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ABSTRACT Millimeter wave (mmWave) carriers have a high available bandwidth, which can be beneficial
for high-resolution localization in both the angular and temporal domains. However, the limited coverage
due to severe path loss and line-of-sight (LoS) blockage are considered to be major challenges in mmWave.
A promising solution is to employ reconfigurable intelligent surfaces (RIS) to circumvent the lack of line-
of-sight paths, which can assist in localization. Furthermore, radio localization and tracking are capable
of accurate real-time monitoring of the UE’s locations and trajectories. In this paper, we propose a three-
stage indoor tracking scheme. In the first stage, channel sounding is harnessed in support of the transmitter
beamforming and receiver combining design. Based on the estimation in the first stage, a simplified received
signal model is obtained, while using a discrete Fourier transform (DFT) matrix for the configuration of the
RIS phase shifter for each time block. Based on the simplified received signal model, tracking initialization
is carried out. Finally, in the third stage, Kalman filtering is employed for tracking. Our results demonstrate
that the proposed scheme is capable of improving both the accuracy and robustness of tracking compared to
single-shot successive localization. Additionally, we derive the position error bounds (PEB) of single-shot
localization.

INDEX TERMS mmWave, localization/positioning, tracking, channel estimation, reconfigurable intelligent
surfaces, sparse Bayesian learning.

Nomenclature1

β Complex Rician fading2

b Location of BS3

r Location of RIS4

ω Phase shift vector5

Ψ Sensing matrix6

λc Carrier frequency7

ρ Path-loss8

τ Delay9

Ĥ Estimated channel matrix10

ĥ Vectorized estimated channel11

P̂ Updated estimation covariance matrix12

ûk Estimated location of UE for the k-th state13

ŷ Vectorized received signal14

Γ̂ Updated hyperparameter15

B Bandwidth16

G Number of OFDM symbols for channel sounding17

Gr Beamspace resolution18

K Number of motion states19

LBR Number of paths between BS and RIS20

LRU Number of paths between UE and RIS21

M Number of OFDM symbols for each time block22

N Number of subcarriers23

NB Number of BS antennas24

NR Number of RIS elements25

NU Number of UE antennas26

T Number of time blocks 27

TS Sampling period 28

AU,AR,AB Steering matrices for UE, RIS and BS 29

C Correlation matrix 30

F Random beamformer at BS 31

H Channel model 32

Heff Effective channel 33

Hv Beamspace channel model 34

I Fisher information matrix 35

K Kalman gain 36

M Measurement matrix 37

P Estimated covariance matrix for Kalman filtering 38

Q Process noise variance 39

R Noise covariance matrix 40

T State transition matrix 41

uk Location of UE for the k-th state 42

UB,UU and UR DFT matrix for beamspace samples 43

V Measurement noise variance 44

W Random combiner at UE 45

Y Received signal 46

Ω Phase shift matrix at RIS 47

ϕBR AoA of RIS 48

ϕRM AoA of UE 49

θBR AoD of BS 50

θRM AoR of RIS 51

Γ Hyperparamters for iterations 52
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ζ Maximum number of iteration53

AMP Approximate Message Passing54

AoA Angle of Arrival55

AoD Angle of Departure56

AoR Angle of Reflection57

BS Base Station58

CDF Cumulative Density Function59

CIS Continuous Intelligent Surface60

CRLB Cramer-Rao Lower Bound61

CS Compressed Sensing62

DFT Discrete Fourier Transform63

DL Downlink64

GPS Global Positioning System65

IMM Interacting Multiple Model66

ISAC Integrated Sensing and Communication67

LoS Line-of-Sight68

MIMO Multiple-Input-Multiple-Output69

MMV Multiple Measurement Vector70

mmWave Millimeter Wave71

mSBL Modified Sparse Bayesian Learning72

NLN Network Localization and Navigation73

OFDM Orthogonal Frequency Division Multiplexing74

OTFS Orthogonal Time-Frequency Space75

PDF Probability Density Function76

PEB Position Error Bound77

PRSs Position Reference Signals78

RC Receiver Combining79

RIS Reconfigurable Intelligent Surfaces80

RMSE Root Mean Squared Error81

RSS Received Signal Strength82

SC Scatterer83

SNR Signal-to-Noise Ratio84

SOMP Simultaneous Orthogonal Matching Pursuit85

TBF Transmitter Beamforming86

ToA Time of Arrival87

UE User Equipment88

ULA Uniform Linear Array89

V2I Vehicle to Infrastructure90

I. Introduction91

A. Motivation and Background92

THERE has been a growing interest in localization and93

tracking due to its practical applications across var-94

ious domains, including intelligent transportation systems95

and unmanned aerial vehicles [1]. Conventional localization96

methods, such as the global positioning system (GPS), often97

suffer from limited accuracy and high latency, especially in98

indoor environments [2]. To address these limitations, mil-99

limeter wave (mmWave)-based localization techniques have100

garnered significant attention [3]. These methods typically101

rely on a high number of antenna elements, facilitating high102

angular resolution [4]. Nevertheless, mmWave localization103

faces several practical challenges, such as high path loss,104

which can be mitigated through beamforming relying on105

massive antenna arrays [4]–[7]. The potential line-of-sight106

(LoS) blockages may be circumvented by reconfigurable107

intelligent surfaces (RIS) [8], which are capable of attaining108

potential performance improvements [8]–[11]. A RIS is109

composed of numerous reflectors typically positioned either 110

in the vicinity of the transmitter or a receiver, where each 111

individual element of the RIS can alter the phase and/or am- 112

plitude of the impinging signal [12]. This enables potential 113

improvements in the energy efficiency, spectrum efficiency, 114

positioning accuracy, communication security, etc. [13], [14]. 115

While estimating the cascaded two-hop channels in the 116

RIS-supported systems is a challenging task, the principles 117

of passive beamforming or the combination of active and 118

passive beamforming [15]–[17] can be beneficially exploited 119

for localization. 120

Numerous studies have been conducted on RIS-assisted 121

localization [16], [18]–[21]. Specifically in [18], the concept 122

of continuous intelligent surfaces (CIS) was introduced, 123

and the limits of RIS-aided localization and communication 124

systems were discussed. More specifically, in [18], a general 125

signal model was presented for RIS-aided localization and 126

communication systems, when considering both far and near- 127

field scenarios. In [19], holographic network localization and 128

navigation (NLN) was proposed, where RISs relying on spe- 129

cific antenna patterns were used to improve the robustness of 130

holographic localization against obstructions. In [20], a RIS- 131

assisted localization scheme supported by adaptive beam- 132

forming using a hierarchical codebook based algorithm was 133

proposed for joint localization and communication, when 134

assuming the absence of LoS paths. In [21], a received signal 135

strength (RSS)-based positioning scheme was investigated in 136

a RIS-aided mmWave system. Furthermore, in [16], a joint 137

active and passive beamforming codebook based localization 138

scheme was conceived for RIS-aided mmWave systems. It 139

was shown that the scheme is capable of striking an attractive 140

performance vs. training overhead tradeoff. 141

However, these works only considered static scenarios. 142

When the user equipment (UE) is moving, the localization 143

problem becomes a tracking problem, and the complexity 144

of training for the successive single-shot localization may 145

become excessive [16], [22]. 146

There are many solutions [23]–[29] for tackling the 147

tracking problem. In [23], the authors propose integrated 148

sensing and communication (ISAC) techniques to enhance 149

vehicle-to-infrastructure (V2I) networks by dynamically ad- 150

justing the beamwidth and tracking the vehicle positions 151

using predictive beamforming strategies employing extended 152

Kalman filtering (EKF). In [24], a novel channel tracking 153

algorithm was developed for mmWave systems operating 154

in temporally correlated channels, advocating a hybrid ana- 155

log/digital precoding approach for better adaptability to 156

dynamic channel conditions. The authors of [25] introduced 157

an extended Kalman filter-based beam tracking algorithm for 158

improving the angle-of-departure (AoD) and angle-of-arrival 159

(AoA) estimates, while offering enhanced beam alignment 160

in mobile mmWave multiple-input-multiple-output (MIMO) 161

systems. Furthermore, in [26], a sparsity based approach 162

was conceived for multi-target tracking using orthogonal 163

frequency division multiplexing (OFDM) radar, leveraging 164

compressive sensing techniques to efficiently track targets 165

in the delay-Doppler domain at a reduced computational 166

overhead. In [27], the authors investigated orthogonal time- 167
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frequency space (OTFS) systems, using hybrid digital-analog168

architectures and nested array techniques for improving the169

angle, delay, and Doppler shift estimation in high-mobility170

scenarios. In [28], a radar sensing and tracking scheme was171

proposed for dynamic targets, using a monostatic MIMO172

system integrated with ISAC functionalities for estimating173

parameters such as distance, angles, and velocities. In [29],174

the authors developed an algorithm for localizing and track-175

ing vehicular users equipped with RISs. While the above176

studies provide valuable insights into tracking using EKF177

[23], sparsity-aware estimation [26], or hybrid beamforming178

under ISAC and radar frameworks [27], they primarily179

focus on either angle-delay-Doppler estimation or beam-180

level mobility support in MIMO systems. In contrast, this181

work proposes a unified three-stage RIS-aided localization182

and tracking scheme that explicitly models time-varying183

scatterers, incorporates phase configuration diversity through184

multiple RIS states, and employs an MMV-based sparse185

recovery framework for enhanced multipath estimation. Fur-186

thermore, we introduce a bias-compensated Kalman filter187

to track the UE trajectories using noisy position estimates188

extracted from the compressed sensing stage.189

In this work, we propose a three-stage localization and190

tracking method indoor for RIS-aided localization scenarios,191

which are characterized by multi-path reflections, angular192

coupling, and signal degradation due to beamforming mis-193

alignment. In addition, we simulate low-SNR scenarios down194

to –10 dB to reflect realistic indoor deployment conditions,195

where mmWave signals may experience severe attenuation196

and blockage. The 2D geometry assumed in our simula-197

tions further reflects practical indoor use cases such as198

smart rooms or factory floors. We note that our previous199

work in [22], where we proposed a two-stage localization200

scheme, assumes a stationary UE. In contrast, firstly, we201

have upgraded our system model for the mobile UE scenario.202

Secondly, we have adapted the two-stage localization scheme203

considered in [22] for the mobile UE scenario, where a204

DFT-based RIS phase configuration is conceived to improve205

the performance of the random phase shift scenario in [22].206

Thirdly, in this paper we propose to add a third stage con-207

stituted by a Kalman filter, so that the proposed three-stage208

tracking scheme becomes capable of achieving centimeter209

level localization accuracy. Table 1 contrasts the novelty of210

this paper to previous work, which is detailed as follows.211

• We first propose a RIS-aided localization scheme for212

single-shot localization, using the multiple measure-213

ment vector based modified sparse Bayesian learning214

(MMV-mSBL) algorithm relying on the time, frequency215

and angular domains.216

• To find the UE’s location, we transfer the localization217

problem to an angle of reflection (AoR)/time of arrival218

(ToA) estimation problem. Specifically, to reduce the219

complexity of the MMV model, we exploit the fre-220

quency domain diversity for identifying the specific221

path having the highest power, where the cardinality222

of the angular domain in the MMV model is reduced223

to 1.224

• Successive single-shot localization requires channel es- 225

timation for each motion state, which imposes both 226

high complexity and training overhead. To reduce the 227

overhead, we propose a three-stage tracking scheme, 228

in which the single-shot localization is trained offline 229

for inferring the measurement noise distribution. For 230

online training, channel estimation is only required 231

once in the first two stages. Briefly, in the first stage, 232

random beamforming is employed for channel sounding 233

in support of the transmitter beamforming (TBF) and 234

receiver combining (RC) design. Based on the result of 235

channel sounding in the first stage, a simplified received 236

signal model is constructed. Then, a DFT matrix is 237

harnessed for the configuration of the RIS phase shifter 238

in each time block for initializing the Kalman filter 239

in the second stage. Finally, in the third stage, the 240

Kalman filter is employed for tracking exploiting the 241

prior information gleaned during the offline training, 242

which improves the accuracy and robustness compared 243

to single-shot localization. 244

• Finally, a position error bound (PEB) is derived, and 245

the localization error distribution is characterized. 246

B. Organization of the Paper and Notations 247

The rest of the paper is organized as follows. Section II intro- 248

duces the model of our localization and tracking system. Sec- 249

tion III introduces the framework of single-shot localization, 250

while Section IV presents the three-stage tracking technique 251

conceived. The simulation setup and our simulation results 252

are provided in Section V. Finally, we conclude in Section 253

VI. 254

Notations: a, a, A stand for scalar, vector and matrix, 255

respectively. AT, AH, A†, ∥a∥2 and ∥A∥F represent the 256

transpose, Hermitian transpose, pseudoinverse, Euclidean 257

norm and Frobenius norm of matrix A, respectively. The 258

(i, j)-th entry of A is [A]i,j , and diag(a) is a diagonal matrix 259

formed by the diagonal elements of a. Trace(A) denotes the 260

trace of matrix A, E(A) is the expectation of A, vec(A) 261

is the vectorization operation of A, mod(i, j) denotes the 262

modulo operation, and j =
√
−1; (A)∗ represents the 263

conjugate of matrix A. 264

II. System Model 265

We consider an indoor downlink (DL) MIMO localization 266

and tracking system, where the BS and the moving UE are 267

equipped with NB and NU antennas, respectively. Further- 268

more, a RIS having NR antennas is deployed between the 269

BS and the UE to overcome the line-of-sight (LoS) blockage 270

problem, as shown in Fig. 1. More explicitly, the OFDM 271

modulated position reference signals (PRSs) are transmitted 272

in the DL by the BS, which are then reflected by the RIS 273

to the UE, to circumvent the LoS blockage. Based on the 274

reflected signals received by the UE, the UE estimates the 275

channel parameters and its location for the k-th motion state, 276

k = 1, ...,K, where each motion state represents the real- 277

time location of the UE. 278

We define the location of the BS as b = [bx, by]
T ∈ 279

R2, and the location of the UE for the k-th state as uk = 280
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TABLE 1: Contrasting our novelty to the literature.
[16] [22] [23] [24] [25] [26] [27] [28] [29] This work

System Model
Time-vary random scatterers between the
RIS and the UE in successive localization

✓

Radio localization

User self-sensing ✓ ✓ ✓

MMV channel estimation based localization ✓ ✓

RIS-assisted localization ✓ ✓ ✓ ✓

Orthogonal phase shift configuration
for MMV model

✓

PEB analysis for MMV model ✓

Tracking process

Arbitrary tracking ✓ ✓ ✓

Kalman filter refines localization accuracy ✓ ✓

BS

Moving 

UE

Scatterer

RIS 

RIS 

controller

Scatterer

20 

Meters

20 

Meters

FIGURE 1: Illustration of the RIS aided localization and
tracking model.

[uk
x, u

k
y ]

T ∈ R2, while the location of the RIS is given by281

r = [rx, ry]
T ∈ R2. Furthermore, a scatterer (SC) is assumed282

to exist between the BS and the RIS in a fixed location, but283

other SCs exist between the RIS and the UE, which have284

different positions for different states k. The locations of both285

the BS and of the RIS are fixed and assumed to be known as286

a reference point for localization, while the location of the287

UE for the k-th state can be estimated based on the estimated288

channel parameters.289

Again, a mmWave channel is considered with the LoS path290

blocked, where the channel parameters, such as the AoA,291

AoD, AoR and ToA, are determined by the geometry of the292

BS, UE and RIS. Therefore, downlink transmission has to293

rely on the path reflected by the RIS, as shown in Fig. 1.294

The AoD of the BS and the AoA of the RIS are denoted295

by θBR and ϕBR, while the AoR of the RIS and the AoA of296

the UE are expressed as θRU,k and ϕRU,k for the k-th state,297

respectively. Moreover, the ToA between the BS and the RIS,298

as well as between the RIS and the UE are τBR and τRU,k,299

respectively. The study assumes that the BS, RIS and UE are300

equipped with a uniform linear array (ULA) for simplicity1.301

Hence, the steering vectors aB,n(θBR) and aR,n(ϕBR) at the302

1This can be generalized to any antenna structures.

BS and RIS in the context of subcarrier n are [30] 303

aB,n(θBR) =
1√
NB

[
1, e−j2π d

λn
sin(θBR), ...,

e−j2π d
λn

sin(θBR)(NB−1)
]T

∈ CNB×1, (1)

aR,n(ϕBR) =
1√
NR

[
1, e−j2π d

λn
sin(ϕBR), ...,

e−j2π d
λn

sin(ϕBR)(NR−1)
]T

∈ CNR×1, (2)

where d represents the element spacing, and λn is the 304

wavelength of the n-th subcarrier. For simplicity, we assume 305

that the signal bandwidth obeys B ≪ fc, yielding λn ≈ λc, 306

where λc represents the wavelength of the main carrier 307

[31]. Then, the mmWave channel model introduced in [32], 308

[33] can be applied to obtain the (NR × NB)-dimensional 309

frequency domain channel matrix of the line between the 310

BS and the RIS, which can be represented as [34]: 311

HBR[n] = AR(ϕBR)ΣBR[n]A
H
B(θBR), (3)

where we have 312

AB(θBR) = [aB(θBR,0),aB(θBR,1)...,aB(θBR,LBR−1)], (4)
AR(ϕBR) = [aR(ϕBR,0),aR(ϕBR,1)...,aR(ϕBR,LBR−1)], (5)

and the diagonal matrix ΣBR[n] is given by [16] 313

ΣBR[n] =
√

NBNR

× diag{βBR,0ρBR,0e
−j2πnτBR,0

NTs , ...,

βBR,LBR−1ρBR,LBR−1e
−j2πnτBR,LBR−1

NTs }. (6)

In (4)-(6), LBR is the number of paths between the BS and 314

the RIS, βBR,l and ρBR,l are respectively the complex Rician 315

fading gain and path-loss of the l-th path between the BS and 316

the RIS, and TS = 1/B is the sampling period. In (6), the 317

time delay τBR,l, i.e. ToA, is given by τBR,l = dBR,l/c, where 318

c denotes the speed of light, while dBR,l is the propagation 319

distance of the l-th path. Specifically, for the LoS path (l = 320

0), the distance between the BS and the RIS is evaluated 321

as dBR,0 = ∥r− b∥2, while for the NLoS path (l > 0), the 322

distance is dBR,l = ∥sl − b∥2 + ∥r− sl∥2, where sl is the 323
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location of the SC. Again, we consider an indoor localization324

scenario in this paper, where the Doppler effect is ignored for325

simplicity2, but would have to be considered and estimated326

in vehicular systems [29].327

We note that the RIS-UE link is time-varying, where the328

delays of all reflected links are different due to their different329

AoAs. Therefore, for each motion state k, its position330

s2,k ∈ R2 is modeled as a uniformly distributed random331

point along the line segment that connects the RIS and the332

UE, defined as s2,k = r + λk (uk − r) , λk ∼ U(0, 1).333

This construction reflects the physical intuition that local SCs334

on the RIS-UE path often lie in proximity of the geometric335

propagation trajectory.336

Similarly, for the k-th state of the UE’s motion model, the337

channel between the RIS and the UE can be represented as338

HRU[k, n] = AU(ϕRU,k)ΣRU,k[n]A
H
R(θRU,k), (7)

where AU(ϕRM,k)[n] and AR(θRM,k)[n] are defined simi-339

larly as in (3), by adding the index of the k-th state to the340

channel parameters ϕRU,k, θRU,k and τRU,k, determined by341

the k-th real-time location of the UE.342

By combining (3) and (7), the frequency domain cascaded343

channel spanning from the BS to the UE for the k-th state344

can be represented as345

H[k, n] =HRU[k, n]ΩkHBR[n], (8)

where Ωk ∈ CNR×NR is the RIS’s phase shift matrix associ-346

ated with the motion state k = 0, . . . ,K. Furthermore, Ωk347

is a diagonal matrix that has unit-modulus on the diagonal348

elements [35], [36]. Specifically, the diagonal element is349

[Ωk]i,i = ejωi , where ωi ∈ [0, 2π]. According to (8), we350

define the effective channel as351

Heff[k, n] =diag(ρ̂RU,k[n])A
H
R(θRU,k)ΩkAR(ϕBR)

× diag(ρ̂BR[n]), (9)

where ρ̂RU,k[n] = [βk
RU,0ρ

k
RU,0e

−j2πnτk
RU,0

NTs , . . . , βk
RU,LRU−1352

ρkRU,LRU−1e
−j2πnτk

RU,LRU−1

NTs ]T, and ρ̂BR[n] is similarly defined353

according to (6). Thus, the frequency domain channel can354

then be represented as355

H[k, n] = AU(ϕRU,k)Heff[k, n]A
H
B(θBR), (10)

where Heff[k, n] defined in (9) is a function of the phase356

shifter matrix Ωk for the k-th state, which shows the357

importance of the angular parameters θRU and ϕBR, as well358

as of the corresponding phase shifter design for both channel359

estimation and localization. Observe based on (10) that the360

2For instance, when the carrier frequency fc is 28 GHz and the velocity
of UE is 1 m/s, the Doppler shift is fD = 93.33 Hz. When we consider
the total bandwidth of B = 100 MHz and the number of subcarriers N

is relatively small, e.g. N = 20, the subcarrier spacing is ∆f = 5 MHz,
which means that the Doppler shift has very little effect in the frequency
domain. However, we note that the proposed architecture can be extended
to dynamic outdoor environments, such as vehicular or UAV-based systems.
In such cases, Doppler-induced frequency shifts become significant and
hence should be jointly estimated with delay parameters, which is our future
research.

Random 
Beamforming

G symbol durations

0t 

0 0 0
, ,

kk k

t t t  WF Ω
Time 
blcok

(a) Single-shot localization Stage 1

Phase shifter configuration and 
parameter estimation

...

M symbol durations

1 1 1
, ,

kk k

t t t  WF Ω

1,...,t TTime 
blcok

M symbol durations

, ,
kk k

t T t T t T  WF Ω

(b) Single-shot localization Stage 2

Single-shot 
localization state 

Random 
Beamforming

Phase shifter configuration and 
parameter estimation

k

Location recovery

(c) Single-shot localization Stage 3

FIGURE 2: Illustration of the single-shot localization
scheme.

localization is also related to the estimate of the channel 361

parameters, hence it may be viewed as a channel estimation 362

problem. Hence, in the next section, we will formulate 363

localization as MMV based channel estimation. 364

III. Compressed Sensing Based Single-Shot Localization 365

In mmWave localization systems, one of the conventional 366

methods is to exploit the channel-sparsity using CS al- 367

gorithms in both the angular and temporal domains, in 368

order to glean the location-related information, such as 369

the AoD and ToA [34], [37], [38]. For conventional ToA- 370

based localization, either predefined waveform structures 371

[39], or alternative schemes such as time difference of 372

arrival (TDoA) relying on multiple synchronized anchors 373

[40] are required. In our framework, both the delay and 374

angle information are estimated from multicarrier channel 375

observations. Specifically, the delay is inferred from the 376

phase shifts across subcarriers, while angular features are 377

extracted by exploiting spatial sparsity. This motivates our 378

unified channel-estimation-based localization scheme, which 379

operates within a multicarrier communication system and 380

avoids the need for either multiple synchronized receivers 381

or sensing-specific waveform designs. However, predefined 382

precoding, combining and time-domain DFT matrices cause 383

quantization error, in both of these domains which degrades 384

localization performance [16]. On the other hand, in RIS- 385

aided localization, it is challenging to exploit the AoR for 386

localization, when the channel state information is unknown. 387

In this section, as shown in Fig. 2a, for the single-shot 388

localization carried out in the first stage, we employ random 389

beam training for estimating the angle parameters such as 390

the AoA and AoD at the BS and the UE, as detailed in 391

Subsection A. In Subsection B, we design the phase shifter 392
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matrix to prevent the encountering path crossing3 problem393

first identified in [17], and derive a simplified received signal394

model. The sparse formulation and MMV-mSBL algorithm395

designed for determining the channel parameters are in-396

troduced in Subsection C and Subsection D, respectively.397

Furthermore, the PEB is derived in Subsection E.398

A. Random Beamforming for Channel Sounding399

For each motion state k, the first time block t = 0, as shown400

in Fig. 2a, a random precoding matrix F0[k, n] ∈ CNB×G
401

associated with uniform Gaussian distribution and a random402

combining matrix W0[k, n] ∈ CNU×G with uniform Gaus-403

sian distribution are employed for eliminating directional404

bias and achieving isotropic coverage, where G denotes405

the number of symbol durations, as shown in Fig. 2b.406

The parameter G has to be larger than the number of407

propagation paths for assumption of angular sparsity to hold.408

Furthermore, at this stage, the phase shift matrix Ω0
k at the409

RIS is set randomly and it is fixed during the next G symbol410

durations. Thus, for the k-th state and t = 0-th time block,411

the observations at the UE can be further written as412

Y0[k, n] =
√
P (W0[k, n])HH0[k, n]F0[k, n]

+ (W0[k, n])HN0[k, n]. (11)

Let us introduce the beamspace channel representation [31],413

which is obtained via uniformly sampling the spatial angles414

in the beamspace, yielding:415

UB = [uB (q0) , . . . ,uB (qGr−1)] ,

uB (qr) =
[
1, . . . , ej2π(NB−1)qr

]T
. (12)

In (12), UB is a unitary DFT matrix determined by the416

beamspace grid indices of qr =
(r−1)+(−Gr−1

2 )

Gr
,∀r ∈417

[0, Gr − 1], where Gr is the beamspace resolution of the418

spatial angles. Then, the beamspace channel representation419

of H0[k, n] in (11) for the k-th state and for the t = 0 block420

can be written as421

H0
v [k, n] = UH

UH
0[k, n]UB ∈ CNU×NB , (13)

where the DFT dictionary matrix Uu for the receiver array is422

obtained similarly as UB. Upon substituting (13) into (11),423

we obtain424

Y0[k, n] =
√
P (W0[k, n])HUUH

0
v [k, n]U

H
BF

0[k, n]

+ (W0[k, n])HN0[k, n]. (14)

3In [17], the phenomenon of “path crossing”, referring to the effective
multiplication of multipath components from the BS–RIS and RIS–UE links
after applying a random phase shift matrix, which implicitly indicates that
when both the BS–RIS and RIS–UE links contain multipath (e.g., two paths
each), their combination results in four distinct effective propagation paths
(2×2 combinations).

Furthermore, to represent the channel vector in a standard CS 425

form, let us vectorize the observations Y0[n], yielding [41]: 426

vec(Y0[k, n]) =vec(
√
P (W0[k, n])HUUH

0
v [k, n]U

H
BF

0[k, n]

+ (W0[k, n])HN0[k, n])

=[(F0[k, n])T ⊗ (W0[k, n])H][(U0
B)

∗ ⊗U0
U]

× vec(H0
v [k, n]) + vec((W0[k, n])HN0[k, n])

=Φ0[k, n]χ0h0
v [k, n] + n0[k, n], (15)

where Φ0[k, n] = (F0[k, n])T ⊗ (W0[k, n])H is the sensing 427

matrix4, and χ0 = (U0
B)

∗ ⊗ U0
U is the overcomplete dic- 428

tionary or beamspace transformation matrix [31], [41]. Fur- 429

thermore, h0
v [n] is the vectorized beamspace channel vector 430

to be estimated, while n0[k, n] is the noise vector. The AoD 431

θ̂BR,k and AoA ϕ̂RU,k can either be estimated according to 432

(11), using an off-grid atomic norm minimization algorithm, 433

or estimated based on (15) as an on-grid CS problem [22]. 434

B. Phase Shifter Configuration and Received Signal 435

Simplification 436

As shown in Fig. 2b, for the k-th state, when the precoding 437

matrices F1[k, n] = F2[k, n] = ... = FT [k, n] at the BS 438

and the combining matrix W1[k, n] = W2[k, n] = ... = 439

WT [k, n] at the UE are obtained for the blocks t > 0, as 440

shown in the previous subsection, the AoR at the RIS can 441

then be estimated using the time block of t > 0, as shown 442

in Fig. 2c, which can be used in the single-shot localization 443

of the UE. 444

More specifically, as mentioned in Section II, after the 445

estimation of θBR,k and ϕRU,k in the first stage, the corre- 446

sponding beam training matrices at the BS and the UE for 447

the RIS can be designed as follows: 448

Wt[k, n] =AU(ϕ̂RU,k),

Ft[k, n] =AB(θ̂BR,k), (16)

where we have t = 1, ..., T , k = 0, ...,K and n = 0, ..., N− 449

1. Recalling the time block t = 0 for each state k, we note 450

that the number G of symbol durations required in the first 451

stage, as shown in Fig. 2a is much higher than the number of 452

paths LBR and LRU, where LRU denotes that between the RIS 453

and the UE, while LBR of those between the BS and RIS, 454

respectively. In contrast, for t > 0, as shown in Fig. 2b, the 455

number of symbol durations M only has to be larger than the 456

number of paths, e.g. M ≥ LRU and M ≥ LBR, resulting 457

in Wt[k, n] ∈ CNB×LRU and Ft[k, n] ∈ CNB×LBR . In this 458

regard, the training overhead can be significantly reduced 459

for the t > 0 blocks. 460

Recalling (11) and (16), the received signal at the UE 461

corresponding to t > 0 for the k-th motion state can be 462

4In the literature, the random beamformers conceived for constructing
sensing matrices can be predefined or selected from a shared codebook that
is known to both sides [37], [42], [43]. This enables robust sparse recovery
without requiring exhaustive beam training and significantly reduces the
implementation complexity.
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formulated as463

Yt[k, n] =
√
P (Wt[k, n])HHt[k, n]Ft[k, n]

+ (Wt[k, n])HNt[k, n]

=
√
P (Wt[k, n])HAU(ϕRU)H

t
eff[k, n]

×AB(θBR)F
t[k, n] + (Wt[k, n])HNt[n]

≈
√
PHt

eff[k, n] + (Wt[k, n])HNt[k, n], (17)

where Wt[k, n]HAU(ϕRU) ≈ I and AB(θBR)F
t[k, n] ≈ I,464

owing to the precoder and combiner designed for the BS and465

the UE, as shown in (16). However, in practical settings, the466

estimated directions θ̂BR,k, ϕ̂RU,k may deviate from the true467

angles due to resolution limitations or noise. This causes468

a mismatch in the beamforming directions, resulting in a469

partial misalignment of Ft[k, n] and Wt[k, n] . To model470

this, we introduce a signal fidelity coefficient ηerror ∈ (0, 1],471

representing the cosine of the alignment between the true472

and estimated beam directions. Assuming that both the TBF473

and RC suffer from this alignment-induced loss, the received474

signal can be written as475

Yt[k, n] ≈ η2errorH
t
eff[k, n] + (Wt[k, n])HNt[k, n]. (18)

We emphasize that the noise term (Wt[k, n])HNt[k, n] is476

kept unchanged to preserve analytical simplicity, even though477

the combiner mismatch could slightly affect the noise pro-478

jection. Then, the effective channel Ht
eff[k, n] is defined in479

(9). It can be shown that the (a, b)-th entry of the effective480

channel Ht
eff[k, n] can be expressed as [12]481

[Ht
eff[k, n]](a,b) =(ρ̂RU[k, n])a(ω

t
k)

T

× a([θspatial,k](a,b))(ρ̂BR[k, n])b, (19)

where ωt
k is a vector denoting the diagonal elements of the482

phase shift matrix Ωt
k, and θspatial,k = asin(sin([ϕBR,k]b) −483

sin([θRU,k]a)) is the spatial frequency [12]. By vectorizing484

(9), the effective channel vector can be represented as485

ht
eff [k, n] = vec(Ht

eff[k, n]) ∈ CLRULBR×1, and the elements486

of ht
eff [k, n] can be written as487

[ht
eff [k, n]]l = ρ̂l[k, n]ω

t
ka(θ̂spatial,k,l), l = 1, ..., LRULBR,

(20)

where we have ρ̂l[k, n] = (ρ̂RU[k, n])a(ρ̂BR[k, n])b,488

θ̂spatial,k,l = arcsin(sin([ϕBR,k]b) − sin([θRU,k]a)), while489

a = mod (l − 1, LRU) + 1 and b = ⌈l/LRU⌉. Conse-490

quently, when considering all the observations over T blocks491

for the k-th state, according to (17), we have492

Y[k, n] =[vec(Y1)[k, n], vec(Y2)[k, n], ..., vec(YT )[k, n]],

n = 0, ..., N − 1. (21)

The effective channel is further expressed as Ĥeff[k, n] =493

[h1
eff[k, n],h

2
eff[k, n], ...,h

T
eff[k, n]]. Furthermore, based on494

(17), (19) and (20), it can be shown that the l-th row of495

Y[k, n] is496

Yl,:[k, n] ≈Ĥeff,l,:[k, n]
T + N̂l,:[k, n]

=Ω̂kρ̂l[k, n]a(θ̂spatial,k,l) + N̂l,:[k, n],

l =1, ..., LRULBR. (22)

Phase shift configuration: In (22), Ω̂k = [ω1
k,ω

2
k, ...,ω

T
k ]

T
497

is from the phase shift vectors used for the transmissions 498

over T blocks. Explicitly, we define a T ×T DFT matrix in 499

the form: 500

FR =


1 1 1 · · · 1
1 ω ω2 · · · ωT−1

1 ω2 ω4 · · · ω2(T−1)

...
...

...
. . .

...
1 ωT−1 ω2(T−1) · · · ω(T−1)(T−1)

 , (23)

where Ω̂k contains the first NR rows of FR (NR ≤ T ), e.g. 501

Ω̂k = [FR]1:NR,: and each column of Ω̂k denotes ωt
k, which 502

is the phase shift vector for the k-th state and t-th time block. 503

Moreover, the stacked noise matrix is expressed as N̂[k, n] = 504

[vec(W1[k, n]HN1[k, n]), vec(W2[k, n]HN2[k, n]), ..., 505

vec(WT [k, n]HNT [k, n])], where the covariance matrix of 506

the AWGN vector with respect to the t-th block is Rt
k = 507

(σt
k)

2Wt[k, n]HWt[k, n]. Moreover, the covariance matrix 508

Rk ∈ CTLRULBR×TLRULBR of the vectorized noise matrix 509

vec(N̂[k, n]) is a block diagonal matrix, with the matrices 510

Rt
k on its diagonal. 511

C. Sparse Formulation 512

To estimate the AoR θRU,k and the ToA τRU,k between 513

the RIS and the UE for the k-th state, the problem can 514

be formulated as the estimation of ρ̂l[k, n] and θ̂spatial,k,l, 515

since the locations of both the BS and RIS are usually fixed 516

in most applications in practice. Hence the related angles 517

such as θBR, ϕBR, and the ToA τBR can be determined in 518

advance [20]. Let us introduce the DFT matrix UR for the 519

sparse formulation of a(θ̂spatial,k,l) in (22). Hence, UR is 520

defined in the same way as (12). Then, the received signal 521

of (22) can be alternatively expressed as 522

Yl,:[k, n] = Ψkhl[k, n] + n̂[k, n], (24)

where Ψk = Ω̂T
kUR can be viewed as a sensing matrix, 523

and hl[k, n] is the desired sparse vector, which embeds the 524

location information AoR and ToA for the k-th state. Based 525

on (24), for each state k, the received signals have three 526

distinguishing dimensions, namely time blocks, subcarriers, 527

and possible propagation paths. For localization purposes, 528

the path having the highest power represents the LoS path, 529

which can be extracted from (22) via the power measure- 530

ment, represented as 531

l̂ = argmax ∥Yl,: [k, n]∥22, (25)

which reduces the number of paths from LRULBR to 1. 532

Consequently, when considering T blocks, N subcarriers, 533

and l̂-th path components, corresponding to (24), the received 534

signals can be expressed as 535

Ŷk = ΨkĤk + Zk, (26)

where Ŷk ∈ CT×N , Ψk ∈ CT×NR and Ĥk ∈ CNR×N , 536

while each column of Zk reprensents the noise matrix. 537

Finally, after the vectorization of (26), the received signal 538

can be represented in a group sparse [44] format as 539

ŷk = Ψ̂kĥk + zk. (27)
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:

In (27), we have ŷk = vec(ŶT
k ) ∈ CNT×1,Ψ̂k = (Ψk ⊗540

IN ) ∈ CNT×NNR , and ĥk = vec(ĤT
k ) ∈ CNNR×1.541

Furthermore, according to (22), the noise variance for the k-542

th state, t-th time block and n-th subcarrier can be expressed543

as (σ̂t
k)

2 = σ2
kW

t
:,l̂
[k, n]HWt

:,l̂
[k, n]. Hence, the covariance544

of the elements in zk can be written as R̂t,t
k = (σ̂t

k)
2, where545

R̂t,t
k denotes the t-th diagonal element of R̂k. Therefore, in546

(27), the covariance matrix of the noise vector zk can be547

expressed as R̃k = E
{
zkz

H
k

}
= (R̂k ⊗ IN ).548

Hence, (27) is formulated as an MMV channel estimation549

problem to estimate the AoR and the ToA for the k-th state.550

In the next section, we will detail the single-shot localization551

using the modified MMV-SBL algorithm to estimate the552

channel parameters.553

D. Single-Shot Localization Using Modified MMV-SBL554

Algorithm555

Unlike conventional methods such as orthogonal matching556

pursuit (OMP) and AMP, the proposed algorithm effec-557

tively captures the shared and structured sparsity inherent558

in the MMV model [22]. In addition, they provide higher559

robustness against noise, avoid reliance on strict assumptions560

such as near-Gaussian sensing matrices, and provide supe-561

rior estimation accuracy, especially in complex propagation562

environments [45]. As mentioned in the previous subsection,563

the desired group-sparse vector ĥ is sparse in both the time564

and spatial domain, which contains the location information565

represented by the AoR and ToA. The a priori information566

of the vector ĥk for the k-th state can be mathematically567

expressed as568

p
(
ĥk;Γk,Ck

)
=

NR∏
j=1

p
(
hj
k; γ

j
k,Ck

)
, (28)

where Ck denotes the correlation matrix of hyperparamters569

for the k-th motion state, γj
k is the hyperparameter control-570

ling the variance of each group, while hj
k denotes the j-571

th group of ĥk. Specifically, for a given γj
k and Ck, the572

probability density function (PDF) of hj
k is573

p
(
hj
k; γ

j
k,Ck

)
=

1(
πγj

k

)N

det (Ck)

e

(
−

(h
j
k
)HC

−1
k

h
j
k

γ
j
k

)
.

(29)
Explicitly, hj can be generated on the basis of the hyperpa-574

rameter γj . When considering all the NR groups, we have575

a vector γ that controls the prior variance of the group576

of elements in hk. Let Γk = diag(γk) ∈ RNR×NR be a577

diagonal matrix with the hyperparameter vector γk on its578

diagonal.579

Specifically, to solve our problem, the expected value580

for the (i − 1)-st iteration of the log-likelihood function581

ℓ(Γk,Ck|Γ̂i−1
k , Ĉi−1

k ), corresponding to the complete data582

{ŷk, ĥk}, is determined by the E-step formulated as583

ℓ(Γk,Ck|Γ̂i−1
k , Ĉi−1

k )

= Eĥk|ŷk;Γ̂
i−1
k ,Ĉi−1

k
{lnp(ŷk, ĥk;Γk,Ck)}. (30)

Then, by employing Bayes’ rule to (30), the M- 584

step designed for maximizing the log-likelihood function 585

ℓ(Γk,Ck|Γ̂i−1
k , Ĉi−1

k ) to update Γk and Ck can be ex- 586

pressed as 587

(Γ̂i
k, Ĉ

i
k) = argmax

Γk,Ck

E{lnp(ĥk;Γk,Ck)}. (31)

Then, based on (28) and (29), each γj
k is decoupled by the M- 588

step, and according to [45], the a posteriori PDF for the i-th 589

iteration is given by p
(
ĥk|yk; Γ̂

i−1
k , Ĉi−1

k

)
∼ CN

(
µi

k,κ
i
k

)
590

with 591

µi
k =κi

kΨ̂
H
k R̃

−1
k ŷk,

κi
k =

[
(Γ̂i−1

k ⊗ Ĉi−1
k )−1 + Ψ̂H

k R̃
−1
k Ψ̂k

]−1

. (32)

To reduce complexity, we adopt the simplified covariance 592

approximation of [22], [45], which yields 593

κi
k ≈((Γ̂i−1

k )−1 +ΨH
k R̂

−1
k Ψk)

−1 ⊗ Ĉi−1
k , (33)

and the posterior mean efficiently is updated as 594

µi
k ≈[(κ̂i

kΨ
H
k R̂

−1
k )⊗ IN ]vec(ŶT

k )

=vec([
˜̂
Hk,i]

T), (34)

where ˜̂
Hk,i = κ̂i

kΨ
H
k R̂

−1
k Ŷk. By substituting the approxi- 595

mations of (33) and (34) into (32), the hyperparameter γj,i
k 596

can be expressed as 597

γj,i
k = [κ̂i

k]j,j +
1

N
([
˜̂
H

i

k]j,:)
H(Ĉi−1

k )−1[
˜̂
H

i

k]j,:, (35)

where the correlation matrix Ĉi
k is represented as 598

C̃i
k =

NR∑
j=1

1

γj,i
k

[
˜̂
H

i

k]j,:([
˜̂
H

i

k]j,:)
H + ηIN ,

Ĉiter =
C̃i

k∥∥∥C̃i
k

∥∥∥
F

, (36)

with η having a constant. The estimation of the desired vector 599˜̂
hk is given by the converged a posteriori mean µi

k. To 600

recover the estimated channel vector into matrix for the k- 601

th state, we have ˜̂
Hk = reshape(

˜̂
hk, N) ∈ CNR×N . After 602

obtaining the channel parameters, the location of UE can be 603

recovered as shown in Fig. 2c. 604

Delay estimation: the estimated channel gain ˜̂ρk,l̂ and the 605

ToA τ̂RU,k,l̂ for the l̂-th path is recovered as 606

˜̂ρk,l̂ =max( ˜̂Hk, 2) ∈ C1×N ,

τ̂BRU,k,l̂ =argmax
τBRU,k,l

∣∣∣g(τBRU,k,l̂)
˜̂ρk,l̂

∣∣∣2
τ̂RU,k,l̂ =τ̂BRU,k,l̂ − τBR,l̂, (37)

where g(τBRU,k,l̂) =
[
1, ..., e−j2π(N−1)τ

BRU,k,l̂
/(NTs)

]T
rep- 607

resents the on-grid candidates of the delay between the BS 608

and the UE, and τ̂BRU,k,l̂ denotes the total delay between 609

the BS and the UE, while τBR,l̂ is assumed to be known, 610
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because again, the locations of the BS and RIS are normally611

assumed to be fixed in DL transmission [20], [46].612

AoR estimation: The spatial frequency ˜̂
θspatial,k,l̂ for the613

l̂-th path can be expressed as614

ŝ = argmax
s=1,...,NR

N∑
n=1

˜̂
H:,n,

θ̂spatial,k,l̂ =arcsin

(
λc

d

ŝ− (NR − 1)/2− 1

NR

)
,

θ̂RU,k,l̂ =arcsin[sin(ϕBR,l̂)− sin(θ̂spatial,k,l̂)]. (38)

Finally, the location of the UE for the k-th state can be615

recovered as616

ûk = r+ cτ̂RU,k,1[cos(θ̂RU,k,1), sin(θ̂RU,k,1)]
T, (39)

where r is the location of the RIS, as the reference node617

of localization. In successive motion states, directly apply-618

ing single-shot localization at each time step can lead to619

quantization errors in both the angular and time domains.620

Therefore, we incorporate a Kalman filter to perform tem-621

poral smoothing of the position estimates by exploiting622

the motion dynamics of the user. Note that we do not623

aim for improving the Kalman filter itself, but rather for624

the nontrivial construction of the measurement model for625

the Kalman filter in the RIS-aided mmWave localization626

scenario. When all the estimates of the K states of ûk are627

collected, the Kalman filtering can be used for improving628

trajectory recovery, which will be detailed in the next section.629

E. Cramer-Rao Lower Bounds630

In this subsection, we obtain the CRLBs of θRU and τRU for631

the k-th state, and also the PEB of the UE. Based on (22),632

the log-likelihood function is633

ln p(Y | uk) ∝ −
L,N∑
l,n

∥∥∥Yl:[k, n]− Ω̂kρ̂l[k, n]a(θspatial,k,l)
∥∥∥2
R−1

k

,

(40)

where we have L = LBRLRU, ∥x∥R−1
k

= xHR−1
k x. Further-634

more, the Fisher information matrix (FIM), given LRULBR635

and the number of subcarriers N , can be defined as636

I =

L,N∑
l,n

2

σ2
ℜ
{
JH
l,nJl,n

}
, (41)

where we have Jl,n =
[
∂µl,n

∂uk
x
,
∂µl,n

∂uk
y

]
, and µl,n is the637

noiseless version of (22). The derivation of Jl,n is detailed638

in Appendix A. The PEB is defined as639

PEB =
√

Trace(I)−1. (42)

IV. Kalman Filter with Bias-Compensated Localization640

Measurements641

In this section, initialization at k = 0 is based on the642

method of Section III. Then, Kalman filtering is employed to643

improve the performance of the single-shot localization for644

trajectory estimation, based on the statistical characterization645

of the noise distribution in the measurement model of Section646

III and the process noise distribution in the state evolution 647

model. 648

The procedure of the proposed three-stage tracking 649

scheme is shown in Fig. 3. The Kalman filter-based approach

UE moving state 

Stage 1:Random 
Beamforming

Stage 2: Phase shifter configuration and 
parameter estimation

0k  Initialization

Stage 3: Kalman 
filtering 

UpdatePrediction 

1,...,k K

| 1k k  |k k

FIGURE 3: Illustration of the proposed three-stage tracking
scheme.

650

used for tracking the user for k > 0, where we consider the 651

state transition model with fixed velocity, may be expressed 652

as 653

xk = Txk−1 + qk, (43)

where the state variables xk = [uk
x, v

k
x, u

k
y , v

k
y ]

T, and the 654

process noise lead to variations in both direction and speed, 655

defined as qk ∼ CN (0, σ2
qi). As introduced in Section 656

II, the Cartesian coordinate of the UE is represented as 657

uk = [uk
x, u

k
y ]

T ∈ R2. Furthermore, vkx and vky denote the 658

velocity of the UE along the x-axis and y-axis, respectively. 659

The state transition matrix T is given by5
660

T =

 1 ∆T 0 0
0 1 0 0
0 0 1 ∆T
0 0 0 1

 . (44)

In (44), ∆T is the interval of input samples. On the 661

other hand, the measurement variable is given by x̂k = 662

[ûk
x, v̂

k
x, û

k
y , v̂

k
y ]

T. At each time step, the position is estimated 663

via single-shot localization based on (39), which is denoted 664

as ûk = [ûk
x, û

k
y ]

T. Due to the use of discrete delay-angle 665

grids and practical estimation errors, this estimate contains 666

both a systematic bias bk and measurement noise rk, which 667

can be modeled as 668

x̃k = xk + bk + rk. (45)

To enable standard Kalman filtering, which assumes zero- 669

mean Gaussian noise, we apply an offline bias compensation 670

strategy. The average estimation bias bk is statistically 671

estimated from Section III. This bias is subtracted from ûk. 672

5In this paper, we assume the low-speed pedestrian velocity is considered
in indoor scenario, where the abrupt speed change (acceleration or turn) is
not taken into consideration, which implies less complicated trajectory is
considered and requires no sophisticated filter, such as interacting multiple
model (IMM) [47].
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Therefore, the Kalman filter assumes a linear measurement673

model 6 formulated as follows674

x̃k = Mkxk + rk, (46)

where the measurement matrix is Mk = I4 and the measure-675

ment noise is expressed as rk ∼ CN (0, σ2
r). Alternatively,676

when only the measurements of locations are considered in677

(46), the measurement matrix can be further written as678

Mk =

[
1 0 0 0
0 0 1 0

]
. (47)

In the tracking process, at the first state of k = 0, we estimate679

x[0|0] as the initial location of the UE via (39). Then the680

a priori prediction can be formulated as681

x̂k|k−1 = Tx̂k−1|k−1, (48)

where x̂k−1|k−1 is the a posteriori prediction gleaned from682

the previous state. Thus, the estimated covariance matrix is683

updated as684

Pk|k−1 = TPk−1|k−1T
T +Q, (49)

where Q = diag(σ2
q1 , σ

2
q2 , σ

2
q3 , σ

2
q4). Based on the prediction685

stage in (48), the Kalman gain is updated as686

Kk = Pk|k−1(Mk)
T
[
MkPk|k−1(Mk)

T
+Vk

]−1

, (50)

where the measurement noise covariance matrix is given687

by7 Vk = diag(σ2
rk,1

, σ2
rk,2

). Accordingly, the prediction is688

updated as689

x̂k|k = x̂k|k−1 +Kk

(
x̃k −Mkx̂k|k−1

)
, (51)

and the updated covariance matrix is expressed as690

Pk|k = (I−KkMk)Pk|k−1. (52)

Finally, we define the smoothed trajectory {ûk|k}Kk−1691

UKF = [û1|1, û2|2, . . . , ûK|K ]. (50)

The proposed three-stage tracking is summarized in Algo-692

rithm 1.693

V. Performance Results694

In this section, we consider the system of Fig. 1, where695

both the BS and the UE employing 16 antennas and the696

RIS has 16 elements. The number of time blocks is set697

to T = 32, while the number of pilot subcarriers is698

N = 20. The locations of the BS and the RIS are at699

b = [0, 0]T and r = [2, 10]T in order to investigate either700

an unreasonable RIS deployment or r = [2, 20]T for the701

other cases, respectively. Furthermore, the location of the702

first scatterer is fixed at s1 = [1, 3], while the second703

scatterer s2 is randomly located between the RIS and the704

UE. The carrier frequency fc is set to 28 GHz, while the705

bandwidth is B = 100 MHz, unless specified otherwise. The706

SNR is defined based on the reconstructed signal energy707

6Note that the observation model can be assumed to be non-linear, which
can be solved by the extended Kalman filter that has been studied in [29],
[48].

7The noise distribution of Vk for the k-th state can be obtained based
on offline statistics using the method detailed in Section III.

Algorithm 1 Three-stage tracking scheme

Inputs: Observations Ŷk ; Sensing matrix Ψk; Maximum
iteration ζ. Process noise covariance Q Measurement
noise covariance Vk

Objectives: To estimate ûk.
1: for k = 0, ...,K do
2: if k < 1 then
3: Initialize hyperparameters: Γ̂0

k = INR
, Γ̂−1

k =
0NR

4: for i = 0, ..., ζ do
5: Expectation: Evaluate the a postriori mean

µi
k and covariance matrix κi

k according to (34) and (33),
respectively.

6: Maximization: Update the hyperparameters
γj,i
k based on (35), and the correlation matrix Ĉi

k based
on (36), with Γ̂iter = diag(γ1,iter, γ2,iter, ..., γNR,iter).

7: end for
8: ToA and AoR estimation based on (37) and (38),

respectively.
9: Kalman filter initialization ûk=0 is obtained by

(39).
10: else
11: Prediction procedures based on (48) and (49).
12: Update procedures based on (50) to (52).
13: end if
14: end for
15: return ûk from x̂k|k.

using the sensing matrix and sparse coefficients. Specifically, 708

SNR (dB) =10 log10(
∥Ψ̂kĥk∥2

σ2
k

). Finally, the estimation per- 709

formance is characterized by the root mean squared error 710

(RMSE), defined as: 711

RMSE =

√√√√ 1

K

K∑
k=1

∥q̂− q∥22, (53)

where K denotes the number of Monte Carlo trials, while q 712

and q̂ are the true and estimated UE locations, respectively. 713

A. Single-Shot Localization Performance 714

In the simulation results of single-shot localization, the 715

location of the RIS is set to r = [2, 20]T, and the UE is 716

moving in a 20×20-meter indoor scenario, as shown in Fig. 717

1. In Fig. 4, we compare the CDF of the localization error 718

at different SNR values using different compressed sensing 719

algorithms. From the simulation results, we can conclude that 720

the proposed method is more accurate and robust than the 721

SMV based approximate message passing algorithm (AMP) 722

and the MMV based simultaneous orthogonal matching pur- 723

suit (SOMP) algorithm. Moreover, it can be observed that the 724

proposed algorithm outperforms both the SOMP and AMP 725

algorithms in mmWave channel estimation due to its ability 726

to exploit the temporal correlation, effectively handled by the 727

MMV structure, maintain robustness in low SNR conditions, 728

and achieve stable convergence at a moderate computational 729

complexity. Explicitly, the maximum/minimum localization 730
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FIGURE 4: CDF of the UE’s estimation error using different channel estimation algorithms at SNR = 0 and -5 dB.

error of the proposed algorithm is significantly lower than731

that of the rest.732
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FIGURE 5: CDF of localization error under different beam
misalignment levels ηerror at SNR=5 dB and T = 16.

To assess this impact, we characterized various levels733

of misalignment values ηerror = {0.99, 0.95, 0.90, 0.80},734

and evaluated their effect on the localization performance.735

Fig. 5 shows that the proposed method retains similar736

accuracy even when the beamforming misalignment factor737

is ηerror = 0.90, which confirms that the proposed method738

maintains robust performance under moderate beamforming739

inaccuracies.740

In Fig. 6, we compare the performance of DFT-based 741

and random RIS phase shift matrices for different SNR 742

levels and different number of time blocks. Fig. 6 presents 743

the CDF of localization error for SNR values of -10, - 744

5 and 0 dB, and T = {16, 24, 32}. From the simulation 745

results, we can find that the random configuration causes 746

severe degradation due to the high column-correlation in the 747

sensing matrix. When the number of time blocks increases, 748

the performance gap between the DFT-based and random- 749

based configurations reduces, since more measurements help 750

average the randomness. On the other hand, Fig. 6 shows that 751

the DFT configuration consistently yields lower localization 752

error and steeper CDF transitions, reflecting more reliable 753

support recovery. 754

Fig. 7 compares the CDF of localization errors for the 755

proposed scheme and a benchmark IFFT-based pulse estima- 756

tor [49]. It can be seen in Fig. 7 that the proposed scheme 757

substantially outperforms the benchmark, which is due to the 758

fact that the resolution of the IFFT-based method is limited to 759

1/B, where B refers to the system bandwidth. By contrast, 760

the proposed scheme relies on the super-resolution delay 761

steering vector g(τ) of (37), which is constructed from an 762

overcomplete delay dictionary with arbitrarily fine spacing. 763

In Fig. 8, we can observe that as the distance between 764

the RIS and the UE increases, the PEB also increases, as 765

expected. Furthermore, it can be observed that the maximum 766

error occurs when the reflected angle is 0 degrees, which 767

leads to a blind spot. Moreover, the minimum PEB occurs 768

when the UE is near the RIS. 769

In Fig. 9, the angular resolution GR is set to 16, 32, 770

64, 96, 128, corresponding to the angles of 22.5, 11.25, 771

5.625, 3.75 and 2.8125 degrees. Fig. 9 presents the cumu- 772
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lative distribution function (CDF) of single-shot localization773

accuracy under varying angular resolutions. As the angular774

resolution increases, the localization error decreases, result-775

ing in higher accuracy. The steeper CDF curves highlight the776

significant advantage of high angular resolution in reducing777

the localization errors. This suggests that optimizing the778

antenna arrays or signal processing can effectively enhance779

localization performance.780

B. Kalman Filtered Tracking Performance781

1) Scenario 1 - Tracking for ideal straight movement782

In Fig. 10, the tracking trajectories of the ground truth,783

single-shot localization, and the proposed tracking method784

are compared, when the UE follows a straight movement pat-785

tern. This analysis evaluates the effectiveness of the Kalman786

filter in refining the trajectory estimation. Observe in Fig. 10787
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FIGURE 8: PEB (dB) distribution of the UE’s location, at
SNR = 0 dB.

that the single-shot localization method exhibits noticeable 788

deviations from the ground truth caused by the angular and 789

temporal quantization errors, making the estimated trajectory 790

less reliable for continuous tracking. By contrast, the Kalman 791

filter-based tracking method provides a smoother and more 792

accurate trajectory. It significantly reduces sudden deviations, 793

ensuring that the estimated path remains close to the true 794

movement. 795

Fig. 11 investigates the tracking performance, when the 796

RIS is disadvantageously placed. In this case, the UE moves 797

to a position behind the RIS, which can only cover half 798

the plane. In Fig. 11, we compare the estimated trajectories 799

of single-shot localization and Kalman filtering against the 800

true path. It can be observed that the single-shot localization 801

results show significantly higher errors, which implies that 802

the lack of strong reflected paths leads to poor localization 803

accuracy. Kalman filtering succeeds in mitigating the errors, 804

but still fails to fully compensate for the poor RIS placement. 805
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FIGURE 10: The trajectory of the ground truth versus
the single-shot localization and the proposed method, when
NB = NU = NR = 16, K = 50 and T = 32 for straight
movement.

The estimated trajectory still deviates from the ground truth,806

indicating that RIS positioning plays a crucial role in track-807

ing performance. To further enhance performance, simulta-808

neously transmitting and reflecting reconfigurable intelligent809

surface (STAR-RISs) [50]–[52] and more robust tracking810

models can be employed, which will be part of our future811

research.812
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FIGURE 11: The trajectory of the ground truth versus the
single-shot localization and the proposed method, when the
UE’s trajectory is behind the RIS.
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FIGURE 12: The trajectory of the ground truth versus the
single-shot localization and the proposed method in arbitrary
tracking, when NB = NU = NR = 16, K = 50 and T = 32.

2) Scenario 2 - Tracking of arbitrary tracks 813

Fig. 12 compares the ground truth trajectories, single-shot lo- 814

calization, and the proposed tracking method for two differ- 815

ent trajectories. The single-shot localization shows noticeable 816

deviations, especially in dynamically fluctuating scenarios. 817

By contrast, the Kalman filter-based tracking method is 818

closely aligned with the ground truth. This demonstrates 819

the higher robustness of the proposed method in dynamic 820

environments, which is able to improve the tracking accuracy 821

compared to single-shot localization. 822

Fig. 13 compares the ground truth trajectories, single-shot 823

localization, and Kalman filter-based tracking under different 824
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FIGURE 13: Investigation of the impact of different SNRs:
the trajectory of the ground truth versus the single-shot
localization and the proposed method in arbitrary tracking,
when NB = NU = NR = 16, K = 50 and T = 32.

SNR conditions. The study examines how different noise825

levels affect the localization accuracy. At higher SNR levels,826

both single-shot localization and Kalman tracking closely827

follow the ground truth. The tracking error remains mini-828

mal, showing that as expected, a stronger signal facilitates829

more accurate positioning. At lower SNR levels, single-830

shot localization experiences larger deviations from the true831

trajectory. The Kalman filter mitigates some of the noise but832

still struggles to fully compensate for the degraded measure-833

ments. Nonetheless, the Kalman filter outperforms single-834

shot localization in all cases, demonstrating its effectiveness835

in smoothing noisy measurements.836

Fig. 14 investigates the influence of different beamspace837

resolutions on the tracking performance. It compares Kalman838

filtering and single-shot localization using two different839

resolutions. Observe from Fig. 14 that the higher beamspace840

resolution improves tracking accuracy. The trajectories as-841

sociated with increased resolution are aligned more closely842

with the ground truth. On the other hand, a lower resolution843

results in higher localization errors, especially for single-844

shot localization. The reduced spatial resolution makes it845

harder to precisely estimate user positions. Moreover, we846

may conclude that Kalman filtered tracking outperforms847

single-shot localization in both cases, but the performance848

gap narrows at higher resolutions.849

VI. Conclusions850

In this paper, we addressed the problem of UE trajectory851

tracking in an indoor environment having multiple random852

scatterers. We proposed a three-stage localization and track-853

ing method using RIS-aided localization and a enchanced854

MMV-mSBL algorithm. A structured RIS phase shift design855

relying on a DFT matrix was introduced to resolve the AoR856
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FIGURE 14: Investigation of the impact of different
beamspace resolutions: the trajectory of the ground truth
versus the single-shot localization and the proposed method
in arbitrary tracking, when NB = NU = NR = 16, K = 50
and T = 32.

path crossing issue. To reduce complexity, we exploited 857

the frequency diversity for path selection, simplifying the 858

AoR and ToA estimation. A three-stage tracking scheme 859

was designed for mitigating the training overhead. It re- 860

lied on offline training for measurement noise distribution, 861

random beamforming for channel sounding, and Kalman 862

filtering for trajectory tracking on simulations showed that 863

the method proposed outperforms SMV-AMP and MMV- 864

SOMP, especially at low SNRs. The PEB derived validated 865

its accuracy, and different movement scenarios were ana- 866

lyzed. Our framework improved thelocalization robustness 867

and efficiency, offering a promising solution for indoor UE 868

tracking. 869
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Appendix A1071

Elements in (41)1072

To obtain the Jacobian matrix Jl,n of l-th path and n-th subcarrier for the1073

k-th state, each element of Jl,n =

[
∂µl,n

∂uk
x

,
∂µl,n

∂uk
y

]
, and µl,n is given by1074

∂µl,n

∂uk
x

= Ω̂k

(
∂ρ̂l[k, n]

∂τRU,l,k

∂τRU,l,k

∂uk
x

a+ ρ̂l[k, n]
∂a

∂θRU,l,k

∂θRU,l,k

∂uk
x

)
,

(54)

where the derivatives in (54) is indexed by a in (20) defined as1075

∂ρ̂l[k, n]

∂τRU,l,k
=ρ̂l[k, n](−j2πnB/N), a ≥ 1, (55)

∂τRU,l,k

∂uk
x

=
uk
x − rx

c ∥uk − r∥2
, a = 1, (56)

∂τRU,l,k

∂uk
y

=
uk
y − ry

c ∥uk − r∥2
, a = 1, (57)
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∂uk
x

=
−uk

y + ry

∥uk − r∥22
, a = 1, (58)
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=
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, a = 1, (59)
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, a ̸= 1, (60)
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=
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, a ̸= 1, (61)
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∂uk
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=0, a ̸= 1, (62)
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∂uk
y

=0, a ̸= 1. (63)

∂a(θspatial,k,l)

∂θRU,l,k
=jπ

d

λc
cos

(
θspatial,k,l

)
Da(θspatial,k,l), (64)

where s2 denotes the location of the second SC. Furthermore, D is defined1076

as D = diag (0, . . . , NR − 1), and a
∆
= a(θspatial,k,l).1077
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