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ABSTRACT
The trajectory prediction research based on deep learning methods shows more substantial competitiveness
than classical ones in the context of big data analysis methods. However, the relevant literature fails to explain
the collective impact of multiple influential factors identified from Automatic Identification System (AIS) data,
including latitude, longitude, Course Over Ground (COG), and SpeedOver Ground (SOG). To fill in this research
gap, six classical deep learningmethods are newly employed to conduct ship trajectory prediction, taking into
account multiple influential factors for the first time. Two real AIS datasets collected from water areas of high
representation are chosen to test and analyse the performance of the six deep learning models against seven
indexes. The experimental results reveal that both the traditional factors of longitude and latitude and the
newly incorporated ones of SOG and COG play a key role in trajectory prediction. Moreover, the effect of SOG
on the accuracy of prediction results is greater than that of COG. Furthermore, the advantages and disadvan-
tages of the six trajectory prediction models revealed by the experimental results provide useful insights into
the best-fit method under different circumstances of traffic management involving Maritime Autonomous
Surface Ships (MASS).
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1. Introduction

Seaborn trade accounts for approximately 90%of international trans-
portation volume and has become one of the most significant modes
of international trade and transport (Hu and Zhu 2009). Mean-
time, the escalating disruptions in the traffic environment caused by
climate change and sea traffic complexities, which encompass signif-
icant alterations within specific time frames and water conditions,
pose new and unbearable challenges to maritime traffic safety. The
associated maritime traffic accidents will undoubtedly bring signif-
icant, often intolerable, economic losses, environmental damages,
and potential safety hazards (Qin et al. 2022). With the growth and
maturity of digitalisation technologies (Xu et al. 2022a), shipping 4.0
(Aiello et al. 2020), and communication technology (Babanli and
Ortaç Kabaoğlu 2022), nearly real-time communication based on
radar radio equipment has become a reality and is rapidly popu-
larised. Simultaneously, unmanned ships are being fast developed,
coming into reality and becoming possible future transportation
modes across seas (Du et al. 2022; H. Li and Yang 2023). It brings a
crucial research issue to deal with mixed maritime traffic of manned
and unmanned ships to ensure ship navigation safety in the mar-
itime field (Cheraghchi et al. 2018; Xin et al. 2023a) given that the
current classical ship traffic prediction methods are almost certain
not to be infeasible any more. Compared with traditional manip-
ulation experience and human intuition, massive AIS data-driven
mining can help provide intelligent decision-making for ships (Li
et al. 2020, 2022a), ensuring the safe navigation of manned ships and
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assistingMaritime Autonomous Surface Ships (MASS) in navigating
autonomously (Ali et al. 2015). Among them, ship trajectory pre-
diction is an important method to realise the early warning of risks
and prevent ship collision accidents (Perera et al. 2015; Polvara et al.
2018). Therefore, it is necessary to conduct more precise trajectory
prediction than ever to assist ship situation awareness and navigation
safety (Bai et al. 2021; Li et al. 2023b; Li et al. 2022b; Yang et al. 2021).

The International Maritime Organisation (IMO) stipulates that
ships should be equippedwithAutomatic Identification System (AIS)
equipment (Capobianco et al. 2021) to continuously broadcast mul-
tiple real-time information, combined with Vessel Traffic Service
(VTS) and radar data to realise real-time information exchange. The
AIS system can transmit data frequently (every 3–10 s), providing
a solid foundation for maritime traffic monitoring (Volkova et al.
2021; Xin et al. 2023b). It has three categories in AIS data: static
ship information (e.g. ship name, Maritime Mobile Service Identify
(MMSI) number, call sign, IMO number, ship width, ship type, and
captain), dynamic ship information (e.g. latitude, longitude, head-
ing, trajectories speed, and direction), and ship voyage information
(e.g. ship status, draft, and destination) (Zhang et al. 2018). Among
them, dynamic ship information is essential to support all prediction
models to locate a ship’s future movement.

To tackle the complexity of dynamic ship information, although
witnessing the applications of deep learning methods to ship trajec-
tory prediction (Statheros et al. 2008; Huang et al. 2020), the current
research still reveals some research challenges that have theoretical

© 2025 The Author(s). Published by Informa UK Limited, trading as Taylor & Francis Group.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution,
and reproduction in any medium, provided the original work is properly cited. The terms on which this article has been published allow the posting of the Accepted Manuscript in a repository by the
author(s) or with their consent.

http://www.tandfonline.com
https://crossmark.crossref.org/dialog/?doi=10.1080/20464177.2025.2498815&domain=pdf&date_stamp=2025-05-02
http://orcid.org/0000-0002-4293-4763
http://orcid.org/0000-0001-7920-2665
http://orcid.org/0000-0003-3273-7499
http://orcid.org/0000-0003-1385-493X
mailto:H.Li2@ljmu.ac.uk
mailto:Z.Yang@ljmu.ac.uk
http://creativecommons.org/licenses/by/4.0/


2 H. JIAO ET AL.

implications yet to be well-addressed and want new solutions to be
found, including:

(1) What types of dynamic information should be included to
enhance the accuracy of prediction results?

(2) How to choose the best-fit deep learning models for vessel tra-
jectory prediction under different circumstances in terms of
both data size and prediction performance?

(3) How to evaluate the effect of different influential factors individ-
ually and collectively in ship trajectory prediction?

Compared to vehicle trajectory prediction, it is more challenging
to predict ship trajectories as they are inherently involved with a high
level of freedom and uncertainty without any constraint by prede-
fined lanes and are affected by multiple factors. It is even worrisome
given the fast development of ship autonomy in recent years. The
prediction effectiveness of various deep learning techniques in ship-
ping concerning various influential factors becomes necessary and
beneficial for manned ships, autonomous ships and/or their com-
bined traffic. This study delves into trajectory prediction utilising
deep learning within the realm of big data analytics. AIS data encom-
passes various influential factors like longitude, latitude, Speed Over
Course (SOG), and Course Over Ground (COG). While these com-
ponents individually affect trajectory prediction, existing literature
lacks clarity on their cumulative impact. By controlling variables, this
study shed light on the significance of these factors within a deep
learning-based prediction model.

To address the abovementioned issues, the influence of multiple
dynamic factors (longitude, latitude, SOG, and COG) on trajectory
prediction is explored through a full test of six deep learning meth-
ods and their experimental comparison using two real case datasets.
The six widely used deep learning predictionmodels are Long Short-
Term Memory (LSTM), Gate Recurrent Unit (GRU), Bi-directional
Long Short-Term Memory (Bi-LSTM), Bi-directional Gate Recur-
rent Unit (Bi-GRU), Sequence to Sequence (Seq2seq), and Trans-
former. Furthermore, a control variable method is newly proposed
to conduct the experiments to quantitatively analyse and explore the
impact of different factors on the prediction accuracy of ship trajec-
tories. As a result, the experimental results and findings provide a
theoretical foundation and valuable reference to strike a new research
dimension of ship trajectory prediction.Historical AIS data from two
real water areas are used to compare the influence of multiple factors,
verify the performance of differentmodels, and illustrate the viability
of the research findings. Finally, this paper uses seven indicators to
evaluate the prediction performance of each deep learning method
in different cases.

This paper pioneers a holistic approach to ship trajectory predic-
tion by incorporating multiple AIS data factors such as longitude,
latitude, SOG, andCOG. To gauge the efficacy of the aforementioned
sixmodels, twoAIS datasets from representativemaritime areas were
chosen. Sevenmetrics were employed to examine themodels’ perfor-
mance. The findings underscore the pivotal roles of both traditional
elements like longitude and latitude and newer variables like SOG
and COG in trajectory prediction. The advantages and limitations
of the six models are also elucidated, offering valuable perspectives
for selecting the optimal technique across varied traffic manage-
ment contexts, especially within MASS. The new contributions of
this paper are presented as follows.

(1) New investigation of the combined effect of four dynamic influ-
ential factors (i.e. longitude, latitude, SOG, and COG) on ship
trajectory prediction.

(2) Comparative analysis of the six deep learningmethods and their
performance for ship trajectories under different circumstances.

(3) Comprehensive evaluation of the overall prediction perfor-
mance across four cases using seven indexes.

(4) Investigation of the generality of the findings using two real case
water areas of representative traffic systems.

The structure of this paper is described as follows. Section 2
reviews the research status of ship trajectory prediction. The selected
six deep learning prediction methods are described in Section 3
with a focus on their characteristics when being applied for trajec-
tory prediction. Section 4 presents the methodology of this paper,
while Section 5 provides the experimental results on real datasets
and elaborates on the evaluated impact of different factors on tra-
jectory prediction. Finally, section 6 summarises this work with its
limitations and future research directions.

2. Literature review

2.1. A bibliometric analysis

TheWeb of Science (WoS) database is used to retrieve ship trajectory
prediction publications between January 2001 and March 2025 (Li
et al. 2021). The following search strategy is set:

Topic 1: ‘Ship∗ and trajectory prediction’, or.
Topic 2: ‘Vessel∗ and trajectory prediction’, or.
Topic 3: ‘Ship∗ and route prediction’, or.
Topic 4: ‘Vessel∗ and route prediction’, or.

In total, there are 1171 papers found from the initial search using
the above strategy. To ensure the high quality and relevance of the
results, any book chapters, reports, and case studies are excluded
from the search. 641 papers are reserved after the first round of
screening. Any articles on vehicles, pedestrians, and aircraft trajec-
tory prediction are also removed to ensure that the focus of papers
is restricted to ships. The title, keywords, and abstract are further
checked to ensure that the results remain highly relevant to the
research issue. Only journal articles related to ship trajectory pre-
diction in the shipping industry are collected and included in our
database. The total number of papers is reduced to 281 after the
above screening procedures. The introduction, content, method, and
conclusion are further reviewed and screened and consequently,
154 papers are finally kept to support the bibliometric analysis (i.e.
keywords and topics).

This paper presents a systematic review of 85 carefully selected
publications that apply deep learningmethods to ship trajectory pre-
diction. A co-occurrence analysis of keywords extracted from these
85 results was conducted using the CiteSpace software, with the
results visualised in Figure 1. The figure illustrates the clustering
of keywords into six distinct thematic categories, each reflecting a
specific research focus within the field of ship trajectory prediction.

Cluster #5 represents the core theme of vessel trajectory predic-
tion, emphasising the application of advanced deep learning models
such as LSTM, GRU, and Graph Neural Networks (GNN) to capture
complex spatiotemporal patterns inmaritime traffic. Cluster #0 high-
lights the critical role ofAIS data in trajectory prediction, particularly
the importance of dynamic information such as ship behaviour and
AIS trajectories in enhancing prediction accuracy and reliability.

Cluster #2 explores the potential of Deep Reinforcement Learning
(DRL) in optimising trajectory prediction, showcasing its adaptabil-
ity in complex maritime environments through anticipatory colli-
sion avoidance and dynamic decision-making. Cluster #3 emphasises
practical applications of trajectory prediction in ensuring maritime
safety, integrating aspects such as collision risk assessment, collision
avoidance strategies, and anticollision technologies.
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Figure 1. Co-occurrence analysis of keywords in the screened publications from 2021 to 2025.

Cluster #1 highlights the importance of robust data preprocessing
and model optimisation, with keywords such as data models, anno-
tation pipelines, and computational modelling reflecting the need for
efficient and scalable frameworks to support high-performance pre-
diction. Finally, Cluster #4 connects trajectory prediction to broader
maritime surveillance applications, demonstrating its relevance for
real-time vessel monitoring and decision-making support for mar-
itime authorities through vessel behaviour analysis and collision risk
assessment.

Overall, the analysis reveals a well-structured research landscape
that integrates dynamic AIS data, advanced deep learning tech-
niques, and safety-critical applications. It provides valuable insights
into both the current state and emerging directions of deep learning-
based ship trajectory prediction research.

2.2. In-depth critical review

This section critically reviews the existing main research methods
on ship trajectory prediction in the literature. Currently, the research
techniques for predicting ship trajectories are mostly separated into
two types: methods based on ship physical characteristics and based
on feature learning models, respectively.

2.2.1. The trajectory prediction based on physical models
Physical feature-based trajectory prediction methods establish cor-
responding motion functions based on specific physical models to
predict the future trajectory of ships, including but not limited to
transverse models (Last et al. 2019) and curve models (Wang et al.
2015). The prediction function is established based on the mathe-
matical equation and all factors that may affect the ship’s navigation,
such as the ship’s mass, the centre of mass, inertia, and size. Such
models are often highly interpretable because they take into account

a large amount of information and influencing factors. However, the
establishment of physical models often heavily relies on the ideal
environment and state assumptions. Therefore, they are argued to be
of certain limitations on their applications, in which the uncertainty
and randomness of ship navigation data are kept at a reasonably low
level.

2.2.2. The trajectory prediction based on feature learning
methods
The feature learning-based trajectory predictionmethods analyse the
ships’ historical and real-time trajectory data by establishing mod-
els, mining the operating characteristics, and inferring the motion
rules for predicting future motion trends. In essence, the trajec-
tory prediction based on feature learning is a regression problem.
Because of its powerful learning ability and fitting ability, deep learn-
ing has become themost popular trajectory predictionmethod in the
field.

Within this context, most studies currently only engage longi-
tude and latitude information as the model’s input to predict the
ship’s position information. For instance, Zhong et al. (2019) devel-
oped an efficient prediction model by combining Bi-LSTM with an
RNN model for ship trajectory repair, ensuring the integrity and
reliability of AIS data. Chen et al. (2020) combined Bi-LSTM and
the Mixed Density Network (MDN) to build a Bi-directional Circu-
lar Mixed Density Network (BiRMDN) model to realise trajectory
prediction for developing an intelligent transportation system. Ma
et al. (2021) proposed an Accumulated Long Short-Term Memory
(ALSTM) model, which addressed the limitations of the traditional
LSTM model by using adaptive memory modules and jump con-
nections. The ALSTM model can accurately predict the uncertainty
of ship motion to identify the ship’s navigation intention. Hu et al.
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(2021) put forward a novel type of a two-channel long short-term
memory model, which can realise drift prediction and residual cor-
rection, thus correcting the random errors caused bymicroelectronic
interference and electrostatic paranoia in the prediction process.
Capobianco et al. (2021) used a Seq2seq model to realise trajectory
prediction and aided ship autonomous navigation. Wang and He
(2021) used a generated countermeasure network and an attention
mechanism to forecast the future trajectory to achieve ship intention
identification and collision avoidance.

Although showing much attractiveness, the above studies over-
looked other influential factors such as SOG and COG, which affects
their validity when traffic complications involving, for example,
MASS cannot be comprised in reality. More specifically, predictions
based on latitude and longitude data are inadequate for forecasting
when the demand for high accuracy (e.g. collision avoidance in port
waters) in the prediction is presented. To achieve high-precision pre-
diction, researchers explored the effects of other influential factors
in the model’s training and tried to integrate different information
to obtain better results. Among them, such dynamic ship informa-
tion as SOG and COG, along with the input of the longitude and
latitude, are incorporated into new models for training and predic-
tion. Karataş et al. (2021) input the dynamic information of longitude
and latitude and SOG into an LSTM model for training predic-
tion. Hammedi et al. (2023) proposed a Federated Deep Learning
Approach called ConvLSTM and used four kinds of information
(i.e. longitude, latitude, SOG, and COG) to predict ship future tra-
jectories. Yang et al. (2022) used a Bi-LSTM model to predict the
location and realise ship collision avoidance based on the above four
factors. Ma et al. (2020) combined the attention mechanism with Bi-
LSTM to improve prediction accuracy. Liu et al. (2021a) fused the
four modules of Bi-LSTM, attention mechanism, convolution, and
dense layers to construct a new prediction model, which better inte-
grated the space–time characteristics of the trajectory and achieved
more accurate prediction results. Gao et al. (2021) applied a Trajec-
tory Proposal Network (TPNet) model, commonly used in vehicle
trajectory prediction, and LSTM for ship trajectory prediction. The
endpoint prediction in TPNet is a classification problem and is hence
not suitable for maritime traffic prediction without adaptation, while
the prediction in LSTM is a regression problem. Their combina-
tion can achieve more accurate prediction results. Wang et al. (2025)
introduced a switching inputmechanism based on LSTM (SI-LSTM)
and constructed a ship trajectory prediction model based on the SI-
LSTM model. Billah et al. (2022) utilised a transformer model to
realise ship trajectory prediction based on an Encoder and aDecoder
model, including multi-layer andMulti-head AttentionMechanisms
(MHA). Li et al. (2024b) used a model that combines data encod-
ing representation, attribute correlation attention module, and long
short-term memory network (ACoAtt-LSTM) model in conjunc-
tion with AIS data for ship trajectory prediction. Their approach
integrates data encoding representations, an attribute-related atten-
tion module, and LSTM units. Specially, position coding is used
to capture essential sequential information, thereby enhancing the
model’s decoding performance. Similarly, Zhao et al. (2024) pro-
posed a dual attention end-to-end neural network that integrates
LSTM units with attention mechanisms to generate trajectory data.
Liu et al. (2024) integrated CNN, attention mechanism, and GRU
for trajectory prediction. This combination not only improves the
prediction accuracy but also provides a more interpretable decision-
making process, enabling researchers to gain deeper insights into
the operational mechanisms behind ship trajectory prediction mod-
els. Huang et al. (2022) designed a convolution module to extract
the multi-scale features of AIS trajectory data and meteorological
data, and fused the extracted features into a transformer model for
prediction. The increase of input information will aid the model to
learn more complex trajectory features; however, it will also slow

down the speed of training themodel and further affect the real-time
prediction.

To address this concern, many scholars began to consider pre-
processing the original trajectory so that the processed data can
reveal self-explanatory feature information to enable a model to cap-
ture the features contained in massive AIS data quickly. Suo et al.
(2020) applied a Density-Based Spatial Clustering of Applications
with Noise algorithm (DBSCAN) to cluster trajectories, extract main
trajectories, eliminate redundant data, and then input the processed
data into a GRU model for training. This method significantly
improved the efficiency of model calculation. Park et al. (2021)
utilised a spectral clustering method and a Bi-LSTM model to pre-
dict the ship’s location. Xu et al. (2022b) first deleted the anchor
points in the original trajectory, repaired the abnormal trajecto-
ries based on a statistical algorithm, and then proposed a two-stage
clustering algorithm (DBSCAN-K-means) to cluster the processed
trajectories. The prediction accuracy is further improved by stack-
ing Bi-GRU models. You et al. (2020) encoded the Spatio-temporal
trajectory sequence data as context vectors and input them into a
Seq2seq model. This model alleviated the gradient decline problem
of LSTM and GRU models. Murray and Perera (2021) combined
the Variational Recurrent Autoencoder (VRAE) and the hierarchical
DBSCAN algorithm to cluster trajectories. This work improved the
training speed and the prediction accuracy of the model. Mehri et al.
(2021) proposed a new trajectory compression method and com-
bined it with LSTM to construct a Context-aware LSTM (C-LSTM)
prediction model. C-LSTM embedded the influence of geographic
information in the process of trajectory compression and took into
account more factors to make the prediction more reliable. Ma et al.
(2022) used a hierarchical clustering algorithm to compress trajecto-
ries with different lengths into the same size and then input them into
an LSTM model for training to realise simultaneous prediction of
multiple trajectories. Alizadeh et al. (2021) first calculated the trajec-
tories’ similarity between the target and the surrounding ships, and
then utilised the distance information between the input sequence
and the sequence with the highest similarity as the input of a LSTM
model to predict the divergence and convergence trend of the trajec-
tory more accurately. Venskus et al. (2021) predicted the range of the
future trajectory by training two LSTM automatic encoders to assess
the abnormal behaviour of their investigated ships.

In addition, due to its large number of parameters, deep learn-
ing is much more difficult to train than other prediction methods.
Another method to improve the model’s convergence speed is to
use an intelligent optimisation algorithm to find the optimal param-
eters of the network quickly. Qian et al. (2022) applied a Genetic
Algorithm (GA) to optimise the parameters of an LSTMnetwork and
obtain a more accurate prediction result with a faster convergence
speed. Bao et al. (2022) introduced MHA to calculate the correla-
tion between AIS data features and assigned different weights to the
results according to the correlation. MHA extracted more critical
information from the long-term ship trajectory sequence, improving
the prediction accuracy of a Bi-GRU model.

The factors used in the current literature on prediction research
based on deep learning methods are summarised in Table 1 to show
the state of the art in this field. According to the review mentioned
above, 40 papers (74%) take into account position, SOG, and COG
in the training of a prediction model, 12 papers (22%) use loca-
tion information, and 2 papers (4%) utilise location information and
SOG. No paper uses location information and COG for prediction.

2.3. Research gaps

The literature review identifies four key research gaps in the cur-
rent studies on ship trajectory prediction. First, existing research
has applied specific deep learning methods in a fragmented manner,



JOURNAL OF MARINE ENGINEERING & TECHNOLOGY 5

Table 1. Factors influencing ship trajectory prediction in the literature.

Factor Literature Sum

Position (Chen et al. 2020; Capobianco et al. 2021; Han et al. 2024; Hu et al. 2021; Jurkus et al. 2023; H. Li et al. 2023a; Ma et al.
2021; Wang et al. 2023; Wang and He 2021; Wu et al. 2023; Zhong et al. 2019; Zhao et al. 2023)

12

Position and SOG (Karataş et al. 2021; Zhang et al. 2023c) 2
Position and COG None 0
Position, SOG, and COG (Alizadeh et al. 2021; Gao et al. 2021; Bao et al. 2022; Billah et al. 2022; Guo et al. 2023; Hammedi et al. 2023; Huang

et al. 2022; Jia et al. 2023a; Jia and Ma 2023; Jia et al. 2023; Jiang et al. 2023; Jiang and Zuo 2023; Li et al. 2024a; Lin
et al. 2023; Li et al. 2024b; Liu et al. 2021a; Liu et al. 2023; Liu et al. 2024; Ma et al. 2022; Ma et al. 2020; Suo et al.
2020; Mehri et al. 2021; Murray and Perera 2021; Park et al. 2021; Venskus et al. 2021; Qian et al. 2022; Tian and Suo
2023; Wang et al. 2025; Wang and Xiao 2023; Xi et al. 2023; Xu et al. 2022b; Yang et al. 2022; You et al. 2020; Yang
et al. 2023; Zhang et al. 2023a; Zhang et al. 2023b; Zhang et al. 2023d; Zhang et al. 2023e; Zheng et al. 2023; Zhao
et al. 2024)

40

lacking a systematic comparison ofmodel performance. Second, crit-
ical dynamic factors such as SOGandCOGare often overlooked, and
their combined impact on prediction accuracy remains insufficiently
explored. Third, many studies rely on simplified or unrepresentative
datasets, which do not adequately reflect the complexity and variabil-
ity of real-world maritime traffic scenarios. Fourth, there is a notable
lack of comprehensive evaluationmetrics,making it difficult to assess
the effectiveness of different models or to select the most appropriate
method for specific operational scenarios.

By filling these gaps, the study advances the field of ship trajectory
prediction and contributes practical value to intelligent maritime
traffic management and autonomous navigation. To the best of our
knowledge, this work represents the first systematic effort to anal-
yse the influence of dynamic factors, compare state-of-the-art deep
learning approaches, and evaluate their performance using complex
real-world maritime data. The findings provide actionable insights
for both academic research and the development of intelligent navi-
gation systems.

3. Preliminary

3.1. Definitions

Definition 3.1: Trajectory. A trajectory of a ship i in trajectory pre-
diction task is defined as a sequence of 4D dynamic coordinates
TrajTi = {(latti , lonti , sogti , cogti )|t ∈ [1,T]}, where T is the timestep of
the trajectory.

Definition 3.2: Trajectory Prediction. The goal of ship trajectory
prediction is to train a model f (TrajTi ) to predict the trajectory of
one or more-time steps in the future YK

i = {(latti , lonti , sogti , cogti )|t ∈
[1,K]} by inputting the historical trajectory sequence TrajTi , whereK
is the timestep of the forecast.

Definition 3.3: The inputted AIS data. The model takes in a time-
synchronisedAIS data sequencewhere trajectory points are spaced at
5-second intervals. Given an input of trajectory points across 5 time
steps, the model predicts the coordinate points for the subsequent
time step.

3.2. Research questions

Question 1: Enhancing prediction accuracy through the integra-
tion of dynamic information.

To improve the accuracy of prediction, the paper begins by identi-
fying a set of dynamic variables closely linked to the prediction accu-
racy. By regulating input factors and analysing the prediction results
of the model, it is possible to determine the varying levels of influ-
ence that different factors have on trajectory prediction. Following
this, deep learningmodels that incorporate dynamic information are

compared. The models are specifically designed to effectively lever-
age the benefits of dynamic variables, aiming to refine the accuracy of
predicting ship trajectories. As a result, they offer a more dependable
predictive tool for both research and practical applications within the
domain of autonomous ships.

Question 2: Optimal selection of deep learningmodels for ship
trajectory prediction.

To determine the most effective configuration within a deep
learning framework, the process is initiated by introducing a perfor-
mance metric f (v, p), where v represents the volume of data and p
represents the prediction performance. By exploring the parameter
space, the optimal combination of model architecture and hyper-
parameters is determined to maximise the performance function.
A selection criterion is established to efficiently select the most
suitable model for various scenarios, rooted in the performance
function’s outcomes, providing an objective evaluation framework.
This streamlined approach ensures the selection of optimal deep
learning model configurations for different data sizes and predic-
tion accuracy requirements, enhancing ship trajectory prediction
performance.

Question 3: Evaluating influential factors in ship trajectory
prediction.

The four influential factors include longitude, latitude, SOG, and
COG. These factors generate four distinct cases, as outlined below:

Case 1: longitude and latitude.
Case 2: longitude, latitude, and COG.
Case 3: longitude, latitude, and SOG.
Case 4: longitude, latitude, SOG, and COG.

By utilising the control variable method and conducting compar-
ative experiments, the influence of each case on trajectory prediction
is independently assessed. Subsequently, an integrated evaluation
metric is devised to measure the cumulative impact of these factors
on enhancing the accuracy of ship trajectory prediction.

3.3. Evaluation indices

Seven evaluation indicators are employed to quantify the trajectory
prediction performance of six deep learningmodels andmeasure the
prediction performance, including Mean Square Error (MSE), Root
Mean Square Error (RMSE),MeanAbsolute Error (MAE), Final Dis-
placement Error (FDE), Symmetric Mean Absolute Percentage Error
(SMAPE), Fréchet Distance (FD), and Average Euclidean distance
(AED). Traditional indexes, MAE, MSE, RMSE, and SMAPE, are
commonly used in the performance evaluation of prediction meth-
ods. The AED, FED, and FD methods can help measure the predic-
tion accuracy of the final point and the whole trajectory. Therefore,
all these seven indexes can ensure that the assessment is objective,
reasonable, and comprehensive.
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Eachmetric offers unique insights intomodel performance, mak-
ing them valuable for different aspects of ship trajectory prediction.
MSE, RMSE, andMAE quantify average position errors and are crit-
ical for minimising prediction deviations in scenarios like collision
avoidance. FDE evaluates the accuracy of the final predicted posi-
tion, which is essential for navigation planning. SMAPE allows for
cross-scale performance comparison, aiding benchmarking studies.
FD measures trajectory similarity, highlighting path consistency in
traffic flow analysis and anomaly detection. AED provides an average
error across all trajectory points, ensuring consistent performance in
real-time monitoring.

In ship trajectory prediction, FDE and FD are particularly rele-
vant due to their focus on endpoint accuracy and overall path simi-
larity, which are critical for navigation safety and efficiency. However,
the choice of metrics should align with specific maritime require-
ments and stakeholder priorities. For instance, FD may be empha-
sised in regulatory compliance scenarios, while MAE and RMSE
are more pertinent in dynamic environments with rapid trajectory
changes.

By understanding the significance and applicability of each met-
ric, researchers and practitioners can better interpret results, select
appropriatemodels, and enhance the study’s credibility in real-world
maritime applications. The smaller the result of the evaluation met-
rics, the better the prediction performance of themodel. The specific
calculation process is presented in Equations (1)–(7).

MSE = 1
n

n∑
i=1

(prei − reali)2, (1)

RMSE =

√√√√√
n∑
i=1

(prei − reali)2

n
, (2)

MAE = 1
n

n∑
i=1

|prei − reali|, (3)

SMAPE = 1
n

n∑
i=1

|prei − reali|
(|prei| + |reali|)/2 , (4)

FDE =
√

(pren − realn)2, (5)

FD = min
π∈∏

n

n
max
i=1

√
(prei(lat) − reali(lat))2

+(prei(lon) − reali(lon))2
, (6)

AED = 1
n

n∑
i=1

√
(prei(lat) − reali(lat))2

+(prei(lon) − reali(lon))2
, (7)

where prei and reali is the prediction and real result of the ith point,
respectively. prei(lon) and prei(lat) are respectively the longitude and
latitude of the ith prediction point. reali(lon) and reali(lat) are the
corresponding longitude and latitude of the ith real sample trajectory
point. n is the number of coordination points in the test trajectories.

4. Methodology

To offer a benchmark and reference for future trajectory prediction
in maritime transportation, a comprehensive comparative experi-
ment is implemented by the listed six methods based on the four
factors influencing ship trajectories and the seven indicators evaluat-
ing prediction accuracy. The flowchart of the methodology is shown
in Figure 2, which includes five parts.

Firstly, this study utilises AIS data to capture real-time vessel
movements and trajectories. AIS data is collected from two highly

representative water areas: the CSJ and ZS. These regions were
selected due to their high traffic density and complex navigational
conditions, providing a realistic and challenging environment for tra-
jectory prediction. AIS data offers dynamic variables such as longi-
tude, latitude, SOG, and COG, which are essential for understanding
vessel behaviour and trajectory patterns.

Secondly, data preprocessing is applied to the raw AIS data to
ensure high data quality for model training (Li et al. 2022a; Zhang
et al. 2022). This includes denoising, completing missing entries,
removing abnormal values, and normalising the data. To address
the issues of noise, missing data, and spatiotemporal inconsistency,
a multi-dimensional threshold detection method based on ship
kinematics is adopted. Abnormal longitude and latitude points are
detected using the 3σ rule (e.g. positions outside port boundaries or
on land), while physically implausible velocities (e.g. exceeding 50
knots) are filtered using domain-specific thresholds (Xi et al. 2023).
Additionally, only active navigation statuses, specifically ‘Under way
using engine’ and ‘Under way sailing’, are retained, while static states
such as anchored or moored are excluded.

For handling missing data, trajectories with more than 20%miss-
ing values or time gaps exceeding 5min are discarded as low quality.
The remaining data is interpolated using cubic spline interpolation
to correct temporal discontinuities caused by inconsistentAIS broad-
cast frequencies. After interpolation, all trajectories are resampled at
10-second intervals to ensure uniform time alignment.

Thirdly, experiments are conducted to evaluate the impact of four
key dynamic factors, namely longitude, latitude, SOG, and COG,
on trajectory prediction performance when used together. These
factors are selected based on their strong relevance to vessel naviga-
tion behaviour. Six advanced deep learningmodels, including LSTM,
GRU, Transformer, and others, are employed due to their demon-
strated capabilities in time-series forecasting and their effectiveness
in capturing complex temporal dependencies.

Fourthly, the preprocessed trajectory dataset is split into training,
validation, and test sets using stratified random sampling: 60% for
training, 20% for validation, and 20% for testing. Each model and
corresponding setup is described in detail in Section 3.

Finally, to comprehensively evaluate the prediction performance,
seven widely recognised metrics are employed: MSE, MAE, RMSE,
MAPE, ADE, FD and FDE. These metrics provide a multi-faceted
assessment of prediction accuracy, reliability, and robustness (Sun
et al. 2022). The theoretical basis for these metrics lies in their abil-
ity to quantify different aspects of prediction error, making them
suitable for comparing model performance across diverse scenarios.

5. Experimental results and analysis

5.1. Dataset description and experimental setting

5.1.1. Dataset description
This paper selects two real historical ship AIS datasets from the
ZS and the CSJ water areas for experimental comparison. The CSJ
water area is the only way for ships to enter and exit Bohai Bay,
with a large traffic flow and high density. At the same time, it is
also a famous fishing ground, forming the complicated interactions
between cargo fleets and fishing ships. Due to intersecting waterways
and fishing ships’ activities, which are not foreseeable as commer-
cial ships entering in and out of the port, the traffic situation in the
water is complicated, leading to the occurrence ofmaritime accidents
occurring more frequently than the norm. The ship traffic flow in
the eastern and north-eastern water areas of the original routing sys-
tem in the water area has been significantly regulated through an
existing ship routing/traffic control system. Therefore, ship trajec-
tory prediction in this typical water area has significant application
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Figure 2. The flowchart of the experiment.

scenarios. Comparatively, the ZS water area has more complicated
hydrology and traffic due to its connection with the world’s largest
and busiest port. It is the intersection of the north–south sea chan-
nels and the east–west Yangtze River transportation channel, with
high traffic complexity and density. In summary, the CSJ water is
chosen to present the area of traffic control and a relatively small-to-
medium size dataset, while the ZS water is selected to demonstrate
the complicated traffic with a large dataset.

Eventually, 2000 ships with 1495208 trajectory coordinate points
are retained from the initial dataset of the CSJ water area. The tra-
jectories in the whole area are classified based on its designated ship
route system. The visualisation results of the experimental dataset
are shown in Figure 3. It is clear that ship trajectory categorisation
characteristics exist in the CSJ water, so nine typical ship trajectories
are chosen from various clusters to compare the accuracy of future
predictions.

The ship routing system provides different channels for naviga-
tion. Meantime, the typical navigational patterns can be extracted
from historical AIS data (Li et al. 2022a). According to the Traf-
fic Separation Schemes (TSS) and the pattern extraction results,
it is therefore selected the nine ship trajectories with differ-
ent characteristics and routes to have comprehensive experi-
mental analysis and evaluation. The MMSI of the nine chosen Figure 3. Visualisation of ship trajectory dataset in the CSJ water area.
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Figure 4. Visualisation of ship trajectory dataset in the ZS water area.

ship trajectories is 24902000, 241407000, 241408000, 413115000,
353816000, 412362000, 412536000, 41250870 and 412551020,
respectively. Moreover, the nine selected trajectories are expressed in
different colours in Figure 3 to show their difference.

To further verify the influence degree of different factors, the
prediction performance of these six methods, as well as the generali-
sation of the findings, this paper also selects another real AIS data of
the ZSwater area. 4116922 coordinate points contained in 4840 ships
are included in the dataset after data preparation, as shown in Figure
4. Similar to the selection methods in the CSJ water, nine trajecto-
ries with different characteristics under different routes are chosen.
Their MMSIs are 354336000, 374728000, 412081720, 412427003,
412439059, 413559862, 900404567, 901401525 and 999968766,
which are shown in coloured lines in Figure 4.

5.1.2. Experimental setting
To ensure the comparability of experimental results, the parameters
of the six prediction models are normalised. The Rectified Adap-
tive Momentum Estimation algorithm (RAdam) optimiser is used to
update and optimise model parameters. When the optimiser does
not have enough data to make accurate adaptive momentum deci-
sions, the model will perform exceptionally severely at the initial
stage of training. RAdam is deemed the best choice for the optimiser
to start training. RAdam uses an active rectifier to adjust Adam’s
adaptive momentum according to variance and effectively provides
an automatic warm-up mechanism. This process can be customised
according to the current dataset, ensuring that the training takes the
first step smoothly on a solid basis (Liu et al. 2021b). The initial
learning rate settings of the six models are 0.0001. The attenuation
is 0.9, which indicates the learning rate attenuation after the param-
eter update. The models also include an early stop mechanism. It is
demonstrated that the model has converged when the learning rate
falls to less than 10−6, or the testing effect of the model after ten
consecutive iterations does not improve. At that point, the training
will automatically end. The maximum number of model iterations
(epoch) is set to 200. In addition, the experiment used a discard
mechanism to prevent overfitting, and the values of the six models
were developed to 0.5. Given the extensive size of the experimental

Table 2. Hardware and software environment.

Hardware Model Software Version

CPU i9-11900U Intel Core PyCharm 2021.1.2
Host Memory 32 GB DDR5 CUDA 11.3
GPU GTX 1080Ti Pytorch 1.9
Global Memory 11GB GDDR6 Python 3.9

dataset, the batch size is set to 256, the hidden layer size to 128, and
the number of layers in the basic unit stack to 2.

The hardware and software environment of the trial is shown
in Table 2. All algorithms are implemented based on the Pytorch
framework.

5.2. Model validation

This sectionwill visually display the training performance of six deep
learning methods on two real water areas. Each model is trained
under four distinct experimental cases to comprehensively evaluate
their effectiveness in vessel trajectory prediction. To ensure consis-
tency and mitigate the effects of outliers, To ensure the robustness
and reproducibility of results, each training experiment is repeated
five times. The average loss across these runs is reported as the
final outcome to reduce the impact of random outliers and ensure
statistical reliability.

Figure 5 illustrates the loss value variation curves for the Trans-
former, GRU, Bi-GRU, LSTM, Bi-LSTM, and Seq2Seq models across
training epochs. Figure 5(a) shows the results in the CJP water area,
while Figure 5(b) corresponds to the ZS region. The loss values
decrease rapidly in the initial epochs and gradually level off, indi-
cating that all models successfully converge within the 100-epoch
training window.

The zoomed-in insets in both plots highlight the early-stage con-
vergence behaviour, where differences among model performances
are more discernible. Notably, models such as the Bi-LSTM and
Transformer demonstrate a faster convergence rate and lower over-
all loss, suggesting their superior capacity to capture complex spa-
tiotemporal vessel dynamics. In contrast, Seq2Seq exhibits a rela-
tively higher loss and slower convergence, implying less effectiveness
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Figure 5. Loss value variation curves of six models trained on two water areas. (a) Loss values curve in the CJP water area. (b) Loss values curve in the ZS water area.

in modelling real-time trajectory patterns in high-density maritime
environments.

Across both water regions, the loss curves reflect a consistent pat-
tern:models that incorporate bidirectionalmechanisms or attention-
based architectures tend to outperform their simpler counterparts.
This reinforces the importance of advanced temporal modelling
strategies in AIS-based vessel trajectory prediction tasks.

5.3. Visualisation results

5.3.1. Visualisation of prediction results in the CSJ promontory
water area
The prediction effects of the chosen six deep learning models against
four different cases in the CSJ water area are shown in Figure 6.
The six rows from top to bottom correspond to the results of Bi-
LSTM, Bi-GRU, GRU, LSTM, Seq2seq and Transformer, respectively.
The four columns from left to right are the prediction results of
cases 1–4 (the combination of different influential factors, see Section
4), respectively. Horizontally, the prediction performance of the six
methods is apparent, and the prediction results of the Bi-GRU and
Transformer models are superior to the other four models. Mean-
time, the predicted trajectory of the Seq2seq model has the worst
fitting degree compared to the real trajectory. Vertically, the pre-
dicted results of Transformer, Bi-GRU, and GRU models are more
closely matched to the real trajectory in case 1, while LSTM and
Seq2seq have poor prediction effects. In case 2, with the addition
of COG, the performance of Bi-LSTM, LSTM, and Seq2seq mod-
els declines slightly compared with that of case 1, while Bi-GRU
and GRU models still maintain high accuracy. In case 3, the addi-
tion of SOG makes the performance of the six models on most
test trajectories slightly improved compared with the results of
case 1.

In Case 4, when considering the combined effects of longitude,
latitude, SOG, and COG, the performance of the Bi-GRU and GRU
models neither showed significant improvement nor decline in com-
parison to the results from the other three experimental groups.
Moreover, the performance of the LSTM, Bi-LSTM, and Seq2seq
models is slightly worse than that of case 3 and case 1, but better than
that of case 2.

5.3.2. Visualisation of prediction results in the ZSwater area
Similarly, the prediction results of the six deep learning models
on four cases in the ZS water area are displayed in Figure 7. The
orange, blue, yellow, and green trajectories correspond to cases 1–4,

respectively. Horizontally, it can be seen that the training and predic-
tion results in complex water areas (i.e. the ZS) are similar to those
in simple water areas (i.e. the CSJ). The performance of Bi-LSTM
is notably superior to that of LSTM. Meanwhile, the Bi-GRU model
delivers the best results, whereas Seq2seq performed the worst. Ver-
tically, similar to the experimental results in the CSJ water area, the
addition of SOG can improve the accuracy of trajectory prediction
(cases 3 and 4). However, compared with case 1, the addition of
the COG information (case 2) will affect the fitting accuracy of the
predicted trajectory to some extent.

5.4. Discussion of four kinds of case studies

This section takes the meanvalue of seven index results in all nine
test trajectories as each method’s final test result in each case. The
visualisation results of different evaluation indexes in the CSJ and the
ZSwater areas are displayed in Figures 8 and 9, respectively. Based on
the prediction results of the two water areas, the following findings
are revealed.

(1) The Seq2seq, LSTM and Bi-LSTM models are less robust than
GRU, Transformer, and Bi-GRU models in ship trajectory pre-
diction. Specifically, there are significant differences in the pre-
diction results of the two models with LSTM as the basic unit
when being applied in the four cases. Meantime, the prediction
performance has little difference when using two models with
LSTM and the Seq2seq in different cases.

(2) The limitation of trajectory prediction based on longitude and
latitude information is significantly revealed from the results
of the comparative experiments in practical application. It can
be seen from the average value of seven indexes that some
models (e.g. Bi-LSTM, GRU, and Bi-GRU) can achieve rela-
tively good prediction results when only longitude and lati-
tude training is used (case 1). However, ship navigation is also
closely related to SOG and COG due to the influence of ship
routing systems, ship encounters and other factors in actual
navigation. Therefore, it is not recommended to only use lat-
itude and longitude data as the prediction basis in trajectory
prediction.

(3) SOG plays a more important role than COG in trajectory pre-
diction. In the results of comparison experiments, the predic-
tion accuracy of the experimental groups with SOG (i.e. cases
2 and 4) is higher than that of case 3 with COG. It is consistent
with reality. In the prediction of equal time intervals, the speed
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Figure 6. Visualisation of prediction effects of nine trajectories in different cases based on six methods in the CSJ water area.
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Figure 7. Visualisation of prediction effects of nine trajectories in the ZS water area.
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Figure 8. Different factors’ effects against seven evaluation metrics in the CSJ water area.

informationwill largely determine the ship’s position at the next
time. The turning process of a ship is notably more gradual than
that of other vehicles like cars or aircraft. Sharp and swift turns
in maritime navigation are rare unless prompted by emergen-
cies. Therefore, COG has less influence on trajectory prediction
than SOG.

(4) To compare the metrics effects more clearly, the results of FD
and FDE in the CSJ water area are shown in Figure 10. The com-
bination of the two indicators can comprehensively measure the
similarity of trajectories. It can be seen that the trajectory simi-
larity predicted by the model with SOG training is closer to the
real trajectory.
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Figure 9. Different factors’ effects against seven evaluation metrics in the ZS water area.

5.5. Discussion of differentmethods

The prediction performance of the sixmethods in two water areas
is displayed in Figures 11 and 12, respectively. It can be seen that
each set of four subgraphs corresponds to the four cases, namely
cases 1 through 4. Within each subgraph, six polylines represent the

outcomes of the six prediction methods. The following findings are
drawn from the two sets of line charts:

(1) The prediction accuracy of bidirectional networks is higher than
unidirectional networks. The prediction performance of two
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Figure 10. The result of FD and FDE in the CSJ water area.

kinds of bidirectional networks is better than their correspond-
ing unidirectional networks. The result verifies and demon-
strates the theory that bi-directional networks can capture con-
text information of sequences more effectively.

(2) The performance of the GRUmodel is superior to the Bi-LSTM
and LSTM models. Compared with LSTM, GRU reduces the

number of gates,making themodel parameters less and the con-
vergence speed faster. The experiments in this paper are based
on the same training data and experimental settings. Under the
same conditions, the prediction accuracy of the two models
based on the GRU unit is significantly higher than that of the
two models based on the LSTM unit.
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Figure 11. The results of different methods under seven evaluation metrics in the CSJ water area.

(3) The performance of the six deep learning prediction mod-
els from high to low is Bi-GRU > Transformer > GRU > Bi-
LSTM > LSTM > Seq2seq. Among them, the Seq2seq model
is less effective because it is composed of an encoder and a
decoder. The model has involved more parameters, complex
optimisation, and challenging training.

(4) FD can help measure the similarity of the whole trajectory
and can judge the stability of the model from the perspective
of similarity and ensure the comprehensiveness of the evalu-
ation. The larger the FD value, the smaller the similarity of
the entire trajectory. It can be seen that the FD value is the
largest of the seven index values from Figures 11 and 12. Among
the seven evaluation metrics, MSE, RMSE, MAE, and FDE
are commonly used to evaluate the results of trajectory pre-
diction. Based on the results of the two water areas, the six
models are ranked as Bi-GRU > Transformer > GRU > Bi-
LSTM > LSTM > Seq2seq, which also verifies the results
in (3).

The superior performance of the Bi-GRUmodel can be attributed
to several key factors. Firstly, its bidirectional structure enables the
model to capture both past and future contextual information, which
is crucial for accurately predicting ship trajectories. This capability

is particularly valuable in maritime scenarios where ship move-
ments may be influenced by anticipated conditions or navigational
decisions.

Secondly, the GRU architecture’s simplicity and computational
efficiency contribute significantly to its effectiveness. Compared to
more complex architectures, GRU has fewer parameters and con-
verges faster, allowing it to learn meaningful patterns quickly while
reducing the risk of overfitting – a common issue inmodels with high
parameter complexity.

In terms of parameter optimisation, the performance of the Bi-
GRU model is further enhanced through careful tuning of critical
hyperparameters such as learning rate, batch size, and the number
of layers. These hyperparameters significantly influence the model’s
ability to learn efficiently and generalise to unseen data. For instance,
an appropriately chosen learning rate can accelerate convergence and
prevent the model from becoming trapped in local minima. Simi-
larly, batch size plays a key role in the stability of the training process
and the quality of the gradient updates.

Another notable advantage of Bi-GRU lies in its computational
efficiency. Its streamlined structure and reduced parameter count
translate into lower resource demands, making it particularly well-
suited for real-time applications, including onboard vessel tra-
jectory prediction systems where computational capacity may be
limited.
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Figure 12. The results of different methods under seven evaluation metrics in the ZS water area.

Nonetheless, it is important to acknowledge that each model
has its own strengths and limitations. While Bi-GRU demon-
strates strong performance in many scenarios, it may encounter
challenges when dealing with very long sequences that require
modelling extended temporal dependencies. In such cases, Trans-
former models – despite their higher computational overhead –
may offer superior performance due to their self-attention mech-
anisms. Moreover, the Seq2Seq model, although less competitive
in certain configurations, can still be effective for tasks requir-
ing precise Seq2Seq mapping when properly regularised and
optimised.

5.6. Discussion on the best-fitmethod under different
scenarios

Table 3 presents the predictive performance of the six models across
various cases, along with their respective advantages and disadvan-
tages. Rankings from 1 to 6 indicate the performance order of the
six models in four cases. Figure 13 shows the predictive perfor-
mance of the model in different cases and the relative size of the
model parameters. The results highlight a comparable performance
among the six deep learning techniques across the cases. Notably,
Bi-GRU, Transformer, and GRU outperform the other three meth-
ods, namely Bi-LSTM, LSTM, and Seq2seq. Bi-GRU achieves the

best predictive performancewith a relatively small number of param-
eters. It can be further seen from Figure 13 and Table 3 that the
prediction accuracy becomes higher after incorporating SOG infor-
mation (i.e. case 1) compared with the other three cases without
it. The comprehensive experiments validate the efficacy of the six
deep learning methods in four cases and clarify their advantages and
disadvantages.

5.7. Implications

This paper applies the six most widely used deep learning models
and explores the influence of dynamic ship information (i.e. lon-
gitude, dimension, SOG, and COG) on trajectory prediction accu-
racy through multiple comparison experiments. The performance
of different prediction methods and the effect of multiple influen-
tial factors are compared and analysed to generate valuable findings.
The findings and implications of such a prediction comparison could
include the following:

(1) Model efficacy: A clear understanding of which deep learning
model(s) outperform others when predicting ship trajectories
using dynamic ship information. This could help streamline
research and operational efforts toward the most effective
models.
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Table 3. Advantages and disadvantages of the six methods and their performance under different cases.

Methods Case 1 Case 2 Case 3 Case 4 Advantages and disadvantages of the methods

LSTM 6 4 5 5 Poor robustness, many parameters, and slow training speed.
GRU 3 3 3 2 Fewer model parameters, faster convergence speed, and better performance.
Seq2seq 5 6 6 6 More model parameters and lower training efficiency.
Bi-LSTM 4 5 4 4 Bi-directional information, but not good at long sequence calculations.
Bi-GRU 1 1 1 1 Bi-directional information, long-term dependencies, but can not be computed in parallel.
Transformer 2 2 2 3 Long-term sequence modelling, global dependencies, parallel computing

Note: The numbers 1–6mean the performance ranking of six methods in different cases. Case 1 indicates longitude and latitude; Case 2 denotes longitude, latitude, and COG;
Case 3 is longitude, latitude, and SOG; Case 4 expresses longitude, latitude, SOG, and COG.

Figure 13. Prediction performance and parameter count of six models across dif-
ferent cases. Note: The size of the diamond-shaped markers indicates the number of
model parameters – larger shapes represent more parameters.

(2) Variable importance: Insights into how individual dynamic ship
information variables (like longitude, dimension, SOG, and
COG) influence prediction accuracy. This could guide data
collection and preprocessing efforts.

(3) Optimised techniques: Identification of potential hybridmodels
or techniques that combine the strengths of individual models,
offering improved prediction capabilities.

(4) Operational efficiency: Accurate trajectory predictions can lead
to safer and more efficient maritime operations, especially in
congested or high-risk areas.

(5) Strategic planning for MASS: The findings could provideMASS
with data-driven strategies to enhance their autonomous navi-
gation capabilities, reduce risks, and improve overall operational
efficiency.

(6) Potential for further research: Highlight areas where addi-
tional research could lead to even more accurate trajectory
predictions, possibly considering other influential factors or
fine-tuning of models.

(7) Real-world applications: The comparison might reveal specific
scenarios or conditions under which certainmodels or dynamic
ship information is especially crucial, guiding real-world appli-
cations and operational strategies.

In essence, by comparing the prediction methods and influen-
tial factors, researchers and maritime professionals can gain a more
nuanced, evidence-based understanding of ship trajectory predic-
tion, ultimately driving safer, more efficient maritime operations.

6. Conclusion

It is essential to accurately predict ship trajectory to ensure maritime
traffic safety, especially within the framework of MASS. This paper
applies the six most widely used deep learning models and explores
the influence of dynamic ship information (i.e. longitude, dimen-
sion, SOG and COG) on trajectory prediction accuracy through

multiple comparison experiments. The performance of different pre-
diction methods and the effect of multiple influential factors are
compared and analysed to generate valuable findings. For exam-
ple, (1) shipowners/operators can use the findings to better plan
their ship routing; (2) maritime administration/authority can bet-
ter guide the ships passing the waters of their justice safely; and (3)
MASS manufacturers can use the findings to detect ship collision
risks and design an early risk warning systems. Furthermore, the
experimental results show that SOG is more important than COG
in prediction, and the performance of the six deep learning models
is also verified. This paper pioneers a new perspective for the study
of maritime traffic prediction and provides scientific theoretical sup-
port and a practical basis for the rational use of AIS data and selecting
prediction methods.

Building on the theoretical foundation established in this study,
futureworkwill focus on validating themodel through real-time case
studies. These studies will examine important aspects such as data
latency, processing efficiency, and hardware constraints to assess the
model’s feasibility and robustness in practical MASS operations.

Additional research will explore the inclusion of contextual fac-
tors such as weather conditions, marine environments, and the
movement of nearby vessels to improve prediction accuracy. The
development of lightweight and efficient models will also be consid-
ered to support real-time onboard deployment and enhance the prac-
tical application of trajectory prediction in autonomous maritime
systems.

Disclosure statement
No potential conflict of interest was reported by the author(s).

Funding
This work is supported by the European Research Council (ERC) under the Euro-
pean Union’s Horizon 2020 research and innovation programme (grant number
864724).

Data availability statement
Data will be made available on request. The source code is publicly available at:
https://github.com/Maritime-Autonomy/Multi-factor-influence-based-ship-
trajectory-prediction-analysis-via-deep-learning.

ORCID

Huanhuan Li http://orcid.org/0000-0002-4293-4763
Jasmine Siu Lee Lam http://orcid.org/0000-0001-7920-2665
Xiaowei Gao http://orcid.org/0000-0003-3273-7499
Zaili Yang http://orcid.org/0000-0003-1385-493X

References
Aiello G, Giallanza A, Mascarella G. 2020. Towards shipping 4.0. A prelimi-

nary gap analysis. Procedia Manuf. 42:24–29. doi:10.1016/j.promfg.2020.02.
019.

https://github.com/Maritime-Autonomy/Multi-factor-influence-based-ship-trajectory-prediction-analysis-via-deep-learning
http://orcid.org/0000-0002-4293-4763
http://orcid.org/0000-0001-7920-2665
http://orcid.org/0000-0003-3273-7499
http://orcid.org/0000-0003-1385-493X
https://doi.org/10.1016/j.promfg.2020.02.019


18 H. JIAO ET AL.

Ali F, Kim EK, Kim Y-G. 2015. Type-2 fuzzy ontology-based semantic knowl-
edge for collision avoidance of autonomous underwater vehicles. Inf Sci (Ny).
295:441–464. doi:10.1016/j.ins.2014.10.013.

Alizadeh D, Alesheikh AA, Sharif M. 2021. Vessel trajectory prediction using
historical automatic identification system data. J Navig. 74(1):156–174.
doi:10.1017/S0373463320000442.

Babanli K, Ortaç Kabaoğlu R. 2022. Fuzzy modeling of desired chaotic
behavior in secure communication systems. Inf Sci (Ny). 594:217–232.
doi:10.1016/j.ins.2022.02.020.

Bai X, Hou Y, Yang D. 2021. Choose clean energy or green technology? Empiri-
cal evidence from global ships. Transp Res E Logist Transp Rev. 151:102364.
doi:10.1016/j.tre.2021.102364.

Bao K, Bi J, Gao M, Sun Y, Zhang X, ZhangW. 2022. An improved ship trajectory
prediction based on AIS data using MHA-BiGRU. J Mar Sci Eng. 10(6):804;
Article 6. doi:10.3390/jmse10060804.

Billah MM, Zhang J, Zhang T. 2022. A method for vessel’s trajectory prediction
based on encoder decoder architecture. J Mar Sci Eng. 10(10):1529; Article 10.
doi:10.3390/jmse10101529.

Capobianco S, Millefiori LM, Forti N, Braca P, Willett P. 2021. Deep learning
methods for vessel trajectory prediction based on recurrent neural networks.
IEEE Trans Aerosp Electron Syst. 57(6):4329–4346. doi:10.1109/TAES.2021.
3096873.

ChenR, ChenM, LiW,GuoN. 2020. Predicting future locations ofmoving objects
by recurrent mixture density network. ISPRS Int J Geoinf. 9(2):116; Article 2.
doi:10.3390/ijgi9020116.

Cheraghchi F, Abualhaol I, Falcon R, Abielmona R, Raahemi B, Petriu E.
2018. Modeling the speed-based vessel schedule recovery problem using
evolutionary multiobjective optimization. Inf Sci (Ny). 448–449:53–74.
doi:10.1016/j.ins.2018.03.013.

Du L, Gao R, Suganthan PN, Wang DZW. 2022. Bayesian optimization based
dynamic ensemble for time series forecasting. Inf Sci (Ny). 591:155–175.
doi:10.1016/j.ins.2022.01.010.

Gao D, Zhu Y, Zhang J, He Y, Yan K, Yan B. 2021. A novel MP-LSTM method
for ship trajectory prediction based on AIS data. Ocean Eng. 228:108956.
doi:10.1016/j.oceaneng.2021.108956.

Guo S, Sun M, Xue H, Mao X, Wang S, Liu C. 2023. M-STCP: an online ship tra-
jectory cleaning and prediction algorithm usingmatrix neural networks. Front
Mar Sci. 10:1199238. doi:10.3389/fmars.2023.1199238.

Hammedi W, Brik B, Senouci SM. 2023. Toward optimal MEC-based collision
avoidance system for cooperative inland vessels: a federated deep learning
approach. IEEE Trans Intell Transp Syst. 24(2):2525–2537. doi:10.1109/TITS.
2022.3154158.

Han P, Zhu M, Zhang H. 2024. Interaction-aware short-term marine ves-
sel trajectory prediction with deep generative models. IEEE Trans Ind Inf.
20(3):3188–3196. doi:10.1109/TII.2023.3302304.

Hu X, Zhang B, Tang G. 2021. Research on ship motion prediction algorithm
based on dual-pass long short-term memory neural network. IEEE Access.
9:28429–28438. doi:10.1109/ACCESS.2021.3055253.

Hu Y, Zhu D. 2009. Empirical analysis of the worldwide maritime transportation
network. Physica A Stat Mech Appl. 388(10):2061–2071. doi:10.1016/j.physa.
2008.12.016.

Huang P, Chen Q, Wang D, Wang M, Wu X, Huang X. 2022. Triple-
convtransformer: a deep learning vessel trajectory prediction method
fusing discretized meteorological data. Front Environ Sci. 10:1012547.
doi:10.3389/fenvs.2022.1012547.

Huang Y, Chen L, Chen P, Negenborn RR, van Gelder PHAJM. 2020.
Ship collision avoidance methods: state-of-the-art. Saf Sci. 121:451–473.
doi:10.1016/j.ssci.2019.09.018.

Jia C, Ma J. 2023. Conditional temporal GAN for intent-aware vessel trajec-
tory prediction in the precautionary area. Eng Appl Artif Intell. 126:106776.
doi:10.1016/j.engappai.2023.106776.

Jia C, Ma J, Yang X, Lv X. 2023a. RAGAN: a generative adversarial network
for risk-aware trajectory prediction in multi-ship encounter situations. Ocean
Eng. 289:116188. doi:10.1016/j.oceaneng.2023.116188.

Jia H, Yang Y, An J, Fu R. 2023. A ship trajectory prediction model based on
attention-BILSTM optimized by the whale optimization algorithm. Appl Sci.
13(8):4907; Article 8. doi:10.3390/app13084907.

Jiang D, Shi G, Li N, Ma L, Li W, Shi J. 2023. TRFM-LS: transformer-based deep
learning method for vessel trajectory prediction. J Mar Sci Eng. 11(4):880;
Article 4. doi:10.3390/jmse11040880.

Jiang J, Zuo Y. 2023. Prediction of ship trajectory in nearby port waters
based on attention mechanism model. Sustainability. 15(9):7435; Article 9.
doi:10.3390/su15097435.

Jurkus R, Venskus J, Treigys P. 2023. Application of coordinate systems for
vessel trajectory prediction improvement using a recurrent neural net-
works. Eng Appl Artif Intell. 123:106448. doi:10.1016/j.engappai.2023.106
448.

Karataş GB, Karagoz P, Ayran O. 2021. Trajectory pattern extraction and anomaly
detection for maritime vessels. Internet Things. 16:100436. doi:10.1016/j.iot.
2021.100436.

Last P, Hering-BertramM, Linsen L. 2019. Interactive history-based vessel move-
ment prediction. IEEE Intell Syst. 34(6):3–13. doi:10.1109/MIS.2019.2954
509.

Li H, Jiao H, Yang Z. 2023a. AIS data-driven ship trajectory prediction mod-
elling and analysis based on machine learning and deep learning meth-
ods. Transp Res E Logist Transp Rev. 175:103152. doi:10.1016/j.tre.2023.103
152.

Li H, Lam JSL, Yang Z, Liu J, Liu RW, Liang M, Li Y. 2022a. Unsu-
pervised hierarchical methodology of maritime traffic pattern extraction
for knowledge discovery. Transp Res C, Emerg Technol. 143:103856.
doi:10.1016/j.trc.2022.103856.

Li H, Liu J, Yang Z, Liu RW, Wu K, Wan Y. 2020. Adaptively constrained
dynamic timewarping for time series classification and clustering. Inf Sci (Ny).
534:97–116. doi:10.1016/j.ins.2020.04.009.

Li H, Ren X, Yang Z. 2023b. Data-driven Bayesian network for risk analysis
of global maritime accidents. Reliab Eng Syst Saf. 230:108938. doi:10.1016/
j.ress.2022.108938.

Li H, Xing W, Jiao H, Yang Z, Li Y. 2024a. Deep bi-directional information-
empowered ship trajectory prediction for maritime autonomous surface
ships. Transp Res E Logist Transp Rev. 181:103367. doi:10.1016/j.tre.2023.103
367.

Li H, Yang Z. 2023. Incorporation of AIS data-based machine learning
into unsupervised route planning for maritime autonomous surface ships.
Transp Res E Logist Transp Rev. 176:103171. doi:10.1016/j.tre.2023.103
171.

Li J, Goerlandt F, Reniers G. 2021. An overview of scientometric mapping for the
safety science community:methods, tools, and framework. Saf Sci. 134:105093.
doi:10.1016/j.ssci.2020.105093.

Li M, Li B, Qi Z, Li J, Wu J. 2024b. Enhancing maritime navigational safety: ship
trajectory prediction using ACoAtt–LSTM and AIS data. ISPRS Int J Geoinf.
13(3):85; Article 3. doi:10.3390/ijgi13030085.

Li Y, Bai X, Wang Q, Ma Z. 2022b. A big data approach to cargo type prediction
and its implications for oil trade estimation. Transp Res E Logist Transp Rev.
165:102831. doi:10.1016/j.tre.2022.102831.

Lin Z, Yue W, Huang J, Wan J. 2023. Ship trajectory prediction based on the
TTCN-attention-GRU model. Electronics (Basel). 12(12):2556; Article 12.
doi:10.3390/electronics12122556.

Liu C, Li Y, Jiang R, DuY, LuQ, Guo Z. 2021a. TPR-DTVN: a routing algorithm in
delay tolerant vessel network based on long-term trajectory prediction. Wirel
Commun Mob Comput. 2021(1):6630
265. doi:10.1155/2021/6630265.

Liu L, Jiang H, He P, Chen W, Liu X, Gao J, Han J. 2021b. On the vari-
ance of the adaptive learning rate and beyond (arXiv:1908.03265). arXiv.
doi:10.48550/arXiv.1908.03265.

Liu RW, Hu K, Liang M, Li Y, Liu X, Yang D. 2023. QSD-LSTM: vessel trajectory
prediction using long short-term memory with quaternion ship domain. Appl
Ocean Res. 136:103592. doi:10.1016/j.apor.2023.103592.

LiuW,CaoY,GuanM, Liu L. 2024. Research on ship trajectory predictionmethod
based on CNN-RGRU-attention fusion model. IEEE Access. 12:63950–63957.
doi:10.1109/ACCESS.2024.3396475.

Ma H, Zuo Y, Li T. 2022. Vessel navigation behavior analysis and multiple-
trajectory predictionmodel based onAIS data. J Adv Transp. 2022(1):6622862.
doi:10.1155/2022/6622862.

Ma J, Jia C, Shu Y, Liu K, Zhang Y, Hu Y. 2021. Intent prediction of ves-
sels in intersection waterway based on learning vessel motion patterns
with early observations. Ocean Eng. 232:109154. doi:10.1016/j.oceaneng.2021.
109154.

Ma J, Jia C, Yang X, Cheng X, Li W, Zhang C. 2020. A data-driven approach
for collision risk early warning in vessel encounter situations using attention-
BiLSTM. IEEE Access. 8:188771–188783. doi:10.1109/ACCESS.2020.303
1722.

Mehri S, Alesheikh AA, Basiri A. 2021. A contextual hybrid model for ves-
sel movement prediction. IEEE Access. 9:45600–45613. doi:10.1109/ACCESS.
2021.3066463.

Murray B, Perera LP. 2021. An AIS-based deep learning framework for regional
ship behavior prediction. Reliab Eng Syst Saf. 215:107819. doi:10.1016/j.ress.
2021.107819.

Park J, Jeong J, Park Y. 2021. Ship trajectory prediction based on Bi-LSTM
using spectral-clustered AIS data. J Mar Sci Eng. 9(9):1037; Article 9.
doi:10.3390/jmse9091037.

Perera LP, Ferrari V, Santos FP, Hinostroza MA, Guedes Soares C. 2015.
Experimental evaluations on ship autonomous navigation and collision
avoidance by intelligent guidance. IEEE J Oceanic Eng. 40(2):374–387.
doi:10.1109/JOE.2014.2304793.

https://doi.org/10.1016/j.ins.2014.10.013
https://doi.org/10.1017/S0373463320000442
https://doi.org/10.1016/j.ins.2022.02.020
https://doi.org/10.1016/j.tre.2021.102364
https://doi.org/10.3390/jmse10060804
https://doi.org/10.3390/jmse10101529
https://doi.org/10.1109/TAES.2021.3096873
https://doi.org/10.3390/ijgi9020116
https://doi.org/10.1016/j.ins.2018.03.013
https://doi.org/10.1016/j.ins.2022.01.010
https://doi.org/10.1016/j.oceaneng.2021.108956
https://doi.org/10.3389/fmars.2023.1199238
https://doi.org/10.1109/TITS.2022.3154158
https://doi.org/10.1109/TII.2023.3302304
https://doi.org/10.1109/ACCESS.2021.3055253
https://doi.org/10.1016/j.physa.2008.12.016
https://doi.org/10.3389/fenvs.2022.1012547
https://doi.org/10.1016/j.ssci.2019.09.018
https://doi.org/10.1016/j.engappai.2023.106776
https://doi.org/10.1016/j.oceaneng.2023.116188
https://doi.org/10.3390/app13084907
https://doi.org/10.3390/jmse11040880
https://doi.org/10.3390/su15097435
https://doi.org/10.1016/j.engappai.2023.106448
https://doi.org/10.1016/j.iot.2021.100436
https://doi.org/10.1109/MIS.2019.2954509
https://doi.org/10.1016/j.tre.2023.103152
https://doi.org/10.1016/j.trc.2022.103856
https://doi.org/10.1016/j.ins.2020.04.009
https://doi.org/10.1016/j.ress.2022.108938
https://doi.org/10.1016/j.tre.2023.103367
https://doi.org/10.1016/j.tre.2023.103171
https://doi.org/10.1016/j.ssci.2020.105093
https://doi.org/10.3390/ijgi13030085
https://doi.org/10.1016/j.tre.2022.102831
https://doi.org/10.3390/electronics12122556
https://doi.org/10.1155/2021/6630265
https://doi.org/10.48550/arXiv.1908.03265
https://doi.org/10.1016/j.apor.2023.103592
https://doi.org/10.1109/ACCESS.2024.3396475
https://doi.org/10.1155/2022/6622862
https://doi.org/10.1016/j.oceaneng.2021.109154
https://doi.org/10.1109/ACCESS.2020.3031722
https://doi.org/10.1109/ACCESS.2021.3066463
https://doi.org/10.1016/j.ress.2021.107819
https://doi.org/10.3390/jmse9091037
https://doi.org/10.1109/JOE.2014.2304793


JOURNAL OF MARINE ENGINEERING & TECHNOLOGY 19

Polvara R, Sharma S, Wan J, Manning A, Sutton R. 2018. Obstacle avoidance
approaches for autonomous navigation of unmanned surface vehicles. J Navig.
71(1):241–256. doi:10.1017/S0373463317000753.

Qian L, Zheng Y, Li L, Ma Y, Zhou C, Zhang D. 2022. A new method of
inland water ship trajectory prediction based on long short-term memory
network optimized by genetic algorithm. Appl Sci. 12(8):4073; Article 8.
doi:10.3390/app12084073.

QinW, Tang J, Lao S. 2022. DeepFR: a trajectory prediction model based on deep
feature representation. Inf Sci (Ny). 604:226–248. doi:10.1016/j.ins.2022.05.
019.

Statheros T, Howells G, Maier KM. 2008. Autonomous ship collision avoidance
navigation concepts, technologies and techniques. J Navig. 61(1):129–142.
doi:10.1017/S037346330700447X.

SunH, ZhaoZ, YinZ,HeZ. 2022. Reciprocal twin networks for pedestrianmotion
learning and future path prediction. IEEE Trans Circuits Syst Video Technol.
32(3):1483–1497. doi:10.1109/TCSVT.2021.3076078.

Suo Y, Chen W, Claramunt C, Yang S. 2020. A ship trajectory prediction frame-
work based on a recurrent neural network. Sensors. 20(18):5133; Article 18.
doi:10.3390/s20185133.

Tian X, Suo Y. 2023. Research on ship trajectory prediction method based on
difference long short-term memory. J Mar Sci Eng. 11(9):1731; Article 9.
doi:10.3390/jmse11091731.
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