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Abstract: Multiview Clustering (MVC) plays a crucial role in the holistic analysis of com-
plex data by leveraging complementary information from multiple perspectives, a necessity
in the era of big data. Non-negative Matrix Factorization (NMF)-based methods have
demonstrated their effectiveness and broad applicability in clustering tasks, as they gener-
ate meaningful attribute distributions and cluster assignments. However, existing shallow
NMF approaches fail to capture the hierarchical structures inherent in real-world data,
while deep NMF ones overlook the accumulation of reconstruction errors across layers by
solely focusing on a global loss function. To address these limitations, this study aims to
develop a novel method that integrates an autoencoder-inspired structure into the deep
NMF framework, incorporating layerwise error-correcting constraints. This approach can
facilitate the extraction of hierarchical features while effectively mitigating reconstruction
error accumulation in deep architectures. Additionally, repulsion-attraction manifold learn-
ing is incorporated at each layer to preserve intrinsic geometric structures within the data.
The proposed model is evaluated on five real-world multiview datasets, with experimen-
tal results demonstrating its effectiveness in capturing hierarchical representations and
improving clustering performance.

Keywords: multiview clustering (MVC); autoencoder-inspired structure; non-negative
matrix factorization (NMF); geometric information

MSC: 68T30

1. Introduction
In the era of data-driven decision-making, the growing complexity and diversity of

data have led to the emergence of multiview datasets [1]. These datasets originate from
multiple perspectives or modalities, such as different sensors, imaging techniques, or
information sources [2]. For instance, in multimedia analysis, data may simultaneously
include textual metadata, visual features, and audio signals. Unlike single-view data, each
view within a multiview data set contains both specific and redundant information [3].
The distribution characteristics and feature dimensions of different views can vary signifi-
cantly. Consequently, processing each view independently or simply concatenating features
from multiple views can lead to information redundancy and the curse of dimensionality,
ultimately reducing analytical efficiency [4].

To address these challenges, Multiview Clustering (MVC) has emerged as a prominent
unsupervised learning approach capable of extracting intricate information and unveiling
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the underlying structure of multiview data. This approach has gained significant attention
and has been widely applied across various domains, including data mining [5], computer
vision [6], natural language processing [7], 3D-processing [8,9], and bioinformatics [10].
Over the past few years, a variety of methods have been introduced to extract meaningful
features from multiview data, including graph-based clustering [11], spectral clustering [12],
subspace-based clustering [13,14], anchor-based clustering [15], and Non-negative Matrix
Factorization (NMF)-based clustering [16].

NMF [17] is a widely used dimensionality reduction method that can decompose
each view into a set of low-dimensional basis and coefficient matrices while enforcing
non-negativity constraints. These constraints ensure that the resulting components remain
additive and interpretable, making NMF particularly suitable for real-world applications
where negative values lack physical meaning, such as image intensities, word frequencies,
or gene expression levels [18]. Additionally, NMF effectively reduces high-dimensional
data into compact, non-negative representations, retaining both global structure and view-
specific characteristics. Due to its strengths in providing interpretable results and reducing
dimensionality, NMF and its variants [19–21] have been widely adopted in MVC research.

While conventional NMF-based methodologies have been well established for pro-
cessing single-view data, they face significant challenges when applied to multiview data.
To address this, several NMF-based MVC algorithms have been developed, primarily lever-
aging a late fusion strategy. One of the earliest contributions, MultiNMF, introduced by Liu
et al. [22], employs joint matrix factorization with regularization to achieve a shared consen-
sus by constraining the coefficient matrices across different views. To further preserve the
geometric structure of the data, Zhang et al. [23] extended graph-regularized NMF to MVC
by incorporating graph regularization on the basis matrix. These advancements highlight
the ongoing evolution of NMF-based MVC methods, aiming to enhance the interpretability,
scalability, and structural preservation of multiview data representations.

Despite their valuable contributions, the aforementioned studies rely on shallow NMF
models, which inherently assume linear relationships within the data, limiting their ability
to capture complex structures. This assumption may not adequately capture the inherent
complexity of real-world datasets, where intricate correlations and dependencies often
exist across different views. Inspired by the success of deep learning in such fields as
computer vision, bioinformatics, and natural language processing, Trigeorgis et al. [24]
proposed Deep Semi-NMF (DMF) for single-view data. This model learns hierarchical
features by progressively factorizing a matrix into multiple layers. Building upon this work,
Zhao et al. [25] extended DMF to multiview data by proposing a framework that incorpo-
rates graph regularization, leading to the development of several DMF-based approaches.
A variety of MVC approaches have been proposed that are based on DMF [26–29]. While
non-negativity constraints have been widely employed in machine learning to improve
interpretability and feature sparsity, many DMF-based methods impose non-negativity only
on a single matrix [30]. As a result, the final reconstruction process involves a combination
of additions and subtractions, limiting the model’s ability to extract meaningful compo-
nents from the original data. Additionally, most DMF-based approaches fail to preserve the
geometric structure of the data, either due to the absence of graph regularization or the use
of shallow, single-layer graph constraints. As a result, their ability to capture the intrinsic
structural relationships within the data is significantly compromised.

In parallel, autoencoder (AE) [31] architectures have become a fundamental com-
ponent of modern deep learning frameworks. These architectures consist of two main
components [32]: an encoder that transforms input data into a latent feature representation,
and a decoder, which reconstructs the input from this latent feature. Although AE does not
take into account the non-negativity of real-world data, making the extracted features less
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interpretable, it still performs well in deep architectures [33]. Inspired by AE, Ye et al. [34]
proposed an autoencoder-like deep NMF for community detection. Following that, Zhang
et al. [35] improved this method by adding symmetric constraints. However, most NMF-
based MVC methods do not simultaneously incorporate both the encoding process, which
projects data directly into a low-dimensional space, and the decoding process, which
reconstructs multiview data from extracted low-dimensional features. Zhao et al. [36] in-
troduced an AE-inspired deep NMF-based MVC approach, with a graph regularization
term to preserve the intrinsic structure of data. Xiang et al. [37] presented a one-layer NMF
framework with an AE-like structure and dual auto-weighted regularization, aiming to
achieve more discriminative feature representations.

Despite these advancements, Deep NMF methods largely remain extensions of the
standard single-layer semi-NMF frameworks following Trigeorgis’s work [24]. The error
generated at each layer of matrix factorization is constrained only by a global reconstruction
error loss function, without accounting for the cumulative effect of errors across multiple
factorization levels.

This paper presents a novel MVC framework, Multiview Deep Autoencoder-Inspired
Layerwise Error-Correcting NMF (MVDALE-NMF), to provide an efficient solution to
the above-identified research gap. The main contributions of this paper are introduced
as follows:

(1) Proposing an autoencoder-inspired deep NMF model with non-negative constraints
applied to both basis and feature matrices. These constraints enhance the model’s
ability to learn interpretable and meaningful components from multiview data,
improving its capacity to capture complex hierarchical correlations between features
and the original data, which is essential for accurate clustering.

(2) Introducing layerwise error-correcting constraints to mitigate error propagation in
deep architectures, where reconstruction error is typically computed only at the
global level. Unlike traditional deep NMF methods that minimize only global errors,
this approach locally optimizes approximation errors at each decomposition step,
ensuring more precise control over the representation quality at each layer.

(3) Employing both intra-class attractive graph regularization and inter-class repulsive
graph regularization to preserve the geometric structure of multiview data. The
inter-class repulsive regularization prevents dissimilar yet comparable classes from
merging into a single cluster. Additionally, it incorporates manifold learning at
each layer for every view to maintain intrinsic data relationships throughout the
learning process, thereby enhancing clustering accuracy by preserving the geometric
properties of the data.

The paper is structured as follows: Section 2 provides a review of relevant studies
related to the clustering model. Section 3 presents a detailed explanation of the proposed
MVDALE-NMF framework. Section 4 outlines the corresponding optimization procedure.
Section 5 reports the results of extensive experiments conducted to evaluate the frame-
work’s performance. Finally, Section 6 concludes the study by summarizing key findings
and insights.

2. Related Work
This section presents an overview of the fundamentals of NMF and examines recent

advancements in MVC, focusing on both shallow and deep NMF models. For ease of refer-
ence, the following notations provide a summary of the general notations used throughout
the paper.
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2.1. MVC Based on Shallow NMF

NMF [17] aims to factorize a single view data matrix X ∈ Rd×n with d feature dimen-
sion and n samples into non-negative basis matrices W ∈ Rd×l and non-negative coefficient
matrices H ∈ Rl×n, where l is the reduction dimension. The objective function of NMF is
expressed as Equation (1):

min
W,H
∥X−WH∥2

F, s.t. W ≥ 0, H ≥ 0, (1)

where ∥ · ∥F is the Frobenius norm.
The application of NMF to MVC emerges as an extension of its success in single-view

data factorization, extracting interpretable features by breaking down data matrices into
non-negative components. Liu et al. [22] proposed MultiNMF to jointly factorize data
matrices from multiple views, capturing information across views by enforcing shared
constraints during factorization. X = {X1, X2, . . . , Xv} denotes the input data matrices
with V views, and H∗ denotes the consensus matrix of different views. With hyperparame-
ters, λv denotes the sum weight of different coefficient matrices Hv; its objective function is
defined as Equation (2):

min
W,H

V

∑
v=1
∥Xv −WvHvT∥2

F +
nv

∑
v=1

λv∥Hv − H∗∥2
F, s.t. W ≥ 0, H ≥ 0, H∗ ≥ 0. (2)

Subsequent advancements highlight the significance of obtaining the inherent geo-
metric composition of data. For example, Yang et al. [38] integrated uniform distribution
constraints and graph regularization to harmonize view-specific and view-shared informa-
tion while preserving structural information. Liu et al. [39] introduced ACMF-GDR with
adaptive weights and graph double regularization to preserve factor geometry.

Inspired by the success of the autoencoder structure, Xiang et al. [37] introduced
DA2NMF, which featured a single-layer autoencoder-like structure with dynamically
adjusting view and regularization term weights. It aimed to strike a balance between data
structure preservation and clustering performance.

Despite their successes, shallow NMF models face limitations in capturing hierarchi-
cal structures inherent in real-world data, necessitating the development of deep NMF-
based methods.

2.2. MVC Based on Deep NMF

Inspired by the hierarchical learning capacity of deep neural networks, Trigeor-
gis et al. [24] proposed the DMF, which extended NMF into a deep framework to model
complex data relationships, a capability that traditional shallow NMF techniques lacked.
DMF released the non-negative constriction, successively factorizing a data matrix X into
m basis matrices and a non-negative coefficient matrix as in Equation (3):

X± ≈W±1 H+
1 ,

X± ≈W±1 W±2 H+
2 ,

...

X± ≈W±1 W±2 W±3 . . . W±m H+
m ,

(3)

where Wi ∈ Rli−1×li (1 ≤ i ≤ m), Hi ∈ Rli×n with l0 set to n. A+ denotes that a matrix A
contains only non-negative numbers, while A± denotes that a matrix A may contain any
real elements.
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Motivated by the capacity of autoencoders, Ye et al. [34] incorporated an encoder
element into deep NMF and proposed Deep Autoencoder-like NMF (DANMF) to facilitate
the learning process in the domain of community detection. Therefore, the DANMF has
the following objective functions as in Equation (4):

min
Wi ,Hm

O = OD +OE

= ∥X−W1W2 · · ·WmHm∥2
F + ∥Hm −WT

m · · ·WT
2 WT

1 X∥2
F,

s.t. Hm ≥ 0, Wi ≥ 0, ∀i = 1, 2, · · · , m,

(4)

where OD and OE denote the objective functions of the decoder component and encoder
component, respectively.

Zhao et al. [25] proposed a deep NMF-based MVC framework that incorporates graph
regularization to maintain geometric relationships within each view while generating
consensus representations across multiple views. The hierarchical structure enables the
extraction of deeper latent features, providing more accurate clustering results.

The issue of assigning appropriate weights to different views was addressed by
Huang et al. [40] through an automatic weight assignment strategy that dynamically
adjusted view contributions without requiring additional hyperparameters. Wei et al. [28]
further explored view-specific weight assignments with DMClusts, balancing redundancy
control to generate diverse yet coherent clustering partitions. These models underscored the
importance of capturing both shared and distinct information across views for improved
clustering outcomes.

Manifold learning techniques have also played a crucial role in enhancing deep NMF-
based frameworks. Luong et al. [41] introduced ODD-NMF, a framework that combined
manifold learning with orthogonal constraints to better capture complex data structures
while avoiding redundant representations. Huang et al. [27] leveraged hypergraph con-
straints in HDDMF to improve the capture of intricate relationships between views.

Despite the demonstrated efficacy of deep NMF methods in enhancing the extraction
of hierarchical features and the performance of clustering algorithms, major challenges on
error accumulation across layers and hierarchical structural information retention remain
active areas of research.

3. Proposed Method
This section offers a detailed introduction to the proposed approach, beginning with

an overview of the entire framework. It then delves into the detailed construction process
before concluding with the formulation of the overall objective function.

3.1. The Framework of the Proposed Method

As shown in Figure 1, the proposed framework consists of four key components, each
designed to enhance the effectiveness of MVC through deep NMF, manifold learning, error
correction, and self-weighted consensus modeling.

First, an autoencoder-inspired deep NMF model is introduced to decompose each
view’s data into a coefficient matrix and a set of basis matrices. This approach enables
the reconstruction of the original data matrix while simultaneously mapping it into a
lower-dimensional space under appropriate constraints. By leveraging deep factorization,
the model captures complex hierarchical structures, extracts more interpretable components,
and strengthens the correlation between the learned representations and the original data.
This step ensures that the essential characteristics of each data view are preserved and
effectively utilized in downstream clustering tasks.
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Figure 1. The framework of the proposed MVDALE-NMF method.

Second, a layerwise intra-class and inter-class manifold learning mechanism is incorpo-
rated to maintain the inherent geometric structure of the data. This mechanism is essential
for ensuring that similar samples are grouped closely together while dissimilar ones are
assigned to separate clusters. By integrating manifold learning at each decomposition
layer, the framework prevents the loss of local structural relationships and enhances the
discriminative power of the learned features. This structure-preserving property is particu-
larly beneficial in high-dimensional and complex data environments where conventional
clustering approaches often struggle to maintain meaningful feature separations.

Third, layerwise error constraints are applied to reduce reconstruction errors at each stage
of matrix decomposition. Rather than relying solely on a global reconstruction loss, constraints
are enforced at each layer to refine intermediate factorization results and progressively correct
deviations. This localized optimization approach prevents error accumulation, leading to
more stable and accurate low-dimensional representations. As the decomposition process
progresses, this mechanism mitigates the risk of feature divergence, ensuring that the final
representations remain closely aligned with the actual intrinsic structure of the data.

Finally, a self-weighted consensus matrix is introduced, allowing for adaptive weight
adjustments across different views. The weight assignments are iteratively updated to
enable all views to contribute meaningfully to the final clustering indicator matrix. This
consensus mechanism ensures that views with higher-quality representations exert greater
influence while mitigating the impact of less informative or noisy views. The integration of
self-weighted learning enhances the robustness of the clustering process, leading to more
reliable and interpretable results.
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By systematically incorporating these four components, the proposed framework
effectively balances feature extraction, structure preservation, error correction, and adaptive
weighting. These aspects make it well suited for addressing complex MVC tasks.

3.2. Deep Autoencoder-Inspired NMF for MVC

Notably, in the MVC frameworks, the data inherently comes from diverse sources or
modalities (views), each capturing unique yet complementary aspects of the shared un-
derlying structure. Through systematic dimensionality reduction, the encoder architecture
maps high-dimensional input data from individual views into lower-dimensional latent
spaces, a process that not only preserves discriminative features but also eliminates redun-
dant information. This mechanism enables effective feature extraction while maintaining
clustering-critical data characteristics.

Building upon this foundation, the hierarchical learning paradigm facilitates the
progressive abstraction of features, thereby capturing both elementary patterns and so-
phisticated high-level structures. As demonstrated by Liu et al. [22], the consensus matrix
approach exhibits marked advantages over fixed coefficient matrices, primarily attributed
to its inherent capacity to model cross-view structural dependencies. Furthermore, view-
specific weight allocation—as rigorously investigated in [21]—emerges as a critical compo-
nent for optimizing MVC performance, since differentiated contribution weighting better
accommodates view heterogeneity.

For multiview data matrices X = {X1, X2, . . . , Xv}, based on these ideas, a unified
framework for MVC can be expressed as Equation (5):

min
Wv

1 ,...,Wv
m ,Hv

m

V

∑
v=1

(
∥Xv −Wv

1 Wv
2 · · ·Wv

m Hv
m∥

2
F

+∥Hv
m −WvT

m · · ·WvT

2 WvT

1 Xv∥2
F

+(αv)γ∥Hv − H∗∥2
F

)
,

s.t. Hv
m ≥ 0, Wv

i ≥ 0, ∀i = 1, 2, · · · , m.

(5)

where αv is the weight of the vth view updated with iteration and γv is the hyperparameter
to control the weights distribution.

3.3. Layerwise Error-Correcting Regularization

Existing DNMF methods are merely an extension of the standard single-layer matrix
decomposition following Trigeorgis’s work. During the matrix decomposition process, local
errors at each layer are not independently accounted for; instead, they are constrained only
by a global reconstruction error loss function. As a result, the model lacks the ability to op-
timize each decomposition layer individually. This limitation can lead to the accumulation
of significant errors in critical layers, ultimately affecting the overall decomposition quality
and clustering performance. As the number of matrix decomposition layers increases,
these errors continue to build up, potentially causing the final low-dimensional features
to deviate from the actual intrinsic structure of the data. This divergence can reduce the
model’s reliability and practical applicability.
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To overcome the above issues, a layerwise error-correcting regularization term is
proposed to measure and constrain the decomposition error of each layer on the basis of
the original loss function, as in Equation (6)

min
Wv

i ,Hv
i

m

∑
i=1

∥∥Hv
i−1 −Wv

i Hi
v∥∥2

F, s.t. Hv
i ≥ 0, Wv

i ≥ 0, ∀i = 1, 2, · · · , m, (6)

where Hv
i−1 denotes the coefficient matrix obtained by factorization on the last layer, Wv

i
and Hi

v indicate the basic matrix and coefficient matrix obtained by factorization on this
layer, and H0 = X for format standardization.

3.4. Layerwise Graph Regularization for Intra-Class Similarity and Inter-Class Difference

Conventional graph regularization mechanisms in NMF predominantly focus on intra-
class attraction forces, where geometrically similar samples are compelled to maintain prox-
imity within the latent representation space. While this approach proves effective for homoge-
neous data clusters, it introduces unintended effects when handling dissimilar sample pairs,
potentially causing inappropriate approximation of heterogeneous instances. This inherent
limitation becomes particularly acute in MVC scenarios, where view-specific similarity metrics
and contribution weights often exhibit substantial divergence across modalities.

Building upon the contrastive learning principle that explicitly differentiates between
positive (similar) and negative (dissimilar) pairs, a dissimilarity repulsion term is intro-
duced into the proposed NMF framework. Notably, this term systematically enlarges the
distances between dissimilar samples while simultaneously enhancing inter-class discrimi-
native learning. As a direct consequence of integrating this repulsive mechanism, the model
improves the preservation of intrinsic class distinctions. Furthermore, to maintain geo-
metric consistency across multiview representations, graph regularization constraints are
uniformly imposed throughout all decomposition layers, thus ensuring manifold structure
alignment between original data spaces and learned latent embeddings.

The KNN algorithm is used to identify the nearest neighbors and construct the intra-
class attractive matrix Sa(v)

i term and inter-class repulsive matrix Sr(v)
i for view v, calculated

as Equations (7) and (8):

Sa(v)
i(jk) =

exp
(
−
∥hv

i(j)−hv
i(k)∥

2

2(tv)2

)
, if hv

i(j) ∈ K(h
v
i(k)) or hv

i(k) ∈ K(h
v
i(j)),

0, otherwise,
(7)

Sr(v)
i(jk) =

exp
(
−∥hv

i(j) − hv
i(k)∥

2
)

, if hv
i(j) ∈ K(h

v
i(k)) or hv

i(k) ∈ K(h
v
i(j)),

0, otherwise,
(8)

where hv
i(j) denotes data point hv

(j) in the i-th layer, K(hv
i(j)) indicates the k-nearest neigh-

borhood of data point hv
i(j), and tv is a constant.

The attractive manifold learning term and repulsive manifold learning term can be
formulated using the Laplacian matrix as La(v)

i = Da(v)
i − Sa(v)

i and Lr(v)
i = Dr(v)

i − Sr(v)
i ,

where Da(v)
i and Dr(v)

i is the diagonal matrix of Sa(v)
i and Sr(v)

i , calculated as Da(v)
i(jj) =

n
∑

k=1
Sa(v)

i(jk) and Dr(v)
i(jj) =

n
∑

k=1
Sr(v)

i(jk). The graph regularization term is defined as Equation (9):

min
Wv

i ,Hv
i

V

∑
v=1

m

∑
i=1

(Tr(Hv
i La(v)

i HvT
i )− Tr(Hv

i Lr(v)
i HvT

i )). (9)



Mathematics 2025, 13, 1422 9 of 27

3.5. Objective Function

By integrating three distinct regularization terms in Equations (5), (6) and (9), the over-
all objective function of MVDALE-NMF can be reformed as Equation (10):

min
Wv

i ,Hv
i

O =
V

∑
v=1

(
∥Xv −Wv

1 Wv
2 · · ·Wv

mHv
m∥2

F

+ ∥Hv
m −WvT

m · · ·WvT

2 WvT

1 Xv∥2
F

+ δ
m

∑
i=1
∥Hv

i−1 −Wv
i Hi

v∥2
F

+ λ
V

∑
v=1

m

∑
i=1

(Tr(Hv
i La(v)

i HvT
i )− Tr(Hv

i Lr(v)
i HvT

i ))

+ (αv)γ∥Hv
m − H∗∥2

F

)
,

s.t. Hv
i , Wv

i , H∗ ≥ 0, ∀i = 1, 2, · · · , m,
V

∑
v=1

(αv)γ = 1,

(10)

where δ, λ, γ are three hyperparameters controlling the weight of layerwise error-correcting,
intra-class and inner-class graph regularization, and common matrix components, respec-
tively. A systematic examination of the parameter analysis is provided in Section 5.6.

4. Optimization
This section begins by introducing the pre-training strategy employed in the proposed

framework. Subsequently, the update rules for each component are systematically derived.
The theoretical proof of convergence for these update rules is then presented. Finally,
the time complexity of the framework is analyzed to assess its computational efficiency.

4.1. Pre-Training

By adopting a layer-wise pre-training strategy [42,43], the current model achieves
accelerated factor reconstruction. Each hierarchical layer is independently initialized
to generate preliminary approximations of the matrices Wi and Hi. This strategy has
been empirically shown to lead to a substantial reduction in the model’s training time.
The pre-training process is carried out by factorizing the coefficient matrix of the last layer
Hi−1 ≈Wi Hi with minimizing ∥Hi−1 −Wi Hi∥2

F + ∥Hi −WT
i Hi−1∥2

F. This iterative process
continues until all decomposition layers complete their pre-training phase. Subsequently,
an alternating minimization algorithm is applied to systematically refine the parameters of
each layer.

4.2. Updating Rules

The objective function Equation (10) can be rewritten in the form of the trace of the
matrix as follows:
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min
Wv

i ,Hv
i

O =
V

∑
v=1

(
Tr(HvT

0 Hv
0 + HT

m Hm − 4HvT

0 Ψi−1Wv
i Φi+1Hv

m

+ HT
mΦT

i+1WT
i ΨT

i−1Ψi−1WiΦi+1Hm

+ HT
0 Ψi−1WiΦi+1ΦT

i+1WT
i ΨT

i−1H0)

+ δ
m

∑
i=1

Tr(HvT

i−1Hv
i−1 − 2HvT

i−1Wv
i Hv

i + HvT

i WvT

i Wv
i Hv

i )

+ λ
m

∑
i=1

Tr(HvT

i La(v)
i Hv

i − HvT

i Lr(v)
i Hv

i )

+ (αv)γTr(HvT

m Hv
m − 2HvT

m H∗ + H∗
T

H∗)
)

,

s.t. Hv
i , Wv

i , H∗ ≥ 0, ∀i = 1, 2, · · · , m,
V

∑
v=1

(αv)γ = 1,

(11)

where Ψi−1 = W1W2 · · ·Wi−1 and Φi+1 = Wi+1Wi+2 · · ·Wm. When i = 1, Ψ0 = I is set in
this paper. Similarly, when i = m, Φm = I is set in this paper.

4.2.1. Updating Rule of the Basis Matrix Wv
i (1 ≤ i ≤ m)

Given the fixed parameters Hv
i , H∗, and (αv)γ, it necessarily follows that the optimiza-

tion problem for Wv
i in Equation (11) reduces to:

min
Wv

i

O(Wv
i ) = Tr

(
−4HvT

0 Ψv
i−1Wv

i Φv
i+1Hv

m

+ HvT

m ΦvT

i+1WvT

i ΨvT

i−1Ψv
i−1Wv

i Φv
i+1Hv

m

+ HvT

0 Ψv
i−1Wv

i Φv
i+1ΦvT

i+1WvT

i ΨvT

i−1Hv
0

)
+ δTr

(
−2Hv

i−1HvT

i WvT

i + Wv
i Hv

i HvT

i WvT

i

)
,

s.t. Wv
i ≥ 0, ∀i = 1, 2, · · · , m.

(12)

To resolve this constrained formulation, a Lagrangian multiplier θWv
i

is defined to impose
non-negative constraints on Wv

i , which directly leads to:

L(Wv
i , θWv

i
) = O(Wv

i )− Tr(θWv
i
Wv

i
T). (13)

Through differentiation, the partial derivatives are obtained as follows:

∂L(Wv
i , θWv

i
)

∂Wv
i

= −4ΨvT

i−1Hv
0 HvT

m ΦvT

i+1

+ 2ΨvT

i−1Ψv
i−1Wv

i Φv
i+1Hv

mHvT

m ΦvT

i+1

+ 2ΨvT

i−1Hv
0 HvT

0 Ψv
i−1Wv

i Φv
i+1ΦvT

i+1

− 2δHv
i−1HvT

i + 2δWv
i Hv

i HvT

i − θWi .

(14)

By enforcing the Karush–Kuhn–Tucker (KKT) conditions θWv
i
◦Wv

i = 0, the ultimate update
rule for Wv

i emerges:

Wv
i ←Wv

i ◦
2ΨvT

i−1Hv
0 HvT

m ΦvT

i+1 + δHv
i−1HvT

i

ΨvT
i−1Ψv

i−1Wv
i Φv

i+1Hv
mHvT

m ΦvT
i+1 + ΨvT

i−1Hv
0 HvT

0 Ψv
i−1Wv

i Φv
i+1ΦvT

i+1 + δWv
i Hv

i HvT
i + ϵ

. (15)

where ◦ denotes the elementwise multiplication, and ϵ is a small constant introduced to
prevent division by zero.
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4.2.2. Updating Rule of the Coefficient Matrix Hv
i (1 ≤ i ≤ m)

(1) 1 ≤ i < m.
Under the condition of fixed Wv

i , H∗, and (αv)γ, a parallel derivation process reveals
the Hv

i -oriented objective function:

min
Hv

i

O(Hv
i ) = Tr

(
−2Hv

i−1HvT

i Wv
i + Wv

i Hv
i HvT

i WvT

i

)
+ δTr

(
Hv

i HvT

i − 2Hv
i HvT

i+1WvT

i+1

)
+ λTr

(
Hv

i La(v)
i HvT

i − Hv
i Lr(v)

i HvT

i

)
,

s.t. Hv
i ≥ 0, ∀i = 1, 2, · · · , m,

(16)

Consistent with the methodology, the Lagrangian multiplier θHv
i

is incorporated to impose
non-negative constraints on Hv

i , yielding:

L(Hv
i , θHv

i
) = O(Hv

i )− Tr(θHv
i

Hv
i

T). (17)

Systematic differentiation produces:

∂L(Hv
i , θHv

i
)

∂Hv
i

= −2Wv
i Hv

i−1 + 2HvT

i WvT

i WvT

i

+ 2δHv
i − 2δWv

i+1Hv
i+1

+ 2λLa(v)
i − 2λLr(v)

i − θHi .

(18)

Application of KKT conditions θHv
i
◦ Hv

i = 0, gives rise to:

Hv
i ← Hv

i ◦
WvT

i Hv
i−1 + δWv

i+1Hv
i+1 + λHv

i Sa(v)
i + λHv

i Dr(v)
i

WvT
i Wv

i Hv
i + δHv

i + λHv
i Da(v)

i + λHv
i Sr(v)

i + ϵ
. (19)

(2) i = m.
With frozen variables Wv

i , H∗, and (αv)γ are fixed, an isomorphic computational
pathway derives the Hv

m update framework:

min
Hv

m
O(Hv

m) = Tr
(

HvT

m Hv
m − 4HvT

0 Ψv
m Hv

m + HvT

m ΨvT

m Ψv
mHv

m

)
+ δTr

(
−2Hv

m−1HvT

m WvT

m + Wv
m Hv

m HvT

m WvT

m

)
+ λTr

(
Hv

mLa(v)
m HvT

m − Hv
mLr(v)

m HvT

m

)
+ (αv)γTr

(
HvT

m Hv
m − 2Hv

m(H∗)vT
)

,

s.t. Hv
m ≥ 0.

(20)

Following the established protocol, θHv
m is introduced, generating:

L(Hv
m, θHv

m) = O(Hv
m)− Tr(θHv

m Hv
m

T). (21)
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Derivative computation yields:

∂L(Hv
m, θHv

m)

∂Hv
m

= 2Hv
m − 4ΨvT

m Hv
0 + 2ΨvT

m Ψv
mHv

m

− 2δHv
m−1 + 2δWvT

m Wv
mHv

m

+ 2λLa(v)
m − 2λLr(v)

m

+ 2(αv)γHv
m − 2(αv)γH∗.

(22)

Strict adherence to KKT conditions θHv
m ◦ Hv

m = 0 establishes:

Hv
m ← Hv

m ◦
2ΨvT

m Hv
0 + δWvT

m Hv
m−1 + (αv)γH∗ + λv Hv

mSa(v)
m + λv Hv

mDr(v)
m

ΨvT
m Ψv

mHv
m + δWvT

m Wv
mHv

m + (1 + (αv)γ)Hv
m + λvHv

mDa(v)
m + λvHv

mSr(v)
m + ϵ

. (23)

4.2.3. Updating Rule of the Common Matrix H∗

Given the invariance of Wv
i , Hv

i , and (αv)γ, a direct corollary emerges for the H∗

parameter optimization:

min
H∗
O(H∗) =

V

∑
v=1

(αv)γTr(HvT

m Hv
m − 2HvT

m H∗ + H∗
T

H∗), s.t. H∗ ≥ 0. (24)

The partial derivative with respect to H∗ is necessarily derived as follows:

∂O(H∗)
∂H∗

= −2
V

∑
v=1

(αv)γHv
m + 2

V

∑
v=1

(αv)γH∗ = 0. (25)

The updating rule for H∗ is as follows:

H∗ =

V
∑

v=1
(αv)γH(v)

m

V
∑

v=1
(αv)γ

. (26)

4.2.4. Updating Rule of the Weight of View (αv)

Assuming fixed values for Wv
i , Hv

i , and H∗, the immediate consequence is the simpli-
fied optimization target for (αv):

min
αv
O(αv) =

V

∑
v=1

(αv)γTr(HvT

m Hv
m − 2HvT

m H∗ + H∗
T

H∗),

s.t.
V

∑
v=1

(αv)γ = 1.

(27)

Similar to [44], to impose non-negativity constraints, the Lagrangian multiplier θαv is
incorporated, thereby formulating:

L(αv, θαv) =
V

∑
v=1

(αv)γCv − θαv

(
V

∑
v=1

αv − 1

)
, (28)

where Cv denotes Tr(HvT
m Hv

m − 2HvT
m H∗ + H∗

T
H∗). Setting the derivatives of O(H∗) with

respect to H∗ to zero yields:

α(v) =

(
θαv

γCv

) 1
γ−1

. (29)
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Substitute the resultant αv into the constraint ∑V
v=1(α

v)γ = 1 yields:

α(v) =
(γCv)

1
1−γ

∑V
v=1(γCv)

1
1−γ

. (30)

Through the aforementioned four steps, Wv
i , Hv

i , H∗, and (αv)γ are successively
updated in an alternating manner, and this procedure is iterated until the objective function
stabilizes. The proposed algorithm is outlined in Algorithm 1.

Algorithm 1 The algorithm of MVDALE-NMF

1: Input: Multiview data {Xv}V
v=1, number of layers m, size of each layer li, regularization

parameters δ, λ, γ.
2: Output: Clustering indicator matrix H∗.
3: [Initialization phase]
4: for each view v do
5: Initialize Wi > 0, Hi > 0, H∗ > 0
6: for view v = 1 to v do
7: for layer i = 1 to m do
8: Construct intra-class graph weight matrix Sa(v)

i

9: Construct inter-class graph weight matrix Sr(v)
i

10: end for
11: end for
12: end for
13: [Pre-training phase]
14: for each view v = 1 to n do
15: for each layer i = 1 to m do
16: Update Wv

i , Hv
i using Autoencoder-inspired NMF

17: end for
18: end for
19: [Fine-tuning phase]
20: while not reach stopping criterion do
21: for each view v = 1 to n do
22: for each layer i = 1 to m do
23: Update Wv

i based on Equation (15)
24: if 1 ≤ i < m then
25: Update Hv

i based on Equation (19)
26: end if
27: if i = m then
28: Update Hv

m based on Equation (23)
29: end if
30: end for
31: end for
32: Update H∗ based on Equation (26)
33: Update αv based on Equation (30)
34: end while
35: Apply clustering algorithm to H∗ to obtain the clustering results

4.3. Convergence of the Algorithm

The convergence of the proposed Algorithm 1 is theoretically proved in this subsection.
Given the non-negativity constraint of the objective function, the lower bound of the itera-
tive updates is naturally zero. Therefore, only the monotonicity of the updating rules needs
to be proved. Moreover, the optimal solution for H∗ and αv has been derived. Therefore,
only the convergence of the updating rules for Wv

i , Hv
i , and Hv

m needs to be proved.
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Theorem 1. The objective function Equation (10) is nonincreasing under the updating rules
Equations (15), (19) and (23).

To prove the theorem, an auxiliary function, as defined in [17], is introduced. The defi-
nition is provided below.

Definition 1. For any given h and h′, if the conditions

G(h, h′) ≥ F(h), G(h, h) = F(h) (31)

are satisfied, G(h, h′) is an auxiliary function for F(h)

Using the auxiliary function, monotonicity can be established based on the following
lemma [17].

Lemma 1. If G is an auxiliary function, then F is nonincreasing under the update

ht+1 = arg min
h

G(h, ht), (32)

where t denotes the t-th iteration.

Proof. F(ht+1) ≤ G(ht+1, ht) ≤ G(ht, ht) = F(ht)

For variant Wv
i , according to Lemma 1, an appropriate auxiliary function needs to

be constructed to prove the convergence of the objective function Equation (10) under
the updating rule Equation (15). Fixing parameters Hv

i , H∗, and (αv)γ, the optimization
problem for Wv

i reduces to:

min
Wv

i

O(Wv
i ) = Tr

(
−4HvT

0 Ψv
i−1Wv

i Φv
i−1Hv

m

+ HvT

m ΦvT

i+1WvT

i ΨvT

i−1Ψv
i−1Wv

i Φv
i+1Hv

m

+ HvT

0 Ψv
i−1Wv

i Φv
i+1ΦvT

i+1WvT

i ΨvT

i−1Hv
0

)
+ δTr

(
−2Hv

i−1HvT

i WvT

i + Wv
i Hv

i HvT

i WvT

i

)
,

s.t. Wv
i ≥ 0, ∀i = 1, 2, · · · , m.

(33)

The first and second derivatives of Equation (33) are as follows:

O′(Wv
i ) = −4ΨvT

i−1Hv
0 HvT

m ΦvT

i+1 + 2ΦvT

i+1HvT

m Hv
mΦv

i+1Ψv
i−1ΨvT

i−1Wv
i

+ 2ΦvT

i+1Φv
i+1Ψv

i−1HvT

0 Hv
0 ΨvT

i−1Wv
i − 2δHv

i−1HvT

i + 2δHvT

i Hv
i Wv

i .
(34)

O′′(Wv
i ) = 2ΦvT

i+1HvT

m Hv
mΦv

i+1Ψv
i−1ΨvT

i−1 + 2ΦvT

i+1Φv
i+1Ψv

i−1HvT

0 Hv
0 ΨvT

i−1 + 2δHvT

i Hv
i . (35)

The second-order Taylor series of Equation (33) is presented as follows:

O(Wv
i ) = O(Wv t

i ) + ∑
q,r
O′(Wv t

i )qr
(
Wv

i −Wv t
i
)

qr + ∑
q,r

O′′(Wv t
i )qr

2
(
Wv

i −Wv t
i
)2

qr. (36)

The auxiliary function for O(Wv
i ) can be constructed.

Lemma 2. Function G(Wv
i , Wv t

i ) is an auxiliary function for O(Wv
i ), where
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G(Wv
i , Wv t

i ) = O(Wv t
i ) + ∑

q,r
O′(Wv t

i )qr
(
Wv

i −Wv t
i
)

qr

+ ∑
q,r

((
ΦvT

i+1HvT
m Hv

mΦv
i+1Ψv

i−1ΨvT

i−1 + ΦvT

i+1Φv
i+1Ψv

i−1HvT

0 Hv
0 ΨvT

i−1 + δHvT

i Hv
i

)
Wv

i

)
qr

Wv t
i qr

(
Wv

i −Wv t
i
)2

qr.

(37)

Proof. To prove that G(Wv
i , Wv t

i ) is the auxiliary function of O(Wv
i ), it only needs to

be shown that G(Wv
i , Wv

i ) = O(Wv
i ) and G(Wv

i , Wv t
i ) ≥ O(Wv

i ) holds. According to
Definition 1, G(Wv

i , Wv
i ) = O(Wv

i ) is clear. Proving G(Wv
i , Wv t

i ) ≥ O(Wv
i ) is equivalent

to proving:((
ΦvT

i+1HvT
m Hv

mΦv
i+1Ψv

i−1ΨvT

i−1 + ΦvT

i+1Φv
i+1Ψv

i−1HvT

0 Hv
0 ΨvT

i−1 + δHvT

i Hv
i

)
Wv

i

)
qr

Wv t
i qr

≥
O′′(Wv t

i )qr

2
. (38)

The following formula holds:((
ΦvT

i+1HvT

m Hv
mΦv

i+1Ψv
i−1ΨvT

i−1 + ΦvT

i+1Φv
i+1Ψv

i−1HvT

0 Hv
0 ΨvT

i−1 + δHvT

i Hv
i

)
Wv

i

)
qr

=
f

∑
s=1

(
ΦvT

i+1HvT

m Hv
mΦv

i+1Ψv
i−1ΨvT

i−1 + ΦvT

i+1Φv
i+1Ψv

i−1HvT

0 Hv
0 ΨvT

i−1 + δHvT

i Hv
i

)
qs
(Wv

i )sr

≥
(

ΦvT

i+1HvT

m Hv
mΦv

i+1Ψv
i−1ΨvT

i−1 + ΦvT

i+1Φv
i+1Ψv

i−1HvT

0 Hv
0 ΨvT

i−1 + δHvT

i Hv
i

)
qq
(Wv

i )qr.

(39)

Therefore, G(Wv
i , Wv t

i ) ≥ O(Wv
i ) has been proved. And G(Wv

i , Wv t
i ) is an auxiliary func-

tion of O(Wv
i ).

The convergence of Theorem 1 can now be demonstrated.

Proof of Theorem 1. Since G(Wv
i , Wv t

i ) is a convex quadratic, replacing G(h, ht) in Lemma
1 by G(Wv

i , Wv t
i ), its optimal solution is obtained as follows:

Wv
i = (Wv

i )qr −
O′((Wv

i )qr)

2
(

ΦvT
i+1HvT

m Hv
mΦv

i+1Ψv
i−1ΨvT

i−1Wv
i + ΦvT

i+1Φv
i+1Ψv

i−1HvT
0 Hv

0 ΨvT
i−1Wv

i + δHvT
i Hv

i Wv
i

)
qr

= (Wv
i )qr

2ΨvT

i−1Hv
0 HvT

m ΦvT

i+1 + δHv
i−1HvT

i

ΨvT
i−1Ψv

i−1Wv
i Φv

i+1Hv
mHvT

m ΦvT
i+1 + ΨvT

i−1Hv
0 HvT

0 Ψv
i−1Wv

i Φv
i+1ΦvT

i+1 + δWv
i Hv

i HvT
i qr

.

(40)

This is in full agreement with Equation (15). Since G(Wv
i , Wv t

i ) is an auxiliary function of
O(Wv

i ), that is, the part of the objective function Equation (10) which is related to (Wv
i ),

Equation (10) is nonincreasing under updating rule Equation (15) according to Lemma 1.
Following identical procedures, the auxiliary functions of Hv

i and Hv
m can be constructed,

and Equation (10) can be proven to be nonincreasing under the updating rule given by
Equation (19) and Equation (23). Therefore, Theorem 1 is proved.

4.4. Complexity Analysis

Algorithm 1 comprises three main stages: an initialization phase, a pre-training phase,
and a fine-tuning phase. Accordingly, the time complexity of each phase is analyzed
separately. For simplicity, let l represent the maximum layer size across all layers, d the
maximum feature dimension among all views, n the number of samples, V the number of
views, and m the number of layers.

In the initialization phase, let k denote the neighborhood size to construct a kNN
graph; the complexity of graph Laplacian on all views is O(mVn2k). The complexity of
the pre-training phase is O(TpmV(ndl + nl2 + dl2)), where Tp denotes the iteration times
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of the pre-training phase. During the fine-tuning phase, for each iteration of each view,
the complexity of updating Wv

i in Equation (15) is 3ndl + 11n2l + 2dl2 + 3l3, the complexity
of updating Hv

i in Equation (19) is 7nl2, and the complexity of updating Hv
m in Equation (23)

is ndl + dl2 + 7nl2 + l3. Let Tf denote the iteration times of the fine-tuning phase; the com-
plexity of the fine-tuning phase is Tf V((3m + 1)ndl + 18mnl2 + (2m + 1)dl2 + (3m + 1)l3).
Therefore, with V views, the overall complexity of the proposed MVDALE-NMF algorithm
is O(mVn2k + (Tp + Tf )mV(ndl + nl2 + dl2)). Due to m, l being negligible compared to
n, d, the MVDALE-NMF algorithm has a quadratic complexity.

5. Experiments
5.1. Datasets

A number of real-world multiview datasets are utilized in the experiments to evaluate
the performance of the proposed model. A concise overview of the datasets is given below,
and some important statistics are summarized in Table 1.

• ALOI-100 (https://github.com/JethroJames/Awesome-Multi-View-Learning-Datasets
(accessed on 3 April 2024)): The Amsterdam Library of Images (ALOI) [45] comprises
110,250 samples sourced from 1000 small objects. Each object has an average of
100 samples. The ALOI-100 dataset is created by extracting the initial 100 object
types from ALOI, comprising 10,800 color images, with each sample described by
four views: 77 color similarity features, 13 Haralick features, 64 HSV features, and
125 RGB features.

• Handwritten (https://archive.ics.uci.edu/ml/datasets/Multiple+Features (accessed
on 3 April 2024)): The Handwritten dataset is composed of 2000 digit images that have
been manually inscribed, with 200 samples for each digit ranging from “0” to “9”. Each
image is characterized by six distinct feature sets, including 216 profile correlations,
76 Fourier coefficients of the character shapes, 64 Karhunen–Loève coefficients, 6 mor-
phological features, 240 pixel averages in 2 × 3 windows, and 47 Zernike moments.

• Leaves (https://archive.ics.uci.edu/dataset/241/one+hundred+plant+species+leaves+
data+set (accessed on 3 April 2024)): The Leaves dataset consists of 1600 samples,
with 16 leaf samples from each of 100 plant species. Three views are extracted to char-
acterize the samples, i.e., 64 shape features, 64 fine-scale margin histogram features,
and 64 texture histogram features.

• UCI (https://github.com/ChuanbinZhang/Multi-view-datasets (accessed on 3 April
2024)): Following [12], this dataset is similar to the MFEAT dataset; however, each
sample is described by three features: 240 pixel averages in 2 × 3 windows, 76 Fourier
coefficients of the character shapes, and 6 morphological features.

• WebKB (http://www.cs.cmu.edu/~webkb/ (accessed on 3 April 2024)): The WebKB
dataset consists of 1051 webpage documents sourced from the computer science
departments of several universities, categorized into two classes. Each document has
two types of features: 3000 dimensions representing the text on the web pages and
1840 dimensions representing the anchor text on the hyperlinks pointing to the page.

Table 1. Statistics of datasets.

Dataset Type Sample Class View Feature

ALOI100 Image 10,800 100 4 77, 13, 64, 125
Handwritten Image 2000 10 6 216, 76, 64, 6, 240, 47
Leaves Image 1600 100 3 64, 64, 64
UCI Image 2000 10 3 240, 76, 6
WebKB Text 1051 2 2 3000, 1800

https://github.com/JethroJames/Awesome-Multi-View-Learning-Datasets
https://archive.ics.uci.edu/ml/datasets/Multiple+Features
https://archive.ics.uci.edu/dataset/241/one+hundred+plant+species+leaves+data+set
https://archive.ics.uci.edu/dataset/241/one+hundred+plant+species+leaves+data+set
https://github.com/ChuanbinZhang/Multi-view-datasets
http://www.cs.cmu.edu/~webkb/
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5.2. Compared Algorithms

To better highlight the differences between the proposed method and the comparison
algorithms, Table 2 summarizes the key distinctions among them.

Table 2. Key differences between algorithms.

Deep NMF MVC Method Autoencoder-
Inspired

Contractive
Manifold
Learning

Multilayer
Manifold
Learning

Layerwise
Error-

Correcting Con-
strain

NMF
MultiNMF ✓
2CMV ✓
DA2NMF ✓ ✓

DMF ✓
DANMF ✓ ✓
DMVC ✓ ✓
ODD-NMF ✓ ✓ ✓
MGANMF ✓ ✓ ✓
Ours ✓ ✓ ✓ ✓ ✓ ✓

Additionally, the time complexity of the baseline models is compared in Table 3. For the
2CMV method [46], r represents the new rank value. The computational efficiency of all
NMF-based techniques generally follows quadratic time complexity. Notably, NMF [17],
DMF [24], and DANMF [34] are single-view approaches; when extended to multiview tasks,
their time complexity increases by a factor of v. Among these methods, MVDALE-NMF
stands out by significantly improving clustering performance across the evaluation metrics
while maintaining comparable computational efficiency to other NMF-based frameworks.

Table 3. Computational complexity of compared mathods and MVDALE-NMF.

Method Time Complexity Order of Complexity

NMF [17] O(Tf (ndl + nl2 + dl2) quadratic
MultiNMF [22] O(Tf V(ndl + nl2 + dl2)) quadratic
2CMV [46] O(Tf V(n2k + ndr) quadratic
DA2NMF [37] O(Tf V(ndl + nl2 + dl2)) quadratic

DMF [24] O(Tf m(ndl + nl2 + dl2)) quadratic
DMVC [25] O(n2k + (Tp + Tf )mV(ndl + nl2 + dl2)) quadratic
DANMF [34] O(n2k + (Tp + Tf )mV(ndl + nl2 + dl2)) quadratic
ODD-NMF [41] O(Vn2k + Tf mV(ndl + nl2 + dl2)) quadratic
MGANMF [36] O(Vn2k + Tf m(ndl + nl2 + dl2)) quadratic
Ours O(mVn2k + (Tp + Tf )mV(ndl + nl2 + dl2)) quadratic

5.2.1. Shallow Matrix Factorization Methods

• NMF [17]: Standard NMF reduces the dimensionality of the original matrix by finding
two non-negative matrices, generating a data feature matrix with reduced dimensions.

• MultiNMF [22]: MultiNMF is a multiview NMF method with local graph regular-
ization to preserve the geometric structure of each view. It employs a joint matrix
factorization process that aims to achieve a common consensus by constraining the
coefficient matrices of different views.

• 2CMV [46]: It uses Coupled Matrix Factorization [47] and NMF to simultaneously
learn the consensus and complementary components from multiview data. It proposes
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an optimal manifold to capture the most consistent representation embedded in high-
dimensional multiview data.

• DA2NMF [37]: It employs an autoencoder-inspired NMF model to learn linear low-
dimensional features and introduces adaptive graph learning to capture nonlinear
data structures. In addition, a dual auto-weighted strategy is developed to compute
weights for different views.

5.2.2. Deep Matrix Factorization Methods

• DMF [24]: A single view model stacking multiple layers of Semi-NMF to reveal
hierarchical, low-dimensional attributes of data.

• DMVC [25]: It uses deep matrix factorization techniques to extract relevant features
from multiple views of data. Moreover, it introduces a weight balance strategy that
leverages the complementary information in different views.

• DANMF [34]: Designed for community detection, DANMF is a hierarchical structure
that combines the encoder-decoder architecture of deep autoencoders with deep
NMF. The encoder component progressively reduces the dimensionality of the input
adjacency matrix, while the decoder component reconstructs the original matrix from
the latent space.

• ODD-NMF [41]: This deep NMF method features a diversity constraint to handle
complementary information and an orthogonal constraint to guarantee the uniqueness
of the clustering. In addition, it preserves the geometric structure within the data by
applying optimal manifolds to each layer.

• MGANMF [36]: It integrates deep autoencoder-like NMF with graph regularization to
capture the intrinsic geometric structure of multiview data. Additionally, self-updating
weights are employed to balance the contributions of each view.

5.3. Experimental Setup

The optimal clustering results of these methods are reported by searching the related
parameters in grids. The parameters and iteration counts essential for the algorithm are
sourced from the corresponding paper. Single-view clustering algorithms are executed on
each view of the dataset, and the best outcomes are documented as the final experimental
results. All experiments are conducted on MATLAB R2022a, using a high-performance
computer with an R7-5800H CPU and 16 GB of RAM, without GPU, under a Windows
11 system.

Three widely used clustering evaluation criteria, Accuracy (ACC), Normalized Mutual
Information (NMI), and F-score are utilized to generally evaluate the clustering perfor-
mance of all methods. The higher the values of these matrices, the better the clustering per-
formance.

5.4. Clustering Results and Analysis

A substantial number of comparative experiments have been carried out to demon-
strate the efficacy of the proposed algorithm. The clustering effect of all algorithms on
the ALOI100, Handwritten, Leaves, UCI, and WebKB datasets was evaluated based on
three metrics, as illustrated in Tables 4–6. In order to achieve a more intuitive comparison,
the clustering results have been presented in the form of Figures 2–4. The results of our
algorithm and the best-performing comparison algorithms are shown in bold, while the
second-best results are underlined. The last column presents the average rankings of all
compared methods across each evaluation metric.

The proposed method consistently demonstrates strong clustering performance, rank-
ing first across most evaluation metrics, with only a few instances where it ranks second
or third. On the large-scale dataset aloi100, it significantly outperforms the second-best
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algorithm, ODD-NMF, with improvements of 26% in ACC, 11% in NMI, and 34% in
F-score. This superior performance can be attributed to several key factors: the deep
autoencoder-inspired structure that effectively maps data into a latent space, the layer-
wise error-correction strategy that refines reconstruction errors at each factorization stage,
and intra-class and inter-class graph regularization applied at every layer to preserve the
original geometric structure of the data.

Table 4. Clustering ACC (%) on benchmark datasets.

Methods ALOI100 Handwritten Leaves UCI WebKB Average Rank

NMF 23.05 68.57 47.23 68.9 59.72 9.8
MultiNMF 50.79 69.04 64.94 73.15 68.89 7
2CMV 50.47 75.44 69.01 74.65 73.4 6.2
DA2NMF 47.27 79.57 69.65 79.02 82.46 5.2
DMF 42.09 71.35 73.41 73.98 76.85 6.4
DANMF 49.65 60.5 62.31 70.61 61.66 8.6
DMVC 43.48 86.98 70.6 89.59 80.97 4.6
ODD-NMF 56.07 85.63 71.07 93.83 77.33 3.2
MGANMF 50.41 91.52 76.87 88.52 89.25 3
Ours 70.67 91.54 80.75 92.2 94.72 1.2

Table 5. Clustering NMI (%) on benchmark datasets.

Methods ALOI100 Handwritten Leaves UCI WebKB Average Rank

NMF 38.94 62.53 71.19 66.84 18.35 9.8
MultiNMF 71.73 64.06 85.26 68.31 23.38 7.2
2CMV 69.48 71.07 85.48 72.98 31.07 6.2
DA2NMF 68.44 75.3 86.58 70.95 49.73 5.4
DMF 63.78 65.19 88.53 70.36 39.02 6.4
DANMF 69.08 62.7 81.74 63.01 31.17 8.2
DMVC 62.43 82.77 86.85 82.52 41.26 5.2
ODD-NMF 75.74 82.69 89.07 88.47 42.31 2.8
MGANMF 71.65 83.84 90.33 82.69 59.51 2.6
Ours 84.15 83.92 94.07 86.67 63.73 1.2

Table 6. Clustering F-score (%) on benchmark datasets.

Methods ALOI100 Handwritten Leaves UCI WebKB Average Rank

NMF 13.96 66.29 32.7 61.16 55.83 9.4
MultiNMF 39.03 67.53 56.12 71.36 63.05 6.8
2CMV 38.39 65.84 59.93 73.77 65.92 6.6
DA2NMF 34.62 76.28 61.1 74.62 79.57 5.2
DMF 30.43 68.72 65.54 72.39 70.72 6
DANMF 37.61 52.05 49.24 59.98 60.14 8.6
DMVC 29.49 84.53 61.83 84.15 79.98 4.6
ODD-NMF 44.13 83.24 65.11 86.57 73.35 3.4
MGANMF 30.52 89.52 71.48 84.36 86.16 3
Ours 59.47 83.93 78.85 87.01 92.63 1.4

The effectiveness of the autoencoder-inspired structures is evident in the comparative
analyses. Algorithms such as DANMF and MGANMF, which incorporate encoder compo-
nents, consistently outperform DMF and DMVC, which do not. The encoder component
plays a crucial role in mapping raw data into a lower-dimensional latent space, allowing for
the extraction of more meaningful latent features. This process leads to improved clustering
performance and higher metric scores.
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Another key observation is that models incorporating manifold learning at every layer
outperform those that apply graph regularization only at the top layer. Both ODD-NMF
and the proposed method, which integrate manifold learning throughout multiple layers,
demonstrate superior performance compared to algorithms that restrict graph regularization
to a single layer. By applying manifold learning across all layers, these models enhance the
ability to maintain the intrinsic structure of the data, resulting in better clustering outcomes.

Figure 2. Clustering ACC (%) on benchmark datasets.

Figure 3. Clustering NMI (%) on benchmark datasets.

Figure 4. Clustering F-score (%) on benchmark datasets.

These findings highlight the advantages of deep structured learning, adaptive re-
construction refinement, and multi-layer regularization, confirming the robustness of the
proposed method in handling complex clustering tasks.
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5.5. Compared with Other Methods

This subsection compares other machine learning-based MVC methods, including the
graph clustering method, Diversity-Induced Bipartite Graph Fusion for Multiview Graph
Clustering [48], the subspace clustering method, Nonconvex Low-Rank and Structure-
Constrained Multiview Subspace Clustering [49], and the spectral clustering method,
Reliable Multiview Graph Learning [50], as shown in Table 7. Our method demonstrates
superior performance on most datasets

Table 7. Clustering results on benchmark datasets.

Metric Method ALOI100 Handwritten Leaves UCI WebKB

ACC

RMGL 59.07 89.52 83.97 89.27 88.73
DiBGF-MGC 65.38 86.44 87.19 88.52 92.53
NLRSC-MvSC 67.2 92.17 80.69 91.14 90.85
Ours 70.67 91.54 80.75 92.2 94.72

NMI

RMGL 68.12 79.33 79.73 85.31 56.24
DiBGF-MGC 82.56 90.2 93.9 91.23 60.34
NLRSC-MvSC 77.58 79.2 90.49 83.52 58.38
Ours 84.15 83.92 94.07 86.67 63.73

F-score

RMGL 61.28 81.85 81.54 86.02 86.15
DiBGF-MGC 58.75 86.48 79.16 90.54 91.62
NLRSC-MvSC 55.79 83.46 74.37 85.87 89.57
Ours 59.47 83.93 78.85 87.01 92.63

5.6. Parameter Analysis

Sensitivity analysis on γ: The parameter γ balances the weight of different views.
When γ = 0, it can be shown that the weights of all views are equal to 1, thereby resulting
in a configuration where the weights are equal. Figure 5 demonstrates the clustering ACC
and NMI of MVDALE-NMF when γ varies from 1.5 to 5 in steps of 0.5 on the ALOI100 and
WebKB dataset.

(a) ACC on ALOI100 (b) ACC on WebKB

Figure 5. Clustering performance with different γ.

Sensitivity analysis on λ and δ: The parameters λ and δ are used to balance the layer-
wise manifold regularization and layer-wise reconstruction, respectively. Figures 6 and 7
illustrate the clustering performance of MVDALE-NMF in terms of ACC and NMI as λ and
δ vary over the ranges [0.001, 0.01, 0.1, 1, 10, 100] and [0.001, 0.005, 0.01, 0.05, 0.1], under two
different configurations of γ = 2 and γ = 3 . On the ALOI100 dataset, it is observed that
even with a high graph regularization weight (λ = 100), the clustering performance remains
competitive, demonstrating the robustness of the layer-wise reconstruction mechanism.
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(a) ACC on ALOI100 with γ = 2 (b) NMI on ALOI100 with γ = 2

(c) ACC on WebKB with γ = 2 (d) NMI on WebKB with γ = 2

Figure 6. Clustering performance with different λ and δ when γ = 2.

(a) ACC on ALOI100 with γ = 3 (b) NMI on ALOI100 with γ = 3

(c) ACC on WebKB with γ = 3 (d) NMI on WebKB with γ = 3

Figure 7. Clustering performance with different λ and δ when γ = 3.



Mathematics 2025, 13, 1422 23 of 27

5.7. Ablation Experiment

This subsection evaluates five versions of the proposed framework using the ALOI100
and WebKB datasets: (1) The complete framework (MVDALE-NMF); (2) A version without
both attractive and repulsive manifold learning regularizations (− w/o LM); (3) A version
without repulsive manifold learning regularization (− w/o LR); (4) A version without the
error-correcting constraint (− w/o LE); (5) A version without adaptive weighting (− w/o
Lα). As shown in Tables 8 and 9, setting equal weights for all views leads to a significant
drop in clustering performance. This result underscores the importance of adaptive weight
allocation across views in MVC. In addition, the attractive and repulsive manifold learning
regularizations contribute notably to performance, particularly in image-rich datasets such
as ALOI.

Furthermore, the error-correcting constraint has a more substantial impact on the
ALOI dataset, likely due to its larger sample size and higher feature dimensionality. These
characteristics demand deeper decomposition layers, which, in turn, lead to greater error
accumulation, making error correction especially beneficial.

Table 8. Ablation experiment on ALOI100.

Methods ACC NMI F-Score

MVDALE-NMF 70.67 84.15 59.47
− w/o LM 49.05 69.85 34.07
− w/o LR 56.93 74.58 42.53
− w/o LE 62.75 79.43 51.24
− w/o Lα 34.1 56.44 22.06

Table 9. Ablation experiment on WebKB.

Methods ACC NMI F-Score

MVDALE-NMF 94.72 63.73 92.63
− w/o LM 90.48 47.3 87.94
− w/o LR 91.81 50.22 88.99
− w/o LE 93.67 58.91 91.28
− w/o Lα 78.52 34.79 71.2

To illustrate the impact of layerwise error correction and manifold learning, the latent
representations of the complex ALOI100 dataset are visualized using the t-SNE technique,
as shown in Figure 8. Figure 8b demonstrates that the proposed framework effectively clus-
ters and separates samples into distinct groups, indicating a well-learned representation.

The layer-wise error-correcting constraint is designed to align features across different
layers, ensuring consistency throughout the learning process. Without this constraint, deep
NMF may accumulate reconstruction errors during successive factorizations, resulting in
disorganized feature representations. This effect is evident in Figure 8d, where sample
points appear more dispersed and the cluster boundaries are less defined, reflecting a lack
of structural clarity due to the absence of error correction.

The graph regularization term, on the other hand, preserves the local manifold struc-
ture by maintaining sample similarity. Without it, deep NMF is unable to fully leverage the
geometric information inherent in the data, limiting its ability to mine collaborative infor-
mation across views in MVC. This is illustrated in Figure 8c, where samples from the same
category are poorly aggregated and significant inter-cluster overlap is observed. The lack
of manifold regularization prevents the model from enforcing the structural constraints
necessary for effective clustering.
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(a) Original data (b) MVDALE-NMF

(c) − w/o LM (d) − w/o LE

Figure 8. Visualization of latent representations.

6. Conclusions
This paper addresses the limitations of the shallow matrix factorization models used

in MVC tasks, in particular, their inability to capture hierarchical data structures and lack
of an efficient mechanism for encoding raw data into latent features. To address these
weaknesses, a new MVDALE-NMF is proposed. The model integrates a self-encoding
architecture within a deep NMF framework, enforcing non-negativity on all matrices to
allow direct mapping of original data into a lower-dimensional, interpretable feature space.
This facilitates effective feature extraction and supports the accurate reconstruction of
original data.

Further, a layerwise error-correcting regularization is introduced to mitigate error
accumulation across deeper layers of matrix decompositions, ensuring that each layer’s out-
put remains closely aligned with the input matrix. The model also incorporates layerwise
graph regularization to better preserve hierarchical geometric data structures throughout
the layers.

An efficient iterative optimization algorithm based on multiplicative update rules
helps improve the model’s performance. Empirical evaluations on five real-world datasets
demonstrate that the MVDALE-NMF achieves significant improvements over existing state-
of-the-art methods in the field. Future work could focus on addressing the sensitivity of
NMF to hyperparameters by developing more robust tuning strategies, as well as improving
its performance on imbalanced datasets through better initialization methods or incorporat-
ing class priors. Additionally, scalability to large datasets could be enhanced by exploring
parallel or distributed NMF algorithms to handle high-dimensional data efficiently.
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Notations

Tr Trace of a matrix
∥ · ∥F Frobenius norm
◦ Hadamard product
n Number of samples
V Number of views
d Dimension of samples of v-th view
m Number of layers
Xv Original data matrix of v-th view
Wv

i Basis matrix of the v-th view in the i-th layer
Hv

i Coefficient matrix of the v-th view in the i-th layer
H∗i Common matrix
ln Number of features in the n-th layer
Lv

i Graph Laplacian matrix of the v-th view in the i-th layer
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