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ABSTRACT

Maritime accident research has primarily focused on characteristics and risk analysis, which often overlooks the
evolution of the associated risk patterns over time. This study aims to investigate the dynamic changes in
maritime accidents from 2012 to 2021 by employing a data-driven Bayesian Network (BN) model and conducting
a systematic dynamic pattern comparison. It presents two-stage models for two databases and five models against
different timeframes to capture the evolving characteristics of global maritime accidents. Furthermore, within
the context of the accident investigation, this study pioneers the analysis of the effectiveness of two network
structures, namely a layered BN model and a Tree-Augmented Naive Bayesian (TAN) network, in terms of the
accuracy of predicting the accident severity. The key findings regarding the changes in maritime accidents in the
past decade include: (1) a significant rise in maritime risks linked to large ships (30.8%), port areas (11.67%),
anchoring (11.82%), and manoeuvering operations (3.8%); (2) a connection between poor anchoring practices
on fishing boats and ‘overboard’ accidents, and between inadequate equipment on tankers or chemical ships and
‘fire/explosion’ accidents; (3) the TAN model’s superior performance in forecasting accident severity compared
to the layered BN model; and (4) the probability of ‘very serious’ accidents in terms of ship-related factors is
74.7%, which is for the layered BN network, significantly lower than the TAN network’s 99.4%. This study
reveals shifts in accident patterns over time and underscores the importance of continuous monitoring and
analysis for effective safety and risk management.

1. Introduction

shipping companies to researchers, to enhance safety measures, promote
effective regulations, and develop advanced technologies and practices

Maritime transportation is indispensable to international trade and
related supply chains, representing in excess of 90% of the worldwide
trade volume (Jiang et al., 2020; Li et al.,, 2022; Xin et al., 2023).
However, the rapid growth of the shipping industry, alongside unad-
dressed inherent challenges in ensuring maritime safety, require urgent
solutions. Maritime accidents can have far-reaching and severe conse-
quences on assets, environment, and personnel, including casualties,
economic losses, channel blockage, and environmental pollution (Zhang
et al., 2013; Chen et al., 2022; Sepehri et al., 2022; Khan et al., 2023).
Given the essential role of maritime transportation in global trade, it
becomes paramount to address the challenges associated with maritime
safety (Cao et al., 2023a). Efforts are continuously made by all stake-
holders, ranging from international organisations, governments, and
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to prevent accidents and minimise their consequences (Cao et al., 2023b;
Li et al., 2023; Li and Yang, 2023; Zhou et al., 2024).

Risk analysis plays a crucial role in identifying risk factors and root
causes of different types of accidents. This enables the formulation of
relevant measures to effectively prevent maritime accidents (Wang
et al., 2023; Lan et al., 2023; Fu et al., 2022; Trucco et al., 2008).
Qualitative methods like Functional Resonance Analysis Method
(FRAM), Root Cause Analysis (RCA), and risk rating scales offer sys-
tematic risk assessment but lack reliability due to subjective interpre-
tation. In contrast, quantitative methods such as Fault Tree Analysis
(FTA), Bayesian Network (BN), Event Tree Analysis (ETA), and Evidence
Reasoning (ER) provide data-driven approaches. Among these, BN
stands out for its ability to model causal relationships between factors,
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handle multiple variables, and integrate various factors.

In maritime risk analysis, conventional approaches heavily rely on
historical accident data and expert knowledge (Luo and Shin, 2019;
Demirci et al, 2023). However, pure statistical or expert
judgment-based analyses could possibly introduce biases to the results.
Consequently, there is a need for advanced methods to address the
inherent uncertainty in risk data. The combination of BN and real
maritime accident data has emerged as a prominent solution due to its
prized capability to effectively capture and model causal factors and
their interrelationships (Fan et al., 2020a; Hossain et al., 2022; Zhou
etal., 2023; Li et al., 2023a; Meng et al., 2022). The application of BN in
maritime risk analysis allows for a systematic and probabilistic approach
to understand and evaluate the complex factors contributing to acci-
dents. While the accident analysis of 2012-2017 exists in the literature,
there is an urgent need for a comprehensive investigation of the accident
characteristics by using the latest five-year period (2017-2021) as a
reference to detecting the dynamic pattern of maritime accident
changes. This is particularly important and insightful as the world
continuous to experience impactful changes to international shipping
from events like the COVID-19 pandemic, the Russia-Ukraine conflict,
and the rise of international trade protection. It is also necessary to see
how such new data will train different BN-based maritime risk models
that can best reflect the current maritime safe operation environment.

Furthermore, a detailed comparison of the accident analysis between
the latest five-year period and the previous six-year period (2012-2017)
will benefit the stakeholders to better understand the trends in accident
development to devise new prevention measures. Due to the fact that the
methodology of developing the data-driven BN risk model is generic, the
effect of any specific shocking event on maritime safety could be
investigated when the associated data from before, during, and after the
occurrence of the event are obtained. The comparison between the
analysis results of two databases (i.e., 2012-2017 and 2017-2021") will
enable an investigation of the evolution of maritime accident charac-
teristics from a global perspective. This will provide new findings on
maritime accidents in recent years and insights into changes in their
characteristics over time.

This study further screened maritime accident data from 2017 to
2021, ensuring consistency with the data from 2012 to 2017 regarding
the consistency of accident types. It included both the original accident
data from the International Maritime Organization (IMO) Global Inte-
grated Shipping Information System (GISIS) and the supplementary
ship-normalised data provided by Lloyd’s Register Fairplay (LRF). More
specifically, the primary contributions of this paper are as follows.

(1) Conduct a comparative analysis of dynamic risk characteristics by
data-driven BN models.

(2) Investigate the evolutionary features of maritime accidents for
risk analysis and future prediction.

(3) Evaluate the predictive performance of two risk models on
various accident types using annual data to reveal their yearly
evolution characteristics.

(4) Design different risk models for maritime accident severity and
evaluate their predictive abilities.

The paper is organised as follows: Section 2 reviews existing litera-
ture on risk studies pertaining to maritime accidents and identifies the
prevailing risk factors in the literature. Section 3 describes an overview
of the dataset generation, spatial and temporal features extraction, the
identification of Risk Influencing Factors (RIFs), and the construction of
a novel BN model for maritime accident risk. In Section 4, sensitivity
analysis is conducted to explore the significance of RIFs and their impact
on maritime accident risk. The constructed model is validated from

! The detailed data and reports from 2022 onwards are not available from the
IMO database.
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multiple perspectives. Section 5 provides an in-depth comparative
analysis, uncovering the unique and valuable research insights obtained
from this study. The implications of this study are listed in Section 6 to
provide useful guidance. Finally, Section 7 summarises the conclusions
and future development.

2. Literature review
2.1. Research in the field of maritime risk analysis

Maritime risk analysis is crucial to ensuring navigational safety
(Demirci and Elcicek, 2023). The IMO has developed the Formal Safety
Assessment (FSA) framework to bolster the safety and sustainability of
maritime activities by providing a systematic approach to risk assess-
ment. Scholars have embraced both qualitative and quantitative analysis
methods to assess accident risks and navigation safety. Qualitative
evaluation methods such as Functional Resonance Analysis Method
(FRAM), Root Cause Analysis (RCA), and risk rating scales offer sys-
tematic approaches to assessing risk in complex maritime systems
(Goerlandt and Montewka, 2015; Marino et al., 2023). While these
methods help identify underlying causes of accidents and prioritise risks,
they are limited in their ability to quantify risks. The methods rely
heavily on subjective interpretation and lack reliability and validity.
Human Factors Analysis and Classification System (HFACS) and Acci-
dent Analysis Mapping (AcciMap) specifically focus on human factors in
accidents, but they face similar limitations in quantifying risks based on
subjective judgments. Qualitative analysis typically leverages subjective
judgments and expert knowledge to evaluate the impact of risk factors.
While these methods are valuable in identifying potential risks, they are
inherently subjective and lack quantifiability. This often leads to ques-
tions about their reliability.

In contrast, Quantitative Risk Assessment (QRA) methods like FTA,
BN, ETA, and ER provide advanced and data-driven approaches to assess
maritime accident risks (Zhou et al., 2024; Chen et al., 2019). FTA helps
identify potential failure pathways, while ETA visualizes accident se-
quences and their probabilities. ER incorporates diverse evidence
sources to assess risk, but it may be computationally intensive. However,
among these methods, BN stands out because of its powerful modelling
capabilities, including its ability to explore causal relationships between
influential factors, handle multiple-state variables and outputs, and
integrate human and organizational factors with other RIFs. Quantita-
tive methods, using statistical data and analytical techniques and aiming
to objectively quantify risk factors and their relationships with maritime
accidents, offer a more measurable approach to risk assessment (Fu
et al., 2023). Various studies have employed sophisticated quantitative
tools like Fuzzy Fault Tree Analysis (FFTA), real-time risk models, and
advanced algorithms such as eXtreme Gradient Boosting (XGBoost) and
BN for improved risk evaluations. These methods capitalise on quanti-
tative data to mitigate the subjective biases inherent in qualitative an-
alyses, which provide a more robust framework for maritime risk
assessment. For example, Tuncel et al. (2023) used the FFTA to analyse
the potential risks of maritime pilots during operations. Li et al. (2023b)
established a regional real-time risk model for assessing ship collision
risks using the random forest method. Zhang et al. (2022) employed the
XGBoost algorithm to build a predictive model for maritime accidents
related to preventive safety risks, achieving an accuracy rate of 97.14%.
Li et al. (2014) innovatively integrated logistic regression and BN into
maritime risk assessment based on different maritime accident data re-
sources. Montewka et al. (2014) used Bayesian Belief Networks (BBN) to
develop a systematic risk framework for evaluating maritime transport
risks. Wan et al. (2019) integrated BN with fuzzy belief rule methods to
construct a more accurate risk factor assessment model for maritime
supply chains. Generally, BN analysis of maritime risks often relies on
expert experience or objective maritime accident datasets. Yu et al.
(2020) integrated ER with BN and incorporated expert judgments to
develop a risk assessment model for ship-turbine collisions to protect
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navigation safety near Offshore Wind Farms (OWFs). Zhang et al. (2021)
carried out a risk assessment involving 945 collision accidents in the
Jiangsu section of the Yangtze River spanning from 2012 to 2016, using
a conjugate Bayesian updating method supported by expert knowledge.
However, the subjectivity of expert experience often results in inaccur-
acies in the research results. To avoid this type of uncertainty in the risk
assessment process, data-driven BN has been proposed. Fan et al. (2022)
established a data-driven BN risk model for maritime accidents in
restricted waters worldwide from 2005 to 2021 and provided valuable
insights for the Suez Canal blockage accident. Jiang et al. (2020)
developed a BN model for the analysis of maritime accident risks using
accident reports from the Maritime Silk Road (MSR).

BN, in particular, has gained prominence for its comprehensive
modelling capabilities, incorporating the probabilistic relationships
between risk factors and accident outcomes. Its capacity to provide bi-
directional risk analysis and accommodate various types of risk factors
makes it invaluable for understanding the complex dynamics of mari-
time accidents. While constructing and interpreting BN requires
specialized knowledge and could be data-intensive, its holistic
perspective on accident risks significantly enhances maritime safety
practices. BN serves as a dynamic tool for maritime risk analysis, of-
fering insights into various aspects of accident dynamics by assessing
accident likelihood, severity, and the influence of risk factors with
versatility.

Maritime accident analysis using BN can be divided into three cat-
egories, namely: accident likelihood assessment, accident severity
evaluation, and influence of risk factors analysis.

The first type explores the probability or frequency of maritime ac-
cidents. For example, Pristrom et al. (2016) employed data obtained
from the GISIS and expert judgment to develop a BN model to evaluate
the likelihood of a vessel being hijacked in the West Indies or East Africa.
Sakar et al. (2021) applied a combination of BN and FTA to explore the
influence of various influencing factors on the likelihood of grounding
accidents. The second type focuses on the severity or consequences of
maritime accidents. Wang et al. (Wang and Yang, 2018) applied the
Augmented Naive Network (ABN) model to examine the pivotal risk
factors influencing the severity of waterway accidents. Liu et al. (2021)
used BN to explore the factors impacting the severity of accidents in
China’s coastal waters. The third type concentrates on exploring how
risk factors influence various categories of maritime accidents. Howev-
er, the reliance on expert opinions and the challenge of integrating
subjective experiences into BN models have prompted the development
of data-driven approaches to enhance objectivity and reliability.

Despite these advancements, the field still faces challenges like data
scarcity, outdated information, and regional research limitations, hin-
dering a global perspective on maritime risk evolution. This study seeks
to bridge these gaps by offering a comparative analysis of maritime
accidents over time, using the latest data to understand global trends in
accident characteristics.

Moreover, while secondary databases provide valuable accident
statistics, detailed accident reports offer richer insights into the causes,
conditions, and outcomes of maritime incidents. For instance, Fan et al.
(2020a) used the Naive Bayesian Network (NBN) to quantify the degree
of influence of different factors on various types of maritime accidents
based on 161 maritime accident reports from 2012 to 2017. Khan et al.
(2020) investigated the risks associated with different types of accidents
in Hong Kong waters based on 331 accident reports spanning from 1999
to 2017. The research findings provided insights that might not be fully
valid and representative at a global scale due to the data constraints
from temporal and spatial perspectives. Cakir et al. (2021) explored the
severity of oil spillage in potential ship accidents by analysing the U.S.
Coast Guard (USCG) database from 2002 to 2015. Antao et al. (2023)
assessed the impact of RIFs on collision accidents using 936 collision
accidents in the GISIS database from 2005 to 2017. Fan et al. (2020b)
explored the impact of human factors on maritime transportation based
on accident reports from the Transportation Safety Board of Canada
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(TSB) and the Marine Accident Investigation Branch (MAIB) from 2012
to 2017. Ma et al. (2022) identified influencing factors and quantita-
tively assessed the accident risks associated with transporting maritime
dangerous goods using 22 maritime accident reports from China. Fu
et al. (2022) determined potential risk factors for grounding accidents in
the Arctic region by examining 322 maritime accident investigation
reports and introduced a framework for quantitatively analysing the
causes of grounding accidents. A comprehensive recognition and state
definition of RIFs can greatly facilitate the development of targeted risk
management strategies. However, global studies on the factors and
states of maritime accidents are limited due to the need for extensive
global data support. Yu et al. (2021) established static and dynamic risk
assessment models for ships using BN, based on 8 RIFs and 13 RIFs,
respectively. These are followed by the identification of ‘ship area’, ‘ship
types’, and ‘ship off route’ as the most important RIFs. Wu et al. (2021a)
identified 6 RIFs by analysing 132 records of electric vehicles’ fire ac-
cidents and suggested that RoPax ships should avoid electric vehicle
charging during transportation. It is observed that previous research had
issues such as insufficient RIFs, oversimplified state definitions, and
limited application scenarios. However, extracting this information is
labour-intensive and subject to interpretive variability, underscoring the
need for comprehensive databases that amalgamate broad datasets like
the IMO GISIS and LRF, improving the identification and analysis of
RIFs.

As technologies advance and the maritime navigation environment
continues to evolve, there is a growing need and advantage in under-
taking an extensive and adaptable analysis of maritime accident evo-
lution that reflects global trends, using the latest data on maritime
incidents by integrating the IMO GISIS and LRF data. This research fills
the gaps in understanding how maritime accident characteristics evolve
over time by comparing and analysing the risk models and findings from
earlier studies.

2.2. Research on maritime accident evolution analysis

Maritime accidents are influenced by a multitude of factors. To
explore the intricate relationships among these factors, a comparative
literature review is undertaken. This review aims to assess the effec-
tiveness of different RIFs and update the latest advancements in mari-
time risk analysis. The keywords ‘Bayesian network’ and ‘Maritime risk
analysis’ are used to search for the relevant papers on the Web of Science
(WoS), focusing on journal articles. From an initial set of 238 journal
articles related to maritime accident risk analysis, 23 papers are selected
based on their detailed descriptions of RIFs, as determined by analysis of
their titles, abstracts, and research content. A quantitative analysis was
conducted on all RIFs found in the 23 selected papers, resulting in 22
high-frequency RIFs that were further analysed. The occurrence fre-
quency of these 22 RIFs is illustrated in Fig. 1. As depicted in Fig. 1, the
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Fig. 1. The frequency of RIFs from the screened papers.
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top eight RIFs are identified as ‘ship type’, ‘ship age’, ‘wind’, ‘sea con-
dition’, ‘ship operation’, ‘length’, ‘gross tonnage’, and ‘ship speed’.

Table 1 presents a macro-level analysis of the current state of
research on maritime risk. It showcases the frequency and usage of
different RIFs in various studies. The content presented in Table 1 un-
derscores the predominant areas of research within the field of maritime
accidents. Currently, the emphasis lies on conducting studies related to
risk analysis, accident causation analysis, the assessment of accident
severity, the analysis of collision accidents, and the examination of ac-
cidents involving fishing vessels. However, a noticeable gap in the
literature exists on accident development.

Addressing this gap is important because it provides a deeper un-
derstanding of accident progression that can significantly improve
maritime safety. The development of accident evolution comparative
analysis, grounded in accident data, offers a promising avenue for
improving maritime navigation safety practices and protocols. By dis-
secting and comparing how accidents unfold and progress, researchers
and industry stakeholders can identify critical points of intervention and
areas for preventative measures. This research could also lead to
enhanced safety regulations, advanced navigational technologies, and
improved training for maritime personnel. Despite progress in maritime
accident analysis, there is a compelling need for focused studies on
maritime accident evolution.

2.3. Research gaps

The research gaps have been identified through the literature review
outlined above and are summarised below.

Table 1
The comprehensive comparison of the screened papers.
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(1) The need for an extensive and adaptable analysis.

As maritime technologies and environments evolve, there is a crucial
requirement for comprehensive analysis that incorporates global trends
and the latest maritime incident data. This involves leveraging the IMO
GISIS and LRF data to enhance the understanding of maritime accident
evolution over time.

(2) Understanding the multifaceted causes of maritime accidents.

There is a gap in exploring the complex interplay of factors influ-
encing maritime accidents, particularly during the period that involved
many shocking events. A comparative literature review aimed at eval-
uating the effectiveness of different RIFs, update the current state of
each RIF, and understand its impact on maritime safety changes.

(3) Deepening the understanding of accident progression.

A significant gap exists in the comparative analysis of accident
development trends. Addressing this is essential for improving maritime
safety by developing strategies based on understanding the accident
progress mechanism and identifying intervention and preventative
measures.

(4) Advancing maritime safe practices.
While knowledge of maritime accidents has grown, there remains a

pressing demand for in-depth studies on accident progression. This area
of research is critical to establishing more effective safety protocols,

Refs Data resources Years Reports ~ Methods RIFs Accident Research content
types
(Li et al. GISIS and LRF 2017-2021 402 BN 23 11 Global accident risk
(2023a)) analysis
(Fan et al. Maritime Accident Investigation Branch (MAIB),  2012-2017 161 BN and TOPSIS 25 (focus 9 Prevention strategies
(2020c¢)) and the Transportation Safety Board of Canada on human in maritime accidents
(TSB) factors)
(Zhang et al. Tianjin Maritime Safety Administration (MSA) 2008-2013 234 BBN 10 7 Risk assessment and
(2016)) accident prevention
(Zhao et al. China MSA 2013-2019 160 BN 20 5 Risk analysis for
(2021)) autonomous ships
(Wu et al. Accident in Yangtze River 2012-2016 942 BN and three-layer 23 1 Anti-collision and
(2021b)) model decision-making
(Ozaydin Turkish Accident Investigation Board 2000-2018 173 Expert judgement, BN, 21 1 Occupational accident
et al. and Association Rule analysis (fishing
(2022)) Mining (ARM) vessels >12 m)
(Ugurlu et al. GISIS, MAIB, European Maritime Safety Agency 2009-2018 226 BN and chi-square 15 5 Accident analysis of
(2020)) (EMSA), Australian Transport Safety Bureau fishing vessels (>7 m)
(ATSB), and TSB
(Kamal and Main Search and Rescue Coordination Center 2016-2021 418 BN and C4.5 decision 12 9 Accident analysis in
Gakir (MSRCQ)in Turkey tree Istanbul strait
(2022))
(Jiang and Lu ~ Remote Sensing Systems and Meteorological 2007-2018 460 Dynamic Bayesian 20 - Risk analysis in sea
(2020)) Center (RSSMC) Network (DBN) lanes
(Ung (2021)) Ministry of Transportation and Communications 2014-2019 583 BN 9 6 Navigational risk
(MOTC) marine accident database analysis
(Wang et al. ATSB, Federal Bureau of Maritime Casualty 2010-2019 1207 Classification of the 6 7 Maritime accident
(2021)) Investigation (BSU), China MSA, National accident severity levels severity analysis
Transport Safety Board (NTSB), TSB, MAIB and
Japan Transport Safety Board (JTSB)
(Kelangath Lloyds database 1997-2009 7488 BN 10 2 Risk analysis of
et al. damaged ships
(2012))
(Wu et al. Jiangsu MSA 2006-2013 797 BN 13 - Consequence
(2020)) estimation
(Fan et al. MAIB, TSB, and GISIS 2012-2017, 61 BN 25 4 Accident analysis in
(2022)) 2005-2021 restricted waters
(Zhou et al. GISIS and LRF 2017-2021 402 BN 23 11 Maritime casualty
(2024)) analysis
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pioneering navigational technology advancements, and improving
training for maritime personnel.

3. Methodology
3.1. The proposed framework for maritime accident evolution analysis

In this study, a data-driven BN method is used to develop the global
maritime accident risk model, serving as a fundamental basis for
comparing the evolution of maritime accidents. The proposed frame-
work is presented in Fig. 2 and consists of four parts. Firstly, a
comprehensive accident dataset with the same accident types from the
past six years (2012-2017) is constructed and generated based on the
maritime accident records in the IMO GISIS database and ship static data
from LRF (Li et al., 2023a). Subsequently, the accident dataset and the
RIFs serve as input for building the accident model through a
data-driven BN approach, where multiple methods are used for sensi-
tivity analysis and model validation. Throughout this process, important
RIFs with the greatest impact on various categories of maritime acci-
dents and the overall impact of multiple RIFs are revealed. Concurrently,
results from this study are compared with those of maritime accident
risk analysis from the past six years (2012-2017). Multiple scenario
analyses are conducted to reveal the latest characteristics of maritime
risks and compare the evolution trends in maritime accidents. Finally,
two different network structures, a layered BN model and a
Tree-Augmented Naive (TAN) network, are implemented and compared
to validate their performance in predicting accident severity.

3.2. Dataset generation

To create a standardised dataset of maritime accidents with the same
accident types from the past six years (2012-2017), this study gathers
accident information and reports from two authoritative maritime ac-
cident databases: GISIS and LRF.

Ocean Engineering 303 (2024) 117736

Initially, maritime accident data was collected from the GISIS data-
base for 2017 to 2021, resulting in a total of 1105 records. There are 948
records with accurate longitude and latitude.

Records of accidents lacking essential ship information and accident
reports, such as IMO or MMSI numbers, were eliminated to maintain
data quality. This resulted in 462 relevant accident records.

In the next step, missing ship details like hull structure, width, draft,
speed, power, gross tonnage, and other important information were
added from the LRF database for the remaining 428 accident records.

To maintain accuracy in maritime risk analysis, accident records
with unclear descriptions of the accident process, causes, and conse-
quences were excluded, leaving a dataset of 402 accident records.

Finally, accident records categorised as ‘occupational accident” and
‘ship/equipment damage’ were removed to align with the accident types
in existing literature (Fan et al., 2020a). This resulted in a final dataset
comprising 362 maritime accident records.

3.3. Spatial and temporal feature analysis

This dataset with 948 records, including longitude and latitude, can
be used for spatial and temporal pattern extraction and analysis. Fig. 3
depicts a series of world maps for 2017 to 2021, each showing the dis-
tribution of maritime accidents marked by purple dots. Over time, the
distribution of these maritime accident points exhibits specific
characteristics:

In 2017, maritime accidents were spread relatively sparsely across
the globe, with notable concentrations in parts of North America,
Europe, and East Asia.

In 2018, there appears to be a slight increase in the number of ac-
cidents, with more purple dots visible in the same regions that were
affected in 2017, suggesting either an increase in accidents or better
reporting in these areas.

By 2019, the distribution of purple dots remains consistent with the
previous years, indicating a persistent pattern of accidents in the

IMO GISIS LRF Investigate spatial and
Dataset (latzllbase . (latalbase temporal features
generation Screen the same accident types Reveal the distribution
with the dataset of 2012-2017 patterns
TAN-based model
Model for 2017-2021 Model MO(IC: ver:ﬁcatlon
. . —>  and real-case
comparison  mhe previous model sonstrucaon analysis
for 2012-2017
Comparative analysis of RIFs —— Reveal the development
Maritime Comparative analysis of BN trends of various RIFs
AEE e Comparative analysis of
development e I Comparison of the states’
- ﬂ i scenario analysis probabilities and scenarios
LC . Comparative analysis of annual
LY PEVARILIN models Reveal the annual
analysis Comparative analysis of two development trends
models for maritime casualty
Findings and Set the same §tates for ship- — Prediction performance analysis
iy related and environment-related
UNDAUCAONS RIFs —> Provide findings and implications

Fig. 2. The proposed framework.
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Fig. 3. The spatial and temporal patterns of maritime accidents.

aforementioned regions. There is no significant change in the overall
global distribution.

In 2020, the pattern of purple dots again shows consistency with the
earlier years, with no major shifts in the distribution. The concentration
of accidents remains higher in North America, Europe, and East Asia.

The map for 2021 maintains the trend observed in the previous
years, with no dramatic changes in the distribution of the purple dots.
The same regions continue to have a higher density of accidents.

Overall, the distribution of the purple points over time suggests a
consistent pattern, with certain regions consistently experiencing a
higher frequency of these maritime accidents. There is no significant
year-to-year variation in the global distribution of these events, indi-
cating a possible ongoing issue that affects the same areas repeatedly.

3.4. RIF identification

To conduct a more accurate risk assessment and control of maritime
accidents, 23 RIFs were identified by analysing the most frequently used
RIFs in the existing literature and combining them with the risk factors
recommended by the IMO. The comprehensive dataset on maritime
accidents used in this study allowed for consideration of various RIFs,
leading to an in-depth analysis of the risks connected with maritime
accidents. Previous literature often simplifies the definition of RIF states
to make data processing and classification less complex. However, such
an approach results in the loss of granularity of accident information,
making it difficult to uncover the intrinsic mechanisms of maritime
accident risks. To address this deficiency, this study defines the states of
the 23 RIFs in detail based on the constructed global maritime accident
risk database and the IMO standards (Li et al., 2023a). Finally, the
identified RIFs and their corresponding state definitions are listed
clearly in Fig. 4.

The state definitions employed in this study encompass the most
significant 11 types of ‘ship type’ and ‘voyage segment’ in the shipping
industry. Moreover, the state definitions for ‘ship age’ and ‘ship opera-
tion’ are also exhaustive, including 6 and 8 classifications, respectively.
These detailed definitions of RIFs enable a fine-grained assessment of

maritime accident risk, adaptable to diverse risk analysis requirements.
By using the RIFs and state definitions outlined in Fig. 4 for maritime
accident risk analysis, new and compelling research findings can be
uncovered, establishing a benchmark for future risk analysis.

3.5. Model construction

BN is a graphical model used for probabilistic modelling and infer-
ence, represented by a Directed Acyclic Graph (DAG). In the graph,
nodes symbolise random variables, while edges signify conditional de-
pendencies among these random variables. Due to its powerful capa-
bility to handle uncertainty and complex relationships among multiple
variables, BN has been widely applied in maritime accident risk
research.

In the past, most studies in the maritime safety field employed NBN
to analyse the relationships between RIFs and target nodes. However,
this approach assumes that all nodes are conditionally independent,
given their parent nodes, disregarding the complex dependencies be-
tween nodes. Therefore, despite the simplicity and efficiency of NBN in
computation, its modelling capability for complex probabilistic re-
lationships is limited. To address this limitation, the study employs a
TAN model to develop a maritime risk analysis model. TAN extends NBN
by introducing additional edges to relax the assumption of conditional
independence, thereby maintaining the simplicity of NBN while
enhancing the expressive power of the model (Cao et al., 2023b). To
construct the maritime risk analysis model, a data-driven approach is
used based on TAN. Compared to the expert knowledge-based training
methods used in previous studies (Yu et al., 2020; Zhang et al., 2016,
2021; Kaptan, 2022), the data-driven approach can adaptively and
objectively learn the network structure and parameters from data,
avoiding biases or errors that may result from expert knowledge.

Based on the new global maritime accident dataset, this study de-
velops a purely data-driven TAN model for maritime risk analysis,
consisting of 23 RIFs nodes. Then, the Conditional Probability
Tables (CPTs) of each node in the model are obtained through parameter
learning (Yang et al., 2018). The Bayesian rules are then used to
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Description
RIFs 1. Bulk carrier, 2. cargo ship, 3.
B container ship, 4. dredger, 5. fishing ship, 6.
Sl offshore ship, 7. passenger ship, 8. RORO, 9.
tanker or chemical ship, 10. tug, 11. others
| 1. A inium alloy, 2. ite materials,
LN ’| 3. GRP, 4. light alloy, 5. steel, 6. wood, 7. NA
Ship age 1. (0,51, 2. [6,10], 3. [11,15], 4. [16,20], 5. >20,
(years) 6. NA
Length
(meters) 1. (0,100], 2. (100,200], 3. >200 |
Breadth
o —-I () }—-I 1. (0,20], 2. (20,30], 3. (30,40], 4. >40 |
Classification
Ship-related Gross 1. (0,3000], 2. (3000,10000], 3. (10000,20000],
factors tonnage (GT) 4.>20000
Deadweight 1. (0,5000], 2. (5000,15000], 3. (15000,30000],
(DWT) 4.>30000
i [Leaz6s |
Power (kW) 1. (0,3000], 2. >3000
—>| Hal g }—-l 1. Double bottom, 2. double hull, 3. single hull
construction
Good condition of ships or the vessel condition
Vessel has nothing to do with the accident (good);
condition Poor condition of ships (e.g. ship design errors,
failure of ship equipment) (bad)
Wind
—>| (Beaufort Low (0-5), high (>6)
scale)
Visibility
—” () }—-l Bad (0-2), good (>2) |
Time of day Day (07:00 to 19:00), night (other)
‘Weather Good or bad, considering wind, rain,
condition fog, visibility, and extreme weather
Good or bad, considering falling or rising
Laco on tide, current, waves, and sea state
Shi 1. At anchor, 2. fishing, 3. loading/unloading,
4. on passage, 5. manoeuvring, 6. pilotage, 7.
OpCLALD) towing, 8. others
Vova 1. Anchorage, 2. archipelagos, 3. at berth, 4. canal,
5. channel, 6. coastal waters, 7. inland waters, 8.
g open sea, 9. port, 10. port approach, 11. river
Ship speed ’ o = q
(knots) Low (0-6), middle (6-12), high (>12)
Equipment on board is in good condition and operated
correctly (good);
Failure or incorrect operation of equipment on board (
such as failure of propulsion machinery, failure of
electrical installation, the alarm system turned off or
not noticed, etc.) (bad)
Friendly ergonomic design or has nothing to do with
Ergonomic the accidents (good);
design Unfriendly ergonomic design (such as poor bridge
ergonomics, insufficient stability, etc.) (bad)
Providing updated and effective information (good);
Lake of updated and effective information (such as inadequacy
2 o of navigational equipment, poor and unreliable chart data,
failure to send signals or respond appropriately, etc.) (bad)
Human factors have nothing to do with the accident (no);
Human Human violations or errors (such as fatigue, stress, error in
factor lack of familiarity or training, management and
supervision, etc.) (yes)
Fig. 4. Definition and states of RIFs.
calculate the marginal probabilities of each node upon the CPTs. This using

process can be simulated using Netica software, and the constructed
TAN model is presented in Fig. 5.

Fig. 5 presents the probabilities of nine accident types obtained of co
through the construction of the TAN model, which are as follows: 6.64%, evide
21.8%, 7.74%, 14.1%, 0.85%, 17.9%, 15.5%, 10.5%, and 4.99%. Sub-
sequently, the proportions of the nine accident types are calculated

the original dataset, resulting in the following statistical outcomes:
6.62%, 21.8%, 7.73%, 14.1%, 0.83%, 17.95%, 15.5%, 10.5%, and
4.97%. It can be observed that the two sets of data exhibit a high degree
nsistency in terms of probability values, providing preliminary
nce for the initial accuracy of the proposed model.
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Time of day Ship type
day 481 RORO 517 m Human_factor
night 51.9 bulk carrier 17.8 p— no  35.0
cargo ship 18.0 p— yes 65.0
Hull construction container ship 13.1 — Information
double bottom  17.4 m dredger 1.46 8
double hull 38.8 fishing vessel 13.0 j— bad 285
single hull 43.7 offshore vessels 412 m good 71.5
others 4.67 m " "
Ship age passenger vessel 5.91 jum Ergonomic_design
1 15.5 jm— tanker or chemical ship ~ 13.5 j— bad 114m
2 22.7 — tug 331 m good  88.6 mm——
3 15.9
g ;gg r Vessel condition
o [— bad 415
9 HESOINg good 58.5
33516 V\
Hull type Equipment/device
aluminium alloy 2.15 bad 48.0
composite materials  2.45 good 52.0
GRP 4.27
III\J%Aht alloy gg} . Ship speed
steel 79.0 jmm - high  20.6 jm
wood 4.87 Type of accident low 48.8
capsize 6.64 mm middle  30.6
Length collision 21.8 m—
1 39.6 contact/crush  7.74 mm S
2 36.6 le—— fire/explosion  14.1 i Visibility
3 23.8 flooding 0.85 > high 77.9
1.84+0.78 grounding 17.9 — low 22.1
X others 15.5
Power (s.’i\:'%goard 411093 F Weather condition
1 458 g : bad 363
2 54.2 good 63.7
154 +0.5
? Wind
Gross tonnage high 32.8
1 36.1 low 67.2
2 18.6
3 9.95
4 35.3 Sea condition
245+1.3 bad 34.8
good 65.2
Draught
1 491 o Voyage segment
2 25.5 mm anchorage 7.72 mm Ship operation
3 25.5 mm archipelagos 412 m at anchor 17.3
1.76 +0.83 at berth 409 m fishing 6.45m
LY canal 265m loading/unloading  7.12 m
Deadweight Breadth channel 273 —»| manoeuvring 14.6 mm
1 422 1 51.0 poastal waters  22.7 p— on passage 40.3 ——
2 209 2 209 inland waters 2681 others 263
3 713 3 17.5 open sea 24 2 n— pilotage 8.02
4 207 4 106 port 19.2 p— towing 3.59
504+13 188+ 1 F_‘ort approach 533 m
= o0 = river 449 m

Fig. 5. The generated TAN model for the global maritime risk analysis.

4. Model validation

This study employs five validation methods for the constructed
model. Firstly, sensitivity analysis is conducted to assess the dependence
between RIFs and accident types based on Mutual Information (MI),
joint probability, and True Risk Influence (TRI). Secondly, the correct-
ness of the model is affirmed against two given axioms using the out-
comes of the sensitivity analysis. Thirdly, a confusion matrix is
constructed, with six derived metrics to measure the predictive perfor-
mance of the model. Fourthly, the kappa coefficient is employed to
ensure the model’s consistency. Fifthly, a real-world maritime accident
that occurred in 2023 serves as a case study for practical validation.

4.1. Sensitivity analysis

Sensitivity analysis is a methodology employed to evaluate the

extent to which a model’s outputs are affected by variations in its input
variables. In maritime risk analysis, sensitivity analysis is used to iden-
tify important influencing factors of the model, which helps ensure its
accuracy (Li et al., 2023a). In this paper, sensitivity analysis is con-
ducted by M], joint probability, and TRI to investigate the dependence of
RIFs on accident types (Liang et al., 2022).

4.1.1. Mutual information

MI is a crucial indicator used to assess the correlation between two
random variables and evaluate the degree of dependence between
influencing factors and target nodes in maritime risk analysis. A larger
MI value indicates a greater impact of the variable node on the target
node. Table 2 presents the MI, entropy reduction percentage, and vari-
ance of beliefs of RIFs concerning the ‘type of accident’. It can be
observed from Table 2 that the parent node ‘type of accident’ is most
significantly influenced by ‘ship type’.
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Table 2
MI shared with ‘type of accident’.

Node MI Entropy Reduction Percent Variance of Beliefs
Type of accident 2.8998 100 0.7298
Ship type 0.3321 115 0.0124
Ship operation 0.3138 10.8 0.0141
Voyage segment 0.2102 7.25 0.0068
Deadweight 0.1898 6.54 0.0045
Gross tonnage 0.1564 5.39 0.0036
Length 0.1535 5.29 0.0030
Power 0.1441 4.97 0.0026
Draught 0.1301 4.49 0.0030
Wind 0.1264 4.36 0.0034
Breadth 0.1213 4.18 0.0026
Sea condition 0.1172 4.04 0.0032
Human factor 0.1054 3.64 0.0025
Visibility 0.1052 3.63 0.0041
Ship age 0.1047 3.61 0.0035
Weather condition 0.1033 3.56 0.0026
Ship speed 0.1007 3.47 0.0029
Information 0.0910 3.14 0.0060
Hull construction 0.0886 3.05 0.0018
Hull type 0.0877 3.02 0.0023
Vessel condition 0.0788 2.72 0.0021
Equipment/device 0.0634 2.19 0.0018
Ergonomic design 0.0456 1.57 0.0014
Time of day 0.0426 1.47 0.0017

To identify the RIFs that considerably influence the ‘type of acci-
dent’, the arithmetic mean of the MI values of all RIFs is calculated. In
Fig. 6, the blue bars represent the MI values of RIFs, and the orange
horizontal dashed line represents the average MI value of all RIFs,
serving as the baseline for filtering important RIFs. After calculation, the
baseline represents an average MI value of 0.131, and the RIFs with MI
values higher than 0.131 are selected as important RIFs. The results
show that the first seven RIFs, namely ship type (0.3321), ship operation
(0.3128), voyage segment (0.2102), deadweight (0.1898), gross
tonnage (0.1564), length (0.1535), and power (0.1441), considerably
impact the ‘type of accident’.

4.1.2. Joint probability

After identifying the seven significant RIFs, further analysis is
required to calculate the joint probabilities between the states of these
RIFs and accident types, thereby refining the impact of RIFs on accident
types. To obtain the updated probability values of accident types under a
specific state, the probability of the important RIFs state is sequentially
set to 100% while keeping the probabilities of other states constant.
After completing the calculations for all states, Table 3 can be derived.

To simplify, let T1, T2, T3, T4, T5, T6, T7, T8, and T9 represent the
nine accident types, namely capsize, collision, contact/crush, fire/ex-
plosion, flooding, grounding, others, overboard, and sinking,
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Fig. 6. Mutual information values of RIFs.
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respectively. The bolded values in each column represent the maximum
and minimum probabilities that significantly impact specific accident
types. Some new findings can be revealed in Table 3. For instance, in
terms of ‘ship type’, ‘dredgers’ are most likely to experience ‘capsize’
and ‘sinking’ accidents, while being least likely to have ‘grounding’
accidents. In contrast, ‘bulk carriers’ are less likely to experience
‘capsize’ accidents, and ‘offshore vessels’ are less likely to encounter
‘grounding’ accidents. Concerning ‘voyage segments’, ‘port approach’ is
the most likely situation for ‘collision’ accidents, while ‘at berth’ is least
likely. Additionally, ‘channels’ are more prone to experiencing
‘grounding’ accidents, while ‘open sea’ is the least likely. Regarding
vessel characteristics, larger ‘RORO’ ships, specifically those with a
deadweight range from (5000, 15,000], a gross tonnage falls in (10,000,
20,000], and a length exceeding 200 m, are more susceptible to ‘fire/
explosion’ accidents. Conversely, smaller vessels with less weight and
volume are less likely to experience ‘fire/explosion’ accidents.

Table 3 illustrates how accident types are affected when significant
RIFs are in specific states. Moreover, the new maritime accident char-
acteristics presented in Table 3 provide valuable insights for risk anal-
ysis and lay the foundation for later calculations of the TRI of significant
RIFs on accident types.

4.1.3. True risk influence

TRI is a comprehensive evaluation metric proposed by Alyami et al.
(2019), which can quantify the extent of the risk impact of a variable
node on its parent node, taking into account the probabilities of each
node state in the BN and the dependency relationships between nodes.
TRI can quantify the importance of different RIFs on the accident types
and provide a reliable basis for risk assessment in relevant
decision-making (Li et al., 2023a).

The computation outcomes are displayed in Table 4. The last column
of Table 4 displays the average TRI value of each important RIF for each
accident type. It can be observed that ‘ship type’ has the most significant
impact on accident types, while ‘power’ has the lowest impact. The
impact level of these seven important RIFs can be ranked based on the
values in this column, and the results are as follows:

Ship type > Ship operation > Voyage segment > Deadweight > Gross
tonnage > Length > Power.

According to the results in Table 4, the influence levels of the
important RIFs under different accident types are sorted in order from
the largest to the smallest (represented by ‘1’ and ‘7’ respectively) in
Table 5. It is observed that different RIFs have both similar and distinct
impact levels on different accident types. For example, ‘ship type’ has
the highest impact level on ‘capsize’, ‘contact/crush’, ‘fire/explosion’,
‘grounding’, and ‘sinking’, whereas ‘power” has the lowest impact level
on ‘collision’, ‘fire/explosion’, ‘grounding’, ‘others’, ‘overboard’, and
‘sinking’. Furthermore, ‘voyage segment’ has the highest impact level on
‘flooding’ and ‘overboard’, but the lowest impact level on ‘capsize’.
Sorting the TRI values can provide valuable insights and is significant for
improving the precision and dependability of risk evaluation.

4.2. Model correctness verification

It is essential to conduct an additional sensitivity analysis to validate
the correctness of the model. This sensitivity analysis can assess the joint
impact of various RIFs on accident types during the inference process.
The inference process must adhere to the following two axioms (Jones
et al., 2010; Yang et al., 2009).

Axiom 1. If the prior probability of each RIF changes slightly, the
posterior probability of the target node should be adjusted accordingly.

Axiom 2. The total effect of integrating the probability variations of x
parameters should be no smaller than the one from the set of y (y € x)
RIFs.

To verify the above two axioms, the extracted seven important RIFs
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Table 3
The joint probability (100%).
T1 T2 T3 T4 T5 T6 T7 T8 T9
Original 6.64 21.80 7.74 14.08 0.85 17.94 15.46 10.50 4.99
Ship type
RORO 0.98 11.39 15.90 46.95 0.62 11.36 6.07 1.01 5.73
bulk carrier 0.28 33.57 1.74 9.25 0.18 16.82 25.84 10.64 1.67
cargo ship 4.51 19.68 13.09 4.73 2.96 23.99 13.56 8.98 8.50
container ship 2.34 18.81 6.19 18.51 0.24 16.63 26.55 10.35 0.38
dredger 37.80 3.68 3.52 3.63 2.20 3.67 21.55 3.59 20.36
fishing vessel 22.00 12.82 2.39 18.72 0.25 10.71 4.54 22.49 6.09
offshore vessels 1.23 1.30 13.68 14.12 0.78 46.77 1.28 7.65 13.19
others 22.63 29.99 1.10 1.13 0.69 29.86 6.88 6.66 1.06
passenger vessel 5.08 14.45 35.62 5.40 0.54 19.00 9.84 0.88 9.19
tanker or chemical ship 0.37 34.24 2.30 20.09 0.24 12.24 20.15 8.18 2.20
tug 16.82 17.79 1.55 17.58 0.97 9.71 1.60 25.04 8.95
Ship operation
at anchor 2.45 3.05 8.78 13.52 0.96 28.46 13.79 23.61 5.38
fishing 35.87 4.33 3.61 18.86 1.10 7.98 7.39 17.65 3.22
loading/unloading 5.58 7.45 3.27 22.75 1.00 3.90 49.70 3.43 2.92
manoeuvring 5.82 37.09 20.41 4.97 0.49 21.64 3.37 4.79 1.42
on passage 3.14 32.26 1.60 17.76 0.65 12.59 18.74 6.67 6.59
others 15.13 10.63 8.87 10.19 2.70 10.56 10.00 18.05 13.87
pilotage 5.15 12.61 20.75 3.34 0.88 39.85 6.13 8.71 2.59
towing 16.13 21.33 6.49 13.63 1.98 14.35 7.31 12.99 5.79
Voyage segment
anchorage 1.91 12.37 5.13 11.65 0.55 28.81 15.23 17.28 7.08
archipelagos 7.93 16.56 14.43 4.92 1.02 32.94 4.64 13.78 3.77
at berth 3.60 5.28 15.40 27.33 1.03 5.57 28.69 9.30 3.80
canal 5.55 27.10 20.42 7.65 1.59 17.90 7.21 6.73 5.86
channel 5.39 7.91 5.96 7.43 1.55 43.23 16.30 6.54 5.70
coastal waters 12.88 32.69 2.53 11.03 0.19 19.64 6.41 9.55 5.07
inland waters 14.31 8.06 14.79 7.57 1.57 8.50 7.14 32.25 5.80
open sea 3.38 25.49 2.39 24.49 0.71 4.91 25.47 7.39 5.77
port 4.60 12.04 13.75 11.28 0.90 23.52 21.24 10.39 2.27
port approach 10.52 36.04 11.77 3.80 3.23 21.18 3.59 3.34 6.53
river 3.28 21.12 13.24 9.88 0.94 20.85 4.26 19.08 7.36
Deadweight
1 13.38 14.88 11.32 11.00 1.39 24.81 3.45 11.34 8.43
2 1.99 27.96 5.50 20.04 0.42 14.96 18.79 5.88 4.47
3 5.84 9.65 12.87 16.81 1.24 20.98 21.37 9.69 1.54
4 0.53 30.20 3.01 13.61 0.30 9.55 28.76 12.74 1.30
Gross tonnage
1 14.04 15.08 9.54 10.54 1.57 25.16 3.30 12.48 8.30
2 6.15 28.41 7.58 12.52 0.52 16.79 16.78 6.55 4.70
3 2.14 15.68 12.14 18.15 0.96 20.82 15.60 9.94 4.57
4 0.60 26.91 4.75 17.38 0.27 10.35 27.16 10.70 1.87
Length
1 14.46 15.22 10.12 10.40 1.59 24.49 3.08 12.19 8.46
2 1.98 24.37 7.00 16.11 0.31 15.46 21.98 9.41 3.38
3 0.81 28.77 4.93 17.07 0.47 10.86 26.02 9.36 1.69
Power
1 13.92 17.42 10.68 11.45 1.51 22.47 7.35 4.54 10.67
2 0.49 25.50 5.26 16.31 0.30 14.11 2.99 24.69 10.36
Table 4
TRI of RIFs for all accident types (100%).
RIFs TRI
T1 T2 T3 T4 TS T6 T7 T8 T9 Average
Ship type 18.76 16.47 17.26 22.91 1.39 21.55 12.63 12.08 9.99 14.78
Ship operation 16.71 17.02 9.57 9.71 1.11 17.98 23.17 10.09 6.22 12.40
Voyage segment 6.20 15.38 9.02 11.76 1.52 19.16 12.55 14.45 2.55 10.29
Deadweight 6.42 10.28 4.93 4.52 0.55 7.63 12.66 3.43 3.56 5.99
Gross tonnage 6.72 6.67 3.69 3.81 0.65 7.40 11.93 2.97 3.21 5.23
Length 6.82 6.77 2.59 3.34 0.64 6.81 11.47 1.41 3.38 4.80
Power 6.71 4.04 2.71 2.43 0.61 4.18 10.07 0.15 2.18 3.68

are selected as variable nodes. Given the correlation between nodes in
the TAN-based BN model and the mutual independence of each node’s
states, this study examines the overall impact on the ‘type of accident’ by
modifying the specific states of the important RIFs. The detailed pro-
cedures are as follows: (1) Select ‘Power’ as the initial node and increase
the probability value of the state that has the most significant impact on

10

capsize by 2%, while decreasing the probability value of the state with
the least impact by 2%; (2) Record this adjustment as ‘+2%’ and
document it in Table 6; (3) Repeat the same operation for the remaining
important RIFs, and record the cumulative change values that affect
‘capsize’; (4) Apply the above three steps to other states of ‘type of ac-
cident’ until all calculations are completed.
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Table 5
The most important RIFs for all accident types.
T1 T2 T3 T4 T5 T6 T7 T8 T9

Ship type 1 2 1 1 2 1 3 2 1
Ship operation 2 1 2 3 3 3 1 3 2
Voyage segment 7 3 3 2 1 2 4 1 6
Deadweight 6 4 4 4 7 4 2 4 3
Gross tonnage 4 6 5 5 4 5 5 5 5
Length 3 5 7 6 5 6 6 6 4
Power 5 7 6 7 6 7 7 7 7

The second column of Table 6 presents the occurrence probabilities
of various accident types in the original data. As the inference process
progresses, the following columns demonstrate how the cumulative
probability of each accident category evolves in response to alterations
in the prior probabilities of significant RIFs. It is worth noting that
calculating cumulative probability changes for different accident types
is independent.

Taking ‘capsize’ as an example, ‘6.64 represents the original prob-
ability value. Let the prior probability of the state in ‘power’ that has the
maximum impact on ‘capsize’ increase by 2%, and the prior probability
of the state in ‘power’ that has the minimum impact decrease by 2%.
Then, the probability value of ‘capsize’ changes to ‘6.90’. Based on
‘6.90’, set the prior probability of the states in ‘length’ with maximum
and minimum impacts on ‘capsize’ increase and decrease by 2%,
respectively. The probability value of ‘capsize’ is further updated to
‘6.91°. Then, the same operation is applied to the remaining important
RIFs, including ‘gross tonnage’, ‘deadweight’, ‘voyage segment’, ‘ship
operation’, and ‘ship type’. After calculating the cumulative probability
changes for the corresponding row of ‘capsize’, the identical inference
process is applied to the remaining accident types until all calculations
are completed.

From Tables 6 and it is evident that the posterior probability of the
target node increases or decreases as the prior probability of the variable
node set increases or decreases, thus confirming Axiom 1. Additionally,
as the probability values of the variable node-set are continuously
updated, the cumulative change in the target node also increases,
thereby proving Axiom 2 and confirming the correctness of the BN
model developed in this study.

4.3. Prediction performance verification

After completing the correctness test of the model, it is necessary to
evaluate its predictive performance. To achieve this, 20% of the accident
data (72 cases) from the dataset created in this study are randomly
selected as the testing set. In addition, to comprehensively gauge the
reliability of the constructed model, a confusion matrix and six evalu-
ation indicators based on the confusion matrix are employed. The
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confusion matrix is a standard method to evaluate the performance of
classification models and can offer a more profound comprehension of
the model’s effectiveness in predicting maritime risks. The representa-
tion of the confusion matrix is illustrated in Fig. 7.

Based on the four primary indicators in the confusion matrix, namely
True Positive (TP), True Negative (TN), False Positive (FP), and False
Negative (FN), four secondary indicators (i.e., Precision, Recall, Speci-
ficity, and False Positive Rate (FPR)) and two tertiary indexes (i.e., F-
measure and Area Under Curve (AUC)) can be derived. The details of the
six indicators are listed in Table 7.

Based on Fig. 7, the prediction outcomes of the test set are presented
through a confusion matrix displayed in Table 8.

Table 8 shows that the model achieves an overall prediction accuracy
of 91.67% (66/72), and the prediction accuracy for ‘capsize’, ‘contact/
crush’, ‘flooding’, ‘overboard’, and ‘sinking’ is 100%, revealing the
excellent predictive performance of the model. Furthermore, based on
Table 8, the first five evaluation indicators are computed. Subsequently,
the classification problem of this study is processed for binary classifi-
cation to obtain AUC values for specific accident types. The computation
results are presented in Table 9.

Table 9 indicates that the values of Precision, Recall, Specificity, and
F-measure metrics are all above 0.8. For specific accident types (e.g., T1,
T5, and T9), all four metrics mentioned above have the value of ‘1°,
highlighting the excellent predictive performance of the model. A lower
FPR value indicates the model has a stronger ability to correctly classify
negative samples as negative, reducing false alarms effectively. The FPR
values of this model are all below 0.035, demonstrating good stability
and accuracy. Moreover, the AUC values for all nine accident types are
above 0.97, verifying the outstanding classification performance of the
model.

4.4. Model consistency verification

The dataset created in this study has an uneven distribution of each
accident type. For instance, ‘collision’ accounts for 21.8%, while

Actual value

Positive Negative

Positive True Positive (TP) False Positive (FP)
Predicted

value

Negative False Negative (FN) | True Negative (TN)

Fig. 7. The schematic representation of the confusion matrix.

Table 6

The combined influence of multiple variables.
Power +2% +2% +2% +2% +2% +2% +2%
Length +2% +2% +2% +2% +2% +2%
Gross tonnage +2% +2% +2% +2% +2%
Deadweight +2% +2% +2% +2%
Voyage segment +2% +2% +2%
Ship operation +2% +2%
Ship type +2%
T1 6.64 6.90 6.91 7.18 7.44 7.71 8.44 9.23
T2 21.80 21.96 22.07 22.34 22.76 23.40 24.13 24.85
T3 7.74 7.85 7.85 7.99 8.19 8.55 8.98 9.75
T4 14.08 14.18 14.21 14.37 14.56 15.04 15.45 16.43
T5 0.85 0.87 0.88 0.91 0.93 0.99 1.04 111
T6 17.94 18.11 18.21 18.51 18.81 19.59 20.39 20.86
T7 15.46 15.86 15.92 16.39 16.90 17.43 18.39 18.94
T8 10.50 10.51 10.56 10.67 10.81 11.39 11.80 12.31
T9 4.99 5.08 5.12 5.25 5.39 5.49 5.73 6.18

11
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Table 7
The definitions of six indicators.
Six indicators Definitions
P i iti
Precision — The proportlo.n of true po.s1.t1ve samples among all the
TP + FP samples predicted as positive.
Recall — TP The ratio of true positive samples to the total number
TP +FN of positive samples.
F — measure = The weighted harmonic mean of Recall and Precision,

2 x Precision * Recall
Precision + Recall

which assesses the overall performance of the model

. IN The proportion of true negative samples among the
Specificity = FP+ TN total number of negative samples
FPR — FP The ratio of false positive samples to the total number
FP+TN of negative samples
AUC AUC is the area under the Receiver Operating

Characteristic (ROC) curve and ranges between 0.5
and 1. A higher AUC value indicates better
classification performance of the model.

‘flooding’ only accounts for 0.85%. Therefore, the Kappa coefficient is
used to test the model’s consistency and offer a comprehensive assess-
ment of the model’s overall performance.

The Kappa coefficient, proposed by Cohen (1960), is a critical eval-
uation index for measuring the consistency of classification models,
which is calculated by comparing the consistency between the model’s
predicted and actual observed results. The range of the Kappa coefficient
is [-1,1], with higher values indicating better consistency of the model.
When the Kappa value is greater than 0.75, it indicates that the con-
sistency of the model is excellent and can be considered completely
consistent. The formula of the kappa statistic is defined as follows:

Po — Pe 1 2
k_l_pe:pe ;tixp[

=- (€8]
n

where k is the kappa statistic, p, indicates overall accuracy, and n is the

total number of samples in the test dataset. The number of real samples

of each accident type is t;,i = 1,...,9 respectively, and the number of

each accident type in the prediction result is p; respectively.

By employing the relevant calculation formulas and confusion ma-
trix, the Kappa coefficient is determined to have a value of 0.903, which
demonstrates the remarkable consistency of the model constructed in
this study (Li et al., 2023a).
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4.5. Real case analysis

To validate the applicability of the BN model, a real collision acci-
dent from the China Maritime Safety Administration (CMSA) is selected
for testing, which is not included in the dataset of 362 cases used in this
study. On September 25, 2022, the bulk carrier ‘Xin xx’ had a collision
with a fishing vessel about three nautical miles south of Dongshan Island
in Zhangzhou. The accident details and corresponding RIFs states are
reflected in Fig. 8. Among them, the information on ‘draught’, ‘power’,
and ‘hull construction’ is not recorded in the accident report and thus is
considered as ‘NA’. Remarkably, despite the absence of three RIFs’
states, the probability of the accident type ‘collision’ remains high at
99.1%, consistent with the actual situation. This result further confirms
the reliability of the proposed model and its potential applicability in
preventing specific types of accidents.

5. Comparison analysis and discussion

Maritime risk factors and characteristics may change over time.
Thus, this study conducts a multidimensional comparison and analysis
of the maritime accidents in the two periods of 2017-2021 and
2012-2017. The study in 2017-2021 is conducted using the above
proposed BN model, while the findings in 2012-2017 are derived from a
previous study (Fan et al., 2020a).

5.1. Comparative analysis of RIFs

This research takes into consideration the perspective of RIFs and
incorporates eight new RIFs, namely ‘hull construction’, ‘deadweight’,
‘breadth’, ‘draught’, ‘power’, ‘wind’, ‘visibility’, and ‘human factor’,
compared to the previous study. These eight RIFs cover three aspects:
vessel characteristics (i.e., hull construction, deadweight, breadth,
draught, and power), weather conditions (i.e., wind and visibility), and
human factors (i.e., human factor). The vessel’s characteristics directly
influence its operational and safety performance, while the magnitude
of wind and visibility affects the vessel’s navigation. Moreover, human
factors play a significant role in maritime risk. This research expands the
number of RIFs from these three aspects, providing a multidimensional
and comprehensive analysis of maritime risk and filling the gaps in
previous studies.

From the perspective of important RIFs, the previous research

Table 8

Confusion matrix for the predicted outcomes.
Predicted T1 T2 T3 T4 T5 T6 T7 T8 T9 Actual total Accuracy rate (100%)
T1 5 0 0 0 0 0 0 0 0 5 100
T2 0 15 1 0 0 0 0 0 0 16 93.75
T3 0 0 6 0 0 0 0 0 0 6 100
T4 0 0 0 8 0 0 2 0 0 10 80
T5 0 0 0 0 2 0 0 0 0 2 100
T6 0 0 0 1 0 11 0 0 0 12 91.67
T7 0 1 0 0 0 0 8 1 0 10 80
T8 0 0 0 0 0 0 0 7 0 7 100
T9 0 0 0 0 0 0 0 0 4 4 100
Predicted total 5 16 7 9 2 11 10 8 4 72 91.67

Table 9

Performance metrics for each category of accidents.

T1 T2 T3 T4 TS T6 T7 T8 T9

Precision 1 0.938 0.857 0.889 1 1 0.8 0.875 1
Recall 1 0.938 1 0.8 1 0.917 0.8 1 1
Specificity 1 0.982 0.985 0.984 1 1 0.968 0.985 1
FPR 0 0.018 0.015 0.016 0 0 0.032 0.015 0
F-measure 1 0.938 0.923 0.842 1 0.957 0.8 0.933 1
AUC 1 0.986 0.979 0.985 1 0.979 0.977 0.999 0.996
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Fig. 8. A real case validation in 2022 by the constructed data-driven BN network.

identified the important RIFs and their ranking as follows:

Ship operation > Voyage segment > Ship type > Hull type > Gross
tonnage > Information.

In comparison, the identified important RIFs in this study also
include ‘ship operation’, ‘voyage segment’, ‘ship type’, and ‘gross
tonnage’, similar to previous findings. However, this study has newly
included ‘deadweight’, ‘length’, and ‘power’ as RIFs. This finding further
supports the validity of considering deadweight and power as RIFs for
maritime risk analysis. Moreover, it suggests that ‘deadweight’ and
‘power’ have a more pronounced influence on the types of maritime
accidents compared to other ship characteristics. There are two main
reasons for this: (1) the excessive or insufficient deadweight of a vessel
can affect its stability, subsequently influencing the probability of
maritime accidents; (2) the strength and reliability of a vessel’s power
system directly impact its manoeuvrability and control capabilities.
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5.2. Comparative analysis of BN

5.2.1. Network structure and dataset

The previous study (Fan et al., 2020a) employed NBN to analyse
maritime transportation risk using a dataset of 161 maritime accidents.
However, NBN has limitations such as sensitivity to missing data and
less precise modelling of dependencies among variables. Moreover, the
small dataset used for model training may compromise the reliability
and feasibility of the research findings.

In contrast to the previous study, this research employs TAN to
construct a maritime risk analysis model that captures the dependencies
among influencing factors more accurately. Furthermore, the TAN
model is trained on a larger dataset of 362 global maritime accident
data, ensuring objectivity and correctness of the research findings driven
purely by data. Additionally, the TAN model incorporates more RIFs and
a more comprehensive range of variable states, enabling
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multidimensional analysis of maritime accident risk and investigation of
accident causes. By overcoming the limitations of the previous study, the
TAN-based model developed in this research provides a more robust and
accurate approach to maritime risk analysis.

5.2.2. The state change of common RIFs in constructed BN

According to the finalised BN model, a comparative analysis of
changes in the state of common RIFs between this study and the previous
one unveils valuable findings. To illustrate the changes in the state
probabilities of common RIFs, representative state probability values
from both studies are summarised in Table 10.

Based on the analysis of the ‘gross tonnage’, ‘length’, and ‘speed’ of
ships, the proportion of large and high-speed ships in maritime accidents
is rapidly increasing. Table 10 displays that in contrast to the results of
the previous study, this study highlights the following changes: (1) the
probability of gross tonnage less than ‘10,000” decreased by 13.1%,
while the probability of gross tonnage greater than ‘20,000’ increased to
35.3%; (2) the probability of length less than ‘100’ decreased by 25.4%,
while the probability of length greater than ‘100" increased by 30.8%;
(3) the probability of ship speed being ‘normal’ decreased by 56.5%,
while the probability of ship speed being ‘fast’ increased by 7.7%. The
comparative analysis indicates that the trend towards the enlargement
and high-speed operations of ships is inevitable, driven by the rapid
development of the maritime transportation industry. However, it also
increases the inertia and manoeuvring difficulty of ships, potentially
elevating the risk of accidents. Consequently, maritime authorities are
advised to devise effective management strategies and prioritise the
safety of transportation for large ships to counteract the risks tied to this
trend.

From an environmental standpoint, the rate of maritime accidents in
unfavourable weather and sea conditions is declining. This suggests that
the negative influence of external environments on maritime trans-
portation safety is lessening. Table 10 shows that the probabilities of
poor weather conditions and sea conditions in the past six years were
40.3% and 53.2%, respectively, while in this study, the probabilities of
poor weather conditions and sea conditions were 36.3% and 34.8%,
respectively. This finding indicates that as maritime meteorological
warning technology continues to advance, ship owners can choose more
appropriate weather conditions for maritime operations, thereby mini-
mising accident risks. Additionally, with enhancements in ships’ struc-
tural strength and stability, their capability to withstand adverse
environments has also improved. From the perspective of ‘voyage seg-
ments’, maritime accidents occurring in ports have significantly
increased. Table 10 indicates that the probability of accidents occurring
in ports has increased from 7.53% to 19.2%. This finding highlights that

Table 10
Comparison of the states’ probabilities of RIFs (1 and | indicate increase and
decrease, respectively).

The state of RIFs 2012-2017 2017-2021 Trends
Gross tonnage (GT)

<10,000 67.8% 54.7% 1
>20,000 - 35.3% t
Length (meters)

<100 65% 39.6% 1
>100 29.6% 60.4% (36.6% + 23.8%) t
Ship speed (knots)

Normal (6-12) 87.1% 30.6% 1
Fast (>12) 12.9% 20.6% t
Weather condition

Poor 40.3% 36.3% l
Sea condition

Poor 53.2% 34.8% |
Voyage segment

In port 7.53% 19.2% 1
Ship operation

At anchor 5.48% 17.3% t
Manoeuvring 10.8% 14.6% t
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(1) the rising number and volume of ships have created enormous
pressure on port traffic; (2) the high-speed operation of ships has
reduced the stay time of ships entering and leaving ports, thus increasing
the difficulty of ship manoeuvring and port congestion; (3) the narrow
channels and complex traffic environment in port areas also contribute
to the risk of maritime accidents. This finding underlines the need for
maritime authorities to strengthen port traffic management, improve
channel facilities, and enhance the safety of ship operations in ports.

Analysing from the perspective of ‘ship operations’, the risk of
maritime accidents significantly increases during ‘at anchor’ or
‘manoeuvring’. Table 10 reveals that the probabilities of these two
operational states increase by 11.82% and 3.8%, respectively. This
finding highlights the challenges posed by the large dimensions and high
speed of ships, which require longer berthing times and greater
manoeuvring space during entry and exit from ports and anchorages.
Such actions can create unfavourable navigation conditions for sur-
rounding vessels, heightening the risk of accidents. Therefore, it is
crucial for crew members to strictly adhere to operational procedures to
ensure the precision of ship operations and minimise the likelihood of
maritime accidents.

5.2.3. The states of newly added RIFs in constructed TAN

In addition to the common RIFs that show novel findings regarding
state changes, the newly added RIFs in this study have also revealed
valuable discoveries.

According to the analysis of ‘hull construction’, the likelihood of
double-bottom ships is 17.4%, while single-hull ships have a probability
of 43.7%. This implies that single-hull ships are more vulnerable to
maritime accidents. The reason behind this is that double-bottom ships
have two layers of the hull at the bottom, whereas single-hull ships have
only one layer. In case of external impacts or grounding, single-hull
ships are more prone to hull damage, which may result in leaks, fires,
and other severe accidents. Consequently, maritime authorities should
implement measures to gradually decrease the proportion of single-hull
ships and enhance the safety of ships.

From the analysis of ‘wind’ and ‘visibility’, the probability of high
wind is 32.8%, and the likelihood of low visibility is 22.1%. This analysis
further confirms that with the advancement of meteorological fore-
casting technology and shipbuilding technology, maritime accidents
caused by severe weather conditions such as strong winds and poor
visibility are gradually decreasing. It highlights the importance of ac-
curate weather forecasting and enhancing ship safety measures to
minimise the likelihood of maritime accidents.

5.3. Comparative analysis of scenario simulation

Scenario simulation is crucial for maritime risk analysis as it enables
the identification and evaluation of potential risks. In this study, various
comparative scenario simulations are conducted based on the con-
structed TAN model to explore the new characteristics and trends of
maritime accident risks in the latest five years, compared to previous
research.

5.3.1. Scenario one: ship-related factors

Scenario one investigates the characteristics of maritime accident
risks in the same ship condition in the two periods. Ship-related factors
and their corresponding conditions are set as follows: ‘ship age’ > 20,
‘ship type’ is others, ‘information’ is good, ‘ergonomic design’ is bad,
‘equipment device’ is good, ‘vessel condition’ is good, and ‘ship speed’ is
high. The BN network of this study after setting the corresponding states
is shown in Fig. 9.

When the ship conditions mentioned above are the same, the pre-
vious study shows that the most probable accident type is ‘collision’
(82.2%). In contrast, this study reveals that the most likely accident type
is ‘capsize’ (38.1%), and the probability of ‘collision’ is only 6.81%. This
finding reveals that in the specified conditions, the likelihood of
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Fig. 9. The combined effects of ship-related factors in this study.

collision is significantly reduced in modern ships equipped with
advanced navigation and communication devices. This allows the crew
to precisely control navigation routes and monitor ship movements in
real time to avoid collisions with other vessels. Nevertheless, factors
such as older ship age and poor ergonomic design increase the risk of
‘capsize’ accidents, as ageing and fatigue of the ship’s structure can
reduce its strength and stability over time. In addition, poor ergonomic
design can lead to operational difficulties and elevate the risk of
‘capsize’ accidents. Therefore, relevant authorities should intensify in-
spections and maintenance for older ships, improve the ergonomic
design of ships, and decrease the risk of ship capsizing.

5.3.2. Scenario two: external environment-related factors

Scenario two investigates the characteristics of maritime accident
risks under the same external environment. The relevant factors of the
external environment are set as follows: ‘ship operation’ is on passage,
‘voyage segment’ is port approach, ‘weather condition’ is bad, ‘sea

15

condition’ is bad, and ‘time of day’ is night. The corresponding BN for
this study is shown in Fig. 10.

It is observed that under the same external environmental condi-
tions, the previous study shows that the most probable type of accident
was ‘grounding’ (63.5%). In contrast, the current study indicates that
the most probable accident type is ‘sinking” (50.6%). This new finding
suggests that in the latest five years, ships have been more susceptible to
sinking accidents than grounding accidents during ‘port approach’,
especially at night and under adverse weather conditions. As port traffic
becomes more complex, ships encounter increased risks while entering
ports compared to the previous six years. Furthermore, coupled with
adverse external environmental conditions, even minor errors in ship
operations could result in sinking accidents. Moreover, sinking accidents
tend to have more severe consequences, such as environmental pollution
and casualties, compared to grounding accidents. Therefore, maritime
authorities should formulate effective strategies to prevent sinking ac-
cidents based on this new risk characteristic, such as improving port
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Fig. 10. The combined effects of environment-related factors in this study.

facilities and rescue organisations and enhancing ship communication
during adverse weather conditions.

5.3.3. Scenario three: the most likely scenario for specific accident types

To exploit the reverse diagnostic analysis capability of BN, Scenario
three fixes the accident type node to a particular state to compare and
analyse the corresponding performance of RIFs in the two periods. The
aim is to uncover the most probable scenarios associated with specific
accident types.

In both BNs, the accident type node is set to 100% for ‘overboard’. It
was found that in the previous study, the most probable type of ship to
encounter overboard accidents is ‘fishing vessels’ (41.4%), with the ship
operation being ‘fishing’ (37%). In the current study (i.e., Fig. 11),
‘fishing vessels’ also have the highest likelihood of experiencing over-
board accidents (27.8%), but the most likely vessel operation is ‘at an-
chor’ (39%).
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This change observed in the current study indicates that advance-
ments in fishing techniques and equipment have significantly reduced
the likelihood of overboard accidents occurring during fishing opera-
tions. On the contrary, crew members must perform more complex
vessel operations (such as operating winches and anchors) when a
fishing vessel is at anchor, making overboard accidents more probable.
In addition, the state of the newly added RIF ‘human factor’ reveals a
new finding. The probability of the ‘yes’ in the ‘human factor’ is 88.4%,
indicating that most overboard accidents on fishing vessels are related to
human factors. Specifically, these factors include (1) negligence, (2)
operational errors, (3) fatigue and work pressure, (4) improper behav-
iours such as alcohol consumption, and (5) inadequate safety training.
Therefore, based on this latest finding, shipping companies should
heighten safety awareness among fishing vessel crew members, provide
necessary operational skills training, and address human factors to
minimise overboard accidents.



H. Li et al. Ocean Engineering 303 (2024) 117736
Time of day Ship type T 5
day 221 RORO 050 uman_factor
night 57.9 bulk carrier 18.0 no 116 t
| cargo ship 15.4 yes 884
Hull construction \ container ship 12.9 Inf -
double bottom  7.28 § dredger 0.50 nformation
double hull 41.5 fishing vessel 27.8 m——— bad 18.8
single hull 512 offshore vessels 3.00 good 81.2 L
others 296 . -
Ship age passenger vessel 0.50 Ergonomic_design
1 13.1 tanker or chemical ship  10.5 jmm bad  25.1 mm
2 18.3 tug 7.89 mm good  74.9 e
3 16.0 m—
‘51 ;g? — Vessel condition
-7 — bad 25.1
6 13.4 mmm good 749
3.58+1.6 V\
Hull type Equipment/device
aluminium alloy 1.93 bad 29.9
composite materials  1.93 good 7041
GRP 108 m
light alloy 6.07 Ship speed
NA 4.31 -
steel 68.3 jum e tan g
B 6.68 K Type of accident |0YV 76.2 e—
capsize of middle 108
Length collision 0
1 46.0 contact/crush 0 ——
2 32.8 jmm l— fire/explosion 0 - Visibility
3 21.2m flooding 0 > high 83.3 r
1.75+0.78 grounding 0 oy .y
X others 0
Power g;ﬁ(zgoard 108 Weather condition
1 465 9 bad 329
2 53.5 good 67.1
153+05
? Wind
Gross tonnage high 30.4
1 43.0 low 69.6
2 116m
3 942 R
4 36.0 jmmm Sea condition
239+1.3 bad 35.8
good 64.2
Draught
1 59.1 jmm— Voyage segment
2 171 m anchorage 12.7 Ship operation
3 23.8 mm archipelagos 5.41 at anchor 39.0 ——
1,65 +0.84 atberth 3.62 fishing 10.8 jmm
AN canal 1.70 loading/unloading  2.33
Deadweight Breadth channel 1.70 ¢ —>| manoeuvring 6.66 m
1 456 1 56.0 _coastal waters  20.7 — on passage 25.6 j—
2 11.7 2 194 inland waters 8.23 mm others 4510
3 6.58 3 211 open sea 17.0 m— pilotage 6.66 m
4 36.1 4 354 port . ]97-0 pe— towing 4441
23314 1.72£0.91 Fort approach 170 I

Fig. 11. The most probable scenario for overboard in this study.

Then, the probability of ‘fire/explosion’ state is set to 100% in the
accident-type nodes of the two BNs. It can be observed that in the pre-
vious study, the most likely ship type to experience fire/explosion is
‘fishing vessels’ (23.8%), with ‘equipment/device’ in ‘good’ (69.2%)
and ‘vessel condition’ in ‘good’ (53.8%). However, in this study (i.e.,
Fig. 12), the most likely ship type to encounter ‘fire/explosion’ is ‘tanker
or chemical ship’ (19.3%), with ‘equipment/device’ in ‘bad’ (75.9%)
and vessel condition in ‘bad’ (65.9%).

This change in ship type reveals new characteristics of maritime
risks. Historically, fishing vessels frequently used various electrical
equipment and had potential ignition sources during operations. Their
older age and subpar maintenance further heightened the likelihood of
fire/explosion accidents. However, with the recent surge in global trade
and a rise in the transportation volume of hazardous goods like liquefied
gas and petroleum, tanker or chemical ships have become the type most
prone to ‘fire/explosion’ accidents. Furthermore, the change in ‘equip-
ment/device’ and ‘vessel condition’ states indicates that the
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maintenance condition of ships is gradually becoming an important
factor influencing the occurrence of ‘fire/explosion’ accidents. As
maritime transportation continues to evolve, the risk of ‘fire/explosion’
is greatly heightened by the damage to ship equipment and the degra-
dation of vessel conditions. Hence, it is imperative for relevant author-
ities to reinforce the safe supervision of tanker or chemical ships,
provide sufficient safety skill training for crew members, and conduct
regular inspections of ship equipment and vessel conditions to ensure
compliance with international safety standards.

5.4. Comparison analysis of annual models from 2017 to 2021

The dynamic evolution characteristics of annual models from 2017
to 2021 are constructed by TAN and investigated to extract useful in-
formation and reveal valuable insights. Table 11 is structured to show
data over several years, from 2017 to 2021, and compares the overall
accuracy of data sets with different types of accidents (labelled from T1
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Fig. 12. The most probable scenario for fire/explosion in this study.
Table 11
Comparative analysis of five annual models (unit: %).
Datasets  Overall Type of accident
aceuracy 1 2 T3 (contact/ T4 (fire/ 5 6 7 8 9
(capsize) (collision) crush) explosion) (flooding) (grounding) (others) (overboard) (sinking)
2017 95.83 8.89 22.5 10.5 14.5 2.48 27.3 - 4.89 8.89
2018 100 6.72 27.6 8.92 21 12.2 3.41 17.7 2.31
2019 100 10.2 26.3 4.22 12.2 - 22.3 6.22 14.3 4.22
2020 100 4.69 18.1 11.4 15.8 - 18.1 11.4 18.1 2.46
2021 100 - 48.6 - 10.5 - 10.5 - 10.5 20
to T9). 2.48%.

In 2017, the overall accuracy was 95.8%, with the highest percent-
age of accidents being ‘grounding’ (T6) at 27.3%, followed by ‘collision’
(T2) at 22.5%. The lowest was ‘flooding’ (T5) and ‘sinking’ (T9) both at
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In 2018, the accuracy was perfect at 100%. ‘Grounding’ (T6) again
had a significant percentage at 12.2%, but ‘collision’ (T2) had the
highest at 27.6%. There was no data for ‘flooding’ (T5).
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For 2019, accuracy remained at 100%. ‘Collision’ (T2) was still the
most frequent at 26.3%, and ‘overboard’ (T8) accidents increased to
14.3%. No data was recorded for ‘contact/crush’ (T3).

In 2020, the trend of 100% accuracy continued. ‘Collision’ (T2) ac-
cidents decreased to 18.1%, with ‘overboard’ (T8) accidents also
decreasing to 11.4%. No data was presented for ‘flooding’ (T5).

The 2021 data also shows a 100% accuracy. There was a marked
increase in ‘contact/crush’ (T3) accidents at 48.6%. No information was
provided for ‘capsize’ (T1), and ‘sinking’ (T9) accidents increased to

20%.

The comparative results indicate a positive trend in prediction ac-
curacy, highlight specific recurring risks, show shifts in accident pat-
terns over time, and underscore the importance of continuous
monitoring and analysis for effective safety and risk management.

These findings indicate that certain types of accidents, like ‘collision’
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and ‘grounding’, are more common than others. This information could
be crucial for focusing on safety measures and prevention strategies.
There are also some years with missing data for specific accident types.
The variation in the prevalence of different accident types over the years
(e.g., the increase in ‘contact/crush’ (T3) accidents in 2021) indicates
changing patterns or conditions. This could be due to various factors like
changes in operational practices, environmental factors, or evolving
risks in the field. For policymakers and safety officers, understanding
which types of accidents are most frequent and how their occurrences
change over time is essential for effective risk management. This data
can inform safety regulations, training programs, and emergency
response planning.

Type of casualty

Hull type Ship type Iesls serious 8.47 Time of day
GRP 427 RORO 517 jm SIS 29 day 451
NA 3.61 bulk carrier 17.8 — very serious - night 51.9
aluminium alloy 2.15 cargo ship 18.0 p——
composite materials  2.45 le—_| container ship 13.1 — / - -
light alloy 3.61 dredger 1.46 1 _| Ergonomic_design
steel 79.0 |— fishing vessel 13.0 — >| bad 114
wood 4.87 offshore vessels 412 good 88.6
others 4.67
f passenger vessel 5.91 - -
1 S1h;p5age tanker or chemical ship ~ 13.5 Equipment/device
> o — tug 3.31 bad  48.0 jmm
3 15'; [r— good 52.0
4 104
g g%g Visibility
3 3'5+1 6 high  77.9 mm
Bl low 221
doUbleHbuoI:tz;nstl:]l;c:ionz Weather condition
double hull 38.8 bad = 36.3
single hull 43.7 9 :
Power Wind
1 45.8 mm Type of accident high 32.8 mm
2 54.2 capsize 6.64 low 67.2
1.54+0.5 collision 21.8 T
\ contact/crush  7.74
fire/explosion  14.1 Sea condition
Length flooding 0.85 T " bad  34.8 jum
1 39.6 grounding 17.9 good 65.2
2 36.6 others 1565
3 23.8 mm overboard 10.5
184 +0.78 sinking 4.99 Ship speed
\ high 20.6 fm
low 48.8
: Bsrf?)d“! middle  30.6
2 209
3 17.5 Information
4 10.6 bad 285 mm
1.88 % 1 good 715
X S
Deadweight Human_factor
1 42.2 mm no 350 fmm | |
2 20.9 Voyage segment yes  65.0
3 713 anchorage 7.72
4 29.7 archipelagos 412 - -
224+13 at berth 409 m Ship operation
AN canal 265n at anchor 17.3
l / Gross tonnage channel 273 n fishing 6.45
Draught 1 36.1 coastal waters  22.7 mmmmsmmm —»| loading/unloading  7.12
1 291 o 2 18.6 inland waters ~ 2.68 p manoeuvring 14.6
2 255 3 9.95 Vessel condition open sea 24.2 — on passage 40.3 —
3 255 4 35.3 ! port 19.2 others 2.63
=B - bad 415 port approach  5.33 pilotage 8.02
1.76 £0.83 245£13 good 585 river 4.49 towing 3.59

Fig. 13. A new layered BN with the ‘type of casualty’ node.
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5.5. Comparison of different network structures on accident severity study

The connection between risk analysis and the severity of maritime
accidents is significant. This study uses the same maritime accident
dataset and adds accident severity descriptions (i.e., less serious, serious,
and very serious). Layered BN and TAN are developed to investigate the
impact of RIFs on the severity of maritime accidents under distinct
network structures. It is noteworthy that the descriptions of accident
severity used in this study are obtained from the IMO GISIS and mari-
time accident reports, ensuring rigour and accuracy.

To build a layered BN for maritime risk analysis, the process involves
(1) adding a new node labelled ‘Type of casualty’ to the existing BN; (2)
defining the states of the target node as ‘less serious’, ‘serious’, and ‘very
serious’; (3) establishing connections from the ‘Type of accident’ node to
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the ‘Type of casualty’ node; (4) updating the network with a new dataset
to acquire the layered BN. The network results are illustrated in Fig. 13.
Additionally, using the same dataset, the TAN structure is trained with
accident severity serving as the parent node. The results are presented in
Fig. 14.

The two constructed networks mentioned above are compared based
on the performance of accident severity when ship-related and
environment-related RIFs are set in the same states. The network results
show that under the influence of environment-related RIFs, the proba-
bility of ‘very serious’ in the layered BN is 89.2%, which is 9.5% lower
than that in TAN (98.7%). Furthermore, under the influence of ship-
related RIFs, the probability of ‘very serious’ in the layered BN is
74.7%, which is 24.7% lower than that in TAN (99.4%). To compare the
prediction accuracy of the two network structures, the accident data

Hull type Ship operation Type of accident Time of de} z
aluminium alloy 1.33 at anchor 18.3 capsize 6.68 day 48.1 p—
composite materials  1.59 fishing 575 collision 21.7 | _»{ night 51.9
GRP 3.76 loading/unloading  6.36 contact/crush  7.71
light alloy 2.76 manoeuvring 14.8 < fire/explosion  14.1 Human_factor
NA 2.93 on passage 43.8 flooding 0.91 346 mmm
steel 83.3 others 1.37 grounding 17.9 no o
wood 4.29) pilotage 7.30 others 15.5 yes .
T \ towing 242 overboard 10.5
- re Sl il 2 Information
Ship type bad 263 mm
bulk carrier 17.5 good 73.7
cargo ship 18.2
container ship 13.1 - .
dredger 1.58 Ergonomic_design
fishing vessel 13.0 bad 9.96
offshore vessels 4.17 good 90.0
others 4.70
EaQs;eggervessel g?g Equipment/device
tanker or chemical ship 13.4 bad 47.8
tug 3.35 good 52.2
Hull construction . Ship speeq
double bottom 16.7 m | high 18.9
double hull 38.7 low 51.1
single hull 445 middle  30.0
Ship age \ Visibility
1 152 = Type of casualty high  78.0 jmm
2 227 less serious 8.31 low 22.0
3 15.7 serious 29.6 f
g ;8? very serious 621 Weather condition
| bad 36.0 mum
6 37'3177+1 6 good 64.0
v -
Deadweight Wind
1 43.3 high 32.5
2 20.2 low 67.5
3 6781 ?
<. 29.7 Sea condition
223+1.3 bad 34.2 |
‘ good  65.8
Draught
1 49.8 m— Voyage segment
2 250 Vessel condition anchorage 7.38
3 25.2 mm bad 41.5 archipelagos 3.67
1.75+0.83 good 58.5 at berth 3.46
canal 1.74
/ Breadth channel 1.78
Length 1 52 2 I coastal waters  24.5
1 40.5 mm 1 2 205 Power inland waters 1.82
2 359 2 : - open sea 25.8
s ' 3 3 17.2 - 1 46.4 ort 509
3 236mm = 4 101m 2 536 p -
1.83+£0.78 4 - A port approach  4.91
O9 =V 243+13 1.85+1 154 +0.5 GV 397

Fig. 14. A novel TAN with the ‘type of casualty’ as a parent node.
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with the same states of the two types of RIFs are selected from the
original data, and the severity of accidents in the original data is used as
the baseline for verification. The results show that there are 1 and 2 data
points with the same states of ship-related and environment-related
RIFs, respectively. Moreover, the severity of all three accidents in
these data points is ‘very serious’.

Compared to the layered BN, the TAN structure is more sensitive and
accurate in predicting maritime accident severity. Furthermore, the re-
sults better reflect the fact that accident severity is determined by the
combined influence of multiple RIFs, and that considering accident
types alone cannot objectively reflect reality. Finally, the excellent
predictive ability of TAN for the target node state confirms its correct-
ness for analysing the risk of maritime accidents in this study, ensuring
the reliability of the research findings.

6. Implications

Table 12 presents a comparison of the data from 2012 to 2017 and
2017-2021, as summarised in the findings above. By examining the
results and using three same scenario analysis settings for both periods,
several key insights can be derived.

(1) This study incorporates eight new RIFs related to ship charac-
teristics, weather conditions, and human factors. Specifically,
‘deadweight’ and ‘power’ have been identified as important RIFs.

Table 12
Summary of comparison between the two periods.
2012-2017 2017-2021
RIFs 16 RIFs in total, of which 6 are 23 RIFs in total, of which 7 are
important RIFs important RIFs
Network NBN, 161 maritime accidents TAN, 362 maritime accidents
structure
and dataset
The state (1) Gross tonnage <10,000 (1) Gross tonnage <10,000
change of (67.8%); (54.7%);
common (2) Length (meters) < 100 (2) Length (meters) < 100
RIFs (65%), >100 (29.6%); (39.6%), >100 (60.4%);
(3) Ship speed (knots) in (6, (3) Ship speed (knots) in (6,

Scenario one

Scenario two

Scenario
three

12] (87.1%), >12 (12.9%);
(4) Weather conditions in
‘poor’ (40.3%);

12] (30.6%), >12 (20.6%);
(4) Weather conditions in
‘poor” (36.3%);

(5) Sea condition is ‘poor’ (5) Sea condition is ‘poor’
(53.2%); (34.8%);
(6) Voyage segment in ‘port’ (6) Voyage segment in ‘port’

(7.53%);

(7) Ship operation in ‘at
anchor’ (5.48%), in
‘manoeuvring’ (10.8%);

The most probable accident

type is ‘collision’ (82.2%)

The most probable type of

accident is ‘grounding’ (63.5%)

(1) When the accident type
node is set to 100% for
‘overboard’, the most
probable type of ship is
‘fishing vessels’ (41.4%),
with the ship operation
being ‘fishing’ (37%);

(2) When the accident type
node is set to 100% for
‘fire/explosion, the most
likely ship type to
experience fire/explosion
is ‘fishing vessels’ (23.8%),
with ‘equipment/device’ in
‘good’ (69.2%) and ‘vessel
condition’ in ‘good’
(53.8%).

(19.2%);

(7) Ship operation in ‘at
anchor’ (17.3%), in
‘manoeuvring’ (14.6%);

the most likely accident type is

‘capsize’ (38.1%), and the

probability of ‘collision’ is only

6.81%

The most likely type of accident

is ‘sinking’ (50.6%)

(1) When the accident type

node is set to 100% for

‘overboard’, the most

probable type of ship is

‘fishing vessels’ (27.8%),

with the ship operation

being ‘at anchor’ (39%);

When the accident type

node is set to 100% for

‘fire/explosion, the most

likely ship type to

experience fire/explosion
is ‘tanker or chemical ship’

(19.3%), with ‘equipment/

device’ in ‘bad’ (75.9%)

and vessel condition in

‘bad’ (65.9%).

2

-
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This recognition validates their inclusion and underscores their
significant influence on maritime accident risk. Such insights
highlight the need for stakeholders to emphasise these factors
during ship selection, design, and maintenance to mitigate acci-
dent risks.

(2) A comparison of the state probabilities of common RIFs across the
two periods reveals contemporary maritime risk attributes:

(i) The frequency of accidents involving large, high-speed vessels
has seen a notable rise. This trend is also observed in accidents
taking place near port approaches and during ‘at anchor’ or
‘manoeuvring’ stage.

(ii) There is a decline in the proportion of accidents happening in
adverse weather and sea conditions. This suggests that advance-
ments in modern shipbuilding technologies have bolstered ships’
capacities to handle challenging weather conditions. However,
the inherent characteristics of large high-speed vessels can
amplify accident risks. Such insights indicate that maritime au-
thorities should prioritise the navigation safety of these vessels,
enhancing safety measures at port approaches and ensuring
crews operate ships correctly.

(3) In Scenario one, when setting the ship-related RIFs to the same
state in both studies, it is observed that the most likely accident
has shifted from collision (82.2%) to capsize (38.1%). This shift
indicates that advanced modern ships are effective in avoiding
potential collision accidents. However, it also emphasises the
need for ship owners and pertinent authorities to frequently
inspect older vessels and enhance ergonomic designs to decrease
the chances of capsizing.
In Scenario two, when environment-related RIFs are consistent
across both studies, the most likely accident transitions from
grounding (63.5%) to sinking (50.6%). This shift underscores the
importance for crews to remain highly vigilant and rigorously
adhere to operating procedures, especially during night-time and
challenging weather conditions in port approaches, to reduce the
risk of ship sinking accidents.

(5) In Scenario three, a reverse analysis focusing on the accident

types ‘overboard’ and ‘fire/explosion’ provides the following

comparative insights:

‘Overboard’ accidents are most likely to occur during anchor

operations of fishing vessels, with a strong correlation to human

performance deficiencies. This highlights the need for fishing
vessel crews to emphasise safety procedures during anchoring to
reduce human errors and prevent such accidents.

(ii) ‘Fire/explosion’ accidents are predominantly associated with
tanker or chemical ships where both equipment/device states and
vessel conditions are suboptimal. This underscores the impor-
tance of rigorous adherence to safety standards in these ships to
ensure the well-being of equipment and vessel conditions,
thereby mitigating the risks of ‘fire/explosion’ accidents.

(4

-

a

-

7. Conclusion

To explore the latest characteristics in maritime risks in this study, a
data-driven BN risk analysis model is built and founded on global
maritime accident data from 2017 to 2021, consisting of 362 accidents.
A comparative study of the findings on maritime accident analysis in two
periods, 2012-2017 and 2017-2022, is conducted. To ensure the accu-
racy of the dataset, original data collection and review are conducted
from the LRF and IMO GISIS databases, and key data is supplemented
with maritime accident reports. In addition, 23 RIFs are identified for
this study based on IMO standards and RIFs used in the previous liter-
ature in this field, serving as the baseline to guarantee the efficacy of the
risk analysis in this study. Furthermore, the superior predictive perfor-
mance of the model is demonstrated using multiple verification
methods, reflecting the reliability of the results. Finally, multidimen-
sional comparative analysis with the previous study reveals valuable
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findings. The results of this study indicate.

(1) By calculating MI values, the top 7 important RIFs in maritime
accident risk are identified as ‘ship type’, ‘ship operation’,
‘voyage segment’, ‘deadweight’, ‘gross tonnage’, ‘length’, and
‘power’. Among them, ‘deadweight’ and ‘power’ are newly added
RIFs compared to the previous study, indicating their significant
influence on maritime risk.

From the perspective of RIFs in the two periods, the risks of
maritime accidents involving large high-speed vessels, port areas,
and anchoring or manoeuvring operations have significantly
increased. In addition, the proportion of maritime accidents
occurring in adverse external environmental conditions is grad-
ually decreasing.

Through the influence of RIFs in scenario one, the most likely
accident type has shifted from ‘collision’, as found in the previous
study, to ‘capsize’. It indicates that modern vessels have excellent
collision avoidance capabilities during navigation, but older
vessels with poor ergonomic design are still vulnerable to the
risks of capsize accidents. Furthermore, according to the results in
scenario two, RIFs have led to a shift in the most probable acci-
dent types from ‘grounding’ to ‘sinking’. This suggests that
adverse weather conditions and the increasingly complex port
traffic environment are more likely to cause serious sinking
accidents.

By comparing the results of reverse diagnosis analysis of BN in the
two periods, it is discovered that inadequate human operations,
such as at-anchor operations, on fishing vessels are significantly
correlated with ‘overboard’ accidents, while tankers or chemical
ships with subpar equipment and vessel conditions are more
likely to cause ‘fire/explosion’ accidents.

The comparative analysis of five annual models reveals a trend of
high prediction accuracy over the years, with certain types of
accidents, like ‘collision’ and ‘grounding’, being more common
than others.

The TAN structure has exhibited higher sensitivity and accuracy
in predicting accident severity compared to the layered BN
structure. This highlights that a single factor does not determine
accident severity and maritime accident risk but is comprehen-
sively influenced by multiple RIFs.

(2

3

-

4

(5)

6

This risk model, based on data from 2017 to 2021, offers a more
accurate depiction of recent maritime accident trends, improving pre-
diction and diagnosis compared to earlier models. A thorough compar-
ative analysis between the last five years and the previous six years
uncovers new characteristics of maritime accident risks, providing
valuable insights into their evolving nature. By developing risk models
for each year from 2017 to 2021 and evaluating their predictive abili-
ties, stakeholders in the maritime industry can gain valuable insights.
The study pioneers the investigation of layered BN and TAN models in
predicting the severity of maritime accidents, deepening our under-
standing of accident outcomes. While the findings provide pioneering
implications for maritime authorities and future research, limitations
include a lack of consideration of various human factors and limited
detailed dataset coverage from 2012 to 2016.

Future research could explore integrating human factors and safety
culture with the selected RIFs through two approaches. First, a long-
term solution is to establish new databases by adding factors such as
human and safety culture to the accident reports. BN can then be trained
to model their impact on overall maritime safety. Secondly, we suggest
adopting a multi-disciplinary approach that can combine the findings
from the BN model in this study with the insights drawn from other risk
analysis methodologies capable of dealing with safety culture and
human fatigue. This approach would involve collecting data on safety
culture indicators, such as leadership commitment, communication
practices, and safety training effectiveness, as well as implementing
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fatigue monitoring systems and conducting crew fatigue assessments.
Additionally, qualitative methods such as interviews, surveys, and focus
groups could be employed to gather subjective insights into human
factors and their impact on maritime safety. By integrating these ele-
ments into the analysis, future research can provide a more holistic
understanding of maritime accident causation and inform targeted in-
terventions to improve safety outcomes.
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