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A B S T R A C T

Vessel traffic flow (VTF) prediction, essential for intelligent transportation management, is 
derived from the statistical analysis of longitude and latitude information from Automatic 
Identification System (AIS) data. Traditional deep learning approaches have struggled to effec
tively capture the intricate and dynamic characteristics inherent in VTF data. To address these 
challenges, this paper proposes a new prediction model called a Multi-view Periodic-Temporal 
Network with Semantic Representation (i.e., MPTNSR), which leverages three perspectives: pe
riodic, temporal, and semantic. VTF typically conceals the periodic and temporal characteristics 
during its evolution. A Convolutional Neural Network and Bidirectional Long Short-Term Memory 
(CNN-BiLSTM) model, constructed from periodic and temporal views, effectively captures this 
information. However, real-world scenarios frequently involve predicting VTF for multiple target 
regions simultaneously, where correlations between VTF changes in different areas are signifi
cant. The semantic view seeks to extract relationships across different channels based on the 
similarity of VTF data fluctuations and geographical distribution across regions, utilising a Graph 
Convolutional Network (GCN). The final prediction result is generated by fusing the information 
from these three views. Additionally, an optimised loss function is developed in the MPTNSR 
model that integrates local and global measurement information. In summary, the proposed 
model combines the strengths of a multi-view learning network and an optimised loss function. 
Quantitative comparative experiments demonstrate that the MPTNSR model outperforms eigh
teen state-of-the-art methods in VTF prediction tasks. To enhance the model’s scalability, 
Graphics Processing Unit (GPU)-accelerated computation is introduced, significantly improving 
its efficiency and reducing its running time. The model enables accurate and robust prediction, 
effectively assisting in port planning and waterway management, thereby enhancing the safety 
and sustainability of maritime transportation.

1. Introduction

The ever-expanding volume of global maritime trade, coupled with the increasing emphasis on efficient and safe port operations, 
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has brought significant attention to Vessel Traffic Flow (VTF) prediction in intelligent transportation systems in recent years (Li et al., 
2024a; Yang et al., 2023). The dynamic and intricate nature of maritime traffic, along with the complexity of waterways and port 
infrastructures, presents substantial challenges in predicting VTF accurately but underscores its essential role in managing vessel traffic 
effectively (Xin et al., 2023; Yang et al., 2024). The emergence of VTF prediction models is closely related to advances in Machine 
Learning (ML), Deep Learning (DL), and Artificial Intelligence (AI). VTF prediction involves forecasting vessel movements within 
waterways and ports, enabling early hazard detection and ensuring safe vessel navigation (C. Wang et al., 2024; Q. Wang et al., 2024). 
Precise VTF prediction is indispensable for enhancing the safety, efficiency, and economy of maritime operations, benefiting port 
operators, shipping companies, and stakeholders alike (Li et al., 2024b; Xiao et al., 2020).

Recent years have seen significant advancements in VTF prediction models, especially with the integration of advanced sensor 
technologies like Automatic Identification Systems (AIS), Radio Detection and Ranging (Radar), Light Detection and Ranging (Lidar), 
and optical imaging (Liu et al., 2025; Shu et al., 2025; Xin et al., 2024; Yu et al., 2022). These technologies enable real-time vessel 
tracking, bolstering the reliability of VTF prediction models and facilitating proactive traffic management (Zissis et al., 2016). The 
maritime transportation network, spanning both open sea and port waters, as depicted in Fig. 1, highlights the importance of the 
space-ground network in maritime navigation infrastructure and emphasises the pivotal role of VTF in ensuring local navigational 
safety. AIS data, including vessel position, speed, and heading information, has been used to improve VTF prediction accuracy, serving 
as a foundation for future advancements. VTF prediction is also crucial in the context of intelligent port design and the realisation of 
Maritime Autonomous Surface Ships (MASS) (Li et al., 2023a).

VTF prediction is a constantly evolving field with a strong focus on improving prediction accuracy and reliability. Researchers 
mainly use two types of methods: modeling-based and learning-based approaches (Han et al., 2021). Modeling-based methods, based 
on traditional ML techniques, have limitations in capturing complex and irregular patterns (Lv et al., 2023). In contrast, learning-based 
methods using Neural Networks (NN) and DL are gaining traction for effectively handling these intricate patterns (Kumar et al., 2023; 
Yan et al., 2023). Convolutional Neural Networks (CNNs) are widely applied in maritime transportation networks (Liu et al., 2021). 
Recurrent Neural Networks (RNNs) play a vital role in time series prediction. While they offer powerful capabilities, they face chal
lenges like gradient issues during training (Ma and Mei, 2022; Turkoglu et al., 2022). To overcome these, Long Short-Term Memory 
(LSTM) and Gate Recurrent Unit (GRU) are popular, especially for time series prediction with complex dependencies (Hua et al., 2019; 
Weerakody et al., 2021). Bidirectional LSTM (Bi-LSTM) and Bidirectional GRU (Bi-GRU) models, capturing dependencies in both 
directions, often lead to improved VTF prediction (Li et al., 2024b). The model, called CNN-LSTM, combines CNN and LSTM for time 
series prediction, leveraging the strengths of both algorithms (Livieris et al., 2020; Zha et al., 2022).

Although demonstrating their effectiveness in terms of temporal features, LSTM, GRU, Bi-LSTM, and Bi-GRU are still limited in 
identifying spatial and spatial–temporal features of VTF. Moreover, the mutual interaction effects between channels and semantic 
features in the same areas pose another challenge. Furthermore, the periodic information of VTF data is frequently overlooked, 
including the information between adjacent time periods on the same day, as well as the connection between the same time period on 
different days. To address the abovementioned limitations, this paper makes new contributions below. 

Fig. 1. The comprehensive maritime transportation network.
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(1) Develop a novel hierarchical methodology called the Multi-view Periodic-Temporal Network with Semantic Representation (i. 
e., MPTNSR) for solving the collaborative multi-channel VTF prediction using three key perspectives: periodic, temporal, and 
semantic.

(2) Enhance the extraction of periodic and temporal features of VTF data by developing a CNN-BiLSTM-based network.
(3) Realise collaborative prediction using a Graph Convolutional Network (GCN) among multiple channels by combining 

geographical features with the similarity of the traffic flow changes.
(4) Design a novel loss function by integrating Mean Squared Error (MSE) and Pearson Correlation Coefficient (PCC) from both 

global and local perspectives.

To enhance the scalability and practicality of the model, Graphics Processing Unit (GPU)-accelerated computation has been 
implemented, bringing substantial improvements in efficiency and significantly reducing running time. GPUs are particularly well- 
suited for handling the high computational demands of complex models (Li et al., 2024c) like the proposed MPTNSR, which in
tegrates periodic, temporal, and semantic features. By significantly increasing computation speed, GPUs enable real-time processing, 
making the model practical for dynamic and time-sensitive applications. This capability ensures that the MPTNSR model can deliver 
accurate predictions promptly, meeting the critical demands of real-time decision-making in maritime traffic systems. The adoption of 
GPU-based computation underscores the importance of technological integration in optimising advanced models for practical and 
dynamic environments.

The paper is organised as follows: A systematic literature review on VTF prediction is conducted in Section 2, listing a detailed 
analysis of various models in VTF research content. Facilitated by the research problems in this paper, the preliminary knowledge 
about VTF prediction is described in Section 3. Section 4 elaborates on the proposed methodology from spatial, temporal, and spatio- 
temporal views. The experimental studies are implemented in two real water areas to verify the effectiveness and robustness of the 
proposed methodology in VTF prediction in Section 5. Section 6 includes the conclusion and future research directions.

2. Literature review

VTF prediction is a hot topic in intelligent maritime traffic management. Especially with the extensive use of AIS data, researchers 
have been able to determine the VTF for specific areas by using key data points, such as time stamp, latitude and longitude coordinates, 
course over ground, and speed over ground. This has led to a surge in data-driven prediction methods on AIS data. This section provides 
an overview of VTF prediction methods using ML and DL prediction methods, respectively, and analyses their advantages and existing 
problems in detail. Furthermore, the identified research gaps are outlined in Section 2.3.

2.1. Machine learning methods in vessel traffic flow prediction

Traditional ML methods, also called statistical methods, are widely used in the initial phases of VTF prediction research. These 
methods assume a specific relationship between historical and predicted data. Nevertheless, it is crucial to highlight that VTF data 
typically displays periodic changes over time. As a result, various ML methods have been developed to estimate parameters and fit 
curves, enabling accurate prediction of VTF data. Various classical ML methods are employed for predicting VTF data, including linear 
regression, variance analysis models, Kalman Filtering (KF), Grey Model (GM), Markov Model (MM), Kernel Density Estimation (KDE), 
AutoRegressive Integrated Moving Average (ARIMA), and Support Vector Machine (SVM) (Li and Yang, 2023; Ryu et al., 2018). 
Different models have their own characteristics, advantages, and disadvantages for VTF prediction. Linear regression (Sousa et al., 
2007) and variance analysis (Makowski et al., 2006) models struggle with non-stationary time series data, while KF (Muruganantham 
et al., 2016) excels in estimating future trends but faces challenges with irregular historical data. GM (Kayacan et al., 2010) proficiently 
recognises diverse developmental trends but struggles in the face of frequent data mutations. MM model (Zou et al., 2022) predicts 
event probabilities skillfully but may encounter accuracy issues. KDE (Xiao et al., 2017) captures distribution characteristics but may 
struggle with non-periodic changes. ARIMA (Sadeghi Gargari et al., 2022) forecasts traffic by combining past and present data linearly. 
SVM (Zhang and Wu, 2022) handles both linear and non-linear classification tasks but may be inefficient for large VTF datasets. The 
advantages and disadvantages of classical ML methods for VTF prediction are listed in Table 1.

The abovementioned ML methods are classical and commonly used, suitable for solving time series prediction problems. However, 
VTF data is constantly affected by external factors (e.g., vessel collision accidents, severe weather, and emergency events like COVID- 
19), which can cause significant fluctuations, making it difficult for these original ML methods to fit complex change features, thereby 
affecting prediction accuracy. Therefore, many scholars have optimised these traditional ML methods to improve prediction accuracy.

Upon analysis, it becomes apparent that these ML methods have limitations in VTF prediction research. They frequently rely on 
manual feature engineering and selection, which is labour-intensive and requires domain expertise. Furthermore, they may struggle to 
capture the intricate patterns and non-linear relationships present in vessel traffic data. Additionally, the interpretability of these ML 
models is often limited, posing challenges in comprehending the underlying factors influencing the prediction.

2.2. Review of deep learning methods for vessel traffic flow prediction

In contrast, DL methods have emerged as a promising approach to VTF prediction. By automatically extracting features from raw 
data and adeptly handling intricate patterns, DL models offer the potential to surmount the limitations of traditional ML methods. 
Moreover, DL models can leverage their hierarchical structures to effectively capture complex temporal dependencies, enhancing the 
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Table 1 
The classical ML methods for VTF prediction.

Methods Representative references Characteristics Advantages Disadvantages

Linear 
regression

(Sousa et al., 2007) (1) Simple and commonly used; 
(2) Quick computation; 
(3) Sensitivity to outliers.

(1) Easy to interpret; 
(2) Provide insight into the relationship 
between predictor variables and VTF.

(1) Assume a linear relationship; 
(2) Can not effectively predict non-stationary 
time series data; 
(3) Have limitations in capturing complex 
relationships or non-linear patterns in VTF data.

Variance 
analysis 
models

(Makowski et al., 2006) (1) Analysis of Variance; 
(2) Comparison of group means; 
(3) Hypothesis testing.

Useful for analysing variations and 
identifying factors affecting VTF.

Have limitations in predicting non-stationary 
time series data effectively.

KF (He et al., 2019; Muruganantham et al., 
2016; Okutani and Stephanedes, 1984)

(1) Dynamic model; 
(2) State estimation; 
(3) Prediction-update cycle.

(1) Incorporation of uncertainties and 
dynamic changes in VTF; 
(2) Noise filtering; 
(3) Adaptive to time-varying changes.

(1) Linear assumption; 
(2) Gaussian distribution assumption; 
(3) Limited handling of nonstationarity VTF 
patterns; 
(4) Difficulty in capturing complex 
dependencies.

GM (Grifoll, 2019; Kayacan et al., 2010) Regenerate VTF data with strong regularity based on 
overall change rules.

(1) Handle small data sets; 
(2) Incorporation of expert knowledge; 
(3) Parameter optimisation.

(1) Overreliance on historical data; 
(2) Sensitivity to initial conditions; 
(3) Difficulty in handling nonlinearities; 
(4) Limited adaptability to irregular patterns.

MM (Zou et al., 2022) (1) Memoryless property; 
(2) Transition probabilities; 
(3) State space definition.

(1) Efficient computation; 
(2) Adaptability to dynamic 
environments.

(1) Memoryless assumption; 
(2) Lack of contextual information; 
(3) Sensitivity to initial conditions. 
(4) Limited prediction horizon (mainly short- 
term prediction).

KDE (Li et al., 2018; Xiao et al., 2017) (1) Infer overall data distribution; 
(2) Predict future VTF based on the probability density 
function; 
(3) Nonparametric density estimation.

(1) Localised prediction; 
(2) Probabilistic output; 
(3) Robustness to outliers.

(1) Bandwidth selection is challenging; 
(2) High computational complexity; 
(3) Sensitivity to sample size.

ARIMA (Sadeghi Gargari et al., 2022; Williams et al., 
1998)

(1) Time series modelling; 
(2) Combine the autoregressive and moving average 
components to model the relationship and dependency.

(1) Simple and interpretable; 
(2) Suitable for predicting future traffic 
based on historical patterns.

(1) Stationarity assumption; 
(2) Limited capture of nonlinear relationships 
for VTF data; 
(3) Sensitivity to model parameters.

SVM (Mokhtarimousavi et al., 2019; Zhang and 
Wu, 2022)

(1) Kernel trick; 
(2) Margin maximisation; 
(3) Support vectors.

(1) Effective in high-dimensional spaces; 
(2) Robust to outliers; 
(3) Global optimum solution.

(1) High computational complexity in large VTF 
datasets; 
(2) Sensitivity to parameter tuning; 
(3) Require a large amount of memory.
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VTF prediction accuracy. Therefore, the adaptation of DL methods is deemed essential to augment the precision, robustness, and 
interpretability of VTF prediction models.

The DL method addresses the challenge of VTF prediction by constructing a training network and mining the changing features 
from the data through continuous iteration. Various network architectures come with distinct characteristics and benefits. In this 
section, DL methods are categorised into three groups according to their network training strategies: discriminative, generative, and 
hybrid-based methods.

2.2.1. Discrimination-based methods
Discrimination-based DL methods can also be called conditional discriminant models, which learn relevant feature changes based 

on historical observation data (Li et al., 2023c). Subsequently, when forecasting future data, they gauge the likelihood of alignment 
with the target value. Standard primary networks mainly in this context predominantly encompass CNN (Li et al., 2022c), RNN (Yu 
et al., 2019), and Autoencoder (AE) (Wang et al., 2016).

CNN, characterised by its deep structure and convolutional computations, is a feedforward network capable of learning and 
providing a translation-invariant classification of input information, relying on its hierarchical structure. It has frequent applications in 
addressing challenges within image or video processing domains, encompassing tasks like deblurring, visual enhancement, and object 
recognition, among others. Over the past few years, an increasing number of researchers have applied it for the study of time series data 
(e.g., VTF) prediction. While VTF sequence data naturally evolves over time, it also exhibits specific periodic patterns. For instance, 
VTF data at a given time node not only correlates closely with adjacent time node data but also displays a strong connection with data 
from the same time period before or after. Consequently, some studies transform one-dimensional (1D) VTF data into two-dimensional 
(2D) matrices and employ CNN to uncover the periodic variation characteristics within VTF data (Wang et al., 2024). For example, Li 
et al. (2023d) proposed a multi-view network construction approach aimed at addressing the VTF prediction challenge. In this method, 
the spatial view leverages CNN to adeptly capture the periodic fluctuations within VTF data. Zhou et al. (2020) divided the research 
area into a matrix and employed CNN to learn the patterns of all grid-based VTF inflows and outflows, thereby facilitating prediction 
tasks. Wang et al. (2019) developed a spatiotemporal method to describe and forecast VTF within a specific region. They proposed a 
prediction technique utilising multi-hexagonal Convolutional Neural Networks (mh-CNN) to offer substantial flexibility and predict 
VTF data within a variable time window. Liang et al. (2022) introduced a spatiotemporal multi-graph convolutional network designed 
for VTF prediction to capture both spatial and temporal patterns. Extensive experiments were conducted using actual AIS datasets, and 
the fine-grained prediction outcomes underscored the outstanding performance of the optimised network, showcasing superior ac
curacy and robustness.

RNN, is a network specifically engineered for handling sequential data (Salehinejad et al., 2018). It proves highly suitable for time 
series data research. However, the gradient vanishing or exploding issues during network training can significantly impact prediction 
accuracy (Hao et al., 2022). To address these issues, LSTM (Graves, 2012) and GRU (Dey and Salem, 2017) have emerged as valuable 
solutions. Notably, GRU stands as a simplified counterpart of LSTM. While LSTM comprises three gates (i.e., input, forget, and output 
gates), GRU streamlines the structure to include only two: the reset gate and the update gate (Do et al., 2019). In the study of VTF 
prediction research, Lee et al. (2023) developed an algorithm using LSTM to forecast future maritime traffic information from past 
data, with the aim of improving autonomous vessel performance. They assessed the network’s predictive capabilities by considering 
many factors (e.g., sea traffic volume, fluctuations in sea traffic congestion, and volatility). Their conclusion highlighted the model’s 
ability to discern features crucial for predicting maritime traffic conditions. Xiao et al. (2023) introduced a new prediction method that 
takes into account weather conditions and employs both GRU and Sequence to Sequence (Seq2Seq) models. Their approach sought to 
improve prediction accuracy by accounting for environmental influences. Xu and Zhang (2022) considered spatiotemporal correlation 
features and integrated them into a GRU model for VTF data prediction to enhance prediction accuracy. Zhou et al. (2021) proposed a 
new prediction model termed Particle Swarm Optimisation LSTM (PSOLSTM), addressing the challenge of selecting optimal param
eters in LSTM models. The validation, conducted with real inland waterway data, showcased enhanced prediction accuracy.

Recognising the potential benefits of capturing temporal variations in both forward and backward directions, Bi-LSTM (Zhang 
et al., 2020) and Bi-GRU (Yang et al., 2021) models were developed. Specifically, Bharti and Kumar (2023) introduced a method 
termed Particle Swarm Optimisation (PSO) and Bi-LSTM (PSO-Bi-LSTM). This method leverages PSO to globally search for the optimal 
model parameters, employing nonlinear variable inertia weights instead of linear weights, ultimately enhancing prediction accuracy. 
Gao et al. (2018) developed an online real-time vessel behaviour prediction model by both Bi-LSTM and RNN. This prediction model 
enhances the correlation between past and future data, thereby boosting accuracy. Wang et al. (2022b) used the Bi-GRU method for 
traffic flow prediction research, and their experimental results indicated superior performance compared to LSTM, GRU, and Bi-LSTM. 
While RNN and its variations are proficient in capturing the temporal changing characteristics within sequential data, they encounter a 
limitation − the necessity for consistent input data size during network training.

To surmount this constraint, Seq2Seq has been applied to the time series data prediction (Xing et al., 2023). Seq2Seq adopts an 
encoder-decoder structure (Sutskever et al., 2014), with the encoder converting the input sequence into a fixed-length vector and the 
decoder generating an output sequence based on this vector. Both the encoder and decoder can be composed of RNN and its variations. 
In practical research, Cao et al. (2022) introduced a SpatioTemporal Seq2Seq Network (STSSN) by considering both the spatial cor
relations, which are heterogeneous and time-varying, and the temporal correlations, including sequences and periodic patterns. 
Comparative experiments have validated the superiority of STSSN on two real-world datasets. Forti et al. (2020) explored sequence 
prediction methods by utilising an LSTM encoder-decoder architecture to effectively extract the long-term temporal correlations 
within AIS data sequences and enhance the prediction capabilities.

AE is a neural network employed in semi-supervised and unsupervised learning, with its primary function being to represent and 
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learn input information by using it as the learning target (Wang et al., 2016). An autoencoder comprises two essential components, an 
encoder and a decoder, serving as versatile learning algorithms commonly employed for tasks like dimensionality reduction and outlier 
detection (Sun et al., 2018). A growing number of researchers have employed this method for time series prediction. For example, Jin 
et al. (2022) put forward a novel prediction method called Planar Flow-based Variational AE (PFVAE), which integrates LSTM as the 
autoencoder component and devised a variational autoencoder for prediction to effectively mitigate the impact of noise on prediction. 
Comparative experiments demonstrated that this method outperformed others in terms of prediction accuracy, highlighting its sig
nificance for addressing time series prediction challenges. Tiwari et al. (2022) introduced a new DL method based on AE, which in
tegrates LSTM to perform prediction tasks on target data. It utilises grid search to automatically select the best parameters by exploring 
various hyperparameter combinations, significantly improving prediction accuracy. Nguyen and Quanz (2021) proposed a new time 
latent autoencoder method to perform the nonlinear decomposition of multivariate time series. This method enables end-to-end 
learning of latent spatial prediction models over time using DL techniques. A growing number of researchers have employed this 
method for time series prediction (Cao et al., 2024; Fu et al., 2022; Hu et al., 2024).

Discrimination-based DL methods focus primarily on identifying feature changes that are directly linked to the target variable in 
the input data. However, this focus may cause them to overlook complex, nonlinear relationships and deeper feature interactions, 
especially in intricate scenarios. These limitations can be addressed by improving input feature design and incorporating generative 
models or other advanced DL techniques to enhance performance and adaptability.

2.2.2. Generation-based methods
Generation-based DL methods are employed in prediction through the utilisation of the combined probability distribution of both 

sample and target data. They can be employed to generate a set of random instances comprising samples and their corresponding 
targets (Han et al., 2021). Typical primary networks encompass Restricted Boltzmann Machines (RBM) (Zhang et al., 2018), Deep 
Belief Networks (DBN) (Mohamed et al., 2012), Generative Adversarial Networks (GAN) (Goodfellow et al., 2020).

RBM is a generative random network with binary variables, including visible and hidden units, each taking on values of either zero 
or one. The network can be viewed as a bipartite graph, with connections only between visible units and hidden units, and no con
nections between units of the same type (Wu et al., 2020). RBM has been utilised in dimensionality reduction, classification, and 
feature learning, and its training can be adapted to specific tasks using either supervised or unsupervised learning methods. Zhang and 
Xin (2021) proposed a short-term traffic flow prediction method using Deep Learning Support Vector Regression (DL-SVR), which 
includes an RBM visible input layer and a radial SVR output layer. Meanwhile, they applied the T-mutation particle swarm optimi
sation algorithm to select essential parameters for the new method, thereby improving the prediction accuracy. Li et al. (2020) put 
forward a deep fusion technique capable of concurrently handling categorical and continuous variables. In this approach, RBM 
processes categorical variables, while stacked Gaussian Bernoulli RBM handles continuous variables. The joint layer in this method is 
responsible for fusing and extracting data change features. Notably, this approach excels in exploring nonlinear and intricate patterns 
within traffic accident and traffic flow data. Kong et al. (2019) used RBM as a prediction method for sequence data and constructed a 
long-term model of chaotic time series polymorphism employing phase space reconstruction to identify the data patterns. Comparative 
experimental results underscore the superior prediction accuracy of this approach compared to shallow neural network prediction 
methods.

DBN is a generative model that enables the neural network to achieve training data with maximum probability by adjusting the 
weights between its neurons, featuring multiple neuron layers categorised into dominant and recessive neurons, with explicit elements 
for input and implicit elements for feature extraction (Yang et al., 2018). This method has been widely employed in handwritten 
character recognition, speech recognition, and image processing. In recent years, researchers have extended its use to time series 
prediction tasks. For instance, Zhu et al. (2023) put forward a combined prediction method using DBN and Non-dominated Sorting 
Genetic Algorithm II (NSGA-II) to optimise network parameters, thereby enhancing the prediction accuracy and stability of the data. 
Qin et al. (2017) harnessed DBN to express nonlinear relationships effectively and combined it with ARIMA for a new prediction 
method that temporal correlation, spatial heterogeneity, and complex nonlinear relationships between environmental factors and 
predicted data, incorporating PSO to improve the overall training efficiency. Huang et al. (2014) proposed a deep architecture 
comprising two parts: a DBN-based bottom framework for unsupervised feature learning and a multi-task regression layer for data 
prediction.

GAN consists of two models: a generative model and a discriminative model. The generation model typically employs a decon
volution neural network or fully connected neural network to generate a 2D matrix from input data, while the discriminative model 
functions as a binary classifier using CNN (Zhan et al., 2018). GAN has found extensive applications in time series data prediction. For 
instance, Jia and Ma (2023) introduced a Conditional Time-Generated Adversarial Network (CTGAN) that employs adversarial 
training strategies, trajectory generators, and intention classifiers to generate intention-constrained trajectories by forming a closed 
loop with feedback information signal, ensuring consistent trajectories adhering to reasonable vessel dynamics. Zheng et al. (2022)
proposed a new traffic flow prediction method called Graph Convolution and Generative Adversarial Neural Networks (GCN-GAN), 
which utilises GCN to extract historical traffic flow information within a graphical structure and employs GAN for generating reliable 
traffic flow prediction results through adversarial training. Zhang et al. (2021) put forward a self-attention generative adversarial 
network for sequence data prediction, wherein the GAN module incorporates a self-attention layer to mine patterns of data changes 
and adjusts the parameters of the entire network framework in the reinforcement learning module, demonstrating the method’s 
reliability in performing prediction tasks through comparative experiments.

While generation-based DL methods are effective at producing realistic data and modelling complex distributions, they face 
challenges such as high computational demands, training instability, reliance on data quality, and limited scalability. Addressing these 
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issues requires careful model design, optimised hyperparameter tuning, and advanced training techniques to improve their robustness 
and practical applicability.

2.2.3. Hybrid-based methods
The hybrid-based method essentially involves effectively combining two or more DL methods to predict time sequence data, aiming 

to integrate the advantages of multiple DL techniques to improve prediction accuracy and stability. For instance, the fusion of CNN and 
LSTM proves effective in capturing both the periodic change characteristics and temporal development attributes in VTF data, thereby 
improving the accuracy of training networks in fitting the overall change patterns of data. Li et al. (2023d) put forward a multi-view 
network framework that combines CNN and LSTM to capture the spatiotemporal attributes of VTF, with comparative experiments 
confirming its effectiveness compared to a single network. Zhou et al. (2020) introduced three DL-based methods for predicting vessel 
inflow and outflow within a specified area, incorporating CNN, LSTM, and integrated networks. In particular, the integrated network 
combines CNN and Bi-LSTM, with comparative experiments demonstrating its superior performance. GCN extends convolution op
erations from traditional data types (e.g., images or grids) to graph data, enabling accurate mining of spatial relationships within data ( 
Chen and Chen, 2022; Hou et al., 2023). Therefore, some researchers combine GCN with RNNs for prediction tasks on time series data. 
Zhao et al. (2022) proposed a fusion of K-hop Graph Convolutional Network (k-GCN) and LSTM for vessel speed prediction, leveraging 
a three-step process that involves creating a vessel network model, using GCN to capture spatial node correlations and employing 
LSTM to harness spatiotemporal node correlations. Li et al. (2022a) developed a new network prediction framework, Spatial-Temporal 
GCN-GRU (ST-GGRU), in which GCN captures complex spatial correlations while GRU captures temporal correlations within sequence 
data. Huang et al. (2020) put forward a GCN-LSTM hybrid method featuring encoder and decoder structures, embedding GCN into the 
structure of LSTM to capture traffic flow’s spatial and temporal characteristics.

As research advances, scholars increasingly explore combining three DL methods to enhance predictive performance. Liu et al. 
(2022) developed a new hybrid network framework based on DL, effectively combining GANs and Bi-LSTM-based AE. This approach 
employs GAN to obtain reconstruction residuals and learn discriminative representations while utilising AE to extract essential 
temporal features, ultimately constructing a supervised learning model for feature integration and diagnostic result prediction. Hou 
et al. (2021) proposed a multi-step traffic flow prediction method based on an attention-based spatiotemporal graph neural network 
and a short-term memory neural network. This method can effectively capture the complex spatial dependencies within transportation 
networks, thereby improving prediction performance. Bao et al. (2023) proposed a multi-step traffic flow prediction method based on 
an attention-based spatiotemporal graph neural network and a short-term memory neural network. This method improves prediction 
accuracy by capturing intricate spatial dependencies in transportation networks.

Hybrid methods combine the strengths of multiple DL methods, balancing predictive and generative capabilities, and are ideal for 
scenarios requiring data generation alongside accurate prediction. Nonetheless, existing prediction techniques in hybrid-based 
methods overlook the interplay of spatial, temporal, and semantic correlations in VTF data in dynamic water areas. This paper pro
posed a new MPTNSR model to address this issue. The proposed MPTNSR model offers significant advantages over discrimination- 
based methods by incorporating GCN to enhance feature representation and by effectively modelling complex spatial–temporal-se
mantic interactions. Compared to generation-based methods, it focuses directly on prediction tasks, maintaining computational ef
ficiency while delivering robust and accurate results. Additionally, the MPTNSR model demonstrates strong adaptability to noisy data, 
overcoming the limitations of generation-based methods that rely heavily on accurate data distribution modelling. These strengths 
make the MPTNSR model a superior choice for VTF prediction tasks in diverse and complex scenarios.

2.3. Research gaps

Based on a comprehensive review of the existing literature, the following research gaps are identified, reflecting the motivation for 
the proposed MPTNSR model and showcasing its advantages over conventional deep learning models: 

(1) Limited modelling of complex and multi-dimensional interactions.

Current VTF prediction methods often rely on DL architectures that are not well-equipped to handle the complex, non-linear in
teractions between key variables such as vessel traffic density and temporal patterns. These limitations hinder the accurate modelling 
of the periodic and semantic relationships inherent in VTF data. A new methodology like MPTNSR, which can incorporate periodic, 
temporal, and semantic perspectives, is essential to effectively capture these multi-dimensional interactions. 

(2) Shortcomings in unified long- and short-term prediction.

Existing approaches in the field predominantly emphasise short-term prediction, with limited capacity to address both short- and 
long-term dynamics of VTF. This drawback restricts their utility for strategic decision-making and long-term planning. By leveraging a 
CNN-BiLSTM-based architecture, the proposed model can enhance the extraction of periodic and temporal features, bridging the gap 
between short- and long-term prediction and offering improved robustness in diverse temporal scenarios. 

(3) Fragmented analysis across multi-channel AIS data.

Most prediction models fail to coordinate the relationships between multiple AIS data channels effectively, treating them as 
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isolated variables. This fragmented approach overlooks critical dependencies, such as the geographical and temporal correlations 
among channels. The MPTNSR model overcomes this limitation by employing a GCN, which enhances collaborative prediction across 
channels by embedding traffic flow similarity and geographical features, leading to a holistic and accurate VTF prediction framework. 

(4) Inadequate loss function designs for multi-dimensional data.

Conventional loss functions, such as MSE alone, are insufficient for capturing the complex global and local patterns in multi- 
channel VTF data. To address this, the proposed MPTNSR integrates MSE and PCC into a novel loss function, optimising the pre
diction performance by accounting for both pointwise accuracy and correlation-based consistency.

The proposed MPTNSR methodology offers significant advancements over conventional DL models (i.e., discrimination-based 
methods, generation-based methods, and hybrid-based methods) by simultaneously capturing periodic, temporal, and semantic pat
terns through holistic feature extraction, which is often overlooked in traditional approaches. From a methodological perspective, the 
MPTNSR model embodies the strengths of a hybrid approach, combining CNN for spatial feature extraction, LSTM for temporal 
modelling, and GCN for semantic learning. This integration ensures robust performance, addressing the diverse challenges of VTF 
prediction. From a descriptive perspective, the model aligns with the practical demands of maritime applications, where efficiency, 
accuracy, and adaptability to complex relationships are critical. The MPTNSR model ensures it can handle real-world scenarios 
effectively, making it superior to traditional discrimination-based or overly complex hybrid models.

3. Preliminary

This section aims to provide clear definitions and establish research problems that can aid in comprehending and achieving precise 
VTF prediction. VTF data in the target area is calculated based on timestamp, latitude, and longitude information from AIS data.

3.1. Definitions

Definition 1. Vessel trajectory. A vessel trajectory VT with a length l consists of a series of points. The mathematical expression is shown 
below.

VT = {P1,⋯,Po,⋯,Pl}, Po = {to, lato, lono}, o = 1,⋯, l (1) 

where to, lato, and lono indicate the time, latitude, and longitude of the o-th point Po, respectively. These vessel trajectories are utilised 
to calculate VTF data using AIS data in Section 3.3. 

Definition 2. VTF data. It refers to the number of vessels passing through a designated section of a waterway within a unit of time, measured 
in units such as vessels per hour, per two hours, or vessels per day. In this study, the VTF data indicates the volume over a two-hour interval, 
implying that there are 12 time periods in a day.

Dataset =
{
t, d,VTFt,d

}
, t = 1,⋯, 12; d = 1,⋯,D (2) 

M12×D =

⎡

⎢
⎢
⎢
⎢
⎣

VTF1,1 ⋯ VTF1,d ⋯ VTF1,D
⋮ ⋮ ⋮ ⋮ ⋮

VTFt,1 ⋯ VTFt,d ⋯ VTFt,D
⋮ ⋮ ⋮ ⋮ ⋮

VTF12,1 ⋯ VTF12,d ⋯ VTF12,D

⎤

⎥
⎥
⎥
⎥
⎦

(3) 

where VTFt,d express the traffic volume in the t-th time interval of the d-th day. VTF dataset consists of time intervals, days, and traffic 
volume. 

Definition 3. VTF time series. It consists of sequences organised chronologically for each day.

Td =
{
VTF1,d,⋯,VTF12,d

}
, d = 1,⋯,D

Tt =
{
VTFt,1,⋯,VTFt,D

}
, t = 1,⋯, 12 (4) 

where Td express the VTF time series on the d-th day, and Tt indicates the VTF time series on the t-th time interval.

3.2. Problem statements

Problem generation: The accuracy of VTF prediction is influenced by several crucial factors, including the dynamic, periodic, and 
time-varying characteristics of VTF data, as well as the outcomes of interactions among different channels. Therefore, the four research 
problems are listed below.

Problem 1: How to effectively extract the periodic features in VTF data?
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To effectively extract the periodic features in VTF data, CNN is applied to different neighbourhood matrices (i.e., different moments 
within the same day and consecutive moments within a day) in M12×D. The model expression is shown below. 

fCNN(Mn×n) = F1×W (5) 

Mn×n =

⎡

⎢
⎢
⎢
⎢
⎣

VTFt− l, d− l ⋯ VTFt− l, d ⋯ VTFt− l, d+l
⋮ ⋮ ⋮ ⋮ ⋮

VTFt, d− l ⋯ VTFt, d ⋯ VTFt, d+l
⋮ ⋮ ⋮ ⋮ ⋮

VTFt+l, d− l ⋯ VTFt+l, d ⋯ VTFt+l, d+l

⎤

⎥
⎥
⎥
⎥
⎦

(6) 

where l = ⌊n/2⌋, n = 3, 5, 7, fCNN(⋅) indicates the convolution function operation. ⌊ ⋅ ⌋ denotes floor function, which refers to the 
process of rounding down a real number to the nearest integer that is less than or equal to it. Mn×n represents the local matrix of the 
whole VTF data matrix, and F1×W expresses the eigenvector.

Problem 2: How to accurately capture the VTF information on the temporal evolution?
The temporal evolution features can be captured by the Bi-LSTM network, including the information on the forward and backward 

directions. The eigenvector F1×W is used as the input to predict the subsequent VTF data. 

fBi− LSTM(Ft− i
1×W,⋯, Ft

1×W) = VTFt+1,d (7) 

where fBi− LSTM(⋅) represents the Bi-LSTM network operation, i is established based on the number of time points provided as input to the 
Bi-LSTM network, and VTFt+1,d is the VTF data in the next time interval.

Problem 3: How to achieve collaborative prediction among multiple channels?
To realise collaborative prediction, it is necessary to consider the relationships among multiple channels and different time in

tervals. First, analyse the location information of different channels. Then, measure the similarity between time intervals of different 
channels. Ensure the sum of the weights for location and similarity information equals 1. Next, calculate semantic information to 
generate a relation matrix. Finally, use the GCN model to extract the feature vector. 

f(αMlocation + βMsimilarity) = Mrelation

α + β = 1

fGCN(Mrelation,Dataset) = F1×Z

(8) 

where f(⋅) and fGCN(⋅) are the semantic information extraction and GCN network operation, respectively. Mlocation, Msimilarity, and Mrelation 
indicate the location, similarity, and relationship matrix, respectively. α and β are the weights of the location and similarity matrix. 

Fig. 2. Visual illustration of the VTF calculation process.
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F1×Z is the feature vector.
Problem 4: How can loss functions enhance the accuracy of measuring prediction errors?
A novel loss function is introduced to ensure precise VTF prediction, which combines the MSE and PCC functions. It takes into 

account not only the discrepancy between the predicted and actual values by MSE but also the variations in predicted values across the 
entire series by PCC. Consequently, the new loss function incorporates both local and global changes, as depicted below. 

floss = MSE+PCC (9) 

where floss(⋅) indicates the new loss function.

3.3. VTF calculation process based on AIS data

VTF data in the target area is calculated based on timestamp, latitude, and longitude information from AIS data. Each line segment, 
formed by two nodes, represents a cross-section of the VTF data. When a vessel’s trajectory intersects this cross-section, it indicates an 
increment of 1 in the VTF data for the target area. The calculation of VTF primarily involves determining whether two consecutive 
points on the vessel’s trajectory intersect with the cross-section. The specific calculation method is displayed in detail in Fig. 2.

According to the structure shown in Fig. 2, the VTF calculation process mainly includes two aspects. One is the preparation work, 
which involves AIS data (i.e., timestamps, latitude, and longitude coordinates) preparation and the determination of VTF cross-section. 
The original AIS data often contains noise and incomplete information, which may lead to errors if directly used for statistical VTF 
calculation. Therefore, this paper uses the Density-Based Spatial Clustering of Applications with Noise (DBSCAN) method (Mieczyńska 
and Czarnowski, 2021) to identify and remove noise points in vessel trajectories and reconstruct the missing points based on the Cubic 
Spline Interpolation (CSI) method (Wolberg, 1988). To further improve the quality of vessel trajectory data, the CSI method is 
employed to address the issue of data fragmentation, with interpolation operations every 10s. Furthermore, the VTF cross-section can 
be determined through two nodes (i.e., NBegin and NEnd in Fig. 2(b)), with coordinates (lonB, latB) and (lonE, latE), respectively. The 
calculation task for VTF data is conducted based on the completed preparation work, as illustrated in Fig. 2(c). The values of k and b 
shown in Fig. 2(c) can be obtained using the coordinates of nodes NBegin and NEnd, with the following expression: 

k =
latE − latB
lonE − lonB

(10) 

b = latE −
latE − latB
lonE − lonB

× lonE (11) 

To ensure that the denominator in Eq. (10) is not zero, it is essential to determine the existence of the parameter k. When it is 
preliminarily determined that two consecutive trajectory points are sequentially distributed on both sides of the cross-section, further 
analysis is needed to determine whether the intersection of a line formed by these two trajectory points and the cross-section actually 
lies on the cross-section. Nis represents the above intersection point, whose coordinate is (lonis, latis). The two conditions that satisfy the 
above scenario are lonB ≤ lonis ≤ lonE and latB ≤ latis ≤ latE. In summary, the current centre of gravity calculates the intersection 
coordinates based on two cross-section coordinates and two continuous trajectory points, respectively. According to Eqs (10) and (11), 
as well as the coordinates of two continuous trajectory points at time t and t + 1, the slope ktra and intercept btra of the straight line 
formed by the two continuous trajectory points can be calculated. Therefore, the calculation formula for intersection Nis is as follows, 

lonis =
btra − b
k − ktra

(12) 

latis =
btra × k − b × ktra

k − ktra
(13) 

where lonis and latis are the longitude and latitude of the intersection Nis, respectively. k and b indicate the slope and intercept of the 
straight line where the cross-section is located, respectively. ktra and btra denote the slope and intercept of the line formed by two 
continuous trajectory points, respectively. In principle, the straight cannot coincide with the straight line where the cross-section is 
located. Therefore, the denominator in Eqs. (12) and (13) are not equal to 0. However, there is a particular situation to consider, which 
occurs when ktra does not exist. In such a case, the abscissa of the intersection point Nis is equal to the abscissa of two arbitrary tra
jectory points, and the abscissa of the two trajectory points is equal. Additionally, the y-coordinate of the intersection point Nis is 
obtained by substituting the abscissa of any trajectory point into the equation of the line where the cross-section is located. Their 
calculation formula is as follows, 

lonis = lont (14) 

latis = k × lont + b (15) 

where lont indicates the abscissa of the trajectory point at time t. If the current two consecutive trajectory points do not intersect with 
the cross-section, the analysis continues by considering the trajectory point at time t + 1 as the first point, the trajectory point at time t 
+ 2 as the second point, and so on. This process continues until it is determined that the trajectory intersects with the cross-section or 
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all trajectory points have been examined.
Once it is established that the trajectory intersects with the cross-section, the next step is to determine the time period in which this 

intersection occurs. Each vessel’s AIS data trajectory point includes time information, such as hours, minutes, and seconds. To facilitate 
the calculation of the time period when the trajectory passes through the cross-section, this paper converts all time values into seconds 
using a uniform conversion formula: 

TimeData = 3600 × DataH+ 60 × DataM+DataS (16) 

where DataH, DataM, and DataS represent the hours, minutes, and seconds in the timestamp, respectively.
For each pair of consecutive trajectory points, the timestamps are averaged. According to Table 2, the resulting average timestamp 

is classified into the corresponding time interval, determining the time period when the trajectory passes through the cross-section. It is 
essential to mention that during the data preparation stage of this study, interpolation operations were performed, resulting in a 
trajectory point recorded every 10s. As a result, any small errors arising from calculating the time average of two consecutive trajectory 
points to determine the time period of crossing the cross-section can be considered negligible.

4. Methodology

A detailed introduction is provided for a new VTF prediction framework and methodology. This approach thoroughly takes into 
account periodicity, temporal progression, and the effects of changes in adjacent region data. The technical structure encompasses 
three dimensions: periodic, temporal, and semantic, with a novel loss function. Within this framework, each component of the pro
posed MPTNSR model is clearly explained.

4.1. The overarching framework

This overarching framework includes three distinct perspectives and an additional loss function. The periodic view centres on the 
current time node’s data, forming a local matrix that includes surrounding data. This local matrix is then fed into a CNN to capture the 
periodic characteristics of VTF data, with the surrounding data encompassing adjacent time nodes and past or future data from the 
same period. Multiple consecutive time nodes’ local VTF matrices are processed by the CNN to obtain feature vectors corresponding to 
different time nodes. These feature vectors are subsequently input into the temporal view to capture temporal changes, both forward 
and backward, over time.

In practical scenarios involving multiple target regions performing VTF prediction tasks simultaneously, a specific correlation often 
exists between these regions based on geographical location and VTF variation patterns. Therefore, the semantic view aims to leverage 
geographical location factors and the similarity of VTF data changes to establish correlation relationships between the channel 
executing the prediction task and other target channels. GCN is employed to capture these unique relationships.

The output vectors from the temporal and semantic views are merged into a new vector, which is subsequently processed by a fully 
connected network to generate the prediction results for the next time node. To provide a more comprehensive evaluation of the 
difference between predicted and actual values, the new loss function effectively integrates PCC as a global assessment, serving as an 
additional correction term alongside the original MSE. During network training, the initial 1D sequence data is converted into a 2D 
matrix. The matrix’s horizontal and vertical dimensions represent the number of days and data points within each day. In summary, 
the visual representation of the proposed MPTNSR framework is depicted in Fig. 3.

4.2. The proposed MPTNSR model

4.2.1. Periodic view
As previously stated, the periodic view employs CNN to capture the regular change attributes of the current time node. According to 

the input layer, a period of continuous data is selected to form a series of matrices around them as the training set TrainSet =
{
Mn×n

t ,Mn×n
t+1 ,⋯,Mn×n

t+i
}
. In particular, the calculation of the VTF local matrix Mn×n

t , as determined by Eq. (6), involves the parameter n 
which represents the size of the local VTF matrix. Each of these local matrices is then fed into the CNN to learn the periodic variations 
within the data. This process ultimately yields a feature vector as part of the periodic view.

One example of the feature vector extracted from a local VTF matrix by the CNN is employed to elaborate on the training process. 
During actual training, if the data is situated at the edges of the VTF matrix, it becomes necessary to pad the local matrix with zeros. 
Since the network data demands input in the form of a three-dimensional (3D) tensor, it is necessary to transform the local matrix from 

Table 2 
Time interval information corresponds to different time periods.

Time period Time interval (second) Time period Time interval (second) Time period Time interval (second)

1st 1–7200 5th 28801–36000 9th 57601–64800
2nd 7201–14400 6th 36001–43200 10th 64801–72000
3rd 14401–21600 7th 43201–50400 11th 72001–79200
4th 21601–28800 8th 50401–57600 12th 79201–86400
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a 2D to a 3D representation. CNN captures the periodic variation features within the local VTF matrix using a multi-layer convolution 
calculation, which can be described by the following formula: 

Ft = fCNN
(
Mn×n

t ⊗ WCNN
t

)
+ bCNN

t (17) 

where WCNN
t and bCNN

t denote the weight and bias for convolution operations, respectively. fCNN( ⋅ ) indicates the activation function, 
which is the Rectified Linear Unit (ReLu) in this paper (Hara et al., 2015). ⊗ denotes the convolutional operation.

The MPTNSR prediction method uses multi-layer convolution calculation in actual training, resulting in the following general 
function expression: 

Fp
t = fCNN

(
Fp− 1

t ⊗ Wp
t
)
+ bp

t (18) 

where Fp− 1
t represents the input data while Fp

t corresponds to the output data of the convolution layer. p signifies the specific layer of 
convolution being referred to. In particular, when p equals one, it indicates that Fp− 1

t is the local VTF matrix Mn×n
t .

The MPTNSR method utilises four convolution layers to construct a training network. Therefore, the range of values for p spans 
from one to four. Additionally, the kernel size used in each convolutional layer is set to 3 × 3.

Following the convolution calculation, the tensor data (i.e., FOut
t ∈ Rn×n×2m) undergoes a transformation into a 2D matrix (i.e., 

MOut
t ∈ Rn×n×2m). Subsequently, this matrix is fed into a fully connected network to get the feature vector (i.e., FVOut

t ∈ R1×2m). The 
functional expression is described as follows: 

FVOut
t = fc

(
Wt ⋅ MOut

t + bt
)

(19) 

where Wt and bt denote the weight and bias value of a fully connected network, respectively. fc(⋅) is a linear function within the fully 
connected network.

A visual representation of the detailed calculation process for extracting periodic variation characteristics from the VTF data using 
the periodic view is presented in Fig. 3. Additionally, the optimal values of the hyperparameters n and m involved in this view will be 
analysed in Section 5.3.

4.2.2. Temporal view
After processing with the periodic view, a continuous local VTF matrix can obtain a series of feature vectors FVs =

{
FVout

t , FVout
t+1,

⋯, FVout
t+i

}
that change over time. In the temporal view, the sequence FVS is converted into a 3D tensor and fed into a Bi-LSTM network 

to capture the temporal dynamic of VTF data.
The network structure of Bi-LSTM is an extension of the LSTM architecture, combining both forward LSTM and backward LSTM. 

Unlike the original RNN, LSTM introduces a memory state (C) in addition to the hidden state (h). Within LSTM, there are three gating 
mechanisms that collectively control the updates to h and C at each time step. The forgetting gate determines how much information 

Fig. 3. The proposed framework for VTF prediction. Periodic view: CNN has applied to mine the periodic changes between the VTF data of the 
current time node and other adjacent time nodes. Temporal view: Bi-LSTM captures the patterns of forward and backward data changes over time. 
Semantic view: The geographical location and VTF change similarity (i.e., a network diagram of the waterways) between different target areas are 
combined to find the internal connection between multiple channels, as well as effectively learn the associated features based on GCN. Loss 
function: Both local (using MSE) and global (employing PCC) information are integrated into the newly proposed loss function.
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from the previous time node Ct-1 should be transmitted to the next time node Ct. The input gate decides the information that should be 
stored in Ct based on the input data at the current time step. The output gate regulates the flow of information from Ct to the output 
hidden state (ht). In Bi-LSTM, there are two sets of C and h, one for the forward pass and one for the backward pass, allowing in
formation to flow in both directions. It is important to note that there is no direct connection between the forward and backward 
hidden layers in Bi-LSTM, ensuring that the network remains acyclic. Fig. 4 visually illustrates the structures and data flow in both 
LSTM and Bi-LSTM, highlighting this distinction.

To enhance the visualisation of the Bi-LSTM training process, this section illustrates the procedure using the feature vector FVout
t of 

the t-th time step as an example, providing a comprehensive explanation. Initially, a linear transformation is performed by the linear 
layer on the forward hidden unit Ht-1 and the backward hidden unit ht-1 from the previous time step t-1, and the input data FVout

t from 
the current time node t. Additionally, an activation function is applied to map the results of the linear transformations to the range 
between zero and one. The representation of this process is as follows: 

fF
t = σF

(
WF

f
[
Ht− 1, FVout

t
]
+ bF

f

)
(20) 

fB
t = σB

(
WB

f
[
ht− 1, FVout

t
]
+ bB

f

)
(21) 

where WF
f and bF

f represent the forward network’s weight matrix and bias values, respectively. WB
f and bB

f denote the backward 
network’s weight matrix and bias values, respectively. σF and σB are the activation functions of the forward and backward networks, 
respectively, which are typically the Sigmoid functions. In particular, if the output results of fF

t and fB
t are both one, it indicates that all 

the information from both the forward and backward networks at the previous time node has been successfully transferred to the 
current time node.

Secondly, the input data FVout
t from the current time step, along with the two hidden units (i.e., Ht-1 and ht-1) from the previous time 

step, perform a linear transformation. The ultimate results are computed using distinct activation functions. The precise mathematical 
expressions are as follows: 

inF
t = σF ( WF

in
[
Ht− 1, FVout

t
]
+ bF

in
)

(22) 

zF
t = tanhF ( WF

z
[
Ht− 1, FVOut

t
]
+ bF

z
)

(23) 

inB
t = σB( WB

in
[
ht− 1, FVout

t
]
+ bB

in
)

(24) 

zB
t = tanhF ( WB

z
[
ht− 1, FVOut

t
]
+ bB

z
)

(25) 

where both σ (using Sigmoid) and tanh represent the activation functions of forward and backward networks. Eqs. (22) and (23)
correspond to the output of the forward network in the input gate, while Eqs. (24) and (25) pertain to the output of the backward 
network in the input gate. WF

in,WF
z ,WB

in, and WB
z , along with bF

in,bF
z ,bB

in, and bB
z , denote the weight matrix and bias values in the forward 

and backward networks.

Fig. 4. The working mechanism, (a) LSTM Network Structure and (b) Bi-LSTM Network Structure. Specifically, ω1 and ω2 denote the weight 
matrices responsible for the connections from the input layer to the forward and backward hidden layers, respectively. Likewise, ω3 and ω4 

correspond to the weight matrices facilitating connections between the two distinct hidden layers, while ω5 and ω6 represent the weight matrices 
that link the forward and backward hidden layers to the output layer.
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Thirdly, based on the above results, CF
t and CB

t in the forward and backward networks at time t can be calculated, whose mathe
matical expressions are as follows: 

CF
t = fF

t × CF
t− 1 + inF

t × zF
t (26) 

CB
t = fB

t × CB
t− 1 + inB

t × zB
t (27) 

Fourthly, the output result of the hidden unit is closely related to the amount of information from the previous moment, the input 
data of the current time node, and the storage unit. The calculation of hidden units (i.e., Ht-1 and ht-1) in both the forward and backward 
networks is outlined as follows: 

oF
t = σF ( WF

o

[
Ht− 1, FVout

t

]
+ bF

o

)
(28) 

Ht = oF
t × tanh

(
CF

t
)

(29) 

oB
t = σB( WB

o
[
ht− 1, FVout

t
]
+ bB

o
)

(30) 

ht = oB
t × tanh

(
CB

t
)

(31) 

where WF
o , bF

o and WB
o , bB

o denote the weight matrix and bias values in the forward and backward networks, respectively.
Finally, the fusion of Ht and ht from the forward and backward networks is subsequently fed into a linear fully connected network to 

yield the final result, expressed as follows: 

FPT = fc
(
Wfc ⋅ [Ht , ht ] + bfc

)
(32) 

where Wfc and bfc represent a fully connected network’s weight and bias value, respectively. Referring to Fig. 4, the output of this view 
(denoted as FPT) will be integrated into a new vector within the semantic view. The ultimate prediction result will be derived by passing 
this combined vector through a fully connected network.

4.2.3. Semantic view
In practical scenarios, multiple channels within a target area usually execute VTF prediction tasks simultaneously. Therefore, to 

achieve better prediction performance, it is important to consider both the geographical location and the similarity between VTF 
sequence data in the semantic view. As depicted in Fig. 5, the two research water areas, Caofeidian Port (CFDP) and Chengshan Jiao 
(CJ), comprise six and eight distinct channels, respectively. The geographical locations of these channels, along with vessel headings, 
determine the inter-channel correlation in VTF changes. The CFDP water area, located in the western Bohai Sea, is notable for its 
intense traffic and strategic location for a major deep-water port development. The CJ water area is a crucial maritime route to the 
Bohai Sea and northern Yellow Sea ports, characterised by heavy ship traffic, complex weather, and high collision risks, with over 
800,000 ships annually.

As depicted in Fig. 5 (a), the CFDP water area comprises six distinct channels, and the geographical locations of these channels, as 
well as vessel headings, determine the inter-channel correlation in VTF changes. To elucidate: 

(1) Channel C1 serves as the primary entry point for vessel traffic into the study area, and as such, VTF in C1 is primarily self- 
contained and unrelated to the other five channels. The weight between C1 and C1 is set to 1 because of their proximity.

Fig. 5. The schematic diagram of two water areas: (a) the CFDP area and (b) the CJ water area. Significantly, the arrow indicates the flow direction 
of VTF.
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(2) Channel C2 witnesses vessel traffic from both C6 and C4, as vessels exiting these channels enter C2 before departing the study 
area. Therefore, the correlation weight between C2 and C4 and between C2 and C6 is set to 1. Since C1 is the main entry point for 
vessel traffic, the weight between C2 and C1 is also set to 1. Moreover, the weight between C2 and C2 is set to 1 due to their 
proximity.

(3) For Channel C3, vessel traffic originates from C1, with part of C1′s traffic flowing into C5 and the remainder flowing into C3. 
Consequently, a weight of 1 exists between C3 and C1, as well as between C3 and C5. Similarly, the weight between C3 and C3 is 
set to 1.

(4) In the case of Channel C4, vessels enter ports such as Tianjin Port through Channel C3 and exit through Channel C4 after 
completing their transportation tasks. Therefore, the weight between C4 and C3 is set to 1. Given that C1 is the primary entrance 
for vessel traffic and there is a directional flow from C3 to C1 (weight is 1), the weight between C4 and C1 is also set to 1. 
Likewise, the weight between C4 and C4 is set to 1.

(5) For Channel C5, vessel traffic originates from C1, with part of C1′s traffic flowing into C3 and the other part flowing into C5. 
Consequently, weights of 1 are assigned between C5 and C3, as well as between C5 and C1. Similarly, the weight between C5 and 
C5 is set to 1.

(6) Channel C6 experiences vessel traffic from the CFDP via Channel C5, with vessels leaving the study area through C6 upon 
completing their transportation tasks. Therefore, the weight between C6 and C5 is set to 1. Given that C1 serves as the primary 
entrance for ship traffic and there is a directional flow from C5 to C1 (weight is 1), the weight between C6 and C1 is also set to 1. 
Additionally, the weight between C6 and C6 is set to 1.

In summary, Table 3 illustrates the geographical position weight matrix for the CFDP water area, while the matrix for the CJ water 
area, calculated in the same manner, is presented in Table 4.

The geographical location of a waterway plays a pivotal role in shaping the interactions among multiple target areas. Additionally, 
there might be specific correlations among the VTF variation patterns observed in different channels. In the context of network 
training, this study establishes each period as a baseline and utilises data from consecutive days within that period as input for the 
training set, aiming to predict VTF data for the subsequent day. Consequently, the semantic view employs the Dynamic Time Warping 
(DTW) method to evaluate the similarity between VTF sequence data from two channels during different periods (Li et al., 2022b). The 
exponential function is selected to map DTW measures and weight values one-to-one. When the VTF variations of two channels are 
similar, the weight value is 1, indicating strong similarity. Conversely, if the VTF variation characteristics differ significantly, the 
weight value approaches 0, indicating weaker similarity. The mathematical expression for this calculation is provided below: 

ωsim = e− DTW(p,q) (33) 

where p and q represent VTF sequence data from two different waterways, respectively. DTW(p,q) denotes the similarity measure 
between two sequences.

To comprehensively consider the impact of the geographical location of the waterway and the variation pattern of VTF, the se
mantic view integrates the above two influencing factors, and its calculation formula is as follows, 

ω = α × ωgl + β × ωsim (34) 

α+ β = 1 (35) 

where α and β are the weights that determine the relative importance of two factors (i.e., geographic location and VTF change sim
ilarity) during network training.

In Section 5.4, an extensive set of comparative experiments will be conducted to provide a deeper understanding of how the values 
of these two hyperparameters affect prediction accuracy and stability. The value of ωgl is derived from Table 1.

The value of ω serves to assess the correlation between two waterways by taking into account their geographical location infor
mation and the similarity in VTF changes. The weight matrix Mw can be constructed to express connections between navigation 
channels using ω, and each navigation channel’s VTF sequence data is represented as the feature vector Vf. These individual channel 
feature vectors are consolidated into a 2D feature matrix Mf, which is then combined with the weight matrix and input into the GCN 
network to obtain hidden relationship vectors, as visually illustrated in Fig. 6. The functional expression is described in Eq. (36), 

Table 3 
Geographical position weight matrix between different channels in the CFDP water area (1 indicates the existence of traffic flow inflow relationship 
between the two channels, and 0 indicates no relationship).

C1 C2 C3 C4 C5 C6

C1 1 0 0 0 0 0
C2 1 1 0 1 0 1
C3 1 0 1 0 1 0
C4 1 0 1 1 0 0
C5 1 0 1 0 1 0
C6 1 0 0 0 1 1
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FG = GCN
(
Mw,Mf

)
(36) 

4.2.4. Loss function
The loss function serves as a measure of the disparity between the predicted values generated by a network model and the actual 

values. During network training, the objective is to minimise this loss function through successive iterations, utilising predefined 
network parameters and optimisation algorithms. In general, the choice of the loss function hinges on the specific application context 
and typically falls into two broad categories: regression and classification tasks.

In the context of this study, the loss function is applied to the VTF prediction task, which falls under regression. Consequently, two 
widely employed and effective regression loss functions are extensively used in network training. The first is the MSE (Allen, 1971), 
which calculates the average squared distance between the predicted and actual values of a sample. The second is the Mean Absolute 
Error (MAE) (Chai and Draxler, 2014), which measures the average absolute difference between the predicted values generated by the 
network model and the actual values of a sample. If the data is noise-free, MSE is preferred, while MAE is more suitable for noisy data. 
Since the data in this study has been preprocessed and is noise-free, MSE is chosen as the appropriate metric. It will be a crucial 
component of the proposed loss function. The functional expression of MSE is represented by Eq. (37). 

MSE =
1

num
∑num

i=1
(prei − acti)2 (37) 

where num represents the total number of VTF data (which can also be the number of time nodes). prei and acti are the predicted and 
actual values at the i-th time node, respectively.

In this paper, the training network is devised to forecast data for the upcoming time node by utilising sample values from a sequence 
of continuous time nodes. Consequently, the value of num is configured to 1 in Eq. (37). While MSE falls within the category of 
regression loss functions, they each possess distinct advantages and disadvantages when it comes to assessing the effectiveness of a 
network model’s training.

MSE offers greater complexity in gradient computation, facilitating dynamic changes in gradients that lead to rapid and precise 
convergence. Furthermore, the VTF data used in this paper essentially contains no outliers. Therefore, in summary, MSE will be a 
crucial component of the proposed prediction method’s loss function.

To effectively evaluate the difference between predicted and actual values in a specific sequence, this paper combines the network’s 
input sequence Xin = {inData1, inData2, …, inDatan} with the expected (Datapre) and actual (Dataact) values to form two new sequences 
Xpre = {inData1, inData2, …, inDatan, Datapre} and Xact = {inData1, inData2, …, inDatan, Dataact}, respectively. The correlation between 
the original sequence Xact and the sequence Xpre (i.e., the sequence with the predicted values) is evaluated using the absolute value of 
the Pearson Correlation Coefficient (PCC) (Benesty et al., 2008). The function is defined as follows, 

Table 4 
Geographical position weight matrix between different channels in the CJ water area.

CJ1 CJ2 CJ3 CJ4 CJ5 CJ6 CJ7 CJ8

CJ1 1 1 0 0 0 0 0 0
CJ2 1 1 0 0 0 0 0 0
CJ3 0 0 1 1 1 0 1 0
CJ4 0 0 1 1 0 0 0 0
CJ5 0 0 1 0 1 1 1 0
CJ6 0 0 0 0 1 1 1 0
CJ7 0 0 0 1 0 1 1 1
CJ8 0 0 0 1 0 1 1 1

Fig. 6. The schematic mechanism of the GCN.
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⃒
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⃒
⃒

(38) 

This paper goes beyond considering only MSE and computes the PCC between Xact and the sequence Xpre. The proposed loss 
function incorporates global information into the optimised loss function, enabling a comprehensive evaluation. At its core, the 
proposed loss function combines local knowledge, primarily represented by MSE, with global communication, primarily indicated by 
PCC. The formula for the new loss function is defined as follows: 

LFMSEPCC = MSE+(1 − PCC) (39) 

The PCC falls within a value range of 0 to 1, where a higher PCC value indicates a more robust correlation between the predicted 
results and the original data. In practical applications, the network’s objective is to minimise the loss function through iterative 
processes during training.

4.3. Description of the prediction component

This paper concentrates on forecasting VTF data for future time intervals based on a collection of continuous historical data used as 
training samples. The proposed MPTNSR method adeptly captures the periodic and temporal evolution patterns of VTF via periodic 
and temporal views, consequently yielding the feature vector FPT. Furthermore, it employs the semantic view to extract the in
terrelationships among various waterways, resulting in the feature vector FG. The amalgamation of FPT and FG vectors produces a novel 
vector, which is subsequently fed into a fully connected network to generate the ultimate prediction outcome. The mathematical 
representation for this process is defined as follows: 

FNew = FPT ⊕ FG (40) 

pre = f(WFCFNew + bFC) (41) 

where ⊕ is the operational symbol for merging two vectors into one vector. f( ⋅ ) denotes the linear function of the fully connected 
network. WFC and bFC represent the weights and bias values of the fully connected network, respectively. pre indicates the ultimate 
predicted result. The comprehensive procedure for executing multi-objective regional (or multi-channel) VTF collaborative prediction 
using the MPTNSR method is outlined in Algorithm 1.

Algorithm 1: The proposed MPTNSR

Input: VTF matrix for all channels: VTFSeqN
1,⋯,n =

{
VTFM12×92

1 ,VTFM12×92
2 ,⋯,VTFM12×92

n
}

;
Directed graph of VTF relationship among six channels during different periods: GSeqT

1,⋯,12 = {G1,G2,⋯,G12};
Sequence length: SL;
Size of local VTF matrix: SLVM;
Output: The trained MPTNSR model
1. Expand the VTF matrix of each channel outward based on SLVM

VTFNSeqN
1,⋯,n =

⎧
⎪⎪⎨

⎪⎪⎩

VTFNM

(

12+⌊SLVM
2 ⌋×2

)

×

(

92+⌊SLVM
2 ⌋×2

)

1 ,VTFNM

(

12+⌊SLVM
2 ⌋×2

)

×

(

92+⌊SLVM
2 ⌋×2

)

2 ,⋯,VTFNM

(

12+⌊SLVM
2 ⌋×2

)

×

(

92+⌊SLVM
2 ⌋×2

)

n

⎫
⎪⎪⎬

⎪⎪⎭

2. Initialisation;
3. for ∀i ∈ N do
4. for ∀j ∈ T do
5. for ∀k ∈ SL do // the periodic view learns the periodic features of VTF.
6. Fk

1×W = fCNN(MSLVM×SLVM);
7. MSLVM×SLVM as the VTF local matrix is determined by Eq. (6) calculated;
8. end
9. FPT = fBi− LSTM

(
F1

1×W, F2
1×W,⋯, Fk

1×W
)
; // the temporal view captures the temporal variation characteristics of VTF.

10. FG = fGCN

(
Gj ,AllVTFFeature

j

)
; // the semantic view extracts the characteristics of the relationship between different channels.

11. AllVTFFeature
j =

⎡

⎢
⎢
⎢
⎢
⎢
⎣

VTFM12×92
1 [j :, ]

VTFM12×92
2 [j :, ]
⋮

VTFM12×92
n [j :, ]

⎤

⎥
⎥
⎥
⎥
⎥
⎦

;

12. prei,j = fFC([FPT , FG] ); // Fuse the feature vectors FPT and FG and input them into a fully connected network to obtain the final prediction result.
13. end
14. end
15. Initialise all network parameters θ in MPTNSR;
16. repeat
17. Optimise θ by minimising the optimised loss function Eq. (9).
18. until the stopping criteria are met. // The number of network training sessions has reached the iteration value.
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5. Experimental results and discussion

To thoroughly evaluate the predictive capabilities of the proposed MPTNSR method in addressing VTF prediction challenges, this 
study conducts extensive comparative experiments using VTF data from all channels in the CFDP and CJ water areas. These experi
ments provide a quantitative analysis of the effects of various network parameters, the optimised loss function, and different infor
mation weights on the prediction accuracy and stability of the MPTNSR method. Additionally, the performance of 19 prediction 
models is assessed using three key indicators, offering valuable insights into their effectiveness. Furthermore, ablation experiments and 
time complexity analysis are conducted to validate the robustness and efficiency of the proposed MPTNSR model. Finally, the pre
diction performance on low-quality data is also explored to demonstrate the effectiveness of the proposed MPTNSR model.

All method comparisons were conducted under the same software and hardware conditions to ensure experimental fairness. 
Specifically, the environment consisted of Python 3.9.13 with PyTorch version 1.13.1, running on an Intel i7-12700KF Dodeca Core 
processor with 32 GB of host memory.

5.1. Experimental datasets

To verify the effectiveness of the proposed MPTNSR model in VTF prediction tasks, this paper focuses on six waterways within the 
CFDP water area and eight channels in the CJ water area. The extracted VTF data visualisation and schematic diagram of the two water 
areas are presented in Fig. 7. Fig. 7 (a) and (b), providing an overview of vessel trajectories and density distribution within the CFDP 
and CJ water area, respectively. Fig. 7 (c) and (d) depict the distribution of the calculated VTF cross-sections for each channel in the 
two water areas, which serve as the basis for calculating the VTF data. If trajectories cross the corresponding channel interface, the 
traffic flow statistics increase by 1. Specifically, there are six and eight channels in the CFDP and CJ water areas, respectively, resulting 
in six and eight datasets from C1 to C6 and CJ1 to CJ8. The coordinates listed in Table 5 are derived based on the World Geodetic 
System-1984 (WGS-84) coordinate system. The longitude and latitude coordinates of nodes in VTF cross-sections for six channels are 
shown in Fig. 7 (c) and Fig. 7 (d).

The collection period for VTF data in each channel in this experiment spans from 1 July 2020 to 30 September 2020 (i.e., 92 days). 
Each day is segmented into 12 time intervals, each spanning two hours. As a result, each channel has a dataset containing 1104 time 
nodes of VTF data, calculated using the method described in Section 3.3. The proposed MPTNSR prediction method requires inputting 
data into the network in the form of a matrix, rather than a one-dimensional time series. Therefore, in this paper, 1D VTF data is 

Fig. 7. Visualisation of data and channels in two water areas. (a) visualisation of vessel trajectory density in the CFDP water area, (b) visualisation 
of vessel trajectory density in the CJ water area, (c) schematic diagram of VTF statistical cross-section in the CFDP water area, and (d) schematic 
diagram of VTF statistical cross-section in the CJ water area.
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converted into a 12 × 92 2D matrix, representing the hours of the day (vertical axis) and the days (horizontal axis). The VTF matrix 
visualisation results of two water areas are depicted in Figs. 8 and 9, respectively.

5.2. Performance indexes on prediction

This paper thoroughly assesses predictive performance across diverse scenarios by selecting two types of quantitative indicators, 
representing both fine-grained and coarse-grained analyses. The fine-grained indicator, the mean relative error (REMean), measures 
the accuracy and stability of various methods in predicting VTF data at distinct time points. The mathematical expressions are as 
follows: 

REMean =
1

num
∑num

i=1

|prei − act|
act

(42) 

where num signifies the count of times a prediction method has been executed. When using learning-based methods for VTF prediction 
tasks, results can differ with each execution. To ensure reliability and consistency of prediction results, multiple experiments are 
conducted for each scenario, and the final prediction result is determined by averaging these values. The value of num is set as 10 in the 
experiments. act represents the actual VTF values at a specific time node, and prei denotes the predicted values for the i-th run. In all 
comparative experiments, the objective is to achieve high accuracy and stable prediction results by minimising the value of REMean.

From a coarse-grained perspective, this experiment chooses the Root Mean Square Error (RMSE), Mean Absolute Percentage Error 
(MAPE), and coefficient of determination (R2) as quantitative evaluation indicators. The expressions are listed below: 

RMSE =

̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅

1
tn

∑tn

j=1

(
aveprej − actj

)2

√
√
√
√ (43) 

MAPE =
1
tn

∑tn

j=1

⃒
⃒
⃒
⃒
aveprej − actj

actj

⃒
⃒
⃒
⃒ (44) 

R2 = 1 −

∑tn
j=1

(
aveprej − actj

)2

∑tn
j=1

(
actj − aveact

)2 (45) 

where tn denotes the number of data nodes in a day, whose value is 12. aveprej is the average predicted value at the j-th time node, 
while actj indicates the actual VTF data at the j-th time node. aveact represents the average of the actual VTF data at 12 time points in a 
day. The value of R2 typically ranges from 0 to 1.

In theory, more accurate prediction results tend to have a higher R2 value. Conversely, RMSE and MAPE have an opposite eval
uation mode to R2. The optimal predictive performance is achieved when the RMSE and MAPE values are minimised.

5.3. Comparison with other state-of-the-art prediction methods

To assess the effectiveness of the proposed MRTSRNet model in VTF prediction, this study carries out comparative experiments 
against fourteen advanced prediction methods. These methods are grouped into four categories: 

(1) ML methods (i.e., ARIMA (Kumar et al., 2022) and SVM (Zhang and Wu, 2022)).
(2) NN methods (i.e., BPNN (Zhang and Wu, 2022) and WNN (Doucoure et al., 2016)).

Table 5 
The longitude and latitude coordinates of nodes in VTF cross-sections for different channels in the CFDP and CJ water areas.

Water area Channel Node Longitude(o) Latitude(o) Channel Node Longitude(o) Latitude(o)

CFDP C1 N1 118.7574 38.8205 C2 N3 118.5418 38.8194
N2 118.7536 38.8041 N4 118.5387 38.8025

C3 N5 118.4622 38.8532 C4 N7 118.3516 38.8401
N6 118.4587 38.8368 N8 118.3485 38.8234

C5 N9 118.5188 38.8519 C6 N11 118.4728 38.9018
N10 118.5085 38.8492 N12 118.4618 38.8988

CJP CJ1 N1 122.7042 37.4955 CJ2 N3 122.7746 37.5277
N2 122.7393 37.5111 N4 122.8107 37.5444

CJ3 N5 122.9429 37.1942 CJ4 N7 123.0266 37.1948
N6 122.9851 37.1945 N8 123.0689 37.1942

CJ5 N9 123.0692 37.5176 CJ6 N11 123.1111 37.5758
N10 123.0905 37.5474 N12 123.1320 37.6053

CJ7 N13 122.8498 37.6212 CJ8 N15 122.8910 37.6788
N14 122.8708 37.6501 N16 122.9123 37.7088
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(3) DL methods (i.e., RNN (Liu et al., 2020), LSTM (Wei et al., 2019), GRU (Li et al., 2019), Bi-LSTM (Zhang et al., 2020), and Bi- 
GRU (Yang et al., 2021)).

(4) Hybrid methods (i.e., CNN-LSTM (Cheng et al., 2022), CNN-BiLSTM (Shan et al., 2021), CNN-GRU (Ma et al., 2023), CNN- 
BiGRU (Niu et al., 2022), LSTM-GCN (Ye et al., 2024), BiLSTM-GCN (Li et al., 2023b), GRU-GCN (Wang et al., 2022a), 
BiGRU-GCN (Xu et al., 2024), and the Improved CNN-LSTM with Similarity Grouping (ICLSGNet) (Li et al., 2023d).

The comparative experiments presented in this paper analyse both traditional and cutting-edge prediction models. The predictive 
outcomes can effectively validate the efficacy of the model introduced in this paper. The results of these 19 prediction methods are 
compared in subsequent sections.

5.4. Network parameter settings and optimisation

The proposed MPTNSR model integrates three views: periodic, temporal, and semantic, which are constructed based on CNN, Bi- 
LSTM, and GCN, respectively. These views are created to capture the cyclic and time-dependent fluctuations in VTF data and enable 
collaborative prediction by considering the interactions between multiple channels. Therefore, the parameters in network training 
mainly come from three views (which are essentially CNN, Bi-LSTM, and GCN), as illustrated in Table 6.

Table 6 provides not only the network parameter setting for the three views but also includes some general parameters that are 

Fig. 8. Visualisation of the VTF matrix for six channels in the CFDP water area.

Fig. 9. Visualisation of the VTF matrix for eight channels in the CJ water area.
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applicable throughout the entire network, such as optimisation algorithm, learning rate, and iteration. These parameters are pivotal in 
determining the network’s capacity to effectively grasp the evolving characteristics of historical data, thereby influencing its accuracy. 
The bold parameters in Table 6 represent hyperparameters, which are challenging to determine accurately and quickly through 
conventional methods. Hence, this paper employs an exhaustive process to assign different values to these parameters and analyse the 
precision and robustness of the prediction results to obtain the optimal parameter values. The multiple values of these parameters are 
also shown in Table 6, including the size of the local VTF matrix, input size, sequence length, learning rate, and iteration. In particular, 
the value of ‘Input Size’ in the temporal view is determined by ‘Size of Local VTF Matrix’ in the periodic view. Varying the size of the 
local VTF matrix results in different depths of each convolutional layer, leading to diverse dimensions of the output feature vectors in 
CNN. The output vector from the periodic view acts as the input vector for the temporal view, establishing the interconnection between 
these two parameters. Additionally, the parameter ‘Sequence Length’ in the temporal view determines the number of time nodes 
simultaneously fed into the network, thereby affecting the incorporation of CNN structures within the periodic view. The effect of these 
parameters, including the local VTF matrix size, sequence length, learning rate, and iteration count, on the accuracy and stability of 
VTF prediction under various values in the two water areas will be comprehensively examined. The dimensions of the local VTF matrix 
in CNN are closely connected to the input size in Bi-LSTM. This connection arises from the fact that alterations in the input matrix size 
of CNN result in varying convolutional layer depths, which in turn affect the length of the ultimate output vector within the fully 
connected network of CNN.

CNN captures the periodic characteristics of the local VTF matrix. The output vector obtained from CNN serves as input data for Bi- 
LSTM. The relationship between local VTF matrices of different sizes and the corresponding input size of Bi-LSTM in a four-layer 
convolutional CNN model is presented in Table 7.

The proposed MPTNSR method achieves higher prediction accuracy and optimal fitting with a 3 × 3 local VTF matrix size, as 
demonstrated in Tables I and II in the Appendix. The highlighted results show that this matrix size consistently delivers the highest and 
lowest RMSE and MAPE values across both water areas, confirming its effectiveness. The 3 × 3 local VTF matrix size outperforms larger 
sizes like 5 × 5 and 7 × 7 primarily due to the balance it strikes between capturing sufficient local information and maintaining 
computational efficiency. Therefore, a smaller VTF matrix size 3 × 3 enhances the MPTNSR model’s ability to capture localised spatial 
features and short-range dependencies, improving prediction accuracy in dynamic maritime environments. Additionally, it reduces 
computational complexity, ensuring efficient processing without sacrificing performance.

The learning rate is a critical parameter that directly influences the convergence speed and stability of the MPTNSR model. 
Comparative experiments with learning rates of 0.0001, 0.0005, 0.001, 0.005, and 0.01, as detailed in Tables III and IV in the Ap
pendix, reveal the model’s sensitivity to changes in this parameter. These results highlight how excessively high learning rates can 
cause gradients to overshoot the optimal point, leading to instability, while excessively low rates may slow convergence or prevent the 
loss function from reaching its minimum.

The analysis demonstrates that a balanced learning rate of 0.001 strikes an ideal trade-off, ensuring both faster convergence and 
training stability. This moderate rate enables the model to avoid overshooting while maintaining a steady progression toward the 
optimal solution, resulting in enhanced prediction accuracy and robust model performance. Understanding the sensitivity of the model 
to different learning rates provides valuable insights for optimising training dynamics and ensuring reliable convergence in various 
datasets.

The number of iterations significantly impacts the MPTNSR model’s ability to balance prediction accuracy and training stability. 
According to the results in Figs. 10 and 11, 500 iterations consistently achieve the highest R2 values and the lowest RMSE and MAPE 
values across both water areas. This indicates that 500 iterations allow the model to effectively converge without overfitting or 
underfitting, resulting in accurate and stable predictions.

The comparative analysis highlights how varying iteration counts (e.g., 100, 300, 500, 700, and 900) influence the training process. 
Fewer iterations may lead to underfitting, where the model fails to capture sufficient patterns in the data, while excessive iterations can 
introduce noise or overfitting, reducing generalisation. The optimal choice of 500 iterations balances these extremes, ensuring the 
model captures both long-term trends and immediate patterns without compromising performance or stability. This analysis 

Table 6 
Network parameter information for the proposed MRTSRNet method.

Parameters Values Parameters Values

Periodic View Size of local VTF matrix 3 × 3, 5 × 5, and 7 ×
7

Number of convolutional layers 4

Size of convolutional kernel 3 × 3 Stride 1
Padding 1 − −

Temporal View Input size 32, 64, and 128 Hidden size 2 × Input Size
Sequence length 3, 6, 9, 12, and 15 Number of hidden layer 1

Semantic View Number of convolutional layers 2 The output dimension of the First 
Layer Convolution

23

The output dimension of the second 
layer convolution

6 − −

General 
Parameters

Optimisation algorithm Adamax Learning rate 0.0001, 0.0005, 0.001, 
0.005, and 0.01

Iteration 100, 300, 500, 700, 
and 900

− −

H. Li et al.                                                                                                                                                                                                               Transportation Research Part E 197 (2025) 104072 

21 



underscores the importance of tuning iteration counts to optimise predictive accuracy and robustness in diverse maritime datasets.
Finally, the impact of sequence length (i.e., 3, 6, 9, 12, and 15) is explored on the accuracy of VTF data prediction. Sequence length, 

derived from the temporal view, is closely linked to the periodic view as it determines the number of time nodes of VTF data input into 
the training network, which corresponds to the number of CNNs in the periodic view. For this analysis, the other three network 
parameters—local VTF matrix size, learning rate, and iterations—are fixed at 3 × 3, 0.001, and 500, respectively. The quantitative 
results, including RMSE, MAPE, and R2, for five sequence lengths are presented in Tables V and VI in the Appendix. The findings 
highlight that the MPTNSR model achieves optimal prediction performance with a sequence length of 3 across both water areas. This 
indicates that the model effectively captures complex changing features from historical data in various application scenarios. Thus, 
selecting a shorter sequence length of 3 allows the MPTNSR method to optimally predict by efficiently capturing essential features from 
past data while avoiding overloading the training network.

The quantitative evaluation results, including RMSE, MAPE, and R2, indicate that the ideal values for the size of the local VTF 
matrix, learning rate, iteration, and sequence length are 3 × 3, 0.001, 500, and 3, respectively. These conclusions derived from the 
experiments can serve as the basis for setting the network parameters in subsequent comparative experiments. By utilising these 
optimal parameter values, the subsequent experiments can ensure better prediction accuracy and an improved fitting effect of the 
training network.

A key aspect of the MPTNSR method is the optimisation of network parameters during the training process, as these parameters 
significantly influence the final prediction results. Through quantitative experiments, this section identifies the optimal values for key 
parameters, including the local VTF matrix size, learning rate, number of iterations, and sequence length. Ensuring consistency in 
parameter settings is essential for fairness and reliability in comparative experiments, particularly when the proposed MPTNSR model 
shares overlapping parameters with other methods. The detailed parameter configurations for the comparison methods are sum
marised in Table 8.

CNN and BiLSTM construct periodic and temporal views of the proposed MPTNSR model. Hence, the network parameters of RNNs 
(i.e., RNN, LSTM, GRU, Bi-LSTM, and Bi-GRU), CNN-LSTM, CNN-BiLSTM, CNN-GRU, CNN-BiGRU, LSTM-GCN, BiBiLSTM-GCN, GRU- 
GCN, and BiGRU-GCN are consistent with the proposed MPTNSR model. In particular, there is a different meaning in the parameter 
‘Input Size’ between RNNs and the proposed MPTNSR model. In the MPTNSR model, each network unit is designed to accept a singular 
VTF data input. Contrastingly, for RNNs, the ‘Input Size’ signifies the count of VTF data inputs each network unit processes. The ‘Input 
Size’ parameters in BPNN and WNN correspond with the ‘Sequence Length’ parameter seen in both the MPTNSR model and RNNs. This 

Table 7 
The ConvNet settings and temporal view’s input size for different sizes of local VTF matrix.

Size of Local VTF 
Matrix

First layer 
convolution

Second layer 
convolution

Third layer 
convolution

Fourth layer 
convolution

Input Size (Temporal 
View)

3 × 3 conv3-16 conv3-16 conv3-32 conv3-32 32
5 × 5 conv3-32 conv3-32 conv3-64 conv3-64 64
7 × 7 conv3-64 conv3-64 conv3-128 conv3-128 128

Fig. 10. The prediction results of the proposed MPTNSR model for three indices (i.e., RMSE, MAPE, and R2) across five different iterations (i.e., 100, 
300, 500, 700, and 900) in the CFDP water area. (a) − (f) indicate datasets C1 − C6, respectively.

H. Li et al.                                                                                                                                                                                                               Transportation Research Part E 197 (2025) 104072 

22 



indicates the consecutive time nodes of VTF data are fed into the training network.

5.5. Comparative analysis of loss functions and information weights

The strength of the proposed MPTNSR method lies not only in constructing three views but also in optimising the loss function. The 
optimisation involves incorporating a correction term utilising PCC on top of MSE to effectively evaluate the discrepancy between 
predicted and actual values within a particular sequence. The resulting loss function is referred to as MSEPCC, while the original 
remains MSE. This section evaluates the advantages of the optimised loss function through quantitative comparison experiments.

Additionally, this section investigates the inclusion of a weight parameter in the semantic view. This parameter controls how much 
information regarding VTF data similarity between channels and geographical location relationships is preserved in the VTF corre
lation matrix.

Tables 9 and 10 compare the prediction performance of the two loss functions, MSEPCC and MSE, across all data nodes in two water 
areas for the next day. The results consistently show that MSEPCC achieves the highest R2 and the lowest RMSE and MAPE across all 
VTF datasets. These findings highlight that the optimised loss function significantly improves the training network’s fitting capability 
and enhances prediction accuracy. The advantage is particularly pronounced due to the inclusion of PCC as a correction term, which 

Fig. 11. The prediction results of the proposed MPTNSR model for three indices (i.e., RMSE, MAPE, and R2) across five different iterations (i.e., 100, 
300, 500, 700, and 900) in the CFDP water area. (a) − (f) indicate datasets CJ1 − CJ8, respectively.

Table 8 
Network parameter settings for eighteen comparative prediction methods.

Methods Parameters Values Parameters Values

BPNN and WNN Optimisation algorithm Adamax Learning rate 0.001
Iteration 500 Input size 3
Hidden size 2 × Input 

Size
Output Size 1

RNN, LSTM, GRU, Bi-LSTM, and Bi-GRU Optimisation algorithm Adamax Learning rate 0.001
Iteration 500 Sequence length 3
Input size 1 Hidden size 6
Output Size 1 Number of hidden layer 1

CNN-LSTM, CNN-BiLSTM. CNN- 
GRU, and CNN-BiGRU

CNN Size of local VTF matrix 3 × 3 Number of convolutional layers 4
Size of convolutional kernel 3 × 3 Stride 1
Padding 1 − −

LSTM, GRU, Bi-LSTM 
or Bi-GRU

Sequence length 3 Input size 32
Hidden size 2 × Input 

size
Number of hidden layer 1

General Parameters Optimisation algorithm Adamax Learning rate 0.001
Iteration 500 Output Size 1

LSTM-GCN, BiLSTM-GCN, GRU- 
GCN, and BiGRU-GCN

LSTM, GRU, Bi-LSTM 
or Bi-GRU

Sequence length 3 Input size 32
Hidden size 2 × Input 

size
Number of hidden layer 1

GCN Number of convolutional layers 2 The output dimension of the First 
Layer Convolution

23

The output dimension of the 
second layer convolution

6 − −

General Parameters Optimisation algorithm Adamax Learning rate 0.001
Iteration 500 Output Size 1
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effectively strengthens the model’s performance.
This experiment examines the impact of three information weight combinations (0.5/0.5, 0.8/0.2, and 1.0/0.0) on prediction 

accuracy and stability using the same loss function, MSEPCC. Tables 11 and 12 summarise the prediction performance for all data 
nodes in the CFDP and CJ water areas for the next day. The results show that the 0.8/0.2 weight combination consistently achieves the 
lowest RMSE and MAPE values and the highest R2 values across all scenarios, indicating it enables the best model fitting.

Figs. 12 and 13 visualise the directed graphs of relationships between channels in both water areas based on a VTF incidence matrix 
weighted at 0.8/0.2. These graphs, used as input data for the semantic view, play a critical role in capturing the relational features of 
VTF changes between channels. This enhances the accuracy and consistency of the MPTNSR method for VTF collaborative prediction 
tasks across various channels. The comparisons confirm that the 0.8/0.2 weighting effectively balances information, resulting in 
superior performance.

5.6. Comparative analysis of experimental results

5.6.1. Experimental analysis of nineteen prediction methods
This section delves into a performance analysis of the proposed MPTNSR model relative to eighteen other techniques for VTF 

prediction challenges. Specifically, it highlights the proficiency of the MPTNSR model in collaboratively predicting VTF across 
different target regions.

Fig. 14 visualises the REMean results for 19 different methods applied to datasets C1 to C6 in the CFDP water area, with panels (a) to 
(f) corresponding to each dataset. This experiment evaluates the accuracy and consistency of prediction at each time node, comparing 
the REMean values for each method.

NN methods such as BPNN and WNN, and DL methods, including RNN, LSTM, GRU, Bi-LSTM, Bi-GRU, CNN-BiLSTM, and CNN- 
BiGRU, consistently outperform traditional machine learning approaches such as ARIMA and SVM in terms of prediction accuracy. 
DL methods exhibit superior prediction efficiency and robustness compared to NN methods, particularly in handling complex datasets 
like C1 to C6.

Among the evaluated DL methods evaluated, CNN-LSTM, CNN-BiLSTM, CNN-GRU, and CNN-BiGRU show noticeable improvement 
over traditional NN techniques but are still outperformed by graph-based models like LSTM-GCN, GRU-GCN, BiLSTM-GCN, and 
BiGRU-GCN. Hybrid models like CNN-LSTM, CNN-BiLSTM, CNN-GRU, and CNN-BiGRU improve spatial and temporal feature 
extraction but fail to capture complex interdependencies between different vessel traffic channels, leading to suboptimal predictions in 
congested or high-density maritime networks. In contrast, graph-based models (LSTM-GCN, GRU-GCN, BiLSTM-GCN, and BiGRU- 
GCN) improve relational learning; however, they lack explicit spatial modelling, limiting their ability to differentiate between 
localised vessel interactions, navigational constraints, and broader maritime patterns.

Despite the advancements offered by these models, the proposed MPTNSR method demonstrates the best overall performance, 
achieving the lowest REMean values in most cases.

The superior performance of the MPTNSR method underscores the critical importance of the semantic view in improving prediction 
accuracy. By effectively capturing the relationships and dependencies between VTF changes across channels, the semantic view 
provides a significant edge over competing models. The MPTNSR method exhibits remarkable consistency and stability in prediction 
across datasets C1, C2, C3, and C4. This stability is particularly evident in the lower variability of REMean values compared to other 
methods, highlighting its reliability in collaborative prediction tasks.

The quantitative results from Fig. 14 confirm the effectiveness of the proposed MPTNSR model in achieving high prediction 

Table 9 
The prediction results of the proposed MPTNSR model based on different indexes with/without optimised loss function 
(MSEPCC) in the CFDP water area.

Dataset Performance Indexes Loss Function
MSEPCC MSE

C1 MAPE↓ 0.0056 0.0197
RMSE↓ 0.1604 0.8113
R2↑ 0.9994 0.9871

C2 MAPE↓ 0.0062 0.0115
RMSE↓ 0.1712 0.3625
R2↑ 0.9995 0.9981

C3 MAPE↓ 0.0089 0.0176
RMSE↓ 0.3188 0.6573
R2↑ 0.9975 0.9897

C4 MAPE↓ 0.0082 0.0246
RMSE↓ 0.2639 0.5645
R2↑ 0.9990 0.9957

C5 MAPE↓ 0.0108 0.0100
RMSE↓ 0.1568 0.1294
R2↑ 0.9975 0.9983

C6 MAPE↓ 0.0041 0.0053
RMSE↓ 0.0805 0.1198
R2↑ 0.9997 0.9994
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accuracy and stability. It outperforms traditional machine learning methods, NN approaches, and even other advanced DL models, 
particularly through the integration of the semantic view. This highlights the robustness of the MPTNSR method, making it a reliable 
choice for complex VTF prediction tasks in the CFDP water area.

Fig. 15 presents the REMean results for 19 different methods applied to datasets CJ1 to CJ8 in the CJ water area, with subplots (a) to 
(h) corresponding to each dataset. The performance of these methods is compared to assess prediction accuracy and stability, 
particularly focusing on the proposed MPTNSR method.

Methods such as ARIMA and SVM exhibit the highest REMean values across all datasets, indicating poor prediction accuracy and 
stability. These methods struggle to capture complex, dynamic features in VTF data, making them unsuitable for such tasks. Basic NN 
models like BPNN and WNN show better performance than ARIMA and SVM but still lag behind DL methods. Their higher REMean 
values indicate limitations in handling temporal dependencies and complex spatial relationships. DL-based approaches, including 
RNN, LSTM, GRU, Bi-LSTM, and Bi-GRU, demonstrate significantly lower REMean values compared to NN methods. This reflects their 
ability to better model temporal dependencies in VTF data. Advanced hybrid models such as CNN-LSTM, CNN-BiLSTM, CNN-GRU, and 

Table 10 
The prediction results of the proposed MPTNSR model based on different indexes with/without optimised loss function 
(MSEPCC) in the CJ water area.

Dataset Performance Indexes Loss Function
MSEPCC MSE

CJ1 MAPE↓ 0.0101 0.0113
RMSE↓ 0.1841 0.2187
R2↑ 0.9990 0.9986

CJ2 MAPE↓ 0.0107 0.0124
RMSE↓ 0.1563 0.1911
R2↑ 0.9986 0.9979

CJ3 MAPE↓ 0.0098 0.0085
RMSE↓ 0.3119 0.2123
R2↑ 0.9977 0.9989

CJ4 MAPE↓ 0.0084 0.0098
RMSE↓ 0.1770 0.2208
R2↑ 0.9989 0.9984

CJ5 MAPE↓ 0.0146 0.0188
RMSE↓ 0.3895 0.5446
R2↑ 0.9958 0.9918

CJ6 MAPE↓ 0.0103 0.0114
RMSE↓ 0.2207 0.2549
R2↑ 0.9985 0.9980

CJ7 MAPE↓ 0.0092 0.0123
RMSE↓ 0.1629 0.2312
R2↑ 0.9988 0.9977

CJ8 MAPE↓ 0.0110 0.0111
RMSE↓ 0.2402 0.2938
R2↑ 0.9966 0.9949

Table 11 
The prediction results of the proposed MPTNSR model based on three different information weights in the CFDP water area.

Dataset Performance Indexes Information Weights
0.5, 0.5 0.8, 0.2 1.0, 0.0

C1 RMSE↓ 0.0050 0.0056 0.0058
MAPE↓ 0.1301 0.1604 0.1735
R2↑ 0.9996 0.9994 0.9994

C2 RMSE↓ 0.0067 0.0062 0.0087
MAPE↓ 0.2287 0.1712 0.2880
R2↑ 0.9992 0.9995 0.9988

C3 RMSE↓ 0.0097 0.0089 0.0103
MAPE↓ 0.3249 0.3188 0.3698
R2↑ 0.9974 0.9975 0.9967

C4 RMSE↓ 0.0235 0.0082 0.0262
MAPE↓ 0.4760 0.2639 0.5480
R2↑ 0.9969 0.9990 0.9959

C5 RMSE↓ 0.0132 0.0108 0.0652
MAPE↓ 0.1628 0.1568 0.8238
R2↑ 0.9973 0.9975 0.9326

C6 RMSE↓ 0.0054 0.0041 0.0066
MAPE↓ 0.1183 0.0805 0.1593
R2↑ 0.9994 0.9997 0.9990
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CNN-BiGRU further improve performance by integrating convolutional layers to extract spatial features alongside temporal modelling. 
Models like LSTM-GCN, GRU-GCN, BiLSTM-GCN, and BiGRU-GCN show further reductions in REMean values. By leveraging graph 
structures, these models effectively capture the relational features of VTF data between different channels, improving both accuracy 
and stability.

The proposed MPTNSR method consistently achieves the lowest REMean values across all datasets (CJ1 to CJ8). This demonstrates 
its superior ability to handle complex spatiotemporal dependencies and relational dynamics between channels. Its performance 
advantage is particularly evident in datasets CJ3, CJ4, CJ6, and CJ7, where it maintains both accuracy and stability better than all other 
methods.

The MPTNSR method outperforms all comparison methods in terms of REMean, achieving the highest prediction accuracy across 
all datasets while exhibiting minimal variability across time points, which highlights its stability in prediction. This consistent per
formance underscores the critical role of the semantic view in effectively capturing channel relationships and enhancing prediction 
outcomes.

Based on the results in Tables 13 and 14, the performance of 19 different prediction models for VTF data is compared across the 
CFDP and CJ water areas using three key metrics: RMSE, MAPE, and R2. These metrics evaluate each method’s capability to holistically 

Table 12 
The prediction results of the proposed MPTNSR model based on three different information weights in the CJ water area.

Dataset Performance Indexes Information Weights
0.5, 0.5 0.8, 0.2 1.0, 0.0

CJ1 MAPE↓ 0.0190 0.0101 0.0210
RMSE↓ 0.3765 0.1841 0.4326
R2↑ 0.9960 0.9990 0.9947

CJ2 MAPE↓ 0.0309 0.0107 0.0214
RMSE↓ 0.4204 0.1563 0.3248
R2↑ 0.9901 0.9986 0.9941

CJ3 MAPE↓ 0.0227 0.0098 0.0102
RMSE↓ 0.6909 0.3119 0.3165
R2↑ 0.9887 0.9977 0.9976

CJ4 MAPE↓ 0.0153 0.0084 0.0103
RMSE↓ 0.3165 0.1770 0.1956
R2↑ 0.9967 0.9989 0.9987

CJ5 MAPE↓ 0.0193 0.0146 0.0162
RMSE↓ 0.4686 0.3895 0.3856
R2↑ 0.9939 0.9958 0.9959

CJ6 MAPE↓ 0.0185 0.0103 0.0118
RMSE↓ 0.4111 0.2207 0.2540
R2↑ 0.9948 0.9985 0.9980

CJ7 MAPE↓ 0.0184 0.0092 0.0153
RMSE↓ 0.3248 0.1629 0.2684
R2↑ 0.9954 0.9988 0.9969

CJ8 MAPE↓ 0.0218 0.0110 0.0140
RMSE↓ 0.5218 0.2402 0.3389
R2↑ 0.9840 0.9966 0.9932

Fig. 12. Visualisation of the VTF similarity matrix and the relationships between six channels in the CFDP water area with information weight 
values of 0.8 and 0.2, (a) similarity matrix image and (b) the corresponding directed relationship graph.
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predict the next day’s VTF data, encompassing 12 time nodes.
In the CFDP water area, traditional methods like ARIMA and SVM exhibit high error rates and inconsistent performance. While 

SVM generally outperforms ARIMA in terms of MAPE and RMSE, its R2 scores indicate limited predictability across several datasets. 
NN methods, including BPNN and WNN, demonstrate improved performance over traditional models, particularly in terms of RMSE 
values, though their consistency across datasets remains limited.

Advanced DL models such as RNN, LSTM, GRU, and their bidirectional variants (Bi-LSTM and Bi-GRU) achieve significantly better 
performance, particularly in datasets C1 to C6, where R2 values suggest strong predictive capabilities. Among these, Bi-GRU often 
outperforms its counterparts due to its ability to capture bidirectional temporal dynamics.

Hybrid models like CNN-LSTM, CNN-BiLSTM, CNN-GRU, and CNN-BiGRU integrate convolutional and recurrent layers, allowing 
them to leverage both spatial and temporal features. These models deliver competitive results, demonstrating relatively low RMSE and 
high R2 scores. Graph-based models such as LSTM-GCN, GRU-GCN, BiLSTM-GCN, and BiGRU-GCN further enhance performance, 
particularly in reducing RMSE, by capturing relational dependencies between channels.

The proposed MPTSRNet model consistently achieves the lowest MAPE and RMSE values and the highest R2 scores across all 
datasets. Notably, in datasets C1, C3, and C6, the MPTSRNet model’s MAPE values are significantly lower—often an order of mag
nitude—compared to other models, and its R2 scores are nearly 1, indicating exceptional predictability. This superior performance is 
attributed to MPTSRNet’s integration of multiple network architectures and its advanced feature extraction capabilities, enabling it to 

Fig. 13. Visualisation of the VTF similarity matrix and the relationships between eight channels in the CJ water area with information weight values 
of 0.8 and 0.2, (a) similarity matrix image and (b) the corresponding directed relationship graph.

Fig. 14. The visualisation results of REMean using 19 different comparison methods in the CFDP water area. (a) − (f) indicate datasets C1 − C6, 
respectively.
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effectively capture complex nonlinear relationships in VTF data.
In the CJ water area, traditional methods like ARIMA and SVM struggle with high error rates and lower R2 scores, reflecting limited 

accuracy and predictability. Neural network methods such as RNN, LSTM, GRU, and their bidirectional variants (Bi-LSTM and Bi-GRU) 
perform significantly better, delivering lower errors and higher R2 values. Among these, Bi-GRU and Bi-LSTM show notable im
provements due to their ability to model bidirectional temporal dependencies.

Hybrid models, including CNN-BiLSTM and CNN-BiGRU, and graph-based models like LSTM-GCN and BiLSTM-GCN, further 
enhance performance by capturing both spatial and temporal relationships. These models consistently achieve lower RMSE values and 
higher R2 scores compared to traditional and standard neural network methods.

The MPTSRNet model once again demonstrates the best performance, achieving the lowest MAPE and RMSE values and the highest 
R2 scores across all datasets in the CJ water area. Its robustness and precision highlight its ability to effectively integrate spatio
temporal and semantic features, making it highly reliable for complex predictive tasks. For instance, in datasets CJ3, CJ4, CJ6, 
MPTSRNet significantly outperforms all other models, underscoring its advanced architecture and capability to adapt to diverse 
datasets.

The MPTSRNet model’s superior performance in both the CFDP and CJ water areas demonstrates its ability to handle complex and 
dynamic VTF prediction tasks with exceptional accuracy and consistency. This makes it a valuable tool for both theoretical research 
and practical applications, setting a new benchmark for predictive models in intelligent maritime transportation systems.

Furthermore, the MPTSRNet model provides several key advantages: 

(1) Stronger semantic learning: Compared to CNN-LSTM, CNN-BiLSTM, CNN-GRU, and CNN-BiGRU, MPTNSR models vessel in
teractions, traffic dependencies, and navigational constraints, essential for port congestion and regulated waterways.

(2) Holistic feature fusion: By combining spatial, temporal, and semantic modelling, MPTNSR provides context-aware vessel tra
jectory prediction, showing superiority over LSTM-GCN, GRU-GCN, BiLSTM-GCN, and BiGRU-GCN in terms of a dedicated 
spatial feature extractor.

(3) Improved stability and generalisation: The MPTNSR model achieves lower REMean values across all datasets, particularly 
excelling in high-traffic areas, where other methods struggle with fluctuating traffic conditions.

Empirical results confirm MPTNSR’s superior accuracy and stability compared to all other models. It maintains low prediction 
errors, minimal variability, and robust learning of vessel traffic dependencies, making it highly reliable for maritime traffic forecasting 
and navigation planning.

MPTNSR’s integration of spatial, temporal, and semantic learning sets it apart from existing hybrid models. By capturing vessel 
interactions, adapting to dynamic maritime environments, and addressing localised navigation constraints, it offers a more reliable and 
accurate approach to maritime traffic prediction.

5.6.2. Model performance validation
The evaluation of the MPTNSR model’s predictive performance is conducted by analysing the downward trends of loss function 

curves across two distinct water regions and comparing the loss values for each. Figs. 16 and 17 visually depict this reduction, showing 
a consistent decline in both areas. The x-axis of these graphs represents the number of iterations, while the y-axis details the corre
sponding loss values.

Figs. 16 and 17 illustrate the loss function curves for the proposed MPTSRNet model during training on datasets from the CFDP and 

Fig. 15. The visualisation results of REMean using 19 different comparison methods in the CJ water area. (a) − (h) indicate datasets CJ1 – CJ8, 
respectively.
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Table 13 
Prediction results of VTF data based on 19 different models under 3 indicators in the CFDP Water area.

Dataset Performance Indexes Methods
ARIMA SVM BPNN WNN RNN LSTM GRU Bi-LSTM Bi-GRU CNN–BiLSTM CNN–BiGRU

C1 MAPE↓ 0.1799 0.1168 0.0950 0.0996 0.1223 0.0962 0.1047 0.0341 0.0404 0.0217 0.0251
RMSE↓ 4.7187 3.3929 3.4068 2.9611 3.1376 2.4865 2.6710 0.9761 1.1362 0.6254 0.7690
R2↑ 0.5638 0.7745 0.7726 0.8282 0.8071 0.8788 0.8602 0.9813 0.9747 0.9923 0.9884

C2 MAPE↓ 0.2526 0.2012 0.2443 0.1387 0.1303 0.1223 0.1302 0.0435 0.0476 0.0241 0.0245
RMSE↓ 6.5360 4.5252 5.1693 3.1249 3.0032 2.8199 3.0002 1.2967 1.4494 0.7403 0.7523
R2↑ 0.3975 0.7112 0.6231 0.8622 0.8727 0.8878 0.8730 0.9762 0.9703 0.9922 0.9920

C3 MAPE↓ 0.2003 0.1811 0.1747 0.1402 0.1101 0.1063 0.1060 0.0344 0.0363 0.0257 0.0254
RMSE↓ 4.6699 3.3670 3.5524 2.7530 2.0342 1.9773 2.0271 0.9391 0.9024 0.7840 0.7607
R2↑ 0.4810 0.7302 0.6996 0.8196 0.9015 0.9069 0.9022 0.9790 0.9806 0.9853 0.9862

C4 MAPE↓ 0.2174 0.1430 0.1724 0.0971 0.0966 0.1064 0.1004 0.0835 0.0666 0.0291 0.0387
RMSE↓ 5.7014 3.2710 3.8969 2.5262 2.3128 2.3035 2.2624 1.6382 1.2077 0.5833 0.8172
R2↑ 0.5618 0.8557 0.7953 0.9139 0.9278 0.9284 0.9310 0.9638 0.9803 0.9954 0.9909

C5 MAPE↓ 0.4128 0.1802 0.1856 0.1470 0.0659 0.0781 0.0711 0.0306 0.0470 0.0224 0.0272
RMSE↓ 4.4677 2.2681 2.3933 1.9163 0.9015 0.8391 0.7972 0.4365 0.6051 0.2768 0.3643
R2↑ 0.3109 0.4894 0.4315 0.6355 0.9193 0.9301 0.9369 0.9810 0.9636 0.9923 0.9868

C6 MAPE↓ 0.2427 0.1454 0.1680 0.1435 0.1266 0.1194 0.1215 0.0227 0.0328 0.0148 0.0160
RMSE↓ 4.3053 2.5643 3.0714 2.5362 2.1642 1.8365 1.9509 0.3857 0.5339 0.2990 0.3277
R2↑ 0.3318 0.7629 0.6599 0.7681 0.8311 0.8784 0.8628 0.9946 0.9897 0.9967 0.9961

Dataset Performance Indexes Methods
CNN-LSTM CNN-GRU LSTM-GCN GRU-GCN BiLSTM-GCN BiGRU-GCN ICLSGNet MPTSRNet

C1 MAPE↓ 0.0317 0.0347 0.0248 0.0274 0.0128 0.0150 0.0194 0.0056
RMSE↓ 0.8378 0.9467 0.6215 0.6989 0.3537 0.4273 0.6487 0.1604
R2↑ 0.9862 0.9824 0.9924 0.9904 0.9975 0.9964 0.9917 0.9994

C2 MAPE↓ 0.0380 0.0383 0.0294 0.0311 0.0144 0.0151 0.0206 0.0062
RMSE↓ 0.8231 0.8360 0.5944 0.6234 0.3790 0.3892 0.7768 0.1712
R2↑ 0.9904 0.9901 0.9950 0.9945 0.9979 0.9978 0.9914 0.9995

C3 MAPE↓ 0.0368 0.0339 0.0293 0.0285 0.0151 0.0148 0.0197 0.0089
RMSE↓ 0.8536 0.7948 0.5933 0.5753 0.4322 0.4344 0.4375 0.3188
R2↑ 0.9826 0.9849 0.9916 0.9921 0.9955 0.9955 0.9954 0.9975

C4 MAPE↓ 0.0409 0.0490 0.0307 0.0370 0.0171 0.0244 0.0235 0.0082
RMSE↓ 0.7718 0.9017 0.6023 0.6885 0.3521 0.4736 0.6735 0.2639
R2↑ 0.9919 0.9890 0.9951 0.9936 0.9983 0.9969 0.9938 0.9990

C5 MAPE↓ 0.0333 0.0337 0.0287 0.0293 0.0134 0.0146 0.0136 0.0108
RMSE↓ 0.3539 0.4083 0.3081 0.3349 0.1920 0.2112 0.1605 0.1568
R2↑ 0.9875 0.9834 0.9905 0.9888 0.9963 0.9955 0.9974 0.9975

C6 MAPE↓ 0.0297 0.0276 0.0262 0.0263 0.0104 0.0098 0.0119 0.0041
RMSE↓ 0.4270 0.4157 0.3784 0.3833 0.1715 0.1802 0.2616 0.0805
R2↑ 0.9934 0.9937 0.9948 0.9947 0.9989 0.9988 0.9975 0.9997
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Table 14 
Prediction results of VTF data based on 19 different models under 3 indicators in the CJ Water area.

Dataset Performance Indexes Methods
ARIMA SVM BPNN WNN RNN LSTM GRU Bi-LSTM Bi-GRU CNN–BiLSTM CNN–BiGRU

CJ1 MAPE↓ 0.2020 0.1455 0.1175 0.1086 0.1049 0.0922 0.0965 0.0413 0.0469 0.0296 0.0318
RMSE↓ 3.9798 2.7300 2.7540 2.1264 1.7780 1.6117 1.6551 0.8103 0.9298 0.5640 0.6106
R2↑ 0.5589 0.7924 0.7887 0.8740 0.9119 0.9276 0.9237 0.9817 0.9759 0.9911 0.9896

CJ2 MAPE↓ 0.2992 0.1928 0.2515 0.1702 0.1284 0.1218 0.1284 0.0506 0.0554 0.0328 0.0351
RMSE↓ 4.0895 2.4749 3.1697 2.0680 1.6278 1.5411 1.6160 0.7790 0.8750 0.4788 0.5000
R2↑ 0.0694 0.6591 0.4409 0.7620 0.8525 0.8678 0.8546 0.9662 0.9573 0.9872 0.9860

CJ3 MAPE↓ 0.1997 0.1645 0.1612 0.1195 0.0913 0.0913 0.0938 0.0388 0.0415 0.0293 0.0315
RMSE↓ 4.9887 3.4306 3.5266 2.4503 1.7956 1.7331 1.7884 1.0926 1.0728 0.9118 0.9073
R2↑ 0.4154 0.7235 0.7078 0.8589 0.9242 0.9294 0.9248 0.9719 0.9729 0.9804 0.9806

CJ4 MAPE↓ 0.2042 0.1443 0.1614 0.1097 0.1088 0.1129 0.1077 0.0901 0.0765 0.0353 0.0330
RMSE↓ 3.8807 2.2295 2.4523 1.6875 1.6287 1.6836 1.6005 1.4618 1.1650 0.5660 0.5538
R2↑ 0.5057 0.8368 0.8026 0.9065 0.9129 0.9069 0.9159 0.9298 0.9554 0.9894 0.9899

CJ5 MAPE↓ 0.3016 0.1605 0.1594 0.1440 0.1015 0.1019 0.1035 0.0431 0.0539 0.0359 0.0293
RMSE↓ 5.7008 3.3911 3.3883 2.8916 1.8905 1.8730 1.8983 0.9753 1.2546 0.7288 0.6668
R2↑ 0.1075 0.6842 0.6847 0.7703 0.9018 0.9036 0.9010 0.9738 0.9567 0.9854 0.9877

CJ6 MAPE↓ 0.2066 0.1214 0.1320 0.1144 0.1015 0.0962 0.0957 0.0282 0.0375 0.0242 0.0292
RMSE↓ 4.5956 2.4741 2.6552 2.2338 2.0325 1.8053 1.8358 0.5421 0.7453 0.4860 0.5704
R2↑ 0.3578 0.8138 0.7856 0.8482 0.8743 0.9009 0.8975 0.9910 0.9831 0.9928 0.9901

CJ7 MAPE↓ 0.1828 0.1132 0.0954 0.1061 0.1089 0.0888 0.0970 0.0410 0.0473 0.0327 0.0377
RMSE↓ 3.3532 2.3787 2.0723 1.9274 1.8427 1.5806 1.6790 0.7660 0.9019 0.8021 0.8304
R2↑ 0.5192 0.7580 0.8163 0.8411 0.8548 0.8931 0.8794 0.9749 0.9652 0.9724 0.9705

CJ8 MAPE↓ 0.1928 0.1579 0.1630 0.1157 0.0946 0.1005 0.0908 0.0898 0.0765 0.0393 0.0443
RMSE↓ 3.6088 2.8993 3.0291 2.0924 1.7058 1.7154 1.6506 1.5532 1.3567 0.7034 0.8127
R2↑ 0.2363 0.5071 0.4620 0.7432 0.8293 0.8274 0.8402 0.8585 0.8920 0.9709 0.9612

Dataset Performance Indexes Methods
CNN-LSTM CNN-GRU LSTM-GCN GRU-GCN BiLSTM-GCN BiGRU-GCN ICLSGNet MPTSRNet

CJ1 MAPE↓ 0.0371 0.0396 0.0276 0.0309 0.0204 0.0236 0.0200 0.0101
RMSE↓ 0.6777 0.7300 0.6019 0.6527 0.5481 0.5855 0.4517 0.1841
R2↑ 0.9872 0.9851 0.9899 0.9881 0.9916 0.9904 0.9943 0.9990

CJ2 MAPE↓ 0.0435 0.0463 0.0331 0.0367 0.0232 0.0265 0.0309 0.0107
RMSE↓ 0.5346 0.5615 0.4369 0.4676 0.4028 0.4237 0.4753 0.1563
R2↑ 0.9840 0.9824 0.9893 0.9878 0.9909 0.9900 0.9874 0.9986

CJ3 MAPE↓ 0.0367 0.0390 0.0287 0.0285 0.0177 0.0213 0.0381 0.0098
RMSE↓ 0.9614 0.9620 0.8363 0.8437 0.7746 0.8117 0.9264 0.3119
R2↑ 0.9782 0.9782 0.9835 0.9832 0.9859 0.9845 0.9798 0.9977

CJ4 MAPE↓ 0.0447 0.0419 0.0327 0.0305 0.0185 0.0219 0.0197 0.0084
RMSE↓ 0.6847 0.6591 0.5020 0.4769 0.3390 0.3794 0.4066 0.1770
R2↑ 0.9846 0.9857 0.9917 0.9925 0.9962 0.9952 0.9945 0.9989

CJ5 MAPE↓ 0.0438 0.0382 0.0352 0.0290 0.0234 0.0207 0.0361 0.0146
RMSE↓ 0.8293 0.7549 0.6591 0.5796 0.5060 0.4656 0.7611 0.3895
R2↑ 0.9811 0.9843 0.9880 0.9907 0.9929 0.9940 0.9840 0.9958

CJ6 MAPE↓ 0.0329 0.0371 0.0260 0.0282 0.0182 0.0208 0.0208 0.0103
RMSE↓ 0.6057 0.6826 0.4936 0.5285 0.4010 0.4346 0.4959 0.2207
R2↑ 0.9888 0.9858 0.9925 0.9915 0.9951 0.9942 0.9925 0.9985

CJ7 MAPE↓ 0.0394 0.0436 0.0330 0.0310 0.0268 0.0237 0.0225 0.0092
RMSE↓ 0.8554 0.8884 0.7819 0.7558 0.7421 0.7151 0.4631 0.1629
R2↑ 0.9687 0.9662 0.9738 0.9755 0.9764 0.9781 0.9908 0.9988

CJ8 MAPE↓ 0.0454 0.0489 0.0247 0.0272 0.0215 0.0202 0.0185 0.0110
RMSE↓ 0.7915 0.8777 0.4689 0.5063 0.4295 0.4102 0.4111 0.2402
R2↑ 0.9632 0.9548 0.9871 0.9849 0.9891 0.9901 0.9900 0.9966

H
. Li et al.                                                                                                                                                                                                               

Transportation Research Part E 197 (2025) 104072 

30 



CJ water areas, respectively. In both figures, the loss curves across all datasets (C1-C6 for CFDP in Fig. 16 and CJ1-CJ8 in Fig. 17) 
demonstrate a consistent decrease in loss values as the number of iterations increases, which is a clear indicator of the model’s good 
convergence.

In Fig. 16, datasets C1 through C6 show a steady and rapid decline in loss values early in the training process, with the curves 
flattening out as they approach zero, suggesting that the model effectively minimises the error without signs of bouncing or instability. 
Similarly, Fig. 17 shows the loss curves for datasets CJ1 through CJ8, also decreasing smoothly and stabilising at very low values. This 
pattern indicates that the model not only learns effectively from the training data but also reaches a point of stability, which mitigates 
concerns about overfitting.

The absence of any upward trends or significant fluctuations in the latter stages of these curves suggests that the MPTSRNet model 
is robust, achieving a stable and reliable fit to the data without overfitting. This is further supported by the low final values of the loss 
functions, indicative of high model accuracy and generalisability across different maritime datasets. Such behaviour is crucial for 
practical deployment, where the model’s ability to generalise and perform consistently under varying conditions is paramount.

5.7. Ablation experiments

This section investigates the effectiveness of the MPTNSR model by comparing different configurations through ablation studies. By 
systematically excluding specific components—spatial, temporal, or semantic modelling—the impact of each feature on the overall 
performance is analysed. Various combination strategies are applied while maintaining a consistent network structure to ensure a fair 
comparison. The evaluations are conducted across all datasets using the following variants: 

(1) MPTNSR: Incorporates spatial, temporal, and semantic modelling, representing the complete model. This configuration uses 
CNN for spatial feature extraction, BiLSTM for capturing bidirectional temporal dependencies, and GCN for relational and 
semantic learning. MPTNSR represents the full potential of the model in handling spatiotemporal and semantic dynamics.

(2) MPTNSR-w/o-spatial: Excludes spatial feature modelling, utilising only temporal modelling and semantic learning. By 
omitting CNN, the model cannot capture localised spatial features or dependencies, which may reduce its ability to represent 
regional variations in VTF data. Instead, temporal and semantic information is modelled using configurations such as LSTM- 
GCN, BiLSTM-GCN, GRU-GCN, and BiGRU-GCN. This setup evaluates the contribution of spatial features to prediction accuracy.

(3) MPTNSR-w/o-temporal: Omits temporal modelling, relying solely on spatial and semantic modelling. This variant corresponds 
to CNN-GCN. However, CNN-GCN is designed for handling spatiotemporal features, and the absence of temporal modelling 
limits GCN to processing only static relationships and CNN to capturing local static features. As a result, CNN-GCN becomes 
incapable of supporting dynamic prediction tasks. Without temporal modelling, it fails to capture complex, dynamic patterns, 
such as variations in VTF over time.

(4) MPTNSR-w/o-semantic: Excludes semantic modelling, relying on spatial and temporal modelling. The exclusion of GCN 
prevents the model from learning relational dependencies and interactions between different channels. It uses models like CNN- 
LSTM, CNN-BiLSTM, CNN-GRU, CNN-BiGRU, and ICLSNet (CNN-LSTM-DTW) to combine spatial and temporal information 
without incorporating inter-channel relationships. This configuration helps analyse the importance of semantic learning in 
improving prediction outcomes.

The ablation studies validate the critical role of each component in the overall performance of the MPTNSR model. By integrating 

Fig. 16. The results of the loss function curve in the CFDP water area. (a) − (f) indicate datasets C1 − C6, respectively.
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spatial, temporal, and semantic features, the complete model effectively captures the intricate dynamics of VTF, leading to superior 
accuracy and reliability. The results, summarised in Tables 13 and 14, highlight that removing any single component significantly 
degrades the model’s ability to deliver accurate and stable predictions, as demonstrated by higher MAPE and RMSE values and lower 
R2 scores.

Furthermore, the distinct contributions of spatial, temporal, and semantic modelling in port operations, open-sea navigation, and 
complex maritime networks provide a stronger justification for the MPTNSR model’s architecture and highlight its practical benefits in 
maritime navigation and traffic forecasting. The detailed impacts are outlined below. 

(1) Impact of spatial features in maritime traffic scenarios.

Spatial features play a crucial role in capturing regional variations, port congestion patterns, and navigational constraints. In 
structured maritime environments, such as straits, estuaries, and port approaches, vessel movements are heavily influenced by 
localised spatial dependencies. The removal of spatial modelling (MPTNSR-w/o-spatial) significantly degrades the model’s ability to 
account for traffic bottlenecks, restricted waterways, and varying ship densities across regions.

For instance, in port areas (e.g., CFDP dataset), where vessel interactions are concentrated, and manoeuvring decisions are dictated 
by tight spatial constraints, the absence of CNN-driven feature extraction leads to higher RMSE and MAPE values. Without spatial 
awareness, models such as LSTM-GCN and GRU-GCN struggle to differentiate between traffic-congested zones and open-sea naviga
tion, making them ineffective in regional traffic flow prediction. The lack of spatial information also prevents the model from capturing 
localised vessel movement patterns, reducing its ability to reflect real-time variations in maritime traffic density. 

(2) Impact of temporal features in dynamic traffic conditions.

Temporal dependencies are essential in modelling evolving vessel movement patterns, seasonal variations in maritime traffic, and 
periodic port congestion cycles. The exclusion of temporal modelling (MPTNSR-w/o-temporal) significantly reduces the model’s 
ability to capture historical trends and sequential dependencies, impairing its effectiveness in predicting dynamic vessel behaviour.

This limitation is particularly pronounced in open-sea navigation scenarios (e.g., CJ dataset), where vessel movement follows 
cyclical patterns influenced by weather conditions, tidal effects, and operational schedules. Without BiLSTM-driven temporal 
modelling, CNN-GCN-based models fail to identify recurring congestion waves, fluctuating ship traffic densities, and risk-prone 
navigation windows. The absence of temporal awareness results in discontinuous and short-term predictions, which are less useful 
for longitudinal vessel traffic forecasting and maritime route optimisation. 

(3) Impact of semantic features in complex maritime networks.

Semantic modelling, enabled by GCN, is essential for understanding relational dependencies between vessels, navigational regu
lations, and multi-source maritime data integration. The exclusion of semantic modelling (MPTNSR-w/o-semantic) leads to substantial 
performance degradation, particularly in high-density maritime networks where vessel interactions, port regulations, and external 
factors affect movement patterns collectively.

For example, in major port clusters (e.g., CJ water areas), vessel traffic is dictated by traffic control measures, ship berthing 
schedules, and multi-vessel interactions. Without GCN-based relational learning, models like CNN-LSTM and CNN-GRU, which rely 
solely on spatial and temporal learning, struggle to capture interdependent vessel movements such as anchorage waiting patterns, 
collision avoidance strategies, and formation-based navigation. This shortcoming may result in inaccurate and unreliable predictions, 

Fig. 17. The results of the loss function curve in the CFDP water area. (a) − (h) indicate datasets CJ1 – CJ8, respectively.
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particularly in congested and regulation-intensive waterways. 

(4) The complete MPTNSR model: Robustness across maritime scenarios.

By seamlessly integrating spatial, temporal, and semantic learning, the MPTNSR model achieves state-of-the-art predictive accu
racy across a wide range of maritime environments. This integration enables context-aware vessel traffic prediction, making it 
adaptable to various operational scenarios.

In port areas, MPTNSR effectively models localised congestion patterns and vessel manoeuvring behaviours, offering precise short- 
term traffic forecasts. In open-sea navigation, it captures long-term temporal dependencies and fluctuated traffic densities, ensuring 
robust voyage predictions. In complex maritime networks, its relational learning capabilities enhance interaction-aware predictions, 
improving maritime situational awareness.

The MPTNSR model consistently achieves lower MAPE and RMSE values, with all the associated R2 scores nearing 1.0, demon
strating its exceptional predictive accuracy across multiple datasets. The ablation results confirm that the integration of spatial, 
temporal, and semantic features enhances robustness, enabling the model to outperform all variants and effectively capture complex 
maritime traffic dynamics. This validates MPTNSR as a reliable tool for predictive tasks in maritime navigation and traffic forecasting.

5.8. Time complexity analysis

The computation time of the proposed MPTNSR model on a Central Processing Unit (CPU) for the two water areas (CFDP and CJ) is 
detailed in Table 15. While the MPTNSR model achieves the best prediction performance, its running time reflects the complexity of its 
computations. For the CFDP channels, the running time ranges from approximately 2269.98 (C3) to 2723.08 s (C1), with relatively 
consistent time across channels, suggesting a balanced computational complexity. In contrast, the CJ channels exhibit a slightly 
broader range, from 2313.30 (CJ6) to 2782.18 s (CJ5), indicating that certain channels (e.g., CJ5 and CJ3) require more computational 
resources due to their associated larger datasets or more complex inter-channel relationships.

The CFDP channels generally show slightly higher average computation time compared to most CJ channels, except for outliers like 
CJ5, which exhibit significantly higher demands. This difference might reflect the increased complexity or denser data structures in 
CFDP datasets. Despite these variations, the model demonstrates consistent computational balance across most channels, with only a 
few exceptions, showing higher variance.

The MPTNSR model’s significant computation time reflects its complexity, integrating periodic, temporal, and semantic features to 
achieve exceptional predictive accuracy. While the model performs well, enhancing its computational efficiency is essential for 
practical applications, particularly in real-time and large-scale scenarios. Transitioning to GPU-based computation addresses these 
high computational demands, enabling parallel processing to significantly reduce running times and improve the model’s scalability.

To further optimise the proposed MPTNSR model’s performance, experiments were conducted using multiple GPUs. The running 
times for the CFDP and CJ water areas, as shown in Table 14, highlight the impact of using one, two, and four GPUs. The key findings 
are summarised below: 

(1) Single GPU (30 % speedup)

The single GPU setup significantly reduces the computational time compared to no GPU acceleration, achieving approximately 30 
% time reduction. This demonstrates the efficiency of parallelised computation on a GPU for tasks like this. 

(2) Two GPUs (42 % speedup)

Adding a second GPU further reduces the computation time but only provides a moderate additional time reduction beyond the 
single GPU. The speedup ratio from one to two GPUs is approximately 12 %, suggesting diminishing returns due to factors like 
communication overhead and workload synchronisation between GPUs. 

(3) Four GPUs (70 % speedup)

Table 15 
The running time of the proposed MPTNSR model on a CPU in two water areas (measured in seconds).

Channel CFDP 
(CPU)

CFDP (One 
GPU)

CFDP (Two 
GPUs)

CFDP (Four 
GPUs)

Channel CJ (CPU) CJ (One 
GPU)

CJ (Two 
GPUs)

CJ (Four 
GPUs)

C1 2723.08 1927.82 1531.19 807.47 CJ1 2699.27 1898.36 1519.45 791.25
C2 2318.98 1656.65 1326.64 673.59 CJ2 2331.14 1667.81 1307.73 678.02
C3 2269.98 1587.86 1305.55 646.63 CJ3 2595.19 1811.19 1543.56 771.24
C4 2319.31 1586.79 1303.16 688.51 CJ4 2352.41 1687.25 1335.51 616.03
C5 2307.11 1645.99 1309.39 671.56 CJ5 2782.18 1902.86 1658.04 773.86
C6 2311.86 1607.70 1310.29 636.70 CJ6 2313.30 1633.81 1363.51 625.58
− − ​ ​ ​ CJ7 2314.22 1610.41 1379.18 708.87
− − ​ ​ ​ CJ8 2594.90 1854.36 1542.74 665.63
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The use of four GPUs shows the biggest running time reduction, with a 70 % reduction rate compared to no GPU usage. However, 
the incremental gain from two to four GPUs (28 %) is still less than the initial improvement achieved with the first GPU. This indicates 
that while additional GPUs enhance performance, the efficiency gain diminishes as the number of GPUs increases.

These findings suggest that four GPUs provide the optimal balance between performance and efficiency for the MPTNSR model. 
Adding more GPUs might yield further reductions in computation time, but the incremental benefits would likely be marginal 
compared to the increased cost and complexity. These results underscore the importance of optimising hardware resources to enhance 
the MPTNSR model’s efficiency and scalability, making it more practical for real-world applications.

Although the training process for the GPU-based MPTNSR model takes between 600 and 800 s due to its architecture and 
comprehensive feature integration, the testing phase and future real-world applications could be significantly faster. This distinction 
highlights that while the model requires substantial computational time during the initial training phase to learn complex patterns and 
relationships, its efficiency during inference allows for rapid processing of the test dataset. The model can deliver near-instantaneous 
prediction in practical applications, making it highly competitive for real-time scenarios where quick decision-making is critical. The 
trade-off between long training time and fast testing ensures both robustness and practicality in deployment.

5.9. Prediction performance on low-quality data

To further assess the effectiveness of the proposed MPTNSR model in addressing low-quality data scenarios, comparative exper
iments were conducted using both normal and noisy datasets. The noisy dataset was generated by introducing noise to the normal VTF 
dataset, where the noise follows a normal distribution with a mean of 1 and a standard deviation of 5. These experiments evaluate the 
robustness and performance of the MPTNSR model under varying data quality conditions.

Figs. 18 and 19 depict the VTF data distribution across two water areas under normal and noisy conditions, respectively. From these 
figures, it is evident that adding noise increases the variability and dispersion of the VTF data, as shown by the presence of outliers and 
a wider range in the box plots.

The comparative performance of the MPTNSR model on normal and noisy VTF datasets is evaluated using the REMean index, as 
shown in Figs. 19 and 20 for the CFDP and CJ water areas. The radar plots provide a clear visualisation of the model’s performance 
under both conditions. Despite the increased errors introduced by noisy data, the MPTNSR model demonstrates strong adaptability, 
with errors remaining within a reasonable range for most channels and time intervals. These results highlight the robustness and 
practicality of the MPTNSR model in handling noisy data, making it a reliable choice for real-world applications in complex and 
dynamic maritime environments.

Fig. 18. Distribution of normal and noisy VTF data in two water areas: (a) and (b) represent the normal VTF data distribution across six channels in 
the CFDP area and eight channels in the CJ area, respectively; (c) and (d) represent the noisy VTF data distribution across six channels in the CFDP 
area and eight channels in the CJ area, respectively.
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5.10. Discussion and implications

The proposed MPTNSR method for VTF prediction demonstrates significant advantages in terms of accuracy, robustness, and 
practical applicability, offering valuable implications for various stakeholders, including port companies, maritime regulatory au
thorities, and research institutions. The integration of CNN-BiLSTM and GCN ensures a holistic approach, capturing both local and 
global metrics to address the dynamic and interconnected nature of maritime traffic.

Fig. 19. The comparative results of the proposed MPTNSR model on normal and noisy VTF data based on the REMean index across six channels in 
the CFDP water area.

Fig. 20. The comparative results of the proposed MPTNSR model on normal and noisy VTF data based on the REMean index across eight channels in 
the CJ water area.
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The MPTNSR method excels in predictive accuracy, as demonstrated by its ability to handle complex spatiotemporal and semantic 
relationships in VTF data. Its superior performance across different datasets underscores its robustness and adaptability, making it a 
reliable tool for predicting vessel movements under diverse operational conditions. The model’s capability to incorporate external 
factors such as weather conditions, traffic peaks, and accidents ensures that predictions remain relevant and actionable, even in 
unpredictable environments.

By combining CNN for spatial feature extraction, BiLSTM for bidirectional temporal modelling, and GCN for semantic learning, the 
MPTNSR model achieves seamless integration of key perspectives. This enables it to deliver precise and stable predictions, supporting 
real-time decision-making and long-term planning. The ability to balance periodic, temporal, and semantic views allows the model to 
adapt to both short-term fluctuations and long-term trends in VTF data.

The MPTNSR model’s enhanced accuracy supports efficient traffic management decisions, reducing congestion in busy waterways 
and mitigating collision risks. Its ability to predict VTF trends enables proactive traffic control measures, improving overall naviga
tional safety and operational efficiency. For stakeholders, these predictive capabilities translate into tangible benefits, such as opti
mised scheduling, resource allocation, and infrastructure planning.

The adoption of the MPTNSR method allows port operators to optimise docking schedules, minimise vessel waiting times, and 
allocate resources such as pilot boats and berthing spaces more effectively. This leads to reduced operational costs, improved service 
quality, and better capacity planning. Accurate VTF predictions also help anticipate peak traffic periods, ensuring ports are adequately 
prepared to manage fluctuating volumes.

For regulatory bodies, the MPTNSR method provides a robust framework for monitoring and managing vessel movements. 
Enhanced predictive accuracy boosts navigational safety by enabling authorities to anticipate and address traffic bottlenecks, adverse 
weather conditions, and potential accidents proactively. This improves compliance with maritime regulations and enhances overall 
maritime safety.

The MPTNSR method offers researchers a powerful tool for studying VTF patterns and dynamics. Its ability to handle complex 
datasets across various scenarios provides a foundation for developing advanced predictive models and exploring the interplay be
tween vessel types, traffic flows, and environmental factors. This contributes to the broader field of intelligent maritime traffic 
management.

The ability to analyse VTF trends and patterns supports long-term strategic planning for infrastructure investments and policy 
decisions. By leveraging predictive insights, authorities can optimise port expansions, improve traffic regulations, and ensure sus
tainable growth in the maritime sector.

The MPTNSR method offers a transformative approach to VTF prediction, providing substantial benefits across operational, safety, 
and strategic domains. Its advanced modelling capabilities ensure that stakeholders can make informed, data-driven decisions, 
enhancing the efficiency, safety, and sustainability of maritime operations. The adoption of this method marks a significant step 
forward in intelligent vessel traffic management, aligning with the goals of modern maritime transportation systems.

6. Conclusions

This paper introduces a new prediction technique, termed MPTNSR, aimed at enhancing VTF prediction capabilities. The MPTNSR 
model is distinguished by its three-pronged approach: a periodic perspective (harnessed via CNN), a temporal dimension (leveraged 
through Bi-LSTM), and a semantic angle (mediated by GCN). To further refine the evaluation of prediction efficacy, an innovative loss 
function is introduced, integrating local measurements (via MSE) with global insights (through PCC). The proposed MPTNSR method 
introduces three key advantages that enhance the precision and consistency of VTF data prediction. First, it integrates temporal and 
periodic patterns using a CNN-BiLSTM network, effectively capturing complex temporal dependencies. Second, it employs semantic 
collaboration through a GCN, enabling the model to map relationships based on VTF variations and geographical placements. Third, a 
refined loss function incorporating PCC and MSE is introduced, ensuring a balanced evaluation by combining local and global metrics. 
These advancements significantly improve the accuracy and robustness of VTF data prediction, making the MPTNSR method a highly 
effective tool for maritime applications.

The MPTNSR method advances collaborative VTF prediction across multiple channels, thanks to its semantic view. This paper 
compares the proposed MPTNSR method with eighteen other methods using VTF data from six channels in the CFDP water area and 
eight channels in the CJ water area. The experiments demonstrate that the MPTNSR method achieves better predictive performance, 
especially in terms of accuracy and stability, for collaborative VTF prediction across multiple channels. The GPU-accelerated MPTNSR 
method has significantly reduced training time and enhanced scalability.

As a result, the proposed MPTNSR method can significantly support port companies, maritime regulatory authorities, and research 
institutions in carrying out VTF prediction tasks effectively. To facilitate the practical implementation of this method, future research 
can focus on two key areas. Firstly, considering the rapid evolution of VTF due to external factors like adverse weather, vessel acci
dents, or the impact of shock events (e.g., COVID-19), it is important to incorporate these unforeseen circumstances into network 
training. Secondly, since VTF patterns vary against different vessel types, analysing these variations and integrating them into training 
networks is insightful. By addressing these aspects, future research can be conducted to improve the adaptability of the proposed 
MPTNSR method based on real-time VTF data.
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Appendix 

Table A1 
The prediction results (RMSE, MAPE, and R2) of the proposed MPTNSR method using three different sizes of the local matrix 
in six datasets in the CFDP water area.

Dataset Performance indexes Size of local matrix
3 × 3 5 × 5 7 × 7

C1 MAPE↓ 0.0058 0.0181 0.0414
RMSE↓ 0.1847 0.7287 1.3838
R2↑ 0.9993 0.9895 0.9624

C2 MAPE↓ 0.0084 0.0191 0.0921
RMSE↓ 0.3076 0.4460 2.3723
R2↑ 0.9986 0.9971 0.9206

C3 MAPE↓ 0.0120 0.0173 0.0532
RMSE↓ 0.4016 0.6916 1.4829
R2↑ 0.9961 0.9886 0.9476

C4 MAPE↓ 0.0095 0.0274 0.0468
RMSE↓ 0.2753 0.6184 1.2687
R2↑ 0.9989 0.9948 0.9783

C5 MAPE↓ 0.0109 0.0663 0.1017
RMSE↓ 0.1636 0.7644 1.2748
R2↑ 0.9973 0.9420 0.8387

C6 MAPE↓ 0.0072 0.0346 0.0528
RMSE↓ 0.1408 0.5820 1.0084
R2↑ 0.9992 0.9877 0.9633

Table A2 
The prediction results (RMSE, MAPE, and R2) of the proposed MPTNSR method using three different sizes of the local matrix 
across eight datasets in the CJ water area.

Dataset Performance indexes Size of local matrix
3 × 3 5 × 5 7 × 7

CJ1 MAPE↓ 0.0149 0.0380 0.0462
RMSE↓ 0.2947 1.1180 1.5657
R2↑ 0.9975 0.9651 0.9317

CJ2 MAPE↓ 0.0168 0.0409 0.0556
RMSE↓ 0.2542 0.6879 0.9334
R2↑ 0.9964 0.9736 0.9515

CJ3 MAPE↓ 0.0102 0.0145 0.0268
RMSE↓ 0.3165 0.4792 0.7718
R2↑ 0.9976 0.9946 0.9860

CJ4 MAPE↓ 0.0103 0.0148 0.0215
RMSE↓ 0.1956 0.2730 0.4628
R2↑ 0.9987 0.9975 0.9929

CJ5 MAPE↓ 0.0162 0.0198 0.0230

(continued on next page)
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Table A2 (continued )

Dataset Performance indexes Size of local matrix
3 × 3 5 × 5 7 × 7

RMSE↓ 0.3856 0.4413 0.5084
R2↑ 0.9959 0.9946 0.9929

CJ6 MAPE↓ 0.0118 0.0151 0.0228
RMSE↓ 0.2540 0.3379 0.5275
R2↑ 0.9980 0.9965 0.9915

CJ7 MAPE↓ 0.0120 0.0198 0.0235
RMSE↓ 0.2385 0.3877 0.4809
R2↑ 0.9975 0.9935 0.9901

CJ8 MAPE↓ 0.0145 0.0185 0.0287
RMSE↓ 0.3428 0.4782 0.7557
R2↑ 0.9931 0.9865 0.9665

Table A3 
The prediction results (RMSE, MAPE, and R2) of the proposed MPTNSR method using five different learning rates in the CFDP water area.

Dataset Performance indexes Learning rates
0.0001 0.0005 0.001 0.005 0.01

C1 MAPE↓ 0.0081 0.0075 0.0058 0.0079 0.0162
RMSE↓ 0.2582 0.2185 0.1847 0.2546 0.4964
R2↑ 0.9986 0.9990 0.9993 0.9987 0.9951

C2 MAPE↓ 0.0090 0.0056 0.0084 0.0243 0.0461
RMSE↓ 0.3916 0.1642 0.3076 0.7138 1.0496
R2↑ 0.9978 0.9996 0.9986 0.9928 0.9844

C3 MAPE↓ 0.0144 0.0136 0.0120 0.0351 0.0524
RMSE↓ 0.4746 0.4356 0.4016 1.0847 1.1685
R2↑ 0.9946 0.9954 0.9961 0.9719 0.9675

C4 MAPE↓ 0.0147 0.0116 0.0095 0.0245 0.0469
RMSE↓ 0.4597 0.4031 0.2753 0.7260 1.0095
R2↑ 0.9971 0.9978 0.9989 0.9928 0.9862

C5 MAPE↓ 0.0188 0.0113 0.0109 0.0134 0.0190
RMSE↓ 0.2133 0.1759 0.1636 0.2054 0.2187
R2↑ 0.9954 0.9969 0.9973 0.9958 0.9952

C6 MAPE↓ 0.0119 0.0043 0.0072 0.0115 0.0300
RMSE↓ 0.2511 0.0825 0.1408 0.1809 0.5505
R2↑ 0.9977 0.9997 0.9992 0.9988 0.9890

Table A4 
The prediction results (RMSE, MAPE, and R2) of the proposed MPTNSR method using five different learning rates in the CJ water area.

Dataset Performance indexes Learning rates
0.0001 0.0005 0.001 0.005 0.01

CJ1 MAPE↓ 0.0313 0.0175 0.0149 0.0217 0.0203
RMSE↓ 0.6190 0.3887 0.2947 0.4276 0.4260
R2↑ 0.9893 0.9957 0.9975 0.9949 0.9949

CJ2 MAPE↓ 0.0258 0.0203 0.0168 0.0284 0.0331
RMSE↓ 0.4001 0.3094 0.2542 0.4471 0.5035
R2↑ 0.9910 0.9946 0.9964 0.9888 0.9858

CJ3 MAPE↓ 0.0131 0.0096 0.0102 0.0104 0.0140
RMSE↓ 0.4912 0.2581 0.3165 0.2749 0.3920
R2↑ 0.9943 0.9984 0.9976 0.9982 0.9963

CJ4 MAPE↓ 0.0225 0.0170 0.0103 0.0175 0.0240
RMSE↓ 0.4089 0.3614 0.1956 0.3301 0.4880
R2↑ 0.9945 0.9957 0.9987 0.9964 0.9921

CJ5 MAPE↓ 0.0208 0.0190 0.0162 0.0234 0.0208
RMSE↓ 0.5983 0.4385 0.3856 0.5770 0.5729
R2↑ 0.9901 0.9947 0.9959 0.9908 0.9909

CJ6 MAPE↓ 0.0123 0.0105 0.0118 0.0203 0.0120
RMSE↓ 0.2656 0.2452 0.2540 0.4113 0.3048
R2↑ 0.9978 0.9981 0.9980 0.9948 0.9971

CJ7 MAPE↓ 0.0262 0.0187 0.0120 0.0177 0.0197
RMSE↓ 0.5700 0.4047 0.2385 0.3941 0.4062
R2↑ 0.9861 0.9929 0.9975 0.9933 0.9929

CJ8 MAPE↓ 0.0273 0.0251 0.0145 0.0249 0.0286
RMSE↓ 0.7241 0.6769 0.3428 0.7058 0.8195
R2↑ 0.9692 0.9731 0.9931 0.9707 0.9606
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Table A5 
The prediction results of the proposed MPTNSR model for five different sequence lengths in the CFDP water area.

Dataset Performance indexes Sequence lengths
3 6 9 12 15

C1 MAPE↓ 0.0056 0.0058 0.0130 0.0205 0.0179
RMSE↓ 0.1604 0.1847 0.4307 0.6274 0.4714
R2↑ 0.9994 0.9993 0.9963 0.9922 0.9956

C2 MAPE↓ 0.0062 0.0084 0.0206 0.0193 0.0218
RMSE↓ 0.1712 0.3076 0.5956 0.5475 0.6520
R2↑ 0.9995 0.9986 0.9949 0.9957 0.9940

C3 MAPE↓ 0.0089 0.0120 0.0285 0.0247 0.0215
RMSE↓ 0.3188 0.4016 0.8465 0.7758 0.7313
R2↑ 0.9975 0.9961 0.9829 0.9856 0.9872

C4 MAPE↓ 0.0082 0.0095 0.0208 0.0286 0.0194
RMSE↓ 0.2639 0.2753 0.5959 0.9392 0.5466
R2↑ 0.9990 0.9989 0.9952 0.9881 0.9959

C5 MAPE↓ 0.0108 0.0109 0.0163 0.0295 0.0260
RMSE↓ 0.1568 0.1636 0.2207 0.4104 0.3264
R2↑ 0.9975 0.9973 0.9951 0.9832 0.9894

C6 MAPE↓ 0.0041 0.0072 0.0183 0.0112 0.0239
RMSE↓ 0.0805 0.1408 0.3545 0.2376 0.4863
R2↑ 0.9997 0.9992 0.9954 0.9979 0.9914

Table A6 
The prediction results of the proposed MPTNSR model for five different sequence lengths in the CJ water area.

Dataset Performance indexes Sequence lengths
3 6 9 12 15

CJ1 MAPE↓ 0.0101 0.0149 0.0171 0.0268 0.0231
RMSE↓ 0.1841 0.2947 0.3540 0.5219 0.4515
R2↑ 0.9990 0.9975 0.9965 0.9924 0.9943

CJ2 MAPE↓ 0.0107 0.0168 0.0253 0.0240 0.0240
RMSE↓ 0.1563 0.2542 0.3439 0.3369 0.3848
R2↑ 0.9986 0.9964 0.9934 0.9936 0.9917

CJ3 MAPE↓ 0.0098 0.0102 0.0227 0.0207 0.0196
RMSE↓ 0.3119 0.3165 0.6909 0.6347 0.6158
R2↑ 0.9977 0.9976 0.9887 0.9905 0.9910

CJ4 MAPE↓ 0.0084 0.0103 0.0153 0.0209 0.0162
RMSE↓ 0.1770 0.1956 0.3165 0.4212 0.2885
R2↑ 0.9989 0.9987 0.9967 0.9941 0.9972

CJ5 MAPE↓ 0.0146 0.0162 0.0193 0.0257 0.0258
RMSE↓ 0.3895 0.3856 0.4686 0.6483 0.6123
R2↑ 0.9958 0.9959 0.9939 0.9884 0.9897

CJ6 MAPE↓ 0.0103 0.0118 0.0185 0.0158 0.0203
RMSE↓ 0.2207 0.2540 0.4111 0.3612 0.5006
R2↑ 0.9985 0.9980 0.9948 0.9960 0.9923

CJ7 MAPE↓ 0.0092 0.0120 0.0247 0.0241 0.0221
RMSE↓ 0.1629 0.2385 0.4874 0.4442 0.4396
R2↑ 0.9988 0.9975 0.9898 0.9915 0.9917

CJ8 MAPE↓ 0.0110 0.0145 0.0218 0.0273 0.0269
RMSE↓ 0.2402 0.3428 0.5218 0.6736 0.6917
R2↑ 0.9966 0.9931 0.9840 0.9733 0.9719

Data availability

Data will be made available on request.

References

Allen, D.M., 1971. Mean Square Error of Prediction as a Criterion for Selecting Variables. Technometrics 13, 469–475. https://doi.org/10.1080/ 
00401706.1971.10488811.

Bao, Y., Huang, J., Shen, Q., Cao, Y., Ding, W., Shi, Z., Shi, Q., 2023. Spatial–Temporal Complex Graph Convolution Network for Traffic Flow Prediction. Eng. Appl. 
Artif. Intel. 121, 106044. https://doi.org/10.1016/j.engappai.2023.106044.

Benesty, J., Chen, J., Huang, Y., 2008. On the Importance of the Pearson Correlation Coefficient in Noise Reduction. IEEE Trans. Audio Speech Lang. Process. 16, 
757–765. https://doi.org/10.1109/TASL.2008.919072.

Bharti, R., Kumar, K., 2023. Short-term traffic flow prediction based on optimized deep learning neural network: pso-bi-lstm. Phys. A: Statist. Mechan. Appl. 625, 
129001. https://doi.org/10.1016/j.physa:2023.129001.

H. Li et al.                                                                                                                                                                                                               Transportation Research Part E 197 (2025) 104072 

39 

https://doi.org/10.1080/00401706.1971.10488811
https://doi.org/10.1080/00401706.1971.10488811
https://doi.org/10.1016/j.engappai.2023.106044
https://doi.org/10.1109/TASL.2008.919072
https://doi.org/10.1016/j.physa:2023.129001


Cao, S., Wu, L., Wu, J., Wu, D., Li, Q., 2022. A spatio-temporal sequence-to-sequence network for traffic flow prediction. Inf. Sci. 610, 185–203. https://doi.org/ 
10.1016/j.ins.2022.07.125.

Cao, S., Wu, L., Zhang, R., Wu, D., Cui, J., Chang, Y., 2024. A Spatiotemporal Multiscale Graph Convolutional Network for Traffic Flow Prediction. IEEE Trans. Intell. 
Transp. Syst. 25, 8705–8718. https://doi.org/10.1109/TITS.2024.3354802.

Chai, T., Draxler, R.R., 2014. Root mean square error (RMSE) or mean absolute error (MAE)? – Arguments against avoiding RMSE in the literature. Geosci. Model Dev. 
7, 1247–1250. https://doi.org/10.5194/gmd-7-1247-2014.

Chen, X., Chen, X.M., 2022. A novel reinforced dynamic graph convolutional network model with data imputation for network-wide traffic flow prediction. Transp. 
Res. Part C Emerging Technol. 143, 103820. https://doi.org/10.1016/j.trc.2022.103820.

Cheng, Z., Lu, J., Zhou, H., Zhang, Y., Zhang, L., 2022. Short-Term Traffic Flow Prediction: An Integrated Method of Econometrics and Hybrid Deep Learning. IEEE 
Trans. Intell. Transp. Syst. 23, 5231–5244. https://doi.org/10.1109/TITS.2021.3052796.

Dey, R., Salem, F.M., 2017. Gate-variants of Gated Recurrent Unit (GRU) neural networks, in: 2017 IEEE 60th International Midwest Symposium on Circuits and 
Systems (MWSCAS). Presented at the 2017 IEEE 60th International Midwest Symposium on Circuits and Systems (MWSCAS), pp. 1597–1600. Doi: 10.1109/ 
MWSCAS.2017.8053243.

Do, L.N.N., Vu, H.L., Vo, B.Q., Liu, Z., Phung, D., 2019. An effective spatial-temporal attention based neural network for traffic flow prediction. Transp. Res. Part C 
Emerging Technol. 108, 12–28. https://doi.org/10.1016/j.trc.2019.09.008.

Doucoure, B., Agbossou, K., Cardenas, A., 2016. Time series prediction using artificial wavelet neural network and multi-resolution analysis: Application to wind 
speed data. Renew. Energy 92, 202–211. https://doi.org/10.1016/j.renene.2016.02.003.

Forti, N., Millefiori, L.M., Braca, P., Willett, P., 2020. Prediction oof Vessel Trajectories From AIS Data Via Sequence-To-Sequence Recurrent Neural Networks, in: 
ICASSP 2020 - 2020 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). Presented at the ICASSP 2020 - 2020 IEEE International 
Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 8936–8940. Doi: 10.1109/ICASSP40776.2020.9054421.

Fu, S., Zhong, S., Lin, L., Zhao, M., 2022. A Novel Time-Series Memory Auto-Encoder With Sequentially Updated Reconstructions for Remaining Useful Life Prediction. 
IEEE Trans. Neural Networks Learn. Syst. 33, 7114–7125. https://doi.org/10.1109/TNNLS.2021.3084249.

Gao, M., Shi, G., Li, S., 2018. Online Prediction of Ship Behavior with Automatic Identification System Sensor Data Using Bidirectional Long Short-Term Memory 
Recurrent Neural Network. Sensors 18, 4211. https://doi.org/10.3390/s18124211.

Goodfellow, I., Pouget-Abadie, J., Mirza, M., Xu, B., Warde-Farley, D., Ozair, S., Courville, A., Bengio, Y., 2020. Generative adversarial networks. Commun. ACM 63, 
139–144. https://doi.org/10.1145/3422622.

Graves, A., 2012. Long Short-Term Memory. In: Graves, A. (Ed.), Supervised Sequence Labelling with Recurrent Neural Networks, Studies in Computational 
Intelligence. Springer, Berlin, Heidelberg, pp. 37–45. https://doi.org/10.1007/978-3-642-24797-2_4.

Grifoll, M., 2019. A statistical forecasting model applied to container throughput in a multi-port gateway system: the Barcelona-Tarragona-Valencia case. Int. J. Shipp. 
Transport Logist. 11, 316–333. https://doi.org/10.1504/IJSTL.2019.100453.

Han, Z., Zhao, J., Leung, H., Ma, K.F., Wang, W., 2021. A review of deep learning models for time series prediction. IEEE Sens. J. 21, 7833–7848. https://doi.org/ 
10.1109/JSEN.2019.2923982.

Hao, W., Sun, X., Wang, C., Chen, H., Huang, L., 2022. A hybrid EMD-LSTM model for non-stationary wave prediction in offshore China. Ocean Eng. 246, 110566. 
https://doi.org/10.1016/j.oceaneng.2022.110566.

Hara, K., Saito, D., Shouno, H., 2015. Analysis of function of rectified linear unit used in deep learning, in: 2015 International Joint Conference on Neural Networks 
(IJCNN). Presented at the 2015 International Joint Conference on Neural Networks (IJCNN), pp. 1–8. Doi: 10.1109/IJCNN.2015.7280578.

He, W., Zhong, C., Sotelo, M.A., Chu, X., Liu, X., Li, Z., 2019. Short-term vessel traffic flow forecasting by using an improved Kalman model. Cluster Comput 22, 
7907–7916. https://doi.org/10.1007/s10586-017-1491-2.

Hou, F., Zhang, Y., Fu, X., Jiao, L., Zheng, W., 2021. The Prediction of Multistep Traffic Flow Based on AST-GCN-LSTM. J. Adv. Transp. 2021, e9513170. https://doi. 
org/10.1155/2021/9513170.

Hou, J., Luo, C., Qin, F., Shao, Y., Chen, X., 2023. FuS-GCN: Efficient B-rep based graph convolutional networks for 3D-CAD model classification and retrieval. Adv. 
Eng. Inf. 56, 102008. https://doi.org/10.1016/j.aei.2023.102008.

Hu, H.-X., Hu, Q., Tan, G., Zhang, Y., Lin, Z.-Z., 2024. A Multi-Layer Model Based on Transformer and Deep Learning for Traffic Flow Prediction. IEEE Trans. Intell. 
Transp. Syst. 25, 443–451. https://doi.org/10.1109/TITS.2023.3311397.

Hua, Y., Zhao, Z., Li, R., Chen, X., Liu, Z., Zhang, H., 2019. Deep learning with long short-term memory for time series prediction. IEEE Commun. Mag. 57, 114–119. 
https://doi.org/10.1109/MCOM.2019.1800155.

Huang, W., Song, G., Hong, H., Xie, K., 2014. Deep architecture for traffic flow prediction: deep belief networks with multitask learning. IEEE Trans. Intell. Transp. 
Syst. 15, 2191–2201. https://doi.org/10.1109/TITS.2014.2311123.

Huang, Y., Zhang, S., Wen, J., Chen, X., 2020. Short-Term Traffic Flow Prediction Based on Graph Convolutional Network Embedded LSTM 159–168. Doi: 10.1061/ 
9780784483152.014.

Jia, C., Ma, J., 2023. Conditional temporal GAN for intent-aware vessel trajectory prediction in the precautionary area. Eng. Appl. Artif. Intel. 126, 106776. https:// 
doi.org/10.1016/j.engappai.2023.106776.

Jin, X.-B., Gong, W.-T., Kong, J.-L., Bai, Y.-T., Su, T.-L., 2022. PFVAE: A Planar Flow-Based Variational Auto-Encoder Prediction Model for Time Series Data. 
Mathematics 10, 610. https://doi.org/10.3390/math10040610.

Kayacan, E., Ulutas, B., Kaynak, O., 2010. Grey system theory-based models in time series prediction. Expert Syst. Appl. 37, 1784–1789. https://doi.org/10.1016/j. 
eswa.2009.07.064.

Kong, F., Li, J., Jiang, B., Song, H., 2019. Short-term traffic flow prediction in smart multimedia system for Internet of Vehicles based on deep belief network. Futur. 
Gener. Comput. Syst. 93, 460–472. https://doi.org/10.1016/j.future.2018.10.052.

Kumar, P., Gupta, G.P., Tripathi, R., Garg, S., Hassan, M.M., 2023. DLTIF: Deep Learning-Driven Cyber Threat Intelligence Modeling and Identification Framework in 
IoT-Enabled Maritime Transportation Systems. IEEE Trans. Intell. Transp. Syst. 24, 2472–2481. https://doi.org/10.1109/TITS.2021.3122368.

Kumar, R., Kumar, P., Kumar, Y., 2022. Multi-step time series analysis and forecasting strategy using ARIMA and evolutionary algorithms. Int. J. Inf. Tecnol. 14, 
359–373. https://doi.org/10.1007/s41870-021-00741-8.

Lee, E., Khan, J., Son, W.-J., Kim, K., 2023. An efficient feature augmentation and LSTM-based method to predict maritime traffic conditions. Appl. Sci. 13, 2556. 
https://doi.org/10.3390/app13042556.

Li, H., Jiao, H., Yang, Z., 2023a. AIS data-driven ship trajectory prediction modelling and analysis based on machine learning and deep learning methods. Transport. 
Res. Part e: Logist. Transportat. Rev. 175, 103152. https://doi.org/10.1016/j.tre.2023.103152.

Li, H., Xing, W., Jiao, H., Yang, Z., Li, Y., 2024a. Deep bi-directional information-empowered ship trajectory prediction for maritime autonomous surface ships. 
Transport. Res. Part e: Logist. Transport. Rev. 181, 103367. https://doi.org/10.1016/j.tre.2023.103367.

Li, H., Xing, W., Jiao, H., Yuen, K.F., Gao, R., Li, Y., Matthews, C., Yang, Z., 2024b. Bi-directional information fusion-driven deep network for ship trajectory 
prediction in intelligent transportation systems. Transport. Res. Part e: Logist. Transportat. Rev. 192, 103770. https://doi.org/10.1016/j.tre.2024.103770.

Li, H., Yang, Z., 2023. Incorporation of AIS data-based machine learning into unsupervised route planning for maritime autonomous surface ships. Transp. Res. Part E 
Logist. Transp. Rev. 176, 103171. https://doi.org/10.1016/j.tre.2023.103171.

Li, J., Yang, J., Gao, L., Wei, L., Mao, F., 2022a. In: Dynamic Spatial-Temporal Graph Convolutional GRU Network for Traffic Forecasting, in. Association for 
Computing Machinery, New York, NY, USA, pp. 19–24. https://doi.org/10.1145/3510362.3510366.

Li, L., Sheng, X., Du, B., Wang, Y., Ran, B., 2020. A deep fusion model based on restricted Boltzmann machines for traffic accident duration prediction. Eng. Appl. 
Artif. Intel. 93, 103686. https://doi.org/10.1016/j.engappai.2020.103686.

Li, R., Qin, Y., Wang, J., Wang, H., 2023b. AMGB: Trajectory prediction using attention-based mechanism GCN-BiLSTM in IOV. Pattern Recogn. Lett. 169, 17–27. 
https://doi.org/10.1016/j.patrec.2023.03.006.

H. Li et al.                                                                                                                                                                                                               Transportation Research Part E 197 (2025) 104072 

40 

https://doi.org/10.1016/j.ins.2022.07.125
https://doi.org/10.1016/j.ins.2022.07.125
https://doi.org/10.1109/TITS.2024.3354802
https://doi.org/10.5194/gmd-7-1247-2014
https://doi.org/10.1016/j.trc.2022.103820
https://doi.org/10.1109/TITS.2021.3052796
https://doi.org/10.1016/j.trc.2019.09.008
https://doi.org/10.1016/j.renene.2016.02.003
https://doi.org/10.1109/TNNLS.2021.3084249
https://doi.org/10.3390/s18124211
https://doi.org/10.1145/3422622
https://doi.org/10.1007/978-3-642-24797-2_4
https://doi.org/10.1504/IJSTL.2019.100453
https://doi.org/10.1109/JSEN.2019.2923982
https://doi.org/10.1109/JSEN.2019.2923982
https://doi.org/10.1016/j.oceaneng.2022.110566
https://doi.org/10.1007/s10586-017-1491-2
https://doi.org/10.1155/2021/9513170
https://doi.org/10.1155/2021/9513170
https://doi.org/10.1016/j.aei.2023.102008
https://doi.org/10.1109/TITS.2023.3311397
https://doi.org/10.1109/MCOM.2019.1800155
https://doi.org/10.1109/TITS.2014.2311123
https://doi.org/10.1016/j.engappai.2023.106776
https://doi.org/10.1016/j.engappai.2023.106776
https://doi.org/10.3390/math10040610
https://doi.org/10.1016/j.eswa.2009.07.064
https://doi.org/10.1016/j.eswa.2009.07.064
https://doi.org/10.1016/j.future.2018.10.052
https://doi.org/10.1109/TITS.2021.3122368
https://doi.org/10.1007/s41870-021-00741-8
https://doi.org/10.3390/app13042556
https://doi.org/10.1016/j.tre.2023.103152
https://doi.org/10.1016/j.tre.2023.103367
https://doi.org/10.1016/j.tre.2024.103770
https://doi.org/10.1016/j.tre.2023.103171
https://doi.org/10.1145/3510362.3510366
https://doi.org/10.1016/j.engappai.2020.103686
https://doi.org/10.1016/j.patrec.2023.03.006


Li, W., Logenthiran, T., Woo, W.L., 2019. Multi-GRU prediction system for electricity generation’s planning and operation. IET Gener. Transm. Distrib. 13, 
1630–1637. https://doi.org/10.1049/iet-gtd.2018.6081.

Li, W.-F., Mei, B., Shi, G.-Y., 2018. Automatic recognition of marine traffic flow regions based on Kernel Density Estimation. J. Mar. Sci. Technol. 26. https://doi.org/ 
10.6119/JMST.2018.02_(1).0014.

Li, H., Jiao, H., Yang, Z., 2023c. Ship trajectory prediction based on machine learning and deep learning: A systematic review and methods analysis. Eng. Appl. Artif. 
Intell. 126, 107062. https://doi.org/10.1016/j.engappai.2023.107062.

Li, H., Lam, J.S.L., Yang, Z., Liu, J., Liu, R.W., Liang, M., Li, Y., 2022b. Unsupervised hierarchical methodology of maritime traffic pattern extraction for knowledge 
discovery. Transp. Res. Part C Emerg. Technol. 143, 103856. https://doi.org/10.1016/j.trc.2022.103856.

Li, Y., Li, H., Zhang, C., Zhao, Y., Yang, Z., 2024c. Incorporation of adaptive compression into a GPU parallel computing framework for analyzing large-scale vessel 
trajectories. Transp. Res. Part C Emerg. Technol. 163, 104648. https://doi.org/10.1016/j.trc.2024.104648.

Li, Y., Liang, M., Li, H., Yang, Z., Du, L., Chen, Z., 2023d. Deep learning-powered vessel traffic flow prediction with spatial-temporal attributes and similarity 
grouping. Eng. Appl. Artif. Intel. 126, 107012. https://doi.org/10.1016/j.engappai.2023.107012.

Li, Z., Liu, F., Yang, W., Peng, S., Zhou, J., 2022c. A Survey of Convolutional Neural Networks: Analysis, Applications, and Prospects. IEEE Trans. Neural Networks 
Learn. Syst. 33, 6999–7019. https://doi.org/10.1109/TNNLS.2021.3084827.

Liang, M., Liu, R.W., Zhan, Y., Li, H., Zhu, F., Wang, F.-Y., 2022. Fine-Grained Vessel Traffic Flow Prediction With a Spatio-Temporal Multigraph Convolutional 
Network. IEEE Trans. Intell. Transp. Syst. 23, 23694–23707. https://doi.org/10.1109/TITS.2022.3199160.

Liu, H., Wu, C., Li, B., Zong, Z., Shu, Y., 2025. Research on Ship Anomaly Detection Algorithm Based on Transformer-GSA Encoder. IEEE Trans. Intell. Transp. Syst. 
1–12. https://doi.org/10.1109/TITS.2025.3536483.

Liu, H., Zhao, H., Wang, J., Yuan, S., Feng, W., 2022. LSTM-GAN-AE: A Promising Approach for Fault Diagnosis in Machine Health Monitoring. IEEE Trans. Instrum. 
Meas. 71, 1–13. https://doi.org/10.1109/TIM.2021.3135328.

Liu, Y., Gong, C., Yang, L., Chen, Y., 2020. DSTP-RNN: A dual-stage two-phase attention-based recurrent neural network for long-term and multivariate time series 
prediction. Expert Syst. Appl. 143, 113082. https://doi.org/10.1016/j.eswa.2019.113082.

Liu, Y., Lyu, C., Liu, X., Liu, Z., 2021. Automatic feature engineering for bus passenger flow prediction based on modular convolutional neural network. IEEE Trans. 
Intell. Transp. Syst. 22, 2349–2358. https://doi.org/10.1109/TITS.2020.3004254.

Livieris, I.E., Pintelas, E., Pintelas, P., 2020. A CNN–LSTM model for gold price time-series forecasting. Neural Comput. Applic. 32, 17351–17360. https://doi.org/ 
10.1007/s00521-020-04867-x.

Lv, Y., Lv, Z., Cheng, Z., Zhu, Z., Rashidi, T.H., 2023. TS-STNN: Spatial-temporal neural network based on tree structure for traffic flow prediction. Transport. Res. Part 
e: Logist. Transportat. Rev. 177, 103251. https://doi.org/10.1016/j.tre.2023.103251.

Ma, C., Zhao, Y., Dai, G., Xu, X., Wong, S.-C., 2023. A Novel STFSA-CNN-GRU Hybrid Model for Short-Term Traffic Speed Prediction. IEEE Trans. Intell. Transp. Syst. 
24, 3728–3737. https://doi.org/10.1109/TITS.2021.3117835.

Ma, Z., Mei, G., 2022. A hybrid attention-based deep learning approach for wind power prediction. Appl. Energy 323, 119608. https://doi.org/10.1016/j. 
apenergy.2022.119608.

Makowski, D., Naud, C., Jeuffroy, M.-H., Barbottin, A., Monod, H., 2006. Global sensitivity analysis for calculating the contribution of genetic parameters to the 
variance of crop model prediction. Reliab. Eng. Syst. Saf. 91, 1142–1147. https://doi.org/10.1016/j.ress.2005.11.015.
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