735. 

Hals, J., Falnes, J., Moan, T., 2011.  A comparison of selected strategies for adaptive 
control of wave energy converters. 133 (3), 031101. 

Hillis, A.J., Whitlam, C., Brask, A., Chapman, J., Plummer, A.R., 2020.  Active control for 
multi-degree-of-freedom wave energy converters with load limiting.  Renew. Energy 
159, 1177–1187. 

Houzhong, Z., Jiasheng, L., Chaochun, Y., Xiaoqiang, S., Yingfeng, C., 2020.  Application 
of explicit model predictive control to a vehicle semi-active suspension system.  J. Low 
Freq. Noise Vibr. Act. Control 39 (3), 772–786. 

Hredzak, B., Agelidis, V.G., Demetriades, G., 2015.  Application of explicit model predic-
tive control to a hybrid battery-ultracapacitor power source.  J. Power Sources 277, 
84–94. 

Jariwala, A.M., Dash, S.K., Sahu, U.K., Mohan, H.M., 2025.  Performance optimization 
techniques on point absorber and oscillating water column wave energy converter: a 
comprehensive review.  IEEE Access 13 (3), 14743–14759. 

Jiang, H., Lin, J., Song, Y., You, S., Zong, Y., 2016.  Explicit model predictive control 
applications in power systems: an AGC study for an isolated industrial system.  IET 
Gener. Transm. Distrib. 10 (4), 964–971. 

Jusoh, M.A., Ibrahim, M.Z., Daud, M.Z., Albani, A., Mohd Yusop, Z., 2019.  Hydraulic 
power take-off concepts for wave energy conversion system: a review.  Energies 12 
(23), 4510. 

Khan, N.D., Kalair, A., Abas, N., Haider, A., 2017.  Review of ocean tidal, wave and thermal 
energy technologies.  Renew. Sustain. Energy Rev. 72, 590–604. 

Korde, U.A., Ringwood, J., 2016.  Hydrodynamic Control of Wave Energy Devices.  Cam-
bridge University Press. 

Kothare, M.V., Balakrishnan, V., Morari, M., 1996.  Robust constrained model predictive 
control using linear matrix inequalities.  Automatica 32 (10), 1361–1379. 

Lasheen, A., Saad, M.S., Emara, H.M., Elshafei, A.L., 2017.  Continuous-time tube-based 
explicit model predictive control for collective pitching of wind turbines.  Energy 118, 
1222–1233. 

Li, G., Belmont, M.R., 2014.  Model predictive control of sea wave energy converters–Part 
I: a convex approach for the case of a single device.  Renew. Energy 69, 453–463.

Li, Q., Murai, M., Kitazawa, D., 2020.  Short-time wave force prediction and control strat-
egy for a point-absorber WEC.  Ocean Eng. 218, 108000.

Moore, B., 1981.  Principal component analysis in linear systems: controllability, observ-
ability, and model reduction.  IEEE Trans. Autom. Control 26 (1), 17–32. 

Murai, M., Li, Q., Funada, J., 2021.  Study on power generation of single point absorber 
wave energy converters (PA-WECs) and arrays of PA-WECs.  Renew. Energy 164, 
1121–1132. 

Murai, M., Sakamoto, S., 2022.  A basic study on the effect of deep learning to deter-
mine the control force to maximize the power generation of PA-WEC in irregular 
waves.  In: International Conference on Offshore Mechanics and Arctic Engineering. 
Vol. Vol. 85888. American Society of Mechanical Engineers, p. V004T05A015 

Nian, X., Fu, X., Chu, X., Xiong, H., Wang, H., 2020.  Disturbance observer-based dis-
tributed sliding mode control of multimotor web-winding systems.  IET Control Theory 
Appl. 14 (4), 614–625. 

Patrinos, P., Bemporad, A., 2013.  An accelerated dual gradient-projection algorithm for 
embedded linear model predictive control.  IEEE Trans. Autom. Control 59 (1), 18–33.
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