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ARTICLE INFO ABSTRACT

Keywords: Accurate trajectory prediction is essential for enabling the autonomous navigation of unmanned
Trajectory probabilistic features ships. Recent advancements in Deep Learning (DL) based trajectory prediction using AIS
AIS data

data have positioned this area as a key focus in maritime transportation research. However,
existing studies often fail to address trajectory uncertainty adequately. The ability to model
uncertainty is crucial, as it not only quantifies the confidence in prediction results but also
enhances a model’s adaptability to complex and dynamic maritime environments. Addressing
this gap requires innovative approaches to trajectory prediction that effectively account for
uncertainty. This paper proposes a new trajectory prediction model, the Spatio-Temporal
Graph Transformer with Probability (STGTP), which seamlessly integrates spatio-temporal
features with probabilistic trajectory modelling. The proposed STGTP model introduces several
innovations, including a temporal attention module to capture dynamic temporal variations
in ship movements and a Transformer-based Graph Convolution (TGConv) to model spatial
interactions, enhancing predictive accuracy. It employs a Gaussian heatmap representation for
probabilistic trajectory modelling and a Vision Transformer to extract features that quantify
prediction uncertainty effectively. These components enable STGTP to provide robust and
reliable prediction while explicitly modelling uncertainty, improving the safety and adaptability
of autonomous navigation systems. The model’s performance was systematically evaluated
across three distinct maritime regions using established metrics: Average Displacement Error
(ADE), Final Displacement Error (FDE), and Fréchet Distance (FD). A comparison with ten
baseline models demonstrates that the proposed STGTP model consistently outperforms all
existing approaches across all evaluation metrics. These results underscore the model’s overall
superiority and effectiveness in maritime transportation. By integrating probabilistic and spatio-
temporal modelling, STGTP significantly enhances the accuracy of ship trajectory forecasting,
marking a key advancement toward achieving robust, real-time autonomous navigation in
maritime environments.

Ship trajectory prediction
Autonomous navigation
Maritime transportation

1. Introduction

As global maritime activities surge, the importance of ensuring maritime safety has grown significantly. According to the United
Nations Conference on Trade and Development (UNCTAD) (Trade and Development, 2024), global maritime trade expanded by
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2.4% in 2023, reaching a total of 12.3 billion tonnes, with container ship port calls surpassing 250,000 in the latter half of the year.
This surge, driven by increasing trade volumes and extended shipping routes, has caused significant congestion, particularly in Asia,
which handles 63% of global container trade. These trends have placed enormous pressure on logistics systems and over-stressed
supply chains.

To address these challenges, Maritime Autonomous Surface Ships (MASS) equipped with autonomous navigation technology have
emerged as a promising solution. MASS can mitigate risks associated with human error through the implementation of precise path
planning, significantly improving safety and efficiency in complex maritime environments. A cornerstone of autonomous navigation
is reliable Ship Trajectory Prediction (STP), which enables accurate forecasting of a ship’s future positions in dynamic scenarios
(Jiao et al., 2025). This capability supports path planning, collision avoidance, and safe navigation, making it a critical component
of MASS technology (Zhang et al., 2024b).

Advances in data acquisition technologies and Artificial Intelligence (AI) have further elevated the importance of STP for MASS.
Deep Learning (DL), a core Al technology, has emerged as the dominant approach (Bi et al., 2024), facilitating the realization of
intelligent transport management in the maritime sector (Li et al., 2025). By utilising historical navigation data alongside current
environmental information, DL models identify optimal navigation routes (Kim et al., 2024), enhancing navigational efficiency,
reducing fuel consumption, and lowering operational costs. These advancements accelerate the commercialisation and widespread
adoption of MASS technologies in the maritime industry.

Despite its importance, STP faces challenges, particularly regarding data quality and trajectory uncertainty (Yang et al., 2021; Li
et al., 2023a). Automatic Identification System (AIS) data, a key source for trajectory prediction, often suffers from limited spatial
and temporal coverage and inconsistent quality under varying conditions (Xi et al., 2023). These limitations undermine the global
applicability of AIS-based models.

Research methodologies for STP can be primarily categorised into two technical branches: those founded upon classical Machine
Learning (ML) frameworks and those implemented through DL architectures. While traditional ML models, like Support Vector
Regression (SVR), are effective for short-term trajectory predictions, they struggle with complex trajectory variations in dynamic
scenarios. In contrast, DL methods, such as Long Short-Term Memory (LSTM) Networks (Hochreiter, 1997) and Gated Recurrent
Units (GRU) (Chung et al., 2014), have proven effective for time-series forecasting. However, these models face limitations, including
difficulties with data sparsity, long-sequence predictions, and addressing trajectory uncertainty. Transformer models (Vaswani, 2017;
Nguyen and Fablet, 2024) can capture long-term temporal relationships, making them suitable for long-range predictions in complex
maritime scenarios. However, their inability to effectively model trajectory uncertainty limits their robustness. Spatio-temporal
models (Alahi et al., 2016; Liang et al., 2022), which integrate temporal dynamics with spatial information, have shown promise in
representing ship behaviours. Yet, most fail to capture trajectory uncertainty, a critical factor for their generalisation and adaptability
in dynamic maritime environments.

Modelling trajectory uncertainty is vital for robust STP. It quantifies prediction confidence, enhances adaptability to dynamic
environments, supports risk assessment, and informs decision-making. However, most existing models neglect this aspect, limiting
their reliability in high-precision applications. Addressing this gap requires innovative methods that integrate uncertainty modelling.

To effectively assess STP performance, commonly used metrics include Average Displacement Error (ADE) and Final Displacement
Error (FDE). ADE quantifies the average deviation between the predicted and actual trajectories across the entire path, while FDE
measures the distance between the predicted and actual endpoint. These metrics provide straightforward and practical methods
for assessing model accuracy. However, in complex maritime environments influenced by diverse factors, relying solely on ADE
and FDE may not fully capture a model’s overall performance. To address this limitation, recent research has emphasised the
adoption of multidimensional evaluation metrics. These advanced metrics offer a broader multidimensional assessment under various
environmental conditions and across different stages of navigation (Li et al., 2024b).

Despite notable advancements in datasets, prediction methods, and evaluation metrics, several critical challenges in STP remain:

(1) Inconsistent data quality: Raw ship trajectory datasets often exhibit inconsistent formats and contain significant errors,
limiting their utility for researchers.

(2) Limited handling of uncertainty: Current prediction models lack robust mechanisms to incorporate trajectory uncertainty,
reducing their adaptability and reliability in dynamic maritime environments.

To tackle these challenges, this paper develops the Spatio-Temporal Graph Transformer with Probability (STGTP). The STGTP
model introduces an effective integration of spatiotemporal features and probabilistic trajectory modelling. It incorporates three
innovative components:

(1) Temporal transformer: Captures dynamic temporal variations in ship movements, enhancing the precision of temporal
modelling.

(2) Spatial transformer: Models complex spatial interactions among ships, improving the understanding of navigational patterns
in congested maritime environments.

(3) Vision transformer: Extracts probabilistic features from Gaussian heatmaps of trajectories, allowing the model to quantify and
incorporate trajectory uncertainties effectively.

A core innovation of the STGTP model lies in its ability to seamlessly integrate temporal features, spatial features, and proba-
bilistic features, thereby effectively addressing the critical need for uncertainty modelling in trajectory prediction. Compared with
traditional models such as Bi-directional GRU (BiGRU) and Bi-directional LSTM (BiLSTM), the proposed model incorporates spatial
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modelling and probabilistic modelling modules, enabling more accurate capture of trajectory changes caused by interactions between
vessels and trajectory deviations resulting from uncertainties. In comparison with existing methods like Spatio-Temporal Graph
Convolutional Network (STGCNN) and Spatio-Temporal Graph Transformer (STAR), the STGTP model demonstrates significant
advantages in capturing trajectory uncertainties, a capability that is particularly crucial in short-term prediction scenarios where
higher demands are placed on the adaptability and robustness of the model. Through this integrated design, the STGTP model
can efficiently capture temporal dynamics, spatial dependencies, and trajectory uncertainties, exhibiting outstanding performance
especially in short-term prediction scenarios. The main contributions of this paper are as follows.

(1) A holistic prediction framework: Develop the STGTP model, a holistic framework integrating temporal, spatial, and proba-
bilistic components to address the complexities of STP in dynamic maritime environments.

(2) Innovative spatiotemporal and probabilistic integration: Combine spatiotemporal feature extraction with probabilistic mod-
elling using Temporal and Spatial Transformers, along with a Vision Transformer for uncertainty quantification, significantly
enhancing predictive accuracy and adaptability.

(3) Validation with real-world datasets: Conduct extensive experiments using AIS datasets from three diverse maritime regions
and systematically compare the STGTP model with ten state-of-the-art (SOTA) methods, demonstrating superior accuracy and
robustness.

(4) Advancing autonomous navigation technologies: Establish a solid foundation for the integration of trajectory prediction and
uncertainty modelling into MASS systems. This will be instrumental in improving the safety and efficiency of maritime
navigation.

More specifically, the paper is structured as follows: Section 2 analyses of current STP methods from ML and DL systems. Section 3
defines the research question and prediction function. Section 4 details the design and implementation of the proposed STGTP
model, outlining the theoretical basis of the temporal, spatial, probability modelling and decoding parts. Section 5 introduces
the experimental datasets, evaluation indicators, result analysis and visualisation results of ablation experiments and control
experiments. Section 6 discusses the paper’s method and points out its applications and potential beneficiaries. Finally, Section 7
summarises the study and discusses future research that will focus on incorporating navigation-specific constraints and dynamic
environmental factors.

2. Literature review
2.1. A systematic review

A systematic literature search was conducted in the Web of Science (WoS) Core Collection database (Mongeon and Paul-Hus,
2016) to investigate advancements and emerging trends in STP in April 2025. The research utilised the keywords ‘ship trajectory
prediction’ and ‘vessel trajectory prediction’, combined with the ‘OR’ operator, yielding a total of 1111 relevant SCI-indexed papers.
Subsequently, 150 highly relevant journal articles were selected for in-depth analysis. Metadata, including authors, titles, journals,
keywords, and abstracts, was systematically extracted from these articles.

To analyse keyword trends and relationships, the CiteSpace software (Chen, 2006) was employed to examine the co-occurrence
of keywords across the selected articles. This analysis produced a thematic keyword clustering map (Fig. 15) and a keyword timeline
visualisation (Fig. 16), providing a systematic overview of the research focus and its evolution.

The research can be broadly categorised into eight key directions, as illustrated in Fig. 15. These directions are further grouped
into three primary categories based on their focus areas.

(1) Automatic Identification System and data processing: This category focuses on research related to #2 AIS data, which is
widely used for analysing ship behaviour and predicting trajectories. Studies, including those by Harati-Mokhtari et al.
(2007), Emmens et al. (2021) and Tichavska et al. (2015), highlight the critical role of AIS data in maritime research. It
supports applications like #3 collision avoidance and situational awareness (Xiao et al., 2015; Svanberg et al., 2019). Due to
its extensive coverage and real-time availability, AIS data continues to serve as a critical resource for STP and a wide range
of maritime applications.

(2) STP Methods: Research directions such as #0 Predictive models, #1 Maritime Route Network, #4 Ship Trajectory Prediction,
#5 Vessel Trajectory Prediction and #1 Prediction Methods primarily focus on improving methods for mining ship trajectory
data (Liu et al., 2025; Li et al., 2019). With technological progress, DL methods have developed rapidly. In particular, GRU
and LSTM networks have attracted strong interest (Suo et al., 2020).

(3) Application Value of Trajectory Prediction: Research directions #3 Collision Avoidance and #6 Vessel State Estimation fully
highlight the critical role of trajectory prediction in ocean transportation and intelligent shipping (Tang et al., 2024; Murray
and Perera, 2019). Vessel State Estimation (#6) aims to estimate the real-time state parameters of ships (e.g., position, speed,
and heading) using trajectory and sensor data Perera et al. (2012). Trajectory prediction also plays a vital role in building
smart shipping systems, supporting autonomous navigation, remote monitoring, and traffic management through big data,
cloud computing, and Internet of Things (IoT) technologies.

As shown in Fig. 15, the eight research categories are closely connected, reflecting the interdisciplinary nature of this field.
Predictive Models (#0)—especially DL models—often rely on AIS data (#2) as input (Yang et al., 2024; Zhang et al., 2021; Li et al.,
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2023b). Overall, research in STP showcases a growing integration of AIS data modelling, DL, and decision-support tools, driving
innovation in maritime navigation, safety, and traffic management. These trends point to the increasing use of SOTA technologies
to tackle the complex challenges in the maritime domain.

As illustrated in Fig. 16, the evolution of STP research can be divided into three key phases:

(1) Early research (2012-2017): This phase laid the foundation for STP, focusing mainly on the use of AIS (#2). Early studies,
such as Yang et al. (2019) and Tu et al. (2017), highlighted the crucial role of AIS in advancing maritime operations. Deng
et al. (2014) used AIS data for ship tracking, demonstrating its potential. Although methods were basic and technically simple,
this period set the stage for later advancements in intelligent maritime technologies.

(2) ML era (2018-2020): This period brought rapid progress in modelling techniques, with #0 Predictive Models becoming a

central topic. ML was widely adopted to improve prediction accuracy (Bi et al., 2024). Related fields, such as #3 collision

avoidance, have also seen advancements. For instance, Singh and Heymann (2020) used ML to detect anomalies in ship
behaviour. This era marked a shift toward more reliable and precise maritime traffic management systems.

DL era (2021-2025): Research shifted toward more advanced models, particularly DL approaches like LSTM and BiLSTM,

which enabled better prediction of complex and dynamic trajectories. For instance, Liu and Ma (2022) combined LSTM with

attention mechanisms for improved accuracy, while Liu et al. (2024b) explored spatio-temporal features. Li et al. (2023a)
evaluated 12 models across three maritime environments, highlighting the adaptability of DL under complex conditions.

@3

=

In summary, STP has evolved from basic AIS-based studies to a sophisticated, application-driven field. Modern research
emphasises advanced data processing, real-time decision-making, and network optimisation, moving from theory to real-world
use. These advancements are enhancing maritime safety and efficiency and supporting the future of smart navigation and traffic
management.

2.2. Research progress of STP

To provide a clear view of how STP methods have evolved, Fig. 1 outlines the development of five main categories of techniques:
(1) Traditional ML methods; (2) LSTM-based methods (including BiLSTM); (3) GRU-based methods (including BiGRU); (4) Attention
mechanism-based methods; (5) Spatio-temporal graph-based methods. Fig. 1 highlights a clear shift from basic models to more
advanced DL and hybrid approaches.
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Fig. 1. Evolution of trajectory prediction approaches: From ML to spatio-temporal deep models.

Early STP methods relied on traditional ML, using statistical models and manual feature engineering. As the field progressed,
DL models like LSTM and GRU became popular due to their strength in handling time-series data.

The introduction of attention mechanisms marked a major improvement by enabling models to focus on key trajectory points
and capture global patterns, thereby improving prediction accuracy. More recently, spatio-temporal graph-based approaches have
emerged, integrating spatial and temporal information to better model complex vessel movements and interactions in dynamic
maritime environments.
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This evolution reflects increasing model sophistication to meet modern maritime needs, where high accuracy and real-time
performance are essential. The transition from simple algorithms to advanced DL and graph-based models has been driven by the
need for smarter, more reliable predictions.

The next section builds on the trends shown in Fig. 1 by comparing how traditional and DL methods perform in real-world
maritime scenarios. It highlights key features of each approach and how they have developed to address practical challenges. These
advancements underscore the growing role of trajectory prediction in ensuring safe and efficient maritime operations.

2.2.1. Research progress of STP based on ML

Early studies on STP initially relied on traditional ML algorithms, including Support Vector Machines (SVM), Gaussian Process
Models, Markov Models, K-Nearest Neighbours (KNN), and Random Forests (RF). Each algorithm demonstrated distinct strengths
suited to specific prediction scenarios, with a summary of the information presented in Table 1.

SVM was widely used for pattern recognition and regression. To improve its performance, researchers applied advanced optimisa-
tion techniques. Researchers applied advanced optimisation algorithms to fine-tune SVM parameters for improved performance. For
instance, Liu et al. (2019) proposed an Adaptive Chaotic Differential Evolution (ACDE) algorithm, and Chen et al. (2021) introduced
a Dimension Learning Grey Wolf Optimisation (DLGWO) algorithm to enhance SVM-based trajectory prediction. However, both
approaches encountered limitations related to small sample sizes and complex parameter tuning. Liu et al. (2020b) proposed an
online multi-output SVR model that worked well with limited data, but its performance still depended heavily on data quality, a
common issue in traditional methods.

Gaussian Processes were also used for regression and probability estimation. For instance, Rong et al. (2019) used Cholesky
decomposition to predict the probability density of ship positions off the Portuguese coast. While effective in managing uncertainty,
this method relied on strong assumptions, limiting its use in complex scenarios.

Markov Models are designed to handle sequential data through hidden states. Zhang et al. (2019) combined the Hidden Markov
Model (HMM) with wavelet analysis to reduce errors and noise effects using the MIT trajectory dataset. Similarly, Guo et al.
(2018) used a higher-order multivariate Markov chain to predict trajectories based on position, speed, and heading—achieving
up to four-hour forecasts but with high computational demands.

KNN predicted future positions by comparing them with historical data. Virjonen et al. (2018) optimised KNN using Leave-One-
Out Cross-Validation (LOOCV) with data from the Gulf of Finland. Although accurate for fixed routes, KNN struggled to generalise
in more dynamic environments.

RF, which combines multiple decision trees, was used for destination prediction. Zhang et al. (2020) extracted features like
position, speed, and ship type to improve RF performance, showing strong results in pattern learning.

While these traditional methods provided a solid foundation by helping with noise reduction, feature selection, and sequence
modelling, they also had limitations. Challenges included reliance on small datasets, complex parameter tuning, and limited
adaptability to changing environments. These issues have since driven the shift toward more flexible and powerful DL approaches.

Table 1
Summary of STP based on ML.
Method Refs Dataset
SVM ACDE Liu et al. (2019) Tianjin Port Area, March 2015
Online Multi-output Liu et al. (2020b) Tianjin Port Area, March 2015
DLGWO Chen et al. (2021) Gulei Port, September—October 2018
KNN Nested LOOCV Virjonen et al. (2018) Finnish Bay, December 2017-January 2018
Gaussian Process Cholesky Decomposition Rong et al. (2019) Cape Roca, October-December 2015
HMM Wavelet Analysis Zhang et al. (2019) MIT Trajectory Dataset
Markov Chain High-order Markov Chain Guo et al. (2018) Wenzhou Marine Data, January 2016-December 2017
RF Feature Selection Zhang et al. (2020) Southeast China Coastal Area, 2011-2017

2.2.2. Research progress of STP based on DL

DL has become the dominant approach in STP, with popular models including LSTM, GRU, attention mechanisms, and
spatio-temporal fusion networks. Each method brings unique strengths for addressing different maritime challenges.

LSTM, a type of Recurrent Neural Network (RNN), is effective for handling long time-series data by overcoming vanishing
gradient issues. The effectiveness of LSTM for STP has been demonstrated in several studies, including those by Ma et al.
(2022), Venskus et al. (2021), and Gao et al. (2021). Furthermore, studies such as Yang et al. (2022), Liu et al. (2020a), and Park
et al. (2021) explored BiLSTM models, reporting significant improvements in prediction accuracy.

GRU is a simpler alternative to LSTM and performs well in time-series forecasting. Bao et al. (2022) demonstrated GRU’s
capacity in long-term ship trajectory forecasting, though its anomaly-handling ability remains limited. Suo et al. (2020) addressed
data redundancy and noise by incorporating DBSCAN and Symmetrised Segment-Path Distance (SSPD) techniques before applying
GRU. Chen et al. (2022) utilised BiGRU for trajectory prediction, while Li et al. (2024c) introduced a triple bidirectional enhanced
network integrating BIGRU and BiLSTM for improved performance.

Attention mechanisms help models focus on key features in the data, improving prediction accuracy. These mechanisms are often
combined with DL models like LSTM and GRU (Xue et al., 2024; Yoo et al., 2024; Li et al., 2024a; Zhao et al., 2024; Li et al., 2024b).
In addition, attention mechanisms have been integrated with CNN, combining the advantages of both to improve performance (Lin
et al., 2023; Liu et al., 2024a; Zhang et al., 2024c; Capobianco et al., 2021).
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Table 2
Summary of DL methods.

Reference Methods Input features

Spatio-Temporal Attention GRU LSTM Longitude Latitude Speed Course Other
Graph

Ma et al. (2022) v
Venskus et al. (2021) v
Gao et al. (2021) v
Yang et al. (2022) v (Bi)
Liu et al. (2020a) v (Bi)
Park et al. (2021) v (Bi)
Li et al. (2024c) v (Bi) v (Bi)
Chen et al. (2022) v (Bi) v
Bao et al. (2022)
Suo et al. (2020) v
Lin et al. (2023)

Li et al. (2024a)

Zhao et al. (2024)

Liu et al. (2024a)

Li et al. (2024b)

Xue et al. (2024)

Yoo et al. (2024)
Capobianco et al. (2021)
Xiao et al. (2024)

Wang et al. (2023a)
Feng et al. (2022)

Wu et al. (2024)

You et al. (2020)

Zhang et al. (2023)
Wang et al. (2023b)
Liang et al. (2022)

Liu et al. (2024b)

Zhang et al. (2024a)
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Spatio-temporal fusion techniques have proven effective in capturing the intricate relationships between spatial and temporal
features in ship trajectory data (Xiao et al., 2024; Wang et al., 2023a). STGCNN has been extensively explored, with Feng et al.
(2022) and Wu et al. (2024) integrating these models with ship dynamics modelling to produce more realistic trajectory predictions.
Short-term STP was addressed by You et al. (2020) using a Sequence to Sequence (Seq2Seq) structure that incorporated spatio-
temporal data. Advanced models, including the sparse multi-graph convolutional hybrid network by Wang et al. (2023b) and the
STGCNN developed by Zhang et al. (2023) and Liang et al. (2022), demonstrate the growing potential in this domain. Noteworthy
contributions also include attention-based spatio-temporal probabilistic trajectory prediction by Liu et al. (2024b) and the integration
of spatio-temporal attention mechanisms with Spectral Temporal Graph Neural Network (StemGNN) for multivariate data extraction,
as proposed by Zhang et al. (2024a).

Table 2 provides a systematic summary of the applications of DL methods in STP, comparing their methods and input features.
Fig. 2 presents statistical insights into the usage and performance of these methods, emphasising the transition from traditional
approaches to sophisticated, real-time, and probabilistic models. These advancements underline the potential of DL in addressing
the complex challenges of maritime trajectory prediction and pave the way for further innovations in this field.

Between 2020 and 2024, the use of latitude and longitude as core features in STP has grown significantly, highlighting their
importance in spatial analysis. However, the combined use of latitude, longitude, and speed has varied over time, and studies that
include heading remain limited—likely due to challenges in data availability. Although multi-feature models are less common, they
can offer valuable insights in specific scenarios.

During the same period, LSTM and GRU models have consistently performed well, especially for capturing long-term patterns.
Attention mechanisms have also gained traction, improving prediction accuracy and adaptability in dynamic maritime settings. More
recently, spatio-temporal graph models have become increasingly popular, particularly in 2023 and 2024, for their ability to model
complex vessel interactions.

Despite these advances, most spatio-temporal models still rely on deterministic predictions, limiting their ability to handle
uncertainty. Probabilistic models address uncertainty but often treat spatial and temporal data separately, which can reduce
prediction consistency. This limits their effectiveness in real-time maritime environments.

Looking ahead, future research should focus on integrating spatio-temporal and probabilistic approaches, improving model
design, and enhancing reliability. These efforts are essential for developing accurate and robust STP models to support safer and
smarter maritime navigation.

3. Preliminary

This section provides a problem definition for STP, followed by a detailed overview of the specific methodology adopted in
this study. The research problem is mathematically formulated to highlight the characteristics and challenges of the task. This
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Fig. 2. Statistics on DL applications.

structured approach facilitates an in-depth understanding of the complexities involved in STP and establishes a coherent framework
for addressing them.

3.1. Problem definition

A ship’s trajectory refers to the path it follows on water, represented as a time-ordered sequence of latitude and longitude
coordinates over time.
A STP problem can be formally defined as follows:

Ppre" = {(Ion’l', lat’l’), (long, lat;), ,(lont"m, lat:’pre)}, (€D)

where P,,.." represents the historical trajectory data of ship n. 7,,, denotes the last observed time step in the historical data.

The goal is to predict the trajectory over the subsequent pred time steps:

n

n _ n n n n n
Pred" = (om, . lat) ) o] polath o) on o polath ), @

where P,,..," denotes the predicted trajectory data of ship n. t € [t
horizon. The prediction interval is set to 10 seconds.

+1,7,,, + pred] represents the time steps within the prediction

pre pre

Specifically, given a sequence of 8 historical trajectory points, the task is to forecast a sequence of 12 future trajectory
points. Using 8 historical trajectory points to predict 12 future points balances short-term accuracy with long-term prediction
capability (Mangalam et al., 2021; Shi et al., 2021). This ratio ensures the model captures essential motion patterns while avoiding
outdated information. It also optimises computational efficiency, providing enough context for reliable prediction without excessive
complexity. The choice is often based on empirical validation, ensuring a good trade-off between accuracy and practicality for
applications like route planning and decision-making.

3.2. Prediction function

As defined in Fig. 3, a prediction function f : P/ — P;'re . is used to generate future predicted trajectories P,:'re , based on the
input historical trajectories P
The input consists of the longitude and latitude coordinates recorded over the past 8 time steps:

P;‘re = {(lon:’_7, lat;’_7), oo (lon]  lat!)}. 3

The output provides the longitude and latitude for the subsequent 12 time steps:

Ppnred = {Uony, . lat}, ), ... (lony), . laty, )} 4
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Input:

History trajectory

Label:

Prediction trajectory

Fig. 3. Visualisation of prediction function.

4. Methodology

4.1. The overall research framework

= N\
Data Preprocessin; i i
Raw Data (_Zhouhan REOTESAIRY A Comprehensive Analysis (" Revese
5 i . ) Normalisation
Abnormal Data Cleaning ! '
i
Caofeidian - - - i [ ADE ] [ FDE ] [ FD ] 1 Eror Visual Analysis
Ship Trajectory Extraction ! | Comparison JSUARATAYE1S

Data Normalisation [ Conclusion and Discussion ] [ Future Development ]

v il g
~
¥ ]
- ) . Ye B
fottial Mode! Compertive Trin  [—s| Bk Validate Model Accuricy? SaveModel ) | Adiust Hyper-
Parameters Experiments Propagation g Parameters
No )
\_ J

(Lst™] [Gru ) (BiGru) ( BiLsT™ ] (STAR] [STGTP| ('STGONN] (Transformer | ( iTransformer | (Mamba ] seq2seq
i
AN
r \
f I

History Vessel trajectory Output T \
ForerYore) t=12,...tre t=tpret+1 ... tprea
pres Ypre — . —
/.,_'—.———.—._ @ Kprea Yprea) -
» {E1
Xpre Yore) . "“.’LI—.' 7 i i
AT 1) |
—® 9 " o @] .,

|
|

|
LB

T
\
H
H
H
1

el —
1
H

H
H
H
H
H
H
H
H
H
H
H
H
|
H
H
H
H
H
H
H
H

H

H

H

:

1

H

H

H

H

1

)

5 v |
Linear Projection ' [ HeatMap ] [ Linear [ Linear
Position Embedding 1
: I 7 I
0 1 2 3 Vision Spatial Temporal Spatial Transformer
4 Transformer Transformer Transformer
\

Transformer Encoder \ - /

Spatial
Transformer

Encoder2

Encoderl —
m*=t = qlk,

S
m*! = qfk,

Globally Average-Pooling
——> oupur :

31 _ T
m*~t = qiks

151" T
mi™t = q1ky

Fig. 4. The overall framework of this paper.

The overall framework of this study, illustrated in Fig. 4, combines data preprocessing, model training, and performance
evaluation to develop an advanced trajectory prediction model, STGTP. The framework begins with a systematic data preprocessing
phase. Raw data collected from various ports, including Zhoushan, Caofeidian, and Tianjin Port, is processed through three main
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steps: abnormal data cleaning, ship trajectory extraction, and data normalisation. These steps ensure the data is reliable, structured,
and consistent, forming a solid foundation for the subsequent modelling process.

The next phase involves comparative experiments and model training, where the processed data is used to train multiple
trajectory prediction models, such as LSTM, GRU, BiGRU, BiLSTM, STAR, STGTP, STGCNN, Transformer, iTransformer, Mamba, and
Seq2Seq. The training workflow includes initialising model parameters, running comparative experiments, and iteratively refining
the models through backpropagation, validation, and hyperparameter adjustments. This iterative process ensures that the models
achieve optimal performance, with the final trained models saved for evaluation once sufficient accuracy is reached.

To evaluate predictive performance, the study employs three key metrics: ADE, FDE, and Fréchet Distance (FD). These metrics
are used to compare the models’ effectiveness, with results visualised through error comparisons, reverse normalisation, and visual
analysis. This systematic evaluation provides detailed insights into model performance and informs the conclusions drawn to guide
future research and development.

To effectively capture the spatio-temporal dynamics of ship trajectories, this study introduces the STGTP model. STGTP is a
multi-step prediction framework based on the Transformer architecture that integrates temporal, spatial, and probabilistic trajectory
information. It employs a Temporal Transformer to model sequential dependencies, a Spatial Transformer enhanced with graph
convolution mechanisms to capture interactions between vessels, and a Vision Transformer to process probabilistic trajectory features
derived from Gaussian heatmaps. This innovative combination enables the model to learn intricate temporal patterns, complex
spatial dependencies, and uncertainties in ship trajectories, resulting in highly accurate predictions.

The STGTP model is designed to overcome the limitations of traditional trajectory prediction models, which often focus solely on
future positions without accounting for movement uncertainties or risk factors. By incorporating risk-aware predictions, the STGTP
model enhances its applicability in high-risk scenarios, such as autonomous vessel operations. It provides robust decision support
for proactive navigation adjustments and real-time collision risk assessments, ensuring safer and more efficient maritime transport.
By capturing the intricate spatio-temporal dynamics and uncertainties associated with ship movements, the STGTP model represents
a significant advancement in trajectory prediction, making it a critical tool for autonomous navigation systems in complex maritime
environments.

4.2. Temporal modelling

The computation of the ‘Temporal Transformer’ is illustrated in Fig. 5. For each ship i, its trajectory from time ¢, is represented

pre
as pl.l, piz, ....p". The position of the ship is encoded into a feature vector E], and temporal dependencies are captured using the
self-attention mechanism. For each embedded feature vector E! in the time series, the Q;, Kl.’ and V,.’ are derived. The attention

scores are subsequently calculated using the following formula:

t et ot Q;KitT '
Artn(Q;, K, V) = softmax T v/, 5)
D

where D represents the dimension of the Q,I" and the softmax function is used to normalise the attention scores. The Multi-head
Self-Attention (MSA) mechanism is calculated as follows:

MSAQQ,K,V) = Concat(hy, .., h,), 6)

where h; = Attn(Q, K, V) represents the attention output for the ith head, and » denotes the number of attention heads in the MSA
mechanism.
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Fig. 5. Illustration of the Temporal Transformer computation.
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4.3. Spatial modelling

The observed trajectories of N ships at each time step # (where ¢ € [0,?,,]) are considered, with the trajectory of ship / at time
t represented as pf. = (lonf.,latf.). Here, lon? and lat; denote the two-dimensional (2D) coordinates of ship i at time .

A spatial graph G, = (V,, E,) is constructed, where V, denotes the set of nodes corresponding to ships as time ¢, and E, captures
the spatial interactions between them. The positions of all ships at time ¢, denoted as p; = (lon},lat}), are first obtained. Spatial
interactions are then modelled by calculating the pairwise distance between ships within the same time period, as defined in Eq. (7).

dis(i, j) = |lon; — lon;| + |lat; — lat;| 7)

During navigation, ships primarily interact within a limited spatial range. To accurately capture these localised spatial
relationships, this paper proposes an adaptive distance module that dynamically computes spatial dependencies between ships and
encodes them into the adjacency matrix A of the spatial graph G,. This module effectively reduces the influence of distant ships,
enabling the model to concentrate on interactions among nearby vessels during the spatial attention process. The pairwise distance
dis(i, j) between ships serves as the input to the adaptive distance module, which is then used to calculate the elements of A. The
operation of this module is defined in Eq. (8):
{ pi; = ReLU(dis(i, )~ 0)

(8)

A — _pi’je/’l’w

ij
where 0 and p are learnable parameters. The parameter 6 defines a distance threshold, indicating that spatial interactions are
considered only when the distance between two ships is less than this threshold. The parameter § controls the sharpness of the
exponential decay, ensuring that edge weights for ships beyond the threshold decrease rapidly—effectively approaching zero and
minimising their influence.

The negative value of 4, ; attenuates the influence of long-distance edges. For edges with a distance greater than a, their weights
tend to be negative infinity. During the calculation of spatial attention, after computing Q, ; KI.TJ., A;; is added, and then softmax
is applied. This ensures that the attention scores between ships that are far apart are zero, thereby retaining only the interactions
between nearby ships.

In the ‘Spatial Transformer’, a Transformer-based Graph Convolution (TGConv) is utilised to model spatial interactions among
ships. At each time step ¢, message passing occurs based on the interaction graph G,. The ship trajectories at time 7, represented
as pj,p,, ..., pl, are transformed into feature embeddings E;. These embeddings capture temporal dependencies through the self-
attention mechanism. For each embedding El.’ in the time series, Q;, K;, and V; are generated. Then, the attention scores are calculated
using the following formula:

softmax (Q,-KiT + A) V;
VD ’

The computation process of the spatial Transformer is illustrated in Fig. 6.
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Fig. 6. Spatial transformer module: Computational workflow illustration.
4.4. Probabilistic modelling
Ship trajectories often exhibit characteristics similar to Gaussian distributions (Gao et al., 2021). The random errors observed
in these trajectories arise from the accumulation of numerous small, independent disturbances, such as water currents and wind-
induced waves. According to the Central Limit Theorem, the aggregation of such independent disturbances results in a distribution

that closely approximates a Gaussian form. This makes the Gaussian model particularly well-suited for capturing the statistical

10
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properties of trajectory noise. In this paper, a 2D Gaussian distribution is employed to model the position of a ship at a given time.
The coordinates (/on, lat) represent a point in the two-dimensional spatial plane, where y,,, and y,, are the mean values along the
lon- and lat-axes, corresponding to the ship’s expected central location. The standard deviations o,,, and o,, define the spread of
the distribution in each direction, effectively capturing the positional uncertainty (Mangalam et al., 2021).

The probability of a ship appearing at position (lon,lat), given the parameters py,,, 44 Clon> Ora» 1S €Xpressed as
Plon, lat| 1, Higrs Orons O14:)- At any time 1, this distribution provides a probabilistic representation of the ship’s location, where the
highest probability is centred at (y;,,. #;,;) and gradually decreases as the distance from this central point increases. Consequently,
the trajectory probability is formulated as:

1 (lon — wyp®  (lat = iy
P(lon, lat| ;. Uigps Grons =— - + ’ 10
(0}1 a |Ml(m Hiat>Olon O-lat) Z”Glono-lat exp< < 2 2 2, 2 ( )

O-lon Ulat
At each observed time step #,,,, a unique Gaussian distribution is employed to model the ship’s position at that specific moment.
As a result, the entire trajectory of the ship over the observed period can be represented as a sequence of these Gaussian distributions.
By aggregating the probability densities across all time steps, a cumulative probability distribution is formed, capturing the likelihood
of the ship’s presence at various locations over time. This cumulative probability distribution for the full trajectory is mathematically
expressed as:

T
Proa(lon, lat) = Z P(lon, lat|u} . 4} .0}, Cru): (11)
=1
where T represents the number of prediction time steps, (4] . #;,) represents the central position of the ship at the rth time step,
specifically indicating the mean position of the ship at time 7.

The cumulative probability distribution formula quantifies the probability density of the ship along its entire trajectory. At each
time step ¢, the ship’s position is characterised by a 2D Gaussian distribution, centred at (4], 4 ), which represents the most likely
location of the ship at that moment. This distribution captures the probability of the ship being located near (4, , ] ) at that specific
time step. By combining this positional information with Eq. (11), the resulting probabilistic trajectory map X is generated, offering
a representation of the ship’s movement pattern over time.
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Fig. 7. Schematic of the Probability Transformer computation.

As illustrated in Fig. 7, the probability trajectory is calculated using a Transformer model. The Vision Transformer processes the
image X € RBXHXWXC by segmenting it into a sequence of image patches.

X, = Reshape(Flatten(Conu(X))), X, € REXNX(P*C), a2)
The sequence of image patches is embedded with positional encodings E.

pos
0
z0.

using Eq. (13), resulting in the initial representation

0 _
Z0=X,+E

pos>

Zto c RBXNX(PZ-C)’ (13)

The Transformer layers utilise a MSA to process sequential data effectively. By applying Eq. (14), the input sequence, enriched
with positional encodings Z~, is iteratively transformed through L layers of the Transformer architecture, ultimately generating the
refined output representation ZF.

Z!' = MSA(Norm(Z!=" ) + /7', Z! e RBXNPRO 1= [, (14)

where M S A denotes the MSA and Norm represents layer normalisation. Using Egs. (15) and (16), the sequence Z} undergoes global
average pooling to generate Z,. This is subsequently passed through a MLP to produce the embedding E!.

N

Z,=Y Norm(Z)), Z,eR¥<PO, (15)
i=0
Z=MLP(Z,), ZecR5 (16)

11
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4.5. Prediction step

The STGTP model utilises a two-layer encoder to sequentially process temporal and spatial information. In the first encoder,
a ‘Temporal Transformer’ extracts temporal dependencies, while a ‘Spatial Transformer’ captures interactions between ships.
Additionally, trajectory probabilities are represented using a 2D Gaussian distribution-based probability trajectory heatmap, as
elaborated below.

T! = TransformerEncoder(E:),

i

S!' = TGConu(E}), a7

i

P = VisionTransformer(Pl.’(lon, lat)).

1
The features T/, S}, and P/ are concatenated and passed through a Linear layer for feature fusion, as calculated below:

E! = Linear(Concat(T!, ', P")), (18)

The second encoder first applies the ‘Spatial Transformer’ for encoding, followed by the ‘Temporal Transformer’ for further
encoding, as shown below:

EI.’N = Linear(TransformerEncoder(TGConU(E;/ ), (19)

STGTP encodes the features to obtain E,?" using the feature fusion encoder, then decodes the result by adding Gaussian noise ¢,
along with additional Gaussian noise o:

P = Linear(E,.'” +¢), (20)

i

where P! corresponds to ¢ € [0, and E{” corresponds to " € [t,,, + 1,1,,,,]. The algorithm performs multi-step prediction.

])
pre
The STGTP model is trained using the Mean Squared Error (MSE) loss function. The MSE is formulated as follows:

pre

T
M SE(on,,lat, lon,lat,) = % Y (Uon, — lon,)* + (lat, - Lat))?), (21)
t=1

where T represents the total prediction duration, /at, and lon, are the model predictions for the longitude and latitude at time 7, and
lat, and lon, are the true values at time 7. By minimising MSE, the model’s predictions are as close to the true values as possible.

The pseudocode for the proposed STGTP model is as follows:
Algorithm 1 STGTP

Input: A training set Traj = (lon;,lat;),i = 1,2,---,n and learning rate n
Output: A Well-trained STGTP model

1: Embedding Layer: Emb = Linear(2, 32)

2: Spatial Encoder: Senc = TGConv(emsize, nhead, nlayers)

3: Temporal Encoder: Tenc = TransformerEncoder(emsize, nhead, nlayers)

4: Probability Encoder: Penc = Vision Transformer (emsize, nhead, nlayers)
5: Output Layer: Decoder = Linear(64, 2)
6
7
8
9

: Feature Fusion: Fusion = Linear(64, 32)
: Time Prediction Output: Pred = Linear(t ., ,.4)
: for all epoch = 1:N do

for all (lon;,lat;) in Traj do

10: emb = Emb(/on;, lat;)

11: Tembl = Tenc(emb) // Temporal Embedding

12: Sembl = Senc(emb, mask) // Spatial Embedding

13: Pembl = Penc(emb) // Probability Embedding

14: Featfusion = Fusion(Concat((Temb1, Semb1, Pemb1), dim=2)) // Feature fusion
15: Semb2 = Senc(Featfusion, mask) // Spatial Embedding

16: Temb2 = Concat((Temb1, Semb2), dim=2)
17: Temb3 = Tenc(Temb2) // Temporal Embedding

18: Wnoise = Concat((Temb3, noise), dim=2) // Add noise

19: Output = Pred(Decoder(Wnoise.permute(1, 2, 0)).permute(2, 0, 1)) // Decode the result
20: Loss = MSE(output, label);// Calculate MSE lost

21: Loss.backward() // Back propagation of loss

22: optimiser.step() // Update parameters with optimiser

23:  end for

24: end for

12
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5. Experimental results and analysis

5.1. Experimental datasets and dataset preprocessing

To assess and validate the predictive performance of the STGTP model, AIS trajectory datasets from three distinct maritime
regions (i.e., Caofeidian, Zhoushan, and Tianjin Port) are utilised. These regions, located along different coastal areas of China,
present unique geographical and economic characteristics, providing a diverse range of scenarios for evaluating the model’s
effectiveness. The selection includes Caofeidian, a natural deep-water port; Zhoushan, a major maritime transportation hub; and
Tianjin Port, one of China’s largest ports. Each dataset was collected over different timeframes to capture regional variations in
vessel movements and operational complexities. A description of the area represented by each AIS dataset is as follows:

Caofeidian stands out for its naturally deep waters, which make it well-suited for large-scale port operations and capable of
handling the world’s largest vessels. Its close proximity to major cities like Beijing and Tianjin enhances its strategic value as a
logistics hub within the Beijing-Tianjin-Hebei economic zone. The AIS data used for this area were collected in June 2018, covering
latitudes from 38° 72'N to 39° 10’N and longitudes from 118° 25’E to 118° 92'E.

Zhoushan, situated along China’s eastern coast, plays a crucial role in maritime transport due to its advantageous location and
deep-water port capacity. It hosts one of the world’s largest oil transshipment hubs, accommodating high volumes of vessel traffic
thanks to its unrestricted access for inbound and outbound ships. The AIS data for Zhoushan were collected in April 2018, spanning
29° 56/N to 31° 10’'N in latitude and 121° 51’E to 123° 61’E in longitude.

Tianjin Port, one of China’s busiest, serves as a vital gateway for international trade in northern China and the broader Bohai
Economic Rim. It handles a wide variety of cargo types, including bulk goods and containers. AIS data for Tianjin were gathered in
January 2018, covering latitudes from 38° 75'N to 39° 05’'N and longitudes from 117° 72’E to 118° 67’E.
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(b) Distribution of trajectory lengths.

Fig. 8. Statistics of the three datasets.

As illustrated in Fig. 8, the top row presents histograms of the time intervals between adjacent AIS points for ship trajectories
in the Caofeidian, Tianjin Port, and Zhoushan waters. These distributions show that most AIS data points are recorded at intervals
of 0-20 s, indicating relatively high-frequency tracking in general. However, a notable proportion of samples exhibit irregular or
longer time intervals, highlighting the necessity of the interpolation step included in the data preprocessing pipeline.

13
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Fig. 8(b) shows the distribution of trajectory lengths, measured by the number of AIS points per trajectory, across the three port
areas. In the Caofeidian and Tianjin Port datasets, the majority of trajectories are relatively short, with a steep decline in frequency
after 60 data points. In contrast, the Zhoushan dataset presents a wider and more evenly distributed range of trajectory lengths,
suggesting greater diversity in vessel movement patterns.

AIS Dataset Outlier Removal Interpolation for

Consistent Time Intervals

Linear
Interpolation

Excessively
Short Lengths

10s

Train(70%)

Data [ Val(20%) Dataset J
normalisation Test(10%)
Data visualisation Dataset splitting

Fig. 9. Overview of AIS data preprocessing steps.

In this study, the model predicts a ship’s future positions over the next 12 time steps based on data from the preceding 8
consecutive time steps. Given the inherent irregularities and potential anomalies in raw AIS data—such as inconsistent time intervals
and outlier trajectories—a dedicated preprocessing pipeline is employed to enhance data reliability and improve model performance.
This pipeline, illustrated in Fig. 9, includes the following steps:

(1) Outlier removal. To enhance data quality and minimise errors, abnormal trajectory points are identified and filtered out.
Specifically, trajectory segments with excessively short lengths or evident anomalies are removed to eliminate noise and ensure that
the model is trained on reliable trajectory data.

(2) Interpolation for consistent time intervals. As AIS data is often recorded at inconsistent time intervals, linear interpolation is
applied separately to longitude and latitude values. This process standardises the time intervals between data points, ensuring that
the model operates on a uniform temporal scale, which is crucial for improving the accuracy of time-series predictions.

(3) Dataset splitting for model training and evaluation. To facilitate rigorous training and evaluation, the dataset comprising ship
trajectories from three distinct maritime regions is divided into training, validation, and test sets using a 7:2:1 ratio based on the
number of ships (Table 3). This structured division ensures that the dataset is appropriately allocated for model development and
evaluation. It provides sufficient data for training the model, a dedicated validation set for hyperparameter tuning and performance
monitoring, and a test set to assess the model’s generalisation ability across diverse maritime environments.

(4) Trajectory data visualisation. Fig. 10 presents visualisation results of the trajectory data across the three maritime regions.
These visualisation results provide insights into regional trajectory characteristics, highlighting potential factors—such as geo-
graphical complexity and traffic density—that may influence model performance. This step aids in understanding how the spatial
distribution of ship movements affects trajectory prediction accuracy.

(5) Data normalisation. To ensure feature consistency and prevent dominant features from skewing the model, min-max
normalisation is applied to both the training and test sets. This method scales all features to the range [0, 1], ensuring uniform
feature magnitudes. Specifically, for longitude (/on) and latitude (/at), the min-max normalisation formula is used to standardise
their values, facilitating more stable and efficient model training.

lat — lat.;
Jat! = —= — @ min 22)

- lonmin latmax - latmin ’

lon — lon;,

lon =

l ONpax

where lon and lat are the original values, and lon’ and lat’ are the normalised values within the range [0, 1].
By implementing these preprocessing steps, the dataset is refined to optimise model learning and ensure robust and generalisable
trajectory predictions across diverse maritime environments.

Table 3
The associated datasets in three water areas.

Water areas Longitude Range Latitude Range Time Number of ship trajectories Number of time-stamped points
Caofeidian 118°25'E - 118°92'E 38°72'N - 39°10'N 2018-06-01~10 594 500719
Zhoushan 121°51'E - 123°61'E 29°56’N - 31°10'N 2018-04-23,24 1277 2067920
Tianjin Port 117°72'E - 118°67'E 38°75'N - 39°05'N 2018-01 786 1156947

5.2. Description of comparison method

Table 4 provides a summary of the ten comparison methods utilised in this paper. The ten models compared in this study are
grouped into three main categories: Time-Series Models (GRU, LSTM, BiLSTM, BiGRU, and Seq2Seq), Transformer-Based Models
(Transformer, iTransformer, and Mamba), and Spatio-Temporal Feature Models (STGCNN and STAR). Each category offers distinct
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Fig. 10. Visualisation of the three datasets.

advantages depending on the specific demands of STP, striking different trade-offs between prediction accuracy, computational
efficiency, and the capacity to capture spatial-temporal dependencies.

5.3. Evaluation indexes

The prediction accuracy of the eleven models is assessed using three key metrics: FD, ADE, and FDE (Jiao et al., 2025).
Specifically, lon, and /at, indicates the actual value of the rth data point, lon, and lat, denote the predicted value, and T is the
total number of data points.

Unlike traditional distance metrics that consider only individual points, FD captures the overall shape of the trajectory, providing
a more detailed evaluation of prediction accuracy. This metric effectively highlights the trajectory segments where the predicted
path diverges most from the real one.

FD metric is used to measure the spatial similarity between predicted and actual trajectories by focusing on their alignment at
corresponding points. It quantifies the maximum deviation between the two trajectories, making it particularly sensitive to significant
errors. Unlike traditional distance metrics that consider only individual points, FD captures the overall shape of the trajectory,
providing a more detailed evaluation of prediction accuracy. This metric effectively highlights the trajectory segments where the
predicted path diverges most from the real one. The mathematical formulation of FD is provided in Eq. (23).

FD = min max \/(lat, — lat,)? + (lon, — lon,)? (23)

r€lly t=1
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Table 4
Comparative analysis of baseline models.
Model Type Key Feature Strength Limitation
GRU RNN variant Simplifies RNN architecture, Computationally efficient and Less effective than LSTM for
reducing parameters and well-suited for short sequence modelling long sequences.
mitigating the vanishing gradient = modelling tasks.
problem.
LSTM RNN variant RNN with memory cells and Effective for long sequences. May be outperformed by GRU on
gating mechanisms. short sequences.
BiLSTM LSTM variant Integrates bidirectional context by Provides high accuracy in Higher computational cost and
sequentially processing input data context-rich tasks. longer training time than
in both forward and backward unidirectional LSTM.
directions.
BiGRU GRU variant Combines GRU’s efficiency with Balances computational efficiency Less effective than BiLSTM in
bidirectional processing, using and bidirectional modelling capturing deep contextual
fewer parameters than BiLSTM. capabilities. dependencies.
Seq2Seq Encoder decoder Uses an encoder to compress Effective for sequence-to-sequence Limited performance on long-term
architecture input sequences and a decoder to tasks, with partial parallelisability. dependencies.
generate outputs, often with
teacher forcing.
iTransformer Transformer Enhances interpretability of Improves interpretability in No significant reduction in
variant attention weight distribution sequential data modelling. computational complexity or
while retaining Transformer efficiency gains over standard
performance. Transformers.
Mamba Linear time Optimises computation via state Extremely fast inference for large Less effective at generalisation and
sequence model space models, enabling linear datasets. complex pattern recognition
time scaling. compared to Transformers.
Transformer Attention Based Uses self-attention to model Achieves outstanding performance in ~ Computationally intensive for long
long-range dependencies and modelling long-range dependencies, input sequences due to self-attention
positional encoding for sequence  leveraging parallelised training for mechanisms.
order. computational efficiency.
STGCNN Graph-Based Models spatial relationships via Performs well in tasks involving Less adaptable to non-graph-based
CNN graphs and captures temporal social or spatial interactions. spatial data.
dependencies with convolution.
STAR Graph-Based Explicitly models spatial and Offers more comprehensive Higher computational complexity.

Transformer

temporal dependencies
simultaneously.

predictions for spatio-temporal
modelling.

ADE metric calculates the average distance between the predicted and ground-truth trajectories, providing an overall assessment
of trajectory similarity. This metric offers insights into the global accuracy of the model’s predictions, making it a key indicator of
model stability. A lower ADE value indicates that the predicted trajectory closely follows the real movement pattern. The formula
is shown in Eq. (24):

T
ADE = L+ D \/ (at, - lat,)% + (lon, — lon,)?, 24

T
=1
FDE metric focuses on the error between the predicted and ground-truth final positions of a ship’s trajectory. It specifically
quantifies the endpoint error, making it particularly relevant for applications requiring precise final location predictions, such as

docking or collision avoidance. The formula is shown in Eq. (25):

FDE = \/ (laty — laty)? + (long — long)?, (25)

Together, FD captures the maximum deviation along the trajectory, highlighting areas with significant discrepancies. ADE
assesses the overall trajectory consistency, ensuring that the predicted path aligns with the actual movement. FDE focuses on
endpoint accuracy, which is essential for precise navigation tasks. By combining these three metrics, the evaluation framework
enables a thorough analysis of prediction performance, facilitating further model refinement and optimisation.

5.4. Experimental setting

All eleven models are implemented using the PyTorch framework. During training, the Adam optimiser is used to update the
model parameters.

Table 5 shows the hyperparameters used to train the STGTP model. All experiments were conducted on a system with a 2.40 GHz,
12-core Intel(R) Xeon(R) Silver 4214R CPU, an RTX 3080 Ti (12 GB), running Ubuntu 20.04 (64-bit). The models were trained in
a Python 3.8 environment using PyTorch 2.0.0 and CUDA 11.8.
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Table 5
Hypreparameter setting.
Learning Rate Epoch Dropout Hidden size Temporal transformer Spatial transformer Vision transformer
hidden layer hidden layer hidden layer
le-5 100 0.1 32 2 2 2
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Fig. 11. Visualisation of experimental results in the Caofeidian area.

5.5. Visualisation of prediction results

Figs. 11, 12 and 13 present trajectory visualisation results for three representative maritime regions: Caofeidian, Tianjin Port,
and Zhoushan. In each region, three representative ship trajectories were selected to evaluate the performance of ten SOTA
prediction models, including Transformer, BiGRU, Mamba, STAR, STGCNN, and the proposed STGTP model. To further highlight
key performance differences, a comparative analysis was conducted between the top six models.

In Fig. 11, ship trajectories in the Caofeidian area exhibit significant complexity, characterised by frequent path changes and
turning points. The STGTP model demonstrates a clear advantage, as its predicted trajectories closely align with the real trajectories,
particularly at sharp turns and intricate curves. In contrast, models such as Transformer, BIGRU, and Mamba show substantial
deviations at turning points, while STAR, STGCNN, and STGTP exhibit improved precision. These results underscore the importance
of robust spatial modelling in achieving more accurate trajectory predictions.

Fig. 12 presents Zhoushan trajectories, which include both straight paths and complex multi-turn routes. Compared to advanced
models such as STAR, BiGRU, Mamba, GRU, and STGCNN, the STGTP model achieves superior alignment with actual ship
movements in both local details and overall trends. Visual analysis reveals that alternative models struggle with prediction delays
and deviations, especially during abrupt trajectory changes or sharp turns. However, STGTP effectively adapts to these dynamic
variations, demonstrating the benefits of probabilistic modelling in handling unpredictable movement patterns.

In Fig. 13, the Tianjin Port water area is analysed, where representative trajectories include curved paths of ships approaching
berths at reduced speeds and straight routes of departing ships at higher speeds. The visual results indicate that in complex trajectory
scenarios, the STGTP model significantly outperforms methods such as Transformer, BiGRU, Mamba, GRU, and STGCNN, producing
predictions that more closely match actual trajectories. By integrating spatial and probabilistic modelling, the STGTP model enhances
prediction accuracy and robustness, particularly in dynamic and congested maritime environments.

Through systematic trajectory prediction analyses across Caofeidian, Tianjin Port, and Zhoushan, the STGTP model consistently
demonstrates superior performance in diverse maritime environments. Compared to SOTA models such as Transformer, BiGRU,
Mamba, and STAR, STGTP exhibits greater robustness and accuracy, effectively capturing both global trajectory dynamics and
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Fig. 12. Visualisation of experimental results in the Zhoushan area.

subtle local variations. These findings highlight the model’s practical applicability in STP and its potential for real-world maritime
navigation, autonomous vessel planning, and traffic management systems.

5.6. Comparative analysis

As presented in Table 6 and Fig. 14, a comparative evaluation was conducted to assess the performance of multiple trajectory
prediction models across three maritime datasets: Caofeidian, Zhoushan, and Tianjin Port, using three key metrics: ADE, FDE, and
FD.

The STGTP model achieves the best performance across all three metrics on the Caofeidian dataset, with ADE = 0.0737, FDE =
0.0725, and FD = 0.1289, significantly outperforming competing models such as STGCNN and Transformer. The Caofeidian waters
are characterised by strong water flow variations and complex marine environmental factors, which demand high precision in
trajectory predictions. The STGTP model, by integrating probabilistic modelling, effectively captures spatio-temporal dependencies,
allowing it to adapt to dynamic environmental conditions and optimise path prediction. In contrast, models that lack temporal
or spatial feature integration (e.g., LSTM, BiLSTM, and Transformer) exhibit weaker performance, struggling to account for the
complexity of the maritime environment and leading to higher trajectory deviations.

The Zhoushan water area, a major shipping hub, experiences dense vessel traffic, substantial tidal variations, and high cargo
throughput, making it one of the most dynamic maritime environments. On this dataset, STGTP demonstrates superior predictive
accuracy, achieving the lowest values for ADE (0.0312), FDE (0.0234), and FD (0.0621). Given the rapidly changing traffic patterns,
probabilistic modelling plays a key role in accurately predicting vessel movements by incorporating uncertainty into the predictions.
Compared to other models, STGTP exhibits enhanced robustness and adaptability, particularly in high-density maritime traffic
scenarios where conventional models struggle to maintain predictive stability.

In the Tianjin Port dataset, the STGTP model outperforms the other 10 methods, achieving the best performance in ADE (0.0366)
and FD (0.0250), as well as FD (0.0699). Tianjin Port, as a complex artificial port environment, presents challenges such as intricate
port infrastructure, dynamic waterway layouts, and frequent vessel manoeuvring. The integration of probabilistic modelling in
STGTP proves particularly valuable in adapting to uncertainties caused by rapidly changing shipping lanes, vessel arrivals and
departures, and human-induced disruptions, ensuring stable and precise trajectory predictions.
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Fig. 13. Visualisation of experimental results in the Tianjin Port area.

To evaluate the efficiency of STGTP in comparison with ten other models, Table 6 presents the number of parameters and
Floating-Point Operations Per Second (FLOPS) for each method. STGTP exhibits a relatively low parameter count (0.079 Million)
and moderate computational complexity (0.12 Giga Operations Per Second (GOPS) FLOPS), while still maintaining a strong balance
between performance and efficiency. Notably, it requires fewer resources than traditional models such as BiGRU, BiLSTM, GRU, and
LSTM.

Regarding prediction accuracy, STGTP consistently achieves the best results across all three maritime datasets (Caofeidian,
Zhoushan, and Tianjin Port). It records the lowest values in all three key evaluation metrics: ADE, FDE, and FD. These results
highlight STGTP’s effectiveness in capturing complex trajectory dependencies through the integration of spatial, temporal, and
probabilistic modelling components.

By effectively adapting to the distinct characteristics of different water areas, STGTP proves to be highly robust and reliable.
In natural deep-water zones (Caofeidian), it accounts for environmental variations, in high-traffic shipping hubs (Zhoushan), it
adapts to dynamic congestion patterns, and in artificial port environments (Tianjin Port), it accommodates structural uncertainties.
These results indicate that STGTP delivers high-precision predictions while also demonstrating commendable efficiency, making it
a powerful tool for real-world maritime applications.

5.7. Ablation experiments
This section compares STGTP with its three variants across all datasets to verify the effectiveness of the STGTP model.
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Table 6
Evaluation results of eleven predictive models.
Model Param FLOPS Caofeidian Zhoushan Tianjin Port
ADE FDE FD ADE FDE FD ADE FDE FD
BiGRU 0.104M 0.055G 0.1019 0.1177 0.1772 0.0445 0.0351 0.0762 0.0529 0.0660 0.0948
BiLSTM 0.139M 0.073G 0.1367 0.2331 0.2732 0.0615 0.0864 0.1134 0.1589 0.3280 0.3463
GRU 0.040M 0.021G 0.1223 0.1708 0.2171 0.0446 0.0441 0.0769 0.0470 0.0478 0.0818
LSTM 0.204M 0.106G 0.1456 0.1888 0.2440 0.0785 0.1030 0.1341 0.1539 0.2438 0.2712
Mamba 0.056M 0.115G 0.1177 0.2344 0.2687 0.0382 0.0690 0.0882 0.0473 0.0884 0.1085
Seq2Seq 0.213G 0.409M 0.1189 0.1698 0.2181 0.0557 0.0535 0.0972 0.1250 0.2307 0.2530
Transformer 0.054G 0.017M 0.0983 0.0957 0.1679 0.0489 0.0309 0.086G 0.0607 0.0645 0.1178
iTransformer 0.071G 0.137M 0.1287 0.2411 0.2499 0.0735 0.1364 0.1461 0.0734 0.1268 0.1359
STGCNN 0.001G 0.002M 0.0758 0.0771 0.1316 0.0373 0.0329 0.0681 0.0403 0.0306 0.0712
STAR 0.010G 0.005M 0.0991 0.1267 0.1818 0.0383 0.0337 0.0734 0.0615 0.0600 0.1058
STGTP 0.079G 0.012M 0.0737 0.0725 0.1289 0.0312 0.0234 0.0621 0.0366 0.0250 0.0699
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Fig. 14. Comparative analysis of eleven prediction models.

» STGTP-w/0-SP: Utilises only temporal modelling, without incorporating spatial or probabilistic modelling.

» STGTP-w/o0-P: Integrates temporal and spatial modelling, but omits probabilistic modelling.

+ STGTP-w/0-S: Combines temporal and probabilistic modelling, without leveraging spatial modelling.

+ STGTP-w/-Noise: Adds noise to the data or during the training process of the fully integrated STGTP model.

» STGTP-w/-MDN: Incorporates Mixture Density Networks (MDN) to model the output of STGTP as probability distributions

over trajectory points.
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+ STGTP: Fully integrates temporal, spatial, and probabilistic modelling, serving as the complete model.

A comparative evaluation was conducted using ADE, FDE, and FD metrics, with the results summarised in Table 7. The following
key insights were derived:

The STGTP model consistently outperforms all ablation variants, confirming the effectiveness of integrating temporal, spatial, and
probabilistic modelling. The combination of these three components enables a multidimensional representation of ship trajectories,
leading to enhanced prediction accuracy.

The STGTP-w/0-S model is better than STGTP-w/0-SP in the ADE index of Tianjin Port, and the STGTP-w/0-P model is better
than STGTP-w/0-SP in the ADE index of Caofeidian and ZhouShan. This shows that combining temporal modelling with spatial or
probabilistic modelling can significantly improve the model’s ability to capture global dependencies and improve the accuracy of
trajectory predictions.

Interestingly, STGTP-w/0-SP achieves better FDE performance than STGTP-w/0-S and STGTP-w/o-P in all datasets. This suggests
that relying solely on spatial or probabilistic modelling may introduce certain biases or lead to overfitting, affecting the accuracy
of the final predicted position.

The influence of spatial and probabilistic modelling varies across different maritime regions, reflecting the distinct navigational
complexities in each area. In Zhoushan, the STGTP-w/o-P model outperforms STGTP-w/0-S, suggesting that spatial modelling plays a
more significant role in improving trajectory prediction accuracy in these regions. Conversely, in Tianjin Port, STGTP-w/0-S achieves
better results than STGTP-w/o0-P, indicating that probabilistic modelling is more crucial for accurate predictions in this specific
maritime environment.

These findings demonstrate that each modelling component contributes uniquely to overall prediction performance, and their
effectiveness depends on regional maritime conditions. The fully integrated STGTP model provides the most systematic and accurate
trajectory predictions, making it the preferred choice for complex maritime navigation scenarios.

This study further enhances the proposed framework by integrating a Mixture Density Network (MDN) to generate probabilistic
predictions of trajectory points. Experimental results reveal that the inclusion of MDN leads to scenario-dependent performance.
In certain cases, it improves prediction accuracy—for instance, achieving an FD score of 0.1165 in the Caofeidian scenario,
outperforming all other model variants. However, in other scenarios such as Tianjin Port and Zhoushan, the MDN-integrated model
shows notable performance degradation, with significantly worse ADE, FDE, and FD metrics compared to the full STGTP model.

To assess the model’s generalisation ability under noisy conditions, Gaussian noise (4 = 0,0 = 0.001) was added to the original
dataset to simulate GPS drift and AIS device errors. Results show that the STGTP model is highly robust to such noise, with ADE
increasing by only 1% in Caofeidian and Tianjin Port, and 4% in Zhoushan. These findings confirm the model’s reliability and
applicability in real-world maritime environments, where sensor noise and data imperfections are common.

Table 7
Ablation experiments.

Evaluation indexes Model Caofeidian Tianjin Port Zhoushan

ADE STGTP-w/0-SP 0.1114 0.0551 0.0409
STGTP-w/0-S 0.1075 0.0531 0.0431
STGTP-w/o0-P 0.0991 0.0637 0.0405
STGTP-w/-MDN 0.1096 0.0667 0.0587
STGTP-w/-Noise 0.0748 0.0370 0.0325
STGTP 0.0737 0.0366 0.0312

FDE STGTP-w/0-SP 0.0997 0.0497 0.0311
STGTP-w/0-S 0.1277 0.0518 0.0444
STGTP-w/o0-P 0.1296 0.0638 0.0757
STGTP-w/-MDN 0.1223 0.0888 0.0678
STGTP-w/-Noise 0.0755 0.0265 0.0325
STGTP 0.0725 0.0250 0.0234

FD STGTP-w/0-SP 0.1899 0.0906 0.0749
STGTP-w/0-S 0.1800 0.0919 0.0787
STGTP-w/o-P 0.1826 0.1089 0.0734
STGTP-w/-MDN 0.1165 0.1881 0.1005
STGTP-w/-Noise 0.1299 0.0699 0.0730
STGTP 0.1289 0.0621 0.0699

6. Discussion and implications
6.1. Discussion

The STGTP model represents a significant advancement by integrating temporal, spatial, and probabilistic modelling into
a unified framework. This holistic approach is designed to address the complexities and uncertainties of real-world maritime
environments more effectively than models that focus on a single aspect.

(1) Temporal modelling. STGTP employs a Temporal Transformer to model temporal dependencies in ship movement data. This
component enables the model to dynamically capture changes in ship behaviour over time, particularly in response to external
factors such as environmental conditions or operational shifts. Compared to widely used temporal models like GRU, Transformer,
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Table 8
Key input features used in different transportation domains.
Feature type Maritime scenario Aviation scenario Autonomous driving
Time features Ship’s latitude and longitude Aircraft’s latitude, longitude, and Vehicle’s latitude and
altitude longitude
Spatial features Ship proximity Predefined aircraft proximity along Feasible or legally permitted
the route lane changes
Uncertainty features 2D Gaussian distribution of ship 3D Gaussian distribution of aircraft 2D Gaussian distribution of
positions on the horizontal plane positions in space vehicle positions

iTransformer, and Mamba, STGTP demonstrates improved prediction accuracy, particularly for short-term forecasting. However,
the increased complexity of the Transformer-based temporal architecture leads to higher computational demands, especially when
compared to lightweight alternatives such as GRU.

(2) Spatial modelling. To account for interactions between ships, particularly in congested or high-traffic regions, STGTP
incorporates TGConv. This allows the model to effectively learn spatial dependencies and relational dynamics between vessels.
The inclusion of a spatial attention mechanism further enhances the model’s ability to recognise and respond to patterns such as
directional movement, proximity-based influence, and collision avoidance. Compared to spatial models like STGCNN, which also use
graph convolution for spatial awareness, STGTP offers improved accuracy in predicting ship trajectories in multi-agent scenarios.
However, this comes at the cost of greater computational complexity and increased training time due to the combined use of attention
mechanisms and graph-based operations.

(3) Uncertainty modelling. STGTP addresses the limitations of deterministic prediction by incorporating Gaussian heatmaps and
a Vision Transformer for probabilistic trajectory estimation. This component enables the model to represent predicted ship positions
as probability distributions, which is especially valuable for risk assessment and decision-making in uncertain or dynamic maritime
environments. In contrast to traditional models that output a single fixed trajectory, this probabilistic approach allows the system to
evaluate confidence levels and potential deviations, making it more suitable for applications in autonomous shipping and real-time
maritime navigation. However, the additional uncertainty modelling module increases the model’s overall complexity and training
requirements.

(4) Systematic experiments. To validate the performance of STGTP, this study conducted a systematic comparison between
STGTP and ten baseline models across three core evaluation metrics: ADE, FDE, and FD. The experimental results demonstrate
that STGTP significantly outperforms the comparative models on all assessed metrics. Furthermore, ablation experiments were
carried out to systematically verify the effectiveness of individual modules and their combinations. Additionally, Gaussian noise was
introduced to simulate a noisy AIS environment and evaluate the model’s robustness. While this ablation study provides valuable
insights, it does not fully capture real-world challenges such as sudden data loss, irregular reporting intervals, and prolonged signal
outages—common issues in AIS data. Ensuring AIS data accuracy remains critical for reliable STP and effective collision avoidance.

(5) Contributions and limitations of the STGTP model The key innovation of STGTP lies in its integration of temporal, spatial,
and uncertainty modelling. While many existing approaches address one or two of these areas, few combine all three to this
extent. The Temporal Transformer captures dynamic ship behaviours over time, TGConv models spatial interactions among ships,
and the Gaussian-based uncertainty modelling enhances robustness and risk awareness in unpredictable environments. This multi-
dimensional integration enables STGTP to deliver accurate, adaptable, and risk-aware trajectory predictions, which are essential for
next-generation autonomous maritime systems.

Nevertheless, certain limitations remain. The model’s predictive performance may diminish in scenarios involving highly irregular
vessel behaviour (e.g., emergency avoidance or unexpected manoeuvres), in data-sparse regions (e.g., low-traffic maritime zones),
or during extended AIS signal outages. Future work could focus on improving the model’s robustness under these extreme conditions
to further enhance its reliability and real-world applicability.

(6) Applicability beyond the maritime domain. The STGTP model is designed with strong generalisation capacity, effectively
capturing spatial and temporal dependencies while modelling predictive uncertainty. Although this study focuses on maritime
navigation, the model architecture is inherently domain-agnostic and can be readily adapted to other transportation domains, such
as air traffic control and autonomous ground vehicle navigation. With appropriate domain-specific data and tailored input features
(as outlined in Table 8), STGTP can be retrained and fine-tuned to deliver robust and reliable trajectory predictions across a wide
range of non-maritime applications.

6.2. Implications

Trajectory prediction technology holds transformative potential across the maritime sector, providing valuable insights and
operational enhancements for various stakeholders. By integrating spatio-temporal prediction models with uncertainty modelling,
this technology not only improves navigational safety but also optimises decision-making in shipping, port operations, regulatory
enforcement, and maritime research. A detailed analysis of its implications for different stakeholders is outlined below.

(1) Researchers and maritime technology innovators.
The continuous advancement of spatio-temporal prediction models is driven by emerging datasets, novel methodologies, and
refined benchmarking techniques. By incorporating uncertainty modelling, researchers gain a more effective understanding
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of predictive accuracy, enabling the development of robust, data-driven frameworks for trajectory forecasting. This fosters
technological innovation in maritime Al, including adaptive learning models, real-time anomaly detection systems, and Al-
assisted decision-making for autonomous navigation. Additionally, interdisciplinary collaboration between Al researchers,
marine scientists, and policymakers can lead to enhanced models that account for environmental factors, human behaviour,
and evolving traffic patterns in maritime operations.
Shipping companies and fleet operators.
Uncertainty-aware trajectory prediction significantly enhances voyage planning, risk assessment, and operational efficiency
for shipping companies. By quantifying potential deviations in ship trajectories, fleet managers can develop adaptive routing
strategies that consider dynamic factors such as weather fluctuations, maritime traffic density, and port congestion levels.
This results in fuel savings through optimised route selection, minimising unnecessary detours and deviations. Additionally,
improved trajectory prediction reduces collision risks in congested or high-risk navigation zones and enhances punctuality,
ensuring timely port arrivals and improving logistics coordination. By leveraging real-time trajectory forecasts, shipping
companies can proactively adjust schedules, reduce operational uncertainties, and ultimately enhance profitability and
sustainability.
(3) Port authorities and terminal operators.
For port authorities, accurate trajectory prediction facilitates berth allocation, cargo handling, and resource planning, ulti-
mately reducing congestion and optimising turnaround times. Uncertainty modelling enables port operators to forecast ship
arrival windows, allowing for better berth scheduling and minimising idle port time. Furthermore, it streamlines cargo loading
and unloading operations, ensuring synchronised workflows between incoming vessels, dockworkers, and transportation
networks. By integrating predictive analytics into port management systems, authorities can develop data-driven policies
that improve operational resilience, enhance port capacity utilisation, and facilitate smarter resource allocation, especially in
high-traffic environments.
(4) Regulators, maritime safety agencies, and policymakers.
Regulatory bodies and maritime safety agencies can leverage trajectory uncertainty modelling to implement stricter navigation
protocols and proactive risk mitigation strategies. One of the key benefits is the identification of high-risk zones, allowing
regulators to enforce speed limits, adjust shipping lanes, or introduce enhanced monitoring measures in hazardous areas.
Moreover, trajectory prediction enhances maritime surveillance and anomaly detection, helping prevent illegal activities such
as poaching, smuggling, and unauthorised entry into restricted waters. It also improves response times to maritime incidents
by predicting potential collision hotspots, enabling early intervention strategies to mitigate accidents. By integrating Al-driven
trajectory predictions into regulatory frameworks, policymakers can develop intelligent maritime governance strategies,
strengthen compliance with international navigation regulations, and ensure safer and more sustainable maritime operations.
(5) Environmental agencies and sustainability advocates.
Trajectory prediction plays a crucial role in environmental conservation by supporting initiatives aimed at reducing
maritime emissions, preventing marine pollution, and protecting ecological zones. By utilising uncertainty-aware predictions,
environmental agencies can monitor vessel emissions and fuel consumption, encouraging compliance with green shipping
initiatives and International Maritime Organisation (IMO) decarbonisation targets. Additionally, it helps identify areas of high
marine traffic impact, allowing for targeted interventions to protect marine ecosystems, including coral reefs and marine
life habitats. Optimised ship routing minimises ecological disruption, reducing disturbances in environmentally sensitive
areas such as protected marine reserves and biodiversity hotspots. By incorporating trajectory forecasting into environmental
policies, sustainability advocates can drive greener maritime practices and support the transition toward eco-friendly shipping
operations.

2

—

The integration of trajectory prediction and uncertainty modelling presents far-reaching benefits across the maritime industry,
enabling safer navigation, optimised logistics, enhanced regulatory compliance, and improved environmental sustainability. By fos-
tering collaboration between technology developers, shipping companies, port authorities, regulators, and environmental agencies,
this technology paves the way for next-generation intelligent maritime systems, ultimately contributing to a safer, more efficient,
and environmentally responsible global shipping industry.

7. Conclusions

Accurate trajectory prediction is crucial for enhancing the autonomous navigation capabilities of unmanned ships, enabling safe
and efficient maritime operations. This paper systematically reviews current research on STP and identifies a significant gap in
modelling trajectory uncertainty, which limits the applicability of current methods in complex and dynamic marine environments.
To bridge this gap, a novel STGTP method for trajectory prediction is proposed. This method leverages a temporal transformer
to capture the time-dependent dynamics of trajectories, a TGConv to model spatial interactions between ships, and integrates
Gaussian heatmaps with a Vision Transformer to quantify trajectory uncertainty. This integrated approach ensures multidimensional
characterisation and efficient prediction of ship trajectories, particularly in complex maritime conditions.

From a performance perspective, STGTP significantly enhances the representation of temporal dependencies through its attention
mechanism, enabling highly accurate short-term trajectory predictions. The TGConv effectively models spatial interactions between
ships, greatly improving prediction accuracy, particularly in congested waters. Additionally, by modelling trajectory uncertainty
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using Gaussian heatmaps, STGTP not only delivers precise trajectory prediction but also quantifies potential deviations, providing
valuable support for risk assessment in dynamic environments.

The proposed STGTP algorithm was rigorously evaluated using three real-world AIS trajectory datasets from regions with distinct
maritime regions: Caofeidian, Zhoushan, and Tianjin Port. Comparisons were made against ten classic DL models using ADE, FDE,
and FD metrics to assess overall trajectory accuracy, endpoint prediction capabilities, and trajectory similarity. The results show
that STGTP consistently outperforms all baseline models in ADE, FDE and FD metrics. This demonstrates its strong capability to
capture dynamic changes and adapt to various environmental conditions. These findings highlight STGTP’s potential as a reliable
and effective solution for advancing autonomous ship navigation. Beyond maritime applications, the proposed approach can be
adapted to other domains involving spatiotemporal trajectory prediction, such as autonomous driving or air traffic management.

Looking ahead, future research could focus on incorporating navigation-specific constraints and dynamic environmental factors
to further refine trajectory prediction in different maritime domains. For deep sea navigations, coastal operations, and inland
waterways, factors such as water depth, channel width, and environmental influences play different roles in ship movement patterns
and shall be taken into account differently and respectively. Moreover, in complex encounter scenarios, such as ship crossings,
obstacle avoidance, or extreme weather conditions, trajectory prediction can be further enhanced by integrating ship dynamics
models and real-time environmental sensing data. By capturing vessel behaviours such as turning, acceleration, and deceleration,
future models can improve prediction accuracy, ensuring safety at sea in general and improving autonomous operations in specific.
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Appendix A. STP keyword theme clustering
See Fig. 15.
Appendix B. STP keyword timeline analysis
See Fig. 16.
Appendix C. A numerical example of spatial modelling

At time T, there are a total of four ships with their respective latitude and longitude coordinates given as (39.1, 118.5), (39.2,
118.5), (39.5, 119.1), and (39.1, 118.6). According to Eq. (7), the distance matrix D, is obtained as follows:

0 0.1 1 0.1
01 0 09 02

1 09 0 09
01 02 09 O

Dy = (26)

The distance threshold 6 is set to 0.5, and the steepness parameter f is set to 100. Based on these two parameters, the adjacency
matrix A is computed using Eq. (8).

0 0 —00 0

—00 - 0 —00

0 0 —00 0
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Next, within the model, the E! of the four ships are processed through a linear layer to obtain their corresponding query vectors

0;, key vectors K;, and value vectors

0 05 01 01
01 0 05 02

T _
0K = 01 0 01 03
0 02 0 01

V;. The resulting dot products QK values are assumed to be as follows:

(28)
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The intermediate variable x is obtained by summing QiKl.T with the adjacency matrix A:

0 05 -0 0.1

cO0KT4a<|0l 0 o 02 (29)
! —o0 —oo0 0.1 —o0
0 02 —-o0 0.1
Subsequently, the softmax function is applied to x, which is defined as follows:
X
softmax(x) = ¢ 30)
ZN ei

J
The resulting softmax values are as follows:

027 0.44 0.00 0.29

0.33 030 0.00 0.37
softmax(x) = softmax(Q,-KiT +A)= 000 000 100 0.00 (31)

030 0.37 0.00 033

By comparing Eq. (27) with Eq. (26), it is evident that when the distance between two ships is below the threshold 6, the
corresponding value is reset to 0, preserving the original interaction features. Conversely, if the distance exceeds the threshold, the
value is replaced by —co. As derived from Eq. (30), when x — —oo, the resulting weight after the softmax operation approximately
approaches 0. This mechanism effectively masks the interaction features between distant ships. This design facilitates efficient spatial
interaction modelling by ensuring that attention is concentrated on ships in close proximity, which are more likely to influence one
another.

Data availability

Data will be made available on request.
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