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Wave energy is a promising renewable energy source, but its commercial utilisation is low compared to wind
and solar energy. This paper proposes an explicit model predictive control (EMPC) strategy to reduce the high
computational burden associated with online computation. Realistic wave data collected from the coast of Corn-
wall, UK, together with realistic single-point absorber parameters, are utilised. The dynamic response of the
floating system is controlled, and a disturbance observer and an autoregressive model are designed for wave

prediction. This paper aims to identify the most effective strategy to achieve optimal trajectory tracking, rapid
prediction, efficient optimisation, and maximum energy capture. The results of numerical simulations show im-
pressive effects of trajectory tracking, wave prediction, and maximum energy capture, with rapid prediction and
low computational demand. These results demonstrate the effectiveness of the proposed EMPC method in wave

energy converters (WECs).

1. Introduction

In the coming decades, the world’s energy consumption will grow
significantly. Fossil fuel resources are depleting, and environmental
problems such as global warming, rising sea levels, and extreme weather
frequently occur. Therefore, the development of clean energy has be-
come a global challenge and shared goal (Clément et al., 2002). The
ocean is the world’s largest ecosystem, covering 71% of the Earth’s sur-
face and holding abundant energy resources. The energy obtained from
ocean waves can reach about 32,000 kWh/year (Faedo et al., 2017).
Wave energy is a widely distributed and unbalanced renewable resource
with high energy density and the potential for a continuous power sup-
ply. Resource-intensive areas are mainly concentrated in mid- and high-
latitude waters, such as the west coast of North America, southern Aus-
tralia, the British Isles, the west coast of Europe, southern Chile, and
New Zealand (Drew et al., 2009; Barstow et al., 2011). Compared with
renewable energy sources such as wind and solar energy, wave energy
has higher energy density and stability. Furthermore, it has been demon-
strated that wave prediction can improve control performance (Falnes
and Kurniawan, 2020). The annual power generation potential of ocean
tidal, seepage, wave, and thermal energy is 800 TWh, 2000 TWh, 8000
to 80,000 TWh, and 10,000 to 87,600 TWh, respectively. The potential
far exceeds the annual global electricity demand of about 16,000 TWh
(Khan et al., 2017).

As technology advances and costs decrease, marine renewable en-
ergy has broad prospects and helps promote optimisation of the global
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energy structure (Qiu et al., 2019). However, despite its advantages,
wave energy faces significant technical challenges in harnessing its po-
tential. The main difficulty in obtaining wave energy is that exploiting
the irregular reciprocating motion of the ocean is not as simple as ob-
taining energy from the wind (Ringwood et al., 2014). Early systems
used the natural movement of floats with the waves to achieve passive
conversion of wave energy, and a variety of floating wave energy con-
verters (WECs) have been developed for wave energy harvesting (Xu
et al., 2019). Active control systems apply external forces to adjust the
movement of floats to keep them in sync with the wave frequency. The
control strategy based on the combination of Model Predictive Control
(MPC) and an active valve control mechanism is simple to operate and
has the best performance compared to other control methods (Jusoh
et al.,, 2019). However, realistic waves are not single-frequency; they
change over time. To achieve automatic adjustment of the ocean’s nat-
ural frequency, it is essential to implement advanced dynamic control
technology under realistic ocean conditions (Yang et al., 2021).

WECs such as point absorbers, oscillating water columns, and atten-
uators have been studied and developed (Jariwala et al., 2025). Wave
prediction methods such as the Extended Kalman Filter (EKF), artificial
neural network, and deterministic sea wave prediction (DSWP) all in-
troduce certain prediction errors (Zhang and Li, 2019). Point absorbers
have been widely studied in the field of WEC control and are often
used as a benchmark problem for wave excitation force estimation. It
is smaller than the wavelength and uses the up-and-down motion of the
float to capture wave energy from waves that are larger than the physical

Received 15 February 2025; Received in revised form 31 May 2025; Accepted 22 June 2025

Available online 28 June 2025

0029-8018/© 2025 The Author(s). Published by Elsevier Ltd. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).


https://www.elsevier.com/locate/oceaneng
https://www.elsevier.com/locate/oceaneng

$z_w$


$z_v$


$z_v$


$f_u$


$P$


\begin {equation}P := -f_u {z}_v \label {Xeqn1-1a}\end {equation}


$[t_0, t_1]$


\begin {equation}\label {iipp} E=\int _{t_0}^{t_1} P(t) \, dt\end {equation}


\begin {equation}\label {ppii} |z_v| \leq \Phi _{\text {max}}\end {equation}


$\Phi _{\text {max}}$


\begin {equation}\label {tgtg} |f_u| \leq u_{\text {max}}\end {equation}


\begin {equation}\label {90} m_s \ddot {z}_v = -f_s - f_r + f_e + f_u\end {equation}


$m_s$


$f_s$


\begin {equation}f_s = k_s z_v \label {Xeqn6-4}\end {equation}


$k_s = \rho g s$


$\rho $


$g$


$s$


$f_r$


\begin {equation}\label {44} f_r = m_\infty \ddot {z}_v + \int _{-\infty }^{\infty } h_r(\tau ) \dot {z}_v(t - \tau ) \, d\tau \end {equation}


$m_\infty $


$h_r$


$f_r := \int _{-\infty }^{\infty } h_r(\tau ) \dot {z}_v(t - \tau ) \, d\tau $


\begin {align}\label {1} & \dot {x}_r = A_r x_r + B_r z_v \\ \label {2} & {y}_r = f_r = C_r x_r \approx \int _{-\infty }^{t} h_r(\tau ) \dot {z}_v(t - \tau ) \, d\tau \end {align}


$x_r \in \mathbb {R}^{n_r}$
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\begin {equation}\label {222} f_e = \int _{-\infty }^{\infty } h_e(\tau ) z_w(t - \tau ) \, d\tau \end {equation}


$h_e$


\begin {align}\label {3} & \dot {x}_e = A_e x_e + B_e z_w \\ \label {4} & {y}_e = f_e=C_e x_e\approx \int _{-\infty }^{\infty } h_e(\tau ) z_w(t - \tau ) \, d\tau \end {align}


$x_e \in \mathbb {R}^{n_e}$


$(A_e, B_e, C_e, 0)$


\begin {align}\label {gt} & \dot {x} = A_c x + B_{uc} u + B_{wc} w+ \epsilon \\ \label {tg} & y = C_c x\end {align}


$w:= z_w$


$y:= {z}_v$


$x:= [z_v, \dot {z}_v, x_r, x_e]$


$u:= f_u$
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\begin {align*}& A_c = \begin {bmatrix} 0 & 1 & 0& 0 \\ -\frac {k_s}m & -\frac {D_f}m & \frac {C_r}m& -\frac {C_e}m \\ 0& B_r& A_r& 0 \\ 0 & 0& 0& A_e& \end {bmatrix} \quad B_{uc} = \begin {bmatrix} 0 \\ \frac {1000}m \\ 0 \\ 0 \end {bmatrix} \quad B_{wc} = \begin {bmatrix} 0 \\ 0 \\ 0 \\ B_e \end {bmatrix} \\ & C_c = \begin {bmatrix} 0 & 1 & 0_{1 \times (n_e + n_r)} \end {bmatrix}\end {align*}


$m := m_s + m_\infty $


\begin {equation*}A_c = \begin {bmatrix} 0 & 1 \\ -\frac {k_s}m& -\frac {D_r}m \end {bmatrix} \quad B_{uc} = \begin {bmatrix} 0 \\ \frac {1}m \end {bmatrix} \quad B_{wc} = \begin {bmatrix} 0 \\ \frac {D_e}m \end {bmatrix} \quad C_c=\begin {bmatrix} 0& 1 \end {bmatrix}\end {equation*}


\begin {align}\label {21} & x_{k + 1} = A x_k + B_u u_k + B_w w_k + \epsilon _k\\ \label {31} & y_k = C x_k\end {align}
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\begin {equation}\min _{u} \frac {1}{N} \sum _{k=0}^{N-1} L_k(x_k, u_k) \label {Xeqn17-11a}\end {equation}


\begin {align}\label {5561} & \text x_{k+1} = A x_k + B_u u_k + B_w w_k\\ \label {7781} & y_{k} = C_c x_k\end {align}
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\begin {equation}L_k = \frac {1}{2} x_k^T Q' x_k + y_k u_k + \frac {1}{2} R' u_k^2 \label {Xeqn20-12}\end {equation}
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\begin {equation}\label {eer} u_t = f(x_t)\end {equation}
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\begin {align}\label {ttu} & x_{min} \preceq x \preceq x_{max}\\ \label {utt} & u_{min} \leq u \leq u_{max} \
\end {align}


$x_{\min }$


$x_{\max }$


$u_{\min }$


$u_{\max }$


$T_{\text {s}} = 0.1s$


\begin {equation}\label {159} m \ddot {z} = -k_s z - D_r \dot {z} + D_e\end {equation}
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\begin {align}\label {Xeqn26-18} & z_{\text {err}}= z_{*} -x_{\text {pred}}(1) \\ & v_{\text {err}}= v_{*} -x_{\text {pred}}(2) \label {Xeqn27-19}\end {align}
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\begin {equation}u_{\text {err}}= \min (\max (u_{\text {err}}, -u_{\text {max}}), u_{\text {max}}). \label {Xeqn28-20}\end {equation}
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\begin {equation}\hat {d}_{k+1} = (1 - K_c) \hat {d}_k + K_e C_c x_{k,\text {pred}} - \beta \sum C_c x_{k,\text {pred}} \label {Xeqn30-22}\end {equation}
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\begin {equation}\label {334455} \hat {w} = C_c x_\text {pred} + \hat {d} \
\end {equation}
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\begin {equation}\tilde {w} = \frac {w - \mu }{\sigma } \label {Xeqn32-24}\end {equation}
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\begin {equation}\phi = \begin {bmatrix} \tilde w_{N_{\text {train}}} &\tilde w_{N_{\text {train}}-1} & \cdots & \tilde w_{N_{\text {train}}-p+1} \end {bmatrix}^\top \label {Xeqn33-25}\end {equation}
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\begin {equation}{w}_\text {pred} = \theta \phi \label {Xeqn34-26}\end {equation}
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\begin {equation}e_\text {pred} = \tilde {w} - {w}_\text {pred} \label {Xeqn35-27}\end {equation}
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\begin {equation}\alpha _{\text {dynamic}} = \alpha _{\text {dynamic}} (1 + |e_\text {pred} |) \label {Xeqn36-28}\end {equation}
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size of the device itself, making it less likely to be damaged in the harsh
marine environments (Zhang et al., 2019; Faizal et al., 2014). Based
on the simple control method (SCM) (Fusco and Ringwood, 2012; Ko-
rde and Ringwood, 2016), practical prediction techniques are improved
and used for wave observations to almost accurately and simultaneously
predict the hydrodynamic forces on the WECs at all times. When design-
ing a point absorber-type wave energy generator, the choice of control
system has an important impact on improving the power generation
efficiency in actual sea areas (Li et al., 2020). Furthermore, a point ab-
sorber wave energy converter (PA-WEC) is a type of WEC that directly
uses the changes in the magnetic field caused by the relative motion
of the coil and the floating moving part with permanent magnets to
generate electricity (Murai and Sakamoto, 2022). The power genera-
tion of a multi-PA-WEC array can be maximised by employing analyti-
cal background and numerical methods for deriving the optimal control
force parameters (Murai et al., 2021). However, point absorption-type
WECs have a narrow frequency response and perform unsatisfactorily
in realistic ocean conditions unless their motion is actively controlled
(Hals et al., 2011).

MPC is applied to wave energy generation systems to deal with prob-
lems such as strong system dynamics and complex constraints. How-
ever, many existing MPC strategies do not consider terminal stability
constraints or disturbance feedback mechanisms. The control structure
relies mostly on open-loop prediction, lacking the ability to handle dis-
turbances and uncertainties in a closed loop. This makes it difficult to
ensure recursive feasibility during actual operation, potentially leading
to unsolvable optimisation problems at certain times. The general ap-
proach is to design a robust MPC (RMPC) that ensures recursive fea-
sibility for all possible realisations of stochastic uncertainty, either by
adopting a min-max strategy for the worst-case evaluation of the cost
function (Kothare et al., 1996; Evans et al., 2014) or by parameterizing a
partially separable feedback control law through a tube-based approach
(Yu et al., 2013; Lasheen et al., 2017). There is a conflict between max-
imizing captured energy and ensuring the range of sea conditions for
the safe operation of the system. The trade-off between them is diffi-
cult to achieve and reduces the operating range and energy conversion
efficiency (Zhan et al., 2019a). AHMPC develops an efficient cascade
estimation algorithm at the top level to adaptively identify and update
the WEC model online according to the sea state changes. At the bot-
tom level, a specially customised MPC controller is implemented based
on the updated WEC model to energy capture (Zhan et al., 2018). The
economic feedback MPC control law includes the state feedback gain
offline design to maximise the working range and online calculation to
maximise capture energy (Zhan et al., 2019a) and optimise the energy
conversion efficiency of WECs.

The control of WECs is a noncausal control problem that requires a
lot of online computing, and future waves determine the current con-
trol decisions (Wang et al., 2024). The above methods cannot effectively
alleviate the problem of excessive computational workload during the
online calculation of WECs, and it remains a challenge to meet the real-
time requirements. They are restricted when computing resources are
limited, the computational demand is too high, and they have limited
adaptability to dynamically changing sea conditions. This paper pro-
poses an explicit model predictive control (EMPC) solution for the con-
trol problem of WECs. Based on multi-parameter planning technology,
EMPC calculates the optimal control behaviour offline, expresses it as
an explicit function, and predicts the future state of the system. When
online, it is simplified to a regional piecewise linear controller to avoid
online solutions. Each region corresponds to a different equation, and
a simple function evaluation is performed to reduce a lot of computa-
tional burden while achieving rapid prediction and efficient optimisa-
tion (Bank et al., 1982; Alessio and Bemporad, 2009). The disturbance
observer and autoregressive model perform wave prediction to max-
imise energy. In the power sector, EMPC is applied to the frequency
control of a real isolated power system in Inner Mongolia, and its ex-
plicit control law restores the system frequency to the nominal value
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under large disturbances (Jiang et al., 2016). When EMPC is applied to a
hybrid battery-supercapacitor power supply, the EMPC system requires
less computation than the traditional MPC system for low-order systems.
When implemented on a DSPACE DS1104 controller board, the EMPC
system operates approximately 25 times faster than the traditional MPC
system (Hredzak et al., 2015). When EMPC is applied to a vehicle semi-
active suspension system, it copes with the strong coupling, actuator
constraints, and fast dynamic characteristics of the system. Simulation
results show that EMPC has a shorter computation time than traditional
MPC while maintaining the same performance as MPC. EMPC signifi-
cantly improves the control performance of the vehicle semi-active sus-
pension system with low computational effort (Houzhong et al., 2020).
This paper aims to apply EMPC to the problem of WEC control for the
first time. Many active control strategies require knowledge of the wave
excitation forces acting on the WECs, which are usually assumed to be
accurately known and require forward predictions of several seconds.
These conditions are unrealistic for operating WECs, resulting in ac-
tual performance degradation. Therefore, when using EMPC, the con-
trol strategy must be robust to modelling errors and other uncertainties
(Hillis et al., 2020). The main novelties and contributions of this paper
are as follows:

1. EMPC is proposed to control WECs under complex constraints, re-
ducing the number of online calculations of MPC and solving prob-
lems of optimal trajectory tracking, rapid prediction, and efficient
optimisation. This is the first application of EMPC in WEC control.

2. In the EMPC application process, to achieve visualisation and reduce
the computational effort, this paper adopts the balanced truncation
method to reduce the order of the tenth-order model and achieve
model matching, and uses the second-order model to equivalently
replace the tenth-order model in the low-frequency range.

3. This paper designs a wave observer and an autoregressive model for
wave prediction to achieve energy maximisation since WEC control
is a noncausal control problem.

4. This article uses realistic wave data gathered from the coast of Corn-
wall, UK (Zhang et al., 2019; Li and Belmont, 2014), to verify the
effectiveness of EMPC in WEC control.

The paper proceeds as follows: Section 2 is the mathematical mod-
elling of the WEC dynamic system. Section 3 analyses the EMPC for
energy capture maximisation. Section 4 presents the simulation results
and analysis. Section 5 provides an overall conclusion of this paper.

2. Mathematical modelling of WEC dynamic system

This section introduces the dynamic model of a single-point ab-
sorber. In Section 2.1, the hydrodynamic model is transformed into a
state-space model to design the controller, which introduces modelling
uncertainty. Section 2.2 presents the process of transforming the hy-
drodynamic model into a state-space model and model matching. Sec-
tion 2.3 gives the optimal trajectory generation to the noncausal WEC
control problem of an accurately modeled point absorber.

2.1. Dynamical model of WECs

Fig. 1 shows part of the hydraulic power take-off (PTO) design,
where a hydraulic cylinder is mounted vertically below a float and fixed
to the bottom of the seabed. More details of this design can be found in
Weiss et al. (2012). z,, is the sea wave elevation and z,, is the height of
the midpoint of the float. The current research mainly considers the ac-
tual sea conditions in deep water and does not consider the shallow wa-
ter conditions. In this environment, the PTO displacement of the WECs
is usually regarded as the heave displacement z,. The PTO torque is pro-
portional to the force f, acting on the piston in the cylinder. The output
power P is defined as:

P :=-f,z, (1a)



Gao et al.

Sea Surface 7
v
Float Zw

Cylinder

Piston

Seabed

Fig. 1. Schematic diagram of point absorber.

The energy absorbed during the period [7,,,] is expressed as:
n
E = / P(t)dt (1b)
fo

The heave motion of the buoy is restricted to ensure safe operation.
The constraint is expressed as:

[z, £ Pax (2a)

where @, .. is the float heave motion limits. The WEC is subject to PTO
force limitations:

[l < Umax (2b)

The objective of the controller design is to maximise the energy
Eq. (1b) subject to the state constraints Eq. (2a) and the input constraints
Eq. (2b) (Zhan and Li, 2018). The dynamic equations (Yu and Falnes,
1995) for the float of the point absorber are given by Newton’s second
law:

msiuz_fs_fr-"_fe-"_fu 3
where m is the float mass. The restoring force f; is:
fS = kSZU (4)

where the hydrostatic stiffness is given by k, = pgs, p is the water den-
sity, g is the standard gravity, and s is the cross-sectional area of the
float. The radiation force f, is defined as:

(o]

fr=myZ, + / h.(1)z,(t —1)d7 5)
—00

where m, is the added mass, A, is the radiation force kernel, which can

be computed via hydraulic software packages. The convolutional term

in Eq. (5) can be approximated as f, := ff; h,.(1)z,(t — 7)dz by a causal

finite-dimensional state-space model (Yu and Falnes, 1995).

X, = A.x, + B,z, (6a)
1
y=f=Cx, ~ / h(0)z,(t —7)dT (6b)
—00
where x, € R™ is the state, and (4,, B,, C,, 0) are the state-space realisa-
tions. According to Yu and Falnes (1995), the wave excitation force f,
can be determined:

fo= / h,(7)z,,(t —1)dT @

o

where h, is the kernel of the excitation force, and the state-space ap-
proximation is given by:

%, = A,x, + B,z (8a)
o]

Ve = fe=Cexe z/ ho(0)z,,(t = 7)d7 (8b)
where x, € R" is the state, and (4,,B,,C,,0) are the state-space
realisations.

Ocean Engineering 338 (2025) 121999

2.2. State-space model

With the realisations of Egs. (6a), (6b), (8a) and (8b), the state-space
model of Eq. (3) can be represented by:
x=Ax+ B, u+B,w+e (92)
y= CC X (Qb)
where w := z,, is the wave elevation whose prediction is incorporated
into the controller design, y := z,, x :=[z,.,2,, X, x.], and u := f,. e rep-

resents the model uncertainty caused by wave force approximations in
Egs. (6b) and (8b). And

0 1 0 0 0 0
T 1000 0
A = m m m m B . .=| m B, =
(4 0 Br Ar 0 uc 0 wce 0
0 0 0 A, 0 B,
Ce=[0 1 Opuiny)

with m := mg + m,. The balanced truncation method is used to reduce
the order of the tenth-order model and verify the model’s matching. The
parameters are gradually optimised to establish a second-order model
to achieve an equivalent replacement for the tenth-order model in the
low-frequency range:

0 1 0 0
Ac=| k. _p| Be=|1| Buwe=|n| C=[0 1]
m m m m

The continuous-time model Egs. (9a) and (9b) can be converted to a
discrete-time model Eqgs. (10a) and (10b).

(10a)
(10b)

B,.C) is the discrete-time form of the

Xpp1 = Axyg + Byuy + B wy + €
v = Cxy

where the quadruple (4, B
quadruple (A, B, By, C,).

The balanced truncation method was first proposed by Moore (1981)
and is an effective model simplification method for linear systems. In the
balanced truncation process, high-dimensional stable structures may be
both controllable and observable. In most cases, a transformation is es-
tablished, as described in Moore (1981), which transforms the system
into a unique form where the controllability and observability Grami-
ans are equal. This produces a diagonal matrix X with the Hankel singu-
lar values on the diagonal arranged in descending order of dominance
(Suman and Kumar, 2021). For nonlinear systems, balanced truncation
based on algebraic Gramians can be achieved by solving Lyapunov-type
equations (Gray and Verriest, 2006).

To reduce the computational demand of the tenth-order model and
allow EMPC to operate on offshore devices with limited capability, the
balanced truncation method is introduced to reduce the order of the
tenth-order model. The order of the reduced-order model is second or-
der. The main dynamic and energy capture characteristics of the tenth-
order model are preserved, ensuring that the reduced-order model re-
mains highly consistent with the tenth-order model in terms of posi-
tion and energy capture. The performance of the reduced-order model
closely matches that of the tenth-order model in terms of dynamic re-
sponse, velocity, and PTO force.

A second-order model is established by optimizing parameters and
compared with reduced-order and tenth-order models. The second-order
model achieves performance nearly identical to the tenth-order model
in terms of position and energy. In terms of velocity and PTO force, it
shows a higher approximation than the reduced-order model, aligning
more closely with the tenth-order model. The second-order model accu-
rately captures the key dynamic behaviours of the system and achieves
an equivalent replacement for the tenth-order model, which signifi-
cantly reduces the computational demand. To verify the effectiveness
of the reduced-order model, comparison results in both the frequency
and time domains are shown in the simulation section, demonstrating
model matching verification after reduction from the tenth-order model
and the equivalent substitution achieved by the second-order model.

u>
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2.3. Optimal trajectory generation

This paper uses EMPC to track the optimal trajectory and maximise
energy capture. The optimal trajectory of WECs is:

N-1
L1
min N Z Ly (xp, ug) (11a)
k=0
s.t.
X1 = Axy + B,uy + B,w; (11b)
Vi = Cexy (110)

where N is the number of prediction steps and L, is the stage cost:

L, = %sz'xk + YUy + lR’ui (12)

2

where %xZQ’ x, represents the weighted penalty term on the system
state, Q" and R’ are positive definite matrices, Q' influences the stability
of the control system and serves as a tuning parameter for addressing
state constraints Eq. (2a), —y,u, represents the power that the power
take-off (PTO) mechanism can capture, minimizing y,u, is maximizing
energy output, %R’ ui is introduced to penalise the input, R’ affects the
stability of the control system, and is a tuning parameter for handling
the input constraint Eq. (2b) (Zhan and Li, 2018).

3. Explicit MPC for energy maximisation

This section describes the proposed EMPC. Section 3.1 introduces the
overall strategy of the proposed controller. In Section 3.2, EMPC is used
to achieve optimal trajectory tracking and maximise energy capture.
Section 3.3 presents the design of the disturbance observer. Section 3.4
presents the wave prediction through the autoregressive model.

3.1. Overall strategy

The overall strategy of this paper is as follows: The tenth-order model
of the point absorber is reduced and equivalently replaced by a second-
order model in the low-frequency range. The EMPC control error ap-
proaches zero. The plant generates predicted float position and velocity
based on the wave, PTO force, and white noise. The disturbance ob-
server and autoregressive model are used for wave prediction to achieve
optimal trajectory tracking and maximum energy capture. The block di-
agram of the proposed EMPC scheme is shown in Fig. 2. The distur-
bance observer processes the output trajectory data from the plant and
generates an estimated value of disturbance, which is then fed into the
autoregressive model. The autoregressive model predicts the wave data
to minimise the error. Both the disturbance observer and the autore-
gressive model use first-order models. The first-order model is sufficient
to meet the needs of disturbance estimation and wave prediction and
can effectively support optimal trajectory tracking and energy capture.
The complexity of the model is reduced through the balanced trunca-
tion method, ensuring the control system’s real-time performance. The
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optimal model generates the optimal state trajectory and control input
by solving the optimal control problem, utilizing realistic wave data to
promote subsequent control operations.

3.2. Explicit model predictive control

The dependency of the PTO force u, on the system state x, is explicit,
and the online calculation is simplified to a simple equation evaluation,
which improves the applicability of MPC in rapid sampling applications.
The offline computational control law of EMPC is:

U = f(xt)

where u, is the control signal of the system Eq. (13), x, is the state vector
of the system Eq. (13) at time ¢, f(-) is the mapping function, which
represents the relationship between the PTO force and the system state.
The quadratic cost function is:

13

N-1

J = Z (3 = x0T 0(xf = x;) +ul Ruy)
k=0

14)

where J is the total cost over the prediction time, k is the time step,
ranging from 0 to N — 1, x, is the system state at time step k, x} is
the desired reference state, (x;, — xi)T is the state vector at step k, u
is the PTO force at step k, N is the prediction step size, O and R are
the weight matrices for the output error and PTO force (Privara et al.,
2011), which directly affect how the system responds to state errors and
control energy. In the state-space model of system Eq. (9a), the state x
and PTO force u constraints are:

Xmin <x= Xmax (15)
Upin Sus Upax (16)
where x;; and x,,, are the minimum and maximum values of the state

Eq. (15), uy;, and uy,,, are the minimum and maximum values of the PTO
force Eq. (16). The controller runs in discrete time and uses the zero-
order hold method to discretise the continuous-time state space model
with a sampling time of Ty = 0.1s.

All parameters of the system (mass, stiffness, and damping) are mea-
sured and determined. The motion of the floating object is described by
Newton’s second law, and the position and velocity are defined as state
variables to establish the dynamic model of the floating object, and its
equation is given by:

mz=—kyz—D,z+ D, 17)

where m = m; + m, is the total mass of the floating object, including
the mass of the floating body m, and the added mass m,, z is the dis-
placement of the floating object on the water surface, z is the velocity
of the floating object, % is the acceleration of the floating object, k, is
the stiffness parameter of the system, D, is the damping coefficient, and
D, is the external excitation force on the system.

EMPC controls the position and velocity of the float so that it follows
z, and v,. Xpred IS [Zpred> Upred]- The position and velocity are represented

Wpred Wobs
Optimal Model Autoregressive Model Observer

Ulac 3

Disturbance
Wstar
Xstar +
xpred
EMPC Plant
— Uerror

xpred

Fig. 2. Block diagram of the proposed EMPC scheme.
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by zpreq @and vpreq, respectively. The system considers the desired state,
excitation force, white noise interference, and model uncertainty when
performing control. The discrepancies between z,.4 and z,, as well as
between vy,.q and v,, are considered as errors:

Zerr = Zx — xpred(l) a1s)
Verr = Uy — xpred(Z) (19

EMPC controls error, and the generated PTO force is denoted as ug,,.
The PTO force limit is given by:

uerr = min(max(uerr’ _umax)’ umax)' (20)
For each time step k, the PTO force up,q is given by:
Upred = Uerr T Utoc () 21

where Ui, is the PTO force of the optimal model and up,¢q is the PTO
force of the predicted model.

The powers of noncausal and causal control are defined as P, =
—t1oeVioc s ANd Pegy = —UcauYeauls, respectively, where u,. and u,, are
the PTO force under noncausal and causal control, and y,. and y.,, are
the velocity under noncausal and causal control. T, denotes the sampling
interval. A negative value indicates energy consumption.

The cumulative energy of noncausal and causal control is given by
Ejoe(i) = Ejpei = 1) + Pioe(i) and Eeyy(i) = Eegy(i — 1) + Peyy (i), where i
denotes the time step. The instantaneous power at time i, denoted as
P(i), represents the rate of energy transfer caused by the PTO force uj,,
and u,,. The corresponding energy at time i, denoted as E(i).

For both accurate and inaccurate models, the instantaneous powers
at each time step i are given by Pioco(i) = =02 () V1oea (DT and Piges(i) =
—hoe3(DVi0e3 (D) Ty, where ujo.o and uy.3 represent the PTO forces and
velocities in the accurate and inaccurate models, respectively.

The cumulative energies are obtained as Ej,., = Zi”l’ Pioeo(i) and

Epe3 = ZZT Pioe3(i), respectively, where N,, denotes the total number
of simulation steps. The time-varying cumulative energies Ej,.,(i) and
E),3(i) represent the energy accumulated at each time step i for the
accurate and inaccurate models, respectively.

3.3. Disturbance observer design

A disturbance observer is designed to estimate the disturbance d(r)
in the system, where the controller uses the estimated disturbance to
counteract its effects (Nian et al., 2020). The observer estimates the
excitation force, and by accurately estimating the upper bound of the
prediction error, the compensator effectively corrects the estimation er-
ror (Zhang et al., 2020). Linear feedback control requires a high gain
to suppress the effects of model uncertainty and external disturbances
(Zhang et al., 2017). An appropriate switching gain can prevent the jit-
ter phenomenon associated with the traditional observer. The update of
the disturbance estimation is given by:

dAk-H = (1 - Kc)‘ik + Keccxk,pred - ﬂ z chk,pred (22)

where d,_; is the estimated value of the disturbance at the next time
step k + 1, d, is the estimated value of the disturbance at the current
time step k, K, is the observer gain used to control the convergence ve-
locity of the disturbance estimation term d, K, is the gain used to adjust
the error feedback, C, is the output matrix, and g is the gain coeffi-
cient, which adjusts the error correction term. The wave is estimated by
the disturbance observer, and the update of the disturbance observer is
given by:

= CyXpreq +d (23)

where i is the estimated wave and d is the disturbance estimation. The
estimated value serves as an input for controller design. It is not practical
to directly measure all states of the WECs. A state observer needs to
be designed to solve this problem (Zhan et al., 2019b). The feedback
noncausal MPC control algorithm is designed based on the assumption
that all information about x4 is available.
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3.4. Wave prediction by autoregressive model

Recursive least squares (RLS) is a commonly used parameter estima-
tion algorithm (Xiao et al., 2008), which is used to train an autoregres-
sive model for wave data prediction to minimise the model error. The
sampling time is T;. The training segment duration of the model train-
ing is Tirain. The prediction segment duration is Tpregice- After each 5-s
training cycle, a 1-s prediction is performed. The total prediction time
is Tiora- The number of prediction points in each prediction segment
is Npred- The training-prediction cycle time offset N, represents the
time interval from training to prediction. The number of points in the
prediction segment is N, The initial regularisation coefficient is a},q-
To ensure a uniform scale of the training data, the data is normalised:

e (24)

w=

o
where @ is the standardised training value, y is the mean of w, and o
is the standard deviation of w. Before performing multi-step prediction,
initialise an initial input vector ¢ that contains past observations used
for prediction. The input vector is represented as:

- T
thrain _P+1] (25)

where the first p data points are extracted from the training data and re-
versed to form the input vector ¢ of the autoregressive model, p denotes
the order of the autoregressive model, indicating that each prediction
relies on p past data points. The predicted value is given by:

wpred = 94) (26)

where ¢ is the set of input vectors, wyq is the predicted value, and
the parameter vector 6 represents the weights of the model, its initial
value set to the zero vector. Through the RLS algorithm, 0 is updated
progressively to minimise the prediction error. The predicted error epreq
is given by:

¢ = [thrain M}Ntrain_1

€pred = W — Wpred 27)

where wpq is the predicted value and ep,eq is the predicted error, de-
fined as the difference between the predicted value and the true value.
By following these steps, obtain the multi-step prediction results over a
specified time period:

®dynamic = ¥dynamic(1 + |epred|) 28)
where the dynamic regularisation coefficient agyp,mic is initially equal
t0 @page> Xdynamic 1S adjusted at each step to control the strength of the
updates and |e,eq] is the prediction error. When |e,q| is large, the regu-
larisation coefficient is amplified to reduce the magnitude of parameter
updates. The Kalman gain K is given by:

Py’

- , 29)
Ans + PP + adgynamic +!

where P¢’ represents the incremental information from the past, and
the denominator includes the forgetting factor 1, and the regularisation
term to ensure stable updates. 4, attenuates the influence of old data, P
is the covariance matrix used for updating the parameter calculations,
and / is the regularisation parameter used to prevent overfitting. The
parameter update equation for the parameter 6 is given by:

O = Or—1 + Key pred (30)
The update equation for the covariance matrix P is given by:
1-K P,
P, = ( i’k—l) k=1 31D

1ls

where P gradually converges as time progresses, reducing the model’s
sensitivity to historical data and enhancing the stability and accuracy of
predictions.

o 1 Nirain
Ey = —— lepred| (32)
" Niain =P k;l pre
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where E) denotes the cross-validation error of the autoregressive
model with the order p, used to measure the model fitting performance
at different orders: a smaller value indicates better model fitting, N i, is
the total number of samples in the training data, N, — p is the number
of observations used to compute the error, k is an index variable used to
iterate over the samples in the training dataset with a range from p + 1
to Niin, ensuring sufficient historical data is available for prediction,
and |e,req| represents the absolute error between the predicted and true
value.

Traditional modelling sequential estimation methods include the
Akaike Information Criterion (AIC) and Bayesian Information Criterion
(BIC) (Atyabi et al., 2016). AIC avoids overfitting and penalises complex
models by balancing goodness of fit and model complexity:

Nirain

2
E e +2p (33)
Nirain k=p+1 pred)

AIC, = Ny log (

Nirain

Z ef)red) + plOg(Ntrain) (34)

train g=p|

BICP = Nirain log <

where AIC, and BIC, denote the AIC value and the BIC values, respec-
tively, for a model with order p, a smaller value indicates a better-fitting
model, Ny, is the number of training samples, log is used to capture

N,

data growth rates and assess model complexity, Zk‘“‘i“ e denotes

=p+1 “pred

the total squared prediction errors, 2p is the penaltypterrfl for model
complexity in AIC, and plog(Ny;i,) is the penalty term in BIC, which
increases with the sample size. It indicates that higher-order models re-
ceive stronger penalties under BIC, which thus tends to choose simple
models to avoid overfitting. BIC is stricter than AIC in penalizing com-
plex models.

To perform multi-step prediction, the first predicted value i, ,eq is
appended to the input vector ¢4 and used as the most recent obser-
vation for subsequent multi-step predictions:
L{’:]Ntrain’1 thrain *p+2] ! (35)

¢pred = [wl ,pred LbNtrain

Using the parameter vector 6 and the input vector ¢p.q, multi-step
prediction is performed. The model output .4 is calculated as follows:

”A)pred = 0¢pred (36)

where 0.4 represents the predicted normalised value. To predict val-
ues for multiple time steps, the prediction output is repeated, and the
input vector is updated at each prediction step k:

1. Generate the new prediction Eq. (36).

2. Update ¢preq:

T
¢1 :end—l,pred] (37)

where the input vector ¢,oq contains the most recent predicted value
along with the previous actual observations. After performing multi-step
predictions, this paper denormalises the predicted results to convert the
normalised predictions back to the original scale:

d’pred = [Lf) 1,pred

W= Wpreqo + H (38)

where  is the prediction result after denormalisation. If it is the first
prediction, the predicted segment is directly appended to the total pre-
diction results. Otherwise, to ensure continuity, the first value of the
new segment is set to the last predicted value of the previous segment,
and the segments are concatenated:

Wpall = [wp,alh u_]] (39)

where w,, 5 represents the cumulative predicted value. After each pre-
diction, the timestamp is updated:

tp,all = [tp,all B Ipi] (40)

where 7 5 is a cumulative predicted time, and #,; is the time series of
the current predicted segment. The working principle of the proposed
method is shown in Algorithm 1.
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Algorithm 1 Implementation of the WEC control.

1: Obtain the system state x and the wave w.

2: The EMPC generates the error PTO force u,,,.. The optimal model
provides the PTO force Uj,.. The predicted PTO force up,q is ob-
tained based on the Equation (21).

3: The predicted system state xpq is the sum of the state error x¢,,
and the system state x. The energy of the accurate and inaccurate
models is captured in Ej,., and Ej,.3, respectively.

4: The disturbance observer generates an estimated wave @ in (23).
The autoregressive model generates the predicted wave ipeq in
Equation (36).

5: Repeat steps 1 to 4.

4. Simulation results and analysis

This section shows the simulation results generated using MATLAB
R2023b. The computer model is the Lenovo ThinkPad X13 Gen 2. This
paper uses real wave data collected from the coast of Cornwall, UK.
The wave heights from 0 to 200 s are shown in Fig. 3, and the physical
parameters are listed in Table 1. The significant wave height of the wave
is 2.003m. The wave period range is 1.40 s to 10.80 s. The average wave
period is 5.791 s. The model’s natural period of the system is 24.1213s.
The model’s natural period of the system is larger than the wave period
range. Because the wave frequency is lower than the natural frequency
of the system, the system does not resonate. This avoids loss of stability
and generation of a large response. The operations of standard MPC and
EMPC are implemented using MATLAB R2023b. The results show that
the running time of EMPC is 61.16 s, while the running time of standard
MPC is 926.64 s. Compared with MPC, EMPC has higher computational
efficiency while maintaining similar control performance.

The state space matrix of the impulse function for calculating the
radiation force is:

0 0 -179 36.5
A, =1 0 =-177( B, =|3%]|C,=[0 0 1]
0 1 -441 75.1

Wave height (m)

0 20 40 60 80 100 120 140 160 180 200
Time (s)

Fig. 3. Wave height data gathered from the coast of Cornwall, UK (Zhang et al.,
2019; Li and Belmont, 2014).

Table 1

Physical parameters of wave energy devices.
Description Notation Value
Physical parameters T, 0.1s
Gravity acceleration g 9.8 m/s?
Radius r 0.35m
Average density of seawater P 1025 kg/m?
Total mass m 325.5 kg
Stiffness kg 3866 N/m
Damping coefficient D 2x 10°N -s/m
Damping (viscous) D, 0
Damping (friction) oy 0
Device width D, 0.7m
Prediction time Pie 50s
Prediction Steps Pyep 500 steps
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The state space matrix of the impulse function for calculating the
wave excitation force is:

0 0 0 0 —400 1549886

1 0 0 0 -459 -116380
A,=|0 1 0 0 -226| B,=| 24748

0 0 1 0 —64 —644

0 0 0 1 -99% 19.3
c,=[0 0o 0o o0 1]

The accurate and inaccurate Q and R are:

0t o0 10t o0 _ _
Qace = [ 0 101] Oinacc = [ 0 101] Race =10 } Rinace =10 }

White noise interference comes from environmental fluctuations and
measurement errors. The system resists this interference through robust
control, which helps maintain stability in complex environments. Pa-
rameter variations lead to deviations between expected and actual sys-
tem behaviour. The control strategy takes these uncertainties into ac-
count and adjusts the inputs in real time. White noise is defined as:
€ = co’, where ¢ represents white noise, c is the colored noise, and ¢’ is
the time-varying standard deviation.

Wave energy systems usually work in the low-frequency range,
where most of the energy is concentrated. Therefore, the dynamic be-
haviour of the system is primarily dominated by low-frequency charac-
teristics. Based on this, the balanced truncation method is introduced
to reduce the tenth-order model into a reduced-order model of second
order. Fig. 4 demonstrates the Bode diagrams of both the tenth-order
and reduced-order models. The amplitude responses of the two models
show a close match in the frequency range of 0.1 to 1 rad/s, indicating
that the reduced-order model effectively preserves the gain character-
istics of the original system. Although there are some deviations in the
phase response, especially at lower frequencies, the overall phase trend
remains consistent, which demonstrates that the reduced-order model
can accurately capture the essential dynamic behaviour of the original
system and is suitable for subsequent analysis and control design.

On this basis, the second-order model is constructed by gradually
adjusting the parameters. By comparing key output indicators such as
displacement, velocity, control input, and energy, it is verified that the
second-order model, reduced-order model, and tenth-order model have
high consistency in time domain response, as shown in Fig. 5. The
second-order model is highly consistent with the reduced-order and
tenth-order models in key aspects such as energy transfer and system
response, successfully capturing the primary dynamic behaviour of the
system within the low-frequency range. Without losing the important
characteristics of the system, the computational demand of the model is
simplified, and the corresponding parameters are determined. Based on
the verification and comparison of low-frequency matching and time-
domain response, it is fully demonstrated that the second-order model

—-10
m
°
)
E -20 -
g) —10th order
o} —Reduced order
= -30 | L )
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
,«_240 —10th order
% —Reduced order
°
s -260
©
£
o
-280 ! ! !
0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Frequency (rad/s)

Fig. 4. Bode diagram for model fidelity check.
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can effectively achieve equivalent substitution for both the reduced-
order model and the tenth-order model in terms of dynamic behaviour
within the low-frequency range.

Energy and PTO force are shown in Fig. 6. Energy output increases
with the wave’s energy content. The noncausal system accumulates
more energy than the causal system does. The PTO force is constrained
to an upper limit of 6 Newtons.

Fig. 7 demonstrates the energy and power comparisons. The accu-
rate model captures more energy than the inaccurate model. The ac-
curate model achieves the best energy capture effect, and the model
accuracy has a clear positive impact on the control effect. Although the
energy capture performance of the inaccurate model is reduced due to
modelling errors and differs from the accurate model, the overall en-
ergy capture effect is still within an acceptable range. The power ranges
from —0.05 to 0.25, following a similar trend, with the accurate model
having higher power than the inaccurate model. Fig. 8 demonstrates
the position error and velocity error of the model. The position error
ranges between —0.04 and 0.04, while the velocity error ranges between
—0.06 and 0.08. The errors fluctuate within the acceptable range. Fig. 9
demonstrates that the accurate and inaccurate models have similar PTO
forces and consistent model training processes. The accurate model is
more suitable for applications with high requirements for energy cap-
ture efficiency and control accuracy. Although the inaccurate model has
a certain deviation from the accurate model, the control performance
still meets the actual needs. The EMPC strategy demonstrates excellent
fault tolerance and robustness in the application. Furthermore, it effec-
tively addresses modelling uncertainty, which contributes to improving
the applicability and operational stability of the system.

Fig. 10 demonstrates the partitioning of the system. The regional
piecewise linear controller adopts corresponding control strategies in
different regions based on the partitioning. Each region uses a spe-
cific calculation equation, which significantly reduces the computa-
tional burden. The partitioning range of the accurate model and the
inaccurate model is the same, but the number of regions is different.
The accurate model includes 111 regions, while the inaccurate model
includes 109 regions. Both use similar control strategies in most regions,
and there are differences only in a few regions.

The Monte Carlo method is used to set different initial predicted po-
sitions and initial predicted velocities, and multiple sets of predicted
positions and predicted velocities are generated for comparison. From
Figs. 11 and 12, based on the comparison of the position tracking and
velocity tracking results of the accurate and inaccurate models, it can
be observed that no matter what initial point the predicted position
and velocity start from, the predicted results are eventually close to
the position and velocity of the float. This shows that the system has
an impressive ability to track the position and velocity of the float. The
WEC parameters of the accurate and inaccurate models are shown in
Table 2.

Table 2
WEC parameters of accurate model and inaccurate model.

Description Notation ~ Value

Stiffness K2 3866 N/m

Float mass mie 320kg

Added mass mase 5.5kg

Total mass Mace 325.5kg

Radiation coefficient D¢ 1000kg/s

Excitation coefficient D¢ 676kg/s’

Description Notation ~ Value 1 Value 2
Stiffness Kinace 3750N/m  3800N/m
Float mass minace 295kg 300kg
Added mass minace 2kg 3kg
Total mass Miace 297kg 303kg
Radiation coefficient Dinace 970kg/s 990kg/s
Excitation coefficient ~ Dinac 656kg/s”  666kg/s’
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In the three cases of Q and R in Table 3, the inaccurate model pro-
duces an energy of 34.3345KJ. The model uses multi-parameter piece-
wise linear control segmentation, with case I involving 109 regions, and
cases II and III both involving 163 regions. The results are shown in the
Fig. 13. Adjust the values of Q and R and perform multiple simulations.
It is found that the final value of energy capture is affected by the val-
ues of Q and R. The final energy capture of Case I is 34.1534KJ. The
final energy capture of Case Il is 34.2724 KJ. The final energy capture of
Case III is 34.2690 KJ. Comparing Case I (green dashed line) and Case II

(red dashed line), the larger the O matrix value, the greater the energy
capture. Comparing Case I (green dashed line) and Case III (blue dashed
line), the larger the R value, the lower the energy capture. As the Q in-
creases and R decreases, the number of regional divisions in the system
partition diagram increases. The control strategy is more detailed, and
the system’s anti-interference ability is enhanced.

Fig. 14 demonstrates the comparison between the estimated wave
and the wave height. It can be found that the estimated wave is simi-
lar to the wave height in amplitude and trend, with more fluctuations.
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Although there is a certain error, the estimation effect is well achieved.
From Fig. 15, the difference between the estimated wave and the pre-
dicted wave is compared. It can be seen that although there are certain
errors, the overall trend is similar and the error range is small, indicat-
ing that the prediction effect is impressive. The physical parameters of
constraints, disturbance observer, and autoregressive model are shown
in Table 4.

This study uses different wave data for testing. These waves are sim-
ulated using EMPC, and the corresponding energy output is generated.

Table 3
Q and R three cases.
Qand R Case I Case II Case III
0 10! 0 10° 0 10! 0
inace 0 10! 0 10° 0 10!
R 1073 1073 10

inacc

As shown in Fig. 16, EMPC demonstrates impressive control and en-
ergy capture abilities under different wave conditions. This verifies its
robustness and potential for practical application.

To compare the control performance under various sea conditions,
wave profiles defined by significant wave height H, and wave peak pe-
riod T, are simulated. The capture width ratio (CWR) is calculated to
evaluate the energy conversion capability of the system in a real envi-
ronment. The CWR is calculated as: CWR = D}?‘f; . P, is the average
mechanical power, D,, is the device width, and PM,:, is the wave power
per meter of crest width. For the point absorber with parameters shown
in Table 1, the device width is DW = 0.7m.

Fig. 17 demonstrates the CWR of the point absorber obtained from
a large-scale simulation under the JONSWAP (Joint North Sea Wave
Project) wave model with a spectral peakedness factor of unity to gen-
erate irregular wavespectra (Zhang and Li, 2019). The significant wave
heights are H, = 1m and H, = 1.5m, respectively. The wave crest period
ranges from ls to 12s with an interval of 1s. Model uncertainties and
prediction errors are considered. The results show that the CWR shows
a trend of increasing and then decreasing with the increase of the wave
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Fig. 12. (a) Comparison of float velocity for an accurate model. (b) Comparison of float velocity for an inaccurate model. The float velocity is tracked from five

different starting points.

peak period. When the wave peak period is 4 s, the CWR reaches its
maximum value. Then, as the wave peak period continues to increase,
the CWR begins to decrease. Under different effective wave heights, the
CWR maintains the same increasing and decreasing trend. The system’s
response under different wave heights generally exhibits a linear rela-
tionship, and the CWR values remain approximately consistent across
varying wave height conditions. The proposed EMPC is able to cope
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with both prediction errors and model uncertainties in different ocean
environments.

EMPC utilises multi-parametric quadratic programming to transform
the online optimisation problem of traditional MPC into an equivalent,
pre-computed piecewise explicit control law. At runtime, the appropri-
ate control action is applied by identifying the region corresponding
to the current system state, thereby eliminating the need to solve a
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Table 4
Physical parameters of constraints, disturbance observer, and au-
toregressive model.

Description Notation ~ Value

Input force limit Upnax 0.1kN

Float heave coefficient Zmax 0.1m

Heave velocity limit Upmax 0.1m/s

Observer gain K, 1.5

Error feedback gain K, 6

Error correction gain ik 0.5

Forgetting factor Ans 0.99

Initial regularisation coefficient  ay,q. 1078

Regularisation parameter 14 1078

Sampling time T, 0.1s

Training duration Tirain 5s

Prediction duration Tpredict Is

Total prediction time Total 200s

Prediction points Nopred 11

Cycle time offset Nnige 10

Covariance matrix P 107 x 1,
1 0 0

Identity matrix 1, 0 1 0
0 0 1
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Fig. 14. Wave height and estimated wave. Pink dashed line: wave height. Red
solid line: estimated wave of the accurate model. Blue dashed line: estimated
wave of the inaccurate model.

quadratic programming problem at each time step. This significantly

enhances real-time performance and computational efficiency.
Compared to traditional MPC, which depends on online optimisa-

tion, EMPC offers distinct advantages when applied to WEC systems:

1. Severe wave environment with high real-time control requirements:
The WEC system operates in a dynamic and uncertain marine
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Fig. 16. Energy comparison of different wave heights and average wave peri-
ods. WH is the wave height. AWP is the average wave period.

environment. Rapid changes in waves cause drastic fluctuations in
the system state, placing extremely high demands on the controller’s
real-time response capability. EMPC avoids the high computational
burden of solving complex optimisation problems in real time by
pre-calculating the control law offline. This method meets the strin-
gent real-time control requirements of WEC systems and improves
the dynamic performance and operational safety of the system.

. Embedded platform with limited computing resources: The WEC sys-
tem mostly uses embedded microprocessors with limited computing
resources. Traditional MPC relies on real-time quadratic program-
ming solutions, which makes it difficult to meet the needs of high-
frequency control under limited computing resources and energy
consumption constraints. EMPC makes the control law explicit and
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realises fast calculation based on table lookup, significantly reduces
the computational burden, and ensures the real-time operation of the
controller on the embedded platform. EMPC expands the application
of MPC in actual marine energy equipment.

3. Marine environment with predictable external disturbances: When
disturbances such as wave forces are effectively predicted through
modelling and observation, EMPC fully considers the impact of dis-
turbances when calculating the control law offline. This improves
the robustness and stability of the control strategy in dynamic en-
vironments and further improves the energy capture efficiency and
safety of equipment operation.

Although in recent years, a variety of research methods have been
devoted to improving the performance of traditional MPC online solvers
and have performed well in specific scenarios, such as the active-set
method (Ricker, 1985; Bemporad, 2015), the interior-point method
(Wang and Boyd, 2009), the fast gradient-projection method (Patrinos
and Bemporad, 2013), and the alternating direction method of multipli-
ers (Banjac et al., 2017). However, for systems like WEC that have lim-
ited computational resources and are highly sensitive to control delays,
EMPC has a clear advantage due to its explicit control law representa-
tion (Bemporad, 2021).

In summary, EMPC achieves an excellent balance between control
performance and computational complexity. It is especially suitable for
control environments with limited computing resources and strict re-
quirements on the response time from state measurement to control ex-
ecution, such as WEC systems. EMPC significantly reduces the online
computational burden by pre-solving the control law offline, thereby
improving the real-time security and stability of the system and provid-
ing solid technical support for the safe and efficient operation of the
WEC system.

5. Conclusions

For the control problem of wave energy converters (WECs), this pa-
per has introduced explicit model predictive control (EMPC) for the first
time, taking into account the computational limitations typical of em-
bedded systems. A tenth-order system model was reduced using the bal-
anced truncation method, and a second-order model was adopted as an
equivalent substitute in the low-frequency range. A control performance
comparison was conducted between accurate and inaccurate models of
WECs, and the modelling error was subsequently established and con-
trolled. Wave prediction was implemented using a disturbance observer
in conjunction with an autoregressive model.

The results clearly demonstrated that the accuracy of the system
model directly influences key performance indicators such as energy
output, power, position, and velocity. A disturbance observer based on
wave height was used for real-time state estimation and monitoring,
while system parameters were identified using the RLS algorithm within
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the autoregressive model framework. Based on the estimated wave con-
ditions, 1-s predictions were made following a 5-s learning period, with
the wave data predicted in segments to reduce the computational bur-
den.

The simulation results demonstrated that the EMPC method achieved
excellent tracking performance in wave energy conversion, enabling fast
operation and efficient optimisation of the system. This led to improved
system performance and tracking accuracy, thereby enhancing the ef-
fective capture and utilisation of wave energy. These findings verify the
importance of accurate modelling in WEC control and demonstrate that
EMPC can maintain robust performance even in the presence of reason-
able modelling errors.

In conclusion, this study has made significant advancements in the
control of WEC through the application of EMPC. Compared to tra-
ditional control methods, EMPC effectively reduces the computational
burden while maintaining a balance between rapid prediction and effi-
cient optimisation under resource constraints and multiple system lim-
itations. This approach ensures both high performance and real-time
responsiveness.

EMPC is expected to enhance the efficiency of WECs, support the
sustainable development and utilisation of wave energy, and maximise
energy capture. By incorporating disturbance observers and autoregres-
sive models, the system’s ability to perceive and predict dynamic envi-
ronmental changes was strengthened, enabling more accurate control.

Overall, this study focuses on achieving real-time EMPC implementa-
tion on platforms with limited computational resources and contributes
to the broader adoption of intelligent control strategies in harsh marine
environments.

While EMPC demonstrated strong control performance, it also has
certain limitations. Its application has primarily been confined to linear
systems, with control laws typically designed based on linear system
models. This study extended the applicability of EMPC in practise by ef-
fectively controlling wave energy under varying wave heights, thereby
achieving reliable energy capture and demonstrating its potential in
practical scenarios.

Future work will focus on expanding EMPC to nonlinear systems
and developing customised control strategies that reflect the dynamic
characteristics of the system. The goal is to enhance the adaptabil-
ity and reliability of EMPC in complex engineering environments,
while also improving computational efficiency and further reducing the
computational burden. These advancements will support more robust
system operation and improved adaptability under diverse operating
conditions.

In addition, future research will explore the integration of EMPC with
various renewable energy sources, such as wave energy, and undertake
long-term reliability testing to validate the stability and effectiveness of
EMPC-based systems in real-world environments.
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