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Abstract

Precise optical inspection in industrial applications is
crucial for minimizing scrap rates and reducing the as-
sociated costs. Besides merely detecting if a product is
anomalous or not, it is crucial to know the distinct types
of defects, such as a bent, cut, or scratch. The abil-
ity to recognize the “exact” defect type enables auto-
mated treatments of the anomalies in modern production
lines. Current methods are limited to solely detecting
whether a product is defective or not, without providing
any insights into the defect type, but nevertheless detect-
ing and identifying multiple defects. We propose Mul-
tiADS, a zero-shot learning approach, able to perform
Multi-type Anomaly Detection and Segmentation. The
architecture of MultiADS comprises CLIP and extra lin-
ear layers to align the visual and textual representation
in a joint feature space. To the best of our knowledge,
our proposal is the first approach to perform a multi-
type anomaly segmentation task in zero-shot learning.
Contrary to the other baselines, our approach i) gen-
erates specific anomaly masks for each distinct defect
type, ii) learns to distinguish defect types, and iii) simul-
taneously identifies multiple defect types present in an
anomalous product. Additionally, our approach outper-
forms zero/few-shot learning SoTA methods on image-
level and pixel-level anomaly detection and segmenta-
tion tasks on five commonly used datasets: MVTec-AD,
Visa, MPDD, MAD, and Real-IAD.
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Figure 1. Comparison of common approaches and our ap-
proach: a) Common approaches typically differentiate only
between normal and abnormal states; whereas b) our approach
identifies K + 1 states: one normal state and K distinct abnor-
mal states corresponding to different defect types. This allows
our method to distinguish between various defect types.

1. Introduction

One of the primary objectives of the manufacturing in-
dustries is to utilize their assembly lines for a wide range
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Figure 2. Visualization of text prompts (TP) embeddings of
common approaches and ours for Bracket Brown product of
the MPDD dataset utilizing visualization tool t-SNE [36]. Dot
signs (-) represent TP embeddings, plus signs (+) represent
the average embedding of TPs with the same color.

of product types. Modern factories are equipped with
sophisticated and adaptable mechanisms allowing for a
quick reconfiguration to various scenarios [20]. By do-
ing so, the probability of outputting defective products is
significantly increased. Therefore, to achieve intelligent
manufacturing and prevent downtimes, rework, or qual-
ity losses, it is essential to detect anomalies promptly
and with high precision [18, 32]. More concretely, iden-
tifying the specific defect” type in a product helps opera-
tors to understand the underlying causes and effectively
implement preventive measures. In this regard, optical
inspection via visual anomaly detection and segmenta-
tion is crucial to identify abnormal products and locate
anomalous regions.

Recent approaches utilize prior knowledge in pre-
trained models like CLIP [28] or DINO [4] to boost the
generalization performance across a wide range of prod-
ucts for anomaly detection. CLIP-based approaches,
such as [5, 16, 44], employ CLIP knowledge and adapt
it for anomaly detection and segmentation by defining
text-prompts for normal and abnormal states (cf. Fig-
ure la). Next, they compare the similarity between the
image embedding and the average text embedding from
generic sets of good and bad prompts. Thus, they are not
exploiting anomaly-relevant knowledge, such as defect
types, embedded in pre-trained vision language mod-
els (VLMs). On the other hand, fine-tuning in the spe-
cific domain often leads to overfitting on the training
dataset [40], causing the model to lose valuable knowl-
edge critical for accurate anomaly detection and seg-
mentation. In Figure 2a, we visualize how averaging
normal and abnormal text embeddings can lead to sig-
nificant information loss.

In this paper, we present MultiADS, a zero-shot
learning approach for multi-type anomaly detection and
segmentation that leverages the prior knowledge of the
common defect types in VLMs. It aligns the image em-

*We use defect and anomaly terms interchangeably.

bedding and the mean text embedding from a general set
of good prompts and defect-specific sets of bad prompts.
As illustrated in Figure 1b, through our approach, we
can answer correctly all three questions, including the
question regarding the defect type. Figure 2b shows that
MultiADS preserves the meaningful semantic represen-
tation within the latent space and clearly distinguishes
normal state and distinct defect types. Contrarily, com-
petitive baselines could fail to separate between normal
and abnormal states, as shown in Figure 2a. We con-
duct experiments on five datasets for anomaly detec-
tion and anomaly classification, MVTec [1], VisA [46],
MPDD [17], MAD (real and simulated) [43], and Real-
IAD [37]. We conducted evaluations in both zero-
shot/few-shot settings. The empirical results demon-
strate that incorporating defect-type information into the
learning pipeline improves anomaly detection and seg-
mentation performance across these five datasets. We
summarize the key contributions as follows:

* Our MultiADS detects multiple defects of the same
and/or different types in an anomalous product. Thus,
we propose a new task, namely a multi-type anomaly
detection and segmentation task, that aims to deter-
mine the defect type at the pixel level. We position
MultiADS as a baseline in such a new task.

* We show that by leveraging anomaly-specific knowl-
edge in pre-trained VLMs, MultiADS further im-
proves its detection and segmentation performance.

* We present a Knowledge Base for Anomalies (KBA),
that enhances the description of defect types. It can
be utilized for defect-aware text prompt construction
and facilitates the fine-tuning process of VLMs for
anomaly detection and segmentation.

» Additionally, we evaluate the performance of Multi-
ADS on anomaly detection and segmentation against
12 baselines both zero-shot/few-shot settings. The
code implementation is publicly available at: https:
//github.com/boschresearch/MultiADS.

2. Related Work

In this section, we review the most relevant literature
based on their learning paradigms and highlight how our
approach distinguishes itself from existing methods.
Unsupervised Anomaly Detection. There exists a
wide variation in the characteristics of objects and their
defects, including differences in color, texture, size, and
shape. This heterogeneity leads to an extensive range
of defect types, making it challenging to compile a rep-
resentative set of anomaly samples for training data.
Thus, unsupervised anomaly detection approaches, such
as [2, 14, 29, 39], require only normal images for train-
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ing. These methods typically model images without
anomalies and classify any deviations from the learned
representation as anomalies.

Zero-Shot Anomaly Detection (ZSAD). Recent
studies have leveraged the power of large-scale VLMs
such as CLIP [28] to perform anomaly detection with-
out any target-specific training. The success of prompt
learning in natural language processing has inspired
methods such as CoOp [42] and CoCoOP [41], which
automatically learn task-specific prompt contexts from
only a few labeled examples. Early methods such as
WinCLIP [16] and April-GAN [5] adapt CLIP by de-
signing text prompts that differentiate “normal” from
“abnormal” states. Also, they introduce window-based
strategies or additional linear layers to enhance image
segmentation performance.

Other approaches apply the same differentiation tech-
nique while adapting the construction for text prompt
states. Thus, AnomalyCLIP [44] learns object-agnostic
text prompts to capture generic cues of abnormality,
SimCLIP [8] further adopts implicit prompt tuning.
Similarly, FiLo [11] and AdaCLIP [3] enhance lo-
calization by replacing generic anomaly descriptions
with adaptively learned fine-grained prompts or tun-
ing hybrid learnable prompts by combining static and
dynamic prompts. Contrary to other models, Clip-
SAM [22] proposes a novel collaboration between CLIP
and SAM [19], whereas MuSc [24] detects anomalies by
exploiting mutual scoring across unlabeled test images.

Few-Shot Anomaly Detection (FSAD). FSAD mod-
els, such as [13, 30, 31, 33], include several normal sam-
ple images from the target domain to train their model.
PromptAD [25] refines the image—text alignment pro-
cess by concatenating normal prompts with anomaly-
specific suffixes. GraphCore [38] employs graph neural
networks to capture rotation-invariant features from lim-
ited normal samples, while KAGprompt [34] constructs
a kernel-aware hierarchical graph among multi-layer vi-
sual features. Other methods adopt reconstruction or
feature-matching strategies—such as FastRecon [9] and
FOCT [35]-to reconstruct normal appearances from a
limited set of normal samples. Given the scarcity of
anomalous samples, Anomalydiffusion [12] proposes
to employ a latent diffusion model along with spatial
anomaly embeddings to generate authentic anomaly im-
age-mask pairs. Meanwhile, AnomalyGPT [10] is an
interactive method integrating VLMs to provide defect-
specific descriptions for a context-aware inspection.
AnomalyDINO [6] uses DINOv2 [27] to extract robust
patch-level features for FSAD.

A major limitation of existing vision-language ZSAD

and FSAD methods is their binary focus—only distin-
guishing between normal and abnormal states, as illus-
trated in Figures | and 2. In contrast, MultiADS is
designed to perform multi-type anomaly segmentation
by constructing defect-specific text prompts that capture
rich semantic attributes. This allows MultiADS to not
only detect whether an image is anomalous but also to
segment and classify the specific type of defect present -
a capability that is critical for automated optical inspec-
tion in industrial applications.

3. Preliminaries

Here, we introduce the preliminary definitions of binary
and multi-type anomaly detection and segmentation, as
well as the backbone model.

3.1. Binary Detection and Segmentation

Let Dyain and Dyyrgee denote two different datasets, train-
ing and target datasets, respectively. Both datasets con-
sist of X, Y, where X = {xl-}lN:1 with N images, and
Y = {(M;,y;)}Y, with ground truth labels. Each
image x; € R”*W is masked with M; and labeled
with y;, where y; € {0,1} is the indicator for anomaly
or not and M; € {0,1}*W represents the binary
anomaly map. Binary anomaly detection and segmen-
tation (BADS) aim to determine if the given image x
contains anomalies and also locate regions in an image
that contain anomalies.

3.2. Multi-type Anomaly Segmentation

Dirain and Dyyrger denote the training and target datasets,
respectively. Both datasets consist of X, Y’, where
X = {x;}¥, with N images and Y’ = {M/} Y ,. Each
image x; is labeled with M, € {0, 1,.., K }>W repre-
senting the multi-defect segmentation map for one nor-
mal class and K abnormal classes. Multi-type anomaly
segmentation (MTAS) aims to locate the anomalies and
identify various anomaly types.

3.3. Backbone Model

Contrastive Language Image Pre-training (CLIP) is
a large-scale vision-language model pre-trained on
million-scale image-text pairs, {(x;,#;)}Y,. It encom-
passes an image feature encoder, f(-), and a text fea-
ture encoder, g(-). CLIP aims to maximize the correla-
tion between f(x;) and g(¢;) utilizing cosine similarity.
Thus, for a given image input x and a closed set of text
T = {t1,...,tx}, representing the text prompt for K
classes, CLIP performs classification as follows:
exp((f(x),9(t;))/7)

P =T = SR (@) gt )
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where 7 > 0 is the temperature hyperparameter,
whereas (-, -) represents the cosine similarity.

4. MultiADS Approach

Our proposed approach is a CLIP-based model adapted
for zero-shot and few-shot learning for detecting anoma-
lies and identifying the defect types in images from the
manufacturing domain. It learns the alignment of image
features with their corresponding text features that rep-
resent a distinct defect type, as shown in Figures | and 3.
Anomaly maps constructed for each distinct defect type
enable multi-class defect detection and segmentation.

Knowledge Base for Anomalies. We leverage the
meta-data from established industrial defect detection
datasets, including MVTec-AD, VisA, MPDD, MAD
(real and simulated), and Real-IAD, to acquire com-
prehensive defect-aware information for each prod-
uct class. Additionally, we incorporate supplementary
defect-type properties (attributes) into our knowledge
base for anomalies (KBA), including size and shape.

Initially, we group the defect types into superclasses,
such that bent, bent lead, and bent wire are represented
by the bent superclass, similarly scratch, scratch head,
and scratch neck are under scratch. Thus, we have ab-
stract classes like bent, cut, scratch, capturing all possi-
ble defect types that can occur in a given dataset. Details
of the acquired information for all datasets part of our
KBA are given in the Appendix.

Defect-aware Text Prompts. Next, we utilize the
constructed KBA as prior knowledge for our text-
prompt construction, as illustrated in Figures b and
Figure 3. We select the same set of variations of text
samples as in [5, 16] to construct text prompts for each
given defect class. Figure 2 shows the difference be-
tween other baselines and our approach regarding the
text prompt embeddings. More details for defect-aware
text prompts are provided in the Appendix.

4.1. Training Phase

An overview of the training phase of our proposed
method is shown in Figure 3 (LHS). We use different
datasets for training and testing with their respective
prompt set numbers denoted by K; and K.

4.1.1. Image and Text Embedding

Each image x is provided as input to the image encoder
to get image patch embeddings at m different stages
during encoding, as in [5, 44], Ef € RhxwxNi 4 ¢
{0,1,...,m} with the resolution h x w and layer N;, as
well as one global image embedding z* € R™V=. We use
K +1 sets of text prompts: one representing the normal

state and K; representing abnormal states correspond-
ing to K defect types. Each set of text prompts is fed
into the CLIP text encoder, and we obtain an averaged
text embedding for each set by averaging the embed-
dings of individual prompts. This process yields K + 1
averaged text embeddings z' € R™V=, each representing
a distinct state.

4.1.2. Aligning Image Patches and Text Prompts

The visual encoder of CLIP is originally trained to align
the global object embeddings with text embeddings. To
align the two embedding spaces, visual - extracted by the
CLIP image encoder, and textual - extracted by the CLIP
text encoder, we utilize adapters consisting of a single
linear learnable layer. For image patch embeddings at
each stage 4, a linear adapter takes E? as input and out-
puts Z!' € RP>*w*N= They are compared with K; + 1
text embeddings z* to get the similarity map. Since we
choose image patches embeddings at m different stages,
we get m similarity maps S; € RUEK1+1)xhxw \where
h,w are the resolution of the similarity maps, K is the
number of defect types. Each map S; is up-sampled to
match the size of the input image and aligned with the
ground truth segmentation map M.

4.1.3. Training Objective

Two typical losses, focal [26] and dice [23], are used
for segmentation tasks. Focal loss is designed to address
class imbalance issues, especially in tasks like object de-
tection, where there is often a significant imbalance be-
tween classes. We face the same challenge, i.e., a high
number of normal images and a low number of abnor-
mal images; therefore, we apply a multi-class focal loss
for multi-defect segmentation along with the binary dice
loss for anomaly segmentation. These two training ob-
jectives are combined to form the final loss function:

L= Lioca(UP(S:),M})+
i=1

Liice(1 —UP(S;)[0],M;), (2)

where M/, represents the ground truth multi-defect
segmentation map, and M, is the binary anomaly map.
UP(-) denotes the up-sampling function used to scale
the similarity map to the input image resolution. Note
that in the training phase, the global anomaly score a, is
not fine-tuned.

4.2. Inference Phase

To test the trained model’s performance in the target
dataset, we first construct K5 + 1 sets of text prompts,
representing one normal state without defect and Ko
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Figure 3. Training phase: K text prompts describing the defect types plus one for good products are encoded into K + 1 averaged
text embeddings. The image patches are encoded and compared to these embeddings to produce K + 1 similarity maps. For
multi-type anomaly segmentation, we use dice and focal loss. Inference phase: we construct K2 + 1 sets of text prompts. For
anomaly segmentation (AS), we up-sample the complement of the normal layer’s similarity map. For anomaly detection (AD), the
global anomaly score a, and the maximum score from the anomaly map are utilized. In few-shot testing, the query image is then
compared with multiple reference (normal) images in the testing dataset to generate a similarity map. This similarity map is finally
up-sampled and combined with the anomaly map for segmentation and classification tasks.

states representing distinct defect types of the target do-
main. An overview of the inference phase of our pro-
posed method is shown in Figure 3 (RHS).

Each set of text prompts is input into the CLIP text
encoder to generate embeddings, while the query im-
age is passed through the CLIP image encoder and
then the adapter to produce m similarity maps S; €
RE2+1)xhxw The respective similarity maps are then
up-sampled to match the original size of the input im-
age. The multi-defect segmentation map is calculated
by averaging the up-sampled similarity map:

1 m
= ; UP(S;). (3)

We only take the first layer of similarity maps and per-
form a complement operation on each pixel to create the
anomaly score map. Since there are m similarity maps,
we average the m anomaly score maps to obtain the final
anomaly map:

i)[0]. “4)

1 m
:Egl—UP(S

The global image embedding z* from the pre-trained

CLIP image encoder is also compared with K5 + 1 text
embeddings to get K> + 1 global similarity scores. Af-
ter the normalization, the complement of the similarity
score compared to the normal state text prompts is used
as the final global anomaly score a,. We perform zero-
shot learning based on the acquired anomaly map M,
and global anomaly score a,. Few-shot learning is con-
ducted based on the acquired anomaly map M, global
anomaly score a,, and reference anomaly map Mref be-
tween query image and reference normal image(s).

4.2.1. Multi-type Anomaly Segmentation

The m similarity maps S;,i € {1,...,m}, are up-
sampled to match the input image size and then av-
eraged to produce the multi-defect segmentation map,
l\A/I; € RUGH)xhxw  This map captures both the
anomaly locations and their respective defect types, en-
abling effective support for the multi-type anomaly seg-
mentation task.

4.2.2. Zero-shot Learning

For zero-shot learning, the output anomaly map M,
is used for anomaly segmentation and compared with
the ground truth labels. The highest anomaly score:
max (M) on anomaly map and global anomaly score



a, are averaged and then compared against a threshold
6 to determine whether the image contains an anomaly.

4.2.3. Few-shot Learning

To conduct few-shot learning, we need to compute an
extra reference anomaly map based on the similarity be-
tween the query image and several reference normal im-
ages. The reference normal image(s) are fed into the
image encoder to get m stages of image patch embed-
dings. We leverage memory banks [5] to store the fea-
tures of the reference images, which can be compared
with input image features by cosine similarity to obtain
the reference anomaly map Mref. The final anomaly map
Miipa = 1M, + M,() is used for anomaly segmen-
tation. Mﬁna] instead of 1\7[w is used to determine the
anomaly itself.

4.2.4. Filtering Out Product-irrelevant Defect Types

For a specific product type, only certain defect types are
relevant. During the inference phase, this filtering step
involves excluding text prompt sets associated with de-
fect types that are not applicable to the product, ensuring
that only relevant defect types are considered. Here, the
method that includes this filtering process is referred to
as MultiADS-F, while the original version without filter-
ing remains as MultiADS.

S. Experiments

In this section, we describe datasets and baselines and
discuss the results of the conducted experiments.

5.1. Datasets

Five common datasets: MVTec-AD [1], VisA [46],
MPDD [17], MAD (simulated and real) [43], and Real-
IAD [37] are used for the multi-type anomaly segmenta-
tion as well as the binary anomaly detection and segmen-
tation task, respectively. More details of these datasets
are provided in the Appendix.

5.2. Experiment Setting

We adopt a transfer learning setting, where the model is
trained on one of the datasets and evaluated on the re-
maining. In the zero-shot learning scenario, the trained
model is directly applied to the target dataset with-
out any additional information from the target dataset.
In contrast, the few-shot learning scenario allows the
trained model to access a small number of normal im-
ages from the target dataset for further adaptation.

We use the ViT-L-14-336 CLIP backbone from
OpenCLIP [15], pre-trained on the LAION-400M_E32
setting of open-clip. The learning rate is set to 0.001,

with a batch size of 8. The stage number m = 4. The
features are selected from layers: 6, 12, 18, and 24.

5.3. Evaluation Metrics

We assess the anomaly detection performance on
zero/few-shot learning settings with three metrics,
namely the receiver-operator curve (AUROC), the F1-
score at the optimal threshold (F1-max), and the aver-
age precision (AP). Similar to [5, 16, 44], the anomaly
segmentation is quantified by AUROC, F1-max, and the
per-region overlap (PRO) of the segmentation using the
pixel-wise anomaly scores. For the multi-type anomaly
segmentation task, we employ AUROC, F1-score, and
AP with the macro averaging setting.

5.4. Baselines

We compare the performance of our approach with
the following 12 baselines: CLIP [28], CLIP-AC [28],
CoOp [42], CoCoOp [41], PatchCore [30], Win-
CLIP [16], April-GAN [5], InCTRL [45], Promp-
tAD [25], AnomalyCLIP [44], AdaCLIP [3], and
AnomalyGPT [10]. CLIP, CLIP-AC, CoCo, CoCoOP,
WinCLIP, April-GAN, AnomalyCLIP, and AdaCLIP are
zero-shot learning approaches. Whereas CoOp, Win-
CLIP, and April-GAN can also learn in the few-shot set-
ting, as other approaches, PatchCore, PromptAD, InC-
TRL, and AnomalyGPT. The comparison of batch zero-
shot setting with MuSc [24] and AnomalyDINO [6] is
discussed in the Appendix. We did not include other
baselines such as [8, 11, 22] because their authors did
not provide implementation yet.

In the evaluation process, we use the basic approach,
MultiADS, and the filtering-based variant, MultiADS-F.

5.5. Results

Next, we present and discuss results from the experi-
ments for multi-type anomaly segmentation in zero-shot
settings and binary ZSAD and FSAD.

5.5.1. Multi-type Anomaly Segmentation

First, we discuss our MultiADS’s performance in the
new task, the multi-type anomaly segmentation (MTAS)
task, which can segment various defect types. To the
best of our knowledge, we are the first to perform such
a task, and thus we present MultiADS as a baseline.
Table | shows the results of MultiADS on the MTAS
task in a zero-shot learning setting. We observe that our
approach achieves high accuracy in terms of the AU-
ROC metric for pixel-level segmentation of distinct de-
fects in all datasets. As expected, MultiADS performs
with higher accuracy in terms of AP metric on datasets



Table 1. Results on MTAS Task of MultiADS.

Train Target Pixel-Level

g AUROC Fl-score AP
VisA 93.6 223 248

MPDD 95.2 42.8 53
MVTec-AD MAD-sim 92.1 27.9 31.5
MAD-real | 89.2 525 523
Real-TAD 89.5 26 250
VisA MVTec-AD |  89.1 24 30.5
MPDD 953 467 505
VisA 93.4 2.1 233
MPDD | \yec-AD | 89.4 239 276
MVTec-AD | 87.7 214 299
Real-IAD VisA 88.1 238 248

with fewer anomaly types, such as MPDD and MAD-
real, and the accuracy is slightly lower on datasets with
multiple anomaly types appearing concurrently, such as
Real-IAD and VisA. Additionally, we found that Multi-
ADS performs slightly better on the VisA dataset when
our model is trained on the MVTec-AD or Real-IAD
datasets rather than the MPDD dataset due to higher
similarity between defect types of the VisA dataset with
MVTec-AD and Real-IAD datasets. Similarly, the VisA
dataset serves as a good model trainer regarding the per-
formance of the model on the MVTec-AD dataset. In
summary, these results indicate that MultiADS can suc-
cessfully differentiate between various defect types. We
provide more results on the MTAS task in the Appendix.

Multi-type Anomaly Awareness. Figure 4 shows
that multiple defect types, such as broken and hole,
can appear on one image, and MultiADS can success-
fully locate and classify these defects. Additionally,
in Table 2, we listed the segmentation performance for
some sample defect types that are seen/unseen during
the training phase. We notice that defects such as holes
and damages are relatively easy to locate and classify
because they also occur on the training dataset - MV Tec-
AD. It may be that these defects are similar in terms of
shape to those they have in datasets. For unseen defects
like extra and stuck, our model achieves slightly lower
accuracy. On the other hand, for other unseen defects
such as pit, we can still perform with high accuracy on
the classification task. These results reflect that our ap-
proach has generalization ability even on large and com-
plex datasets and unseen defects in the training dataset.

Ablation Study. We present the results of our ab-
lation studies on MTAS, quantifying the contributions
of the KBA component. As Table 3 shows, the per-
formance improves with the detailed text prompts con-
structed by KBA in both VisA and MAD-sim datasets.
Similar patterns are present across all datasets.

Broken
AN

~/
Hole

(a) Broken and Hole defects.

(b) Melded and Spot defects.

Figure 4. MultiADS locates and identifies simultaneously
multi-type anomalies on cashew (a) and candle (b) products.

Table 2. Results MTAS for zero-shot setting at pixel-level for
sample defect-types. The model is trained on the MVTec-AD
dataset. - indicates unseen defect types while vindicates seen
defect types during training.

(a) VisA (b) Real-IAD
Defects | AUROC  Fl-Score AP Defects | AUROC Fl-Score AP
Extra 94.07 2.11 0.15 - Pit 97.08 6.15 1.01
Stuck 91.54 10.51 7.76 v Contamin. 90.03 6.12 1.86
v Bent 96.53 6.07 7.74 v Scratch 92.63 437 2.96
v Hole 99.55 12.64 2519 v Damage 96.61 6.31 9.75

Table 3. Ablation studies on the role of KBA for MTAS

MVTec — VisA MVTec — MAD-sim
KBA | AUROC Fl-score AP | AUROC Fl-score AP
- 87.0 22.1 23.6 91.1 25.1 26.5
v 93.6 22.3 24.8 92.1 27.9 31.5

5.5.2. Binary Detection and Segmentation

ZSAD. In Table 4, we show the performance on ZSAD
for pixel-level (AUROC, AUPRO) and image-level (AU-
ROC, AP) on VisA, MPDD, MAD (sim and real), and
Real-IAD datasets. We selected these metrics to evalu-
ate the performance following [44]. For a fair compar-
ison, our approach and baseline approaches, including
WinCLIP, April-GAN, AnomalyCLIP, and AdaCLIP,
are trained on the MVTec-AD dataset. We observe that
MultiADS and MultiADS-F are the best overall per-
formers, especially when performance is evaluated with
the AUPRO and AUROC metrics at the pixel and im-
age levels, respectively. We note that our approach
achieves the best performance for all metrics on both
levels on the recent datasets, MAD and Real-IAD, which
are even more challenging. Meanwhile, MultiADS-F
is the best overall performer on the MPDD, MAD-real,
and Real-IAD datasets, indicating that text prompts of
non-relevant defect types present more noise for these
datasets. Note that MultiADS and MultiADS-F have the
same scores for the MAD-sim dataset, as all defect types
appear for all product types. The best baseline performer
is the AnomalyCLIP approach.

Table 5 shows the ablation study quantifying the con-
tributions of KBA, global anomaly score, and different
stage numbers on the ZASD task. The stage number has



Table 4. Zero-shot anomaly detection and segmentation. (Bold
represents best performer; underline indicates second best per-
former, * means results are taken from papers)

ZSAD Pixel-Level Image-Level
Dataset Method Venue AUROC AUPRO | AUROC AP
CLIP* ICML21 46.6 14.8 66.4 71.5
CLIP-AC* ICML21 478 173 65.0 70.1
CoOp* 1Cv22 242 38 62.8 68.1
CoCoOp* CVPR22 93.6 - 78.1 -
VisA ‘WinCLIP CVPR23 79.6 56.8 78.1 81.2
April-GAN CVPR23 94.2 86.8 78.0 81.4
AnomalyCLIP | CVPR24 95.5 87.0 82.1 85.4
AdaCLIP ECCV24 95 - 75.4 79.3
MultiADS (ours) 95 89.7 83.6 86.9
MultiADS-F (ours) 94.5 87.4 825 86.5
CLIP* ICML21 62.1 33.0 543 65.4
CLIP-AC* ICML21 58.7 29.1 56.2 66.0
CoOp* 1ICv22 15.4 23 55.1 64.2
CoCoOp* CVPR22 95.2 - 61 -
MPDD ‘WinCLIP CVPR23 76.4 48.9 63.6 69.9
April-GAN CVPR23 94.1 83.2 73.0 80.2
AnomalyCLIP | CVPR24 96.5 88.7 77.0 82.0
AdaCLIP ECCV24 96.3 66.3 75
MultiADS (ours) 95.8 89.7 783 78.4
MultiADS-F (ours) 96.3 89.5 79.7 80.5
WinCLIP CVPR23 77.6 55.8 543 90.2
April-GAN CVPR23 80.4 61.5 56 91
MAD-sim AnomalyCLIP | CVPR24 719 40.1 54.6 90.9
AdaCLIP ECCV24 85.7 - 55.2 90.5
MultiADS (ours)
MultiADS-F (ours) 88.0 74.2 57.1 94.4
‘WinCLIP CVPR23 60.5 26.9 64.1 87.6
April-GAN CVPR23 882 69.5 62.9 87.7
AnomalyCLIP | CVPR24 88.3 65.1 66.8 90
MAD-real | "\ qacLip | BCCV24 | 857 - 59 865
MultiADS (ours) 89.7 74.0 783 92.9
MultiADS-F (ours) 90.7 75.2 78.5 92.9
WinCLIP CVPR23 87.1 59.9 75 72.3
April-GAN CVPR23 96 86.8 75.7 73.5
AnomalyCLIP | CVPR24 96.2 85.7 78.4 76.7
Real-IAD AdaCyLlP ECCV24 | 953 - 701 685
MultiADS (ours) 96.6 87.1 78.7 79.1
MultiADS-F (ours) 96.3 87.2 78.2 78.5

the highest impact; the drop in performance is around
5% in terms of AP for both datasets when m = 3.

Table 5. Ablation studies on the role of KBA, global anomaly
score az, and stage number m on the ZSAD task. Pixel-level
results are ignored since a is only used at the image-level.

ZSAD MVTec — VisA MVTec — MPDD
Pixel-Level [ Tmage-Level Pixel-Level [ Tmage-Level
m a, KBA | AUROC AUPRO AUROC AP | AUROC AUPRO AUROC AP
3/ v 94.5 87.7 79.5 82.3 93.7 84.3 68.2 74.8
4 - v - - 82.1 85.8 - 76.5 78.1
4 v 94.4 88.7 82.4 86.1 95.7 89.1 77.9 77.6
4 v 95.0 89.7 83.6 86.9 95.8 89.5 78.3 78.4

FSAD. Figure 5 shows the results for the FSAD
task, for image-level (AUROC) with different numbers
of shots, k = [1,2,4, 8], on the Visa and MVTec-AD
datasets. Similarly to ZSAD, we train our model on the
MVTec-AD dataset and test on VisA and vice versa. We
note that the most competitive baselines are April-GAN,
PromptAD, and AnomalyGPT. We observe that Multi-
ADS is the best overall performer for both datasets. The
same performance patterns are found on other datasets,

——MADS
—— AGPT*
| Prapx
—o— ApGAN
—a—PCore*
InCTRL*
—&— WinCLIP
—e—CoOp*

Image - AUROC(%)
s

80

k-shot(s) k-shot(s)
(a) VisA dataset (b) MVTec-AD dataset

Figure 5. Few-Shot Image level (AUROC) accuracy for differ-
ent k-shots on the VisA and MVTec-AD datasets. (* - results
taken from papers, AGPT - AnomalyGPT, PCore - PatchCore,
PrAD - PromptAD, ApGAN - April-GAN)

Image April-GAN Ours Image April-GAN Ours

Scratch ‘ Hole

Figure 6. Visualization of anomaly segmentation from VisA
and MVTec-AD datasets, in the few-shot (k=4) for defect types
- scratch and hole. Each anomaly is highlighted to illustrate the
ability of April-GAN and MultiADS.

too. The main advantage of our approach lies in extend-
ing the investigation based on defect awareness, support-
ing our claim that the main drawback of other methods
is the two-state (normal and abnormal) limitation.
Figure 6 depicts a qualitative evaluation of the FSAD
results of MultiADS and the best overall competitor,
April-GAN, for scratch and hole defect types. We ob-
serve that MultiADS demonstrates higher confidence in
identifying anomalies and achieves better segmentation
across the same and different defect types due to its en-
hanced ability to capture the semantics of different de-
fect types. More results are provided in the Appendix.

6. Conclusion

In this paper, we propose MultiADS, which constructs
defect-aware text prompts to improve the performance
of anomaly detection and segmentation tasks. We
present a multi-type anomaly segmentation task that
aims to determine the defect types and locations at the
pixel level. We evaluated MultiADS on such a new
task and positioned it as a baseline that can be used
by the community. Finally, we evaluate MultiADS’s
performance against 12 baselines in ZSAD/FSAD on
five datasets. Our evaluation demonstrates that Multi-
ADS achieves the best performance in most cases for
ZSAD/FSAD. In the future, we plan to explore adapting
our approach to learn text prompt embeddings.
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MultiADS: Defect-aware Supervision for Multi-type Anomaly Detection and
Segmentation in Zero-Shot Learning

Supplementary Material

8. Our approach

In this section, we will further discuss more details re-
garding our proposed approach, MultiADS.

8.1. Knowledge Base for Anomalies and Defect-
Aware Text Prompts Design

We construct text prompts based on the information we
obtain from the Knowledge Base for Anomalies (KBA).
This allows for leveraging the specificity of the defect
type for each product class. The procedure for defect-
aware prompt construction is consistently applied to
each dataset. It should be noted, however, that the text
prompt regarding the normal state and text template are
the same for all datasets.

We conduct experiments on three commonly
known datasets, namely MVTec-AD [1], VisA [46],
MPDD [17], MAD [43], Real-IAD [37]. We construct
multiple distinct defect-aware text prompts and 1 for
the normal state, for each dataset. We construct text
prompts that represent the normal or good state (without
defects) of the images, using the following text prompt
template:

normal = [ “[cls]”, “flawless [cls]”, “perfect [cls]”,
“unblemished [cls]”, “[cls] without flaw”, “[cls] with-
out defect”, “[cls] without damage”, “[cls] with im-
maculate quality”, “[cls] without any imperfections”,
’[cls] in ideal condition” ]

where [cls] represents a product class from a given
dataset. We apply the same normal state design for
all datasets, utilizing the text template as in [5] for all
datasets as follows:

text-template = [“a bad photo of a {}.”, “a low res-
olution photo of the {}.”, “a bad photo of the {}.”, “a
cropped photo of the {}.”, “a bright photo of a {}.”, “a
dark photo of the {}.”, “a photo of my {}.”, “a photo
of the cool {}.”, “a close-up photo of a {}.”, “a black
and white photo of the {}.”, “a bright photo of the {}.”,
“a cropped photo of a {}.”, “a jpeg corrupted photo of a
{}.”, “ablurry photo of the { }.”, “a photo of the {}.”, “a
good photo of the {}.”, “a photo of one {}.”, “a close-up
photo of the {}.”, “a photo of a {}.”, “a low resolution
photo ofa{}.”, “a photo of alarge {}.”, “a blurry photo
of a {}.”, “ajpeg corrupted photo of the {}.”, “a good
photo of a {}.”, “a photo of the small {}.”, “a photo of
the large {}.”, “a black and white photo of a {}.”, “a

dark photo of a {}.”, “a photo of a cool {}.”, “a photo

of a small {}.”, “this is a {} in the scene.”, “this is the

» » o«

{} in the scene.”, “this is one {} in the scene.”, “there is
the {} in the scene.”, “there is a {} in the scene.”]
where {} is filled with content from the normal and
defect-aware text prompts.
An example of a text-prompt representing the normal

state for product class [cls] = cable is as follows:

Shormal = { “A bad photo of cable.”,
)
“There is a cable in ideal condition in the scene.” }

®)

Similarly, we construct text prompts representing dis-
tinct defect types. An example of a text-prompt repre-
senting the bent defect type for product class [cls] =
cable is as follows:

Shent = { “A bad photo of cable has a bent defect.”
“There is a bent edge on cable in the scene.” }

(6)

In Tables 7-11, we show the defect-aware text
prompts for each defect type for all datasets, respec-
tively. Note that for shared defect types among the
datasets, such as bent, hole, and scratch, we use the same
defect-aware text prompts among all datasets.

We provide the defined defect-aware text prompts, at-
tached to the source code. The simplest way is to adapt
the defect-aware information in a suitable manner based
on the design of other approaches that aim to investigate
defect types in anomaly detection tasks.

In the main manuscript, we mention that the KBA
contains the information for defect variations and de-
fect type properties (attributes). Also, we include syn-
onyms of defect types such as a slight curve, which can
also help VLMs to capture the similarity between image-
text pairs. Likewise, we apply the same strategy for the
construction of defect-aware text prompts for all defect
types. More examples are provided in Tables 7-11. Ad-
ditionally, Tables 12-17 show variations of each defect



type observed from all given datasets, for example bent
contains variations bent lead, bent wire, and bent edge.

9. Datasets

Table 6. Key statistics on the datasets.

Normal / Anomalous

Dataset Category |C| Samples
MVTec-AD [1] | Ot 15 400671258
Texture
VisA [46] Object 12 9,621 /1,200
MPDD [17] Object 6 1,064 /282
MAD [43] Object 20 5,231/4,902
Real-IAD [37] Object 30 99,721/51,329

Due to space limitations in the main manuscript, here
we describe in detail the industrial anomaly detection
datasets: MVTec-AD [1], VisA [46], MPDD [17], MAD
(simulated and real) [43], and Real-IAD [37]. Key
statistics on the datasets are shown in Table 6, such as
categories, distinct classes, and the number of samples.
MVTec-AD dataset consists of two categories, namely
objects and textures, and 15 product classes. For each
product, there can be a different number of defects, as
shown in Table 12. This number varies from 1 up to 8,
but for the textures, it is 5 for all products. We classify
each defect to the defect type as we defined before.

Additionally, we provide more details about defect
types in order to highlight the importance and the de-
sign of our defect-aware text prompts. Thus, details
of the VisA datasets are shown in Table 13; the prod-
ucts are categorized into complex structures, multiple
instances (an image with multiple products of the same
class, e.g., multiple candles, multiple capsules), and sin-
gle instances. In total, it consists of 130 defect types if
we consider different combinations of defect types, but
if we consider the combination as a single defect type,
then the VisA dataset has 84 defect types and 40 distinct
defect types. In Table 13, some defect types are included
as part of the Combined defect type, which consists of
multiple defect types. The number of defect types for
each product varies between 5 and 9 defect types. In
Table 14, we show detailed information regarding the
MPDD dataset, which consists of 6 product types and 11
defect types, from which 8 are distinct defect types. The
number of defect types for each product varies between
1 and 3 defect types. The MAD dataset consists of multi-
pose views of twenty LEGO toys (product classes), with
up to three anomaly types. It has simulated and real im-
ages. The Real-IAD dataset consists of thirty product
categories, up to four defect types per category, and a

larger proportion of defect area and range of defect ra-
tios than other datasets. We utilize single-view image
data. The details are illustrated in Table 6.

We apply the default normalization of CLIP [28] to
all datasets. After normalization, we resize the images to
aresolution of (518, 518) to obtain an appropriate visual
feature map resolution.



Table 7. Defect-Aware text prompts for all defect types of the VisA dataset. [cls] represents a variable that takes as value all product
classes in the VisA dataset.

Defect Type | Defect-Aware Text Prompts || Defect Type | Defect-Aware Text Prompts
“[cls] has a bent defect” “[cls] with a breakage defect”
“flawed [cls] with a bent lead” “broken [cls]”
“a bend found in [cls]” “[cls] with broken defect”
Bent “[cls] has a slight curve defect” Broken “[cls] shows breakage”
“[cls] with noticeable bending” “broken or cracked areas on [cls]”
“a bent wire on [cls]” “visible breakage on [cls]*
“[cls] with bubbles defect” “[cls] with a burnt defect”
“bubbles seen on [cls]” “[cls] shows burn marks”
“[cls] with bubble marks” “burnt areas on [cls]”
Bubble “air bubbles in [cls]” Burnt “[cls] with signs of burning”
“[cls] contains bubble defects” “scorch marks on [cls]”
“small bubbles on [cls] surface® “[cls] appears slightly burnt*
“[cls] with chip defect” “[cls] with a crack defect”
“[cls] with fragment broken defect” “[cls] has a visible crack”
. “chipped areas on [cls]” “cracked areas on [cls]”
Chip “[cls] with chipped parts” Crack “[cls] with surface cracking”
“broken fragments on [cls]” “fine cracks found on [cis]”
“chip marks found on [cls]* “[cls] shows crack lines*
“[cls] has a damaged defect” “[cls] with extra thing”
“flawed [cls] with damage” “[cls] has a defect with extra thing”
- “[cls] shows signs of damage” . “extra material on [cls]”
Damage “damage found on [cls]” Extra “[cls] contains additional pieces”
“[cls] with visible wear and tear” “[cls] with extra component defect”
“[cls] with structural damage* “unwanted additions on [cls]*
“[cls] has a hole defect” “[cls] with melded defect”
“ahole on [cls]” “melded parts on [cls]”
“visible hole on [cls]” “[cls] has fused areas”
Hole “[cls] has small punctures” Melded “fused spots on [cls]”
“[cls] shows perforations” “melded areas on [cls]”
“hole present on [cls]* “[cls] with melded material
“[cls] with melt defect” “[cls] with a missing defect”
“melted areas on [cls]” “flawed [cls] with something missing”
Melt » [cls] ShOW.S melting ) Missing L [c.ls] has missing parts )
signs of melting on [cls] missing components on [cls]
“[cls] with melted spots” “absent pieces in [cls]”
“[cls] has a melted appearance* “[cls] is incomplete*
“[cls] with particles defect” “[cls] has a scratch defect”
“[cls] has foreign particles” “flawed [cls] with a scratch”
. “small particles on [cls]” . “scratches visible on [cls]”
Partical “[cls] with unwanted particles” Scratch “[cls] has surface scratches”
“contaminants found on [cls]” “small scratches found on [cls]”
“[cls] with visible particles* “[cls] with scratch marks*
“[cls] with spot defect” “[cls] with a stuck defect”
“spots visible on [cls]” “[cls] stuck together”
Spot “flawed [cls] with spots” Stuck “[cls] has stuck parts”
P “[cls] with visible spotting” u “adhesive issue causing [cls] to stick”
“[cls] shows small spots” “[cls] is partially stuck”
“surface spots on [cls]* “[cls] with adhesion defect*
“[cls] with a weird wick defect” “[cls] with defect that something on wrong place”
“[cls] has an unusual wick” “[cls] has a misplaced defect”
Weird “the wick on [cls] appears odd” Wrong “flawed [cls] with misplacing”
Wick “[cls] with a strangely shaped wick” Place “misaligned part on [cls]”
“irregular wick found on [cls]” “[cls] shows parts out of place”
“odd wick defect on [cls]* “misplacement detected on [cls]*




Table 8. Defect-Aware text prompts for all defect types of the MVTec-AD dataset. [cls] represents a variable that takes as value all
product classes in the MVTec-AD dataset.

Defect Type ‘ Defect-Aware Text Prompts H Defect Type ‘ Defect-Aware Text Prompts
“[cls] has a bent defect” “[cls] has a broken defect”
“flawed [cls] with a bent lead” “flawed [cls] with breakage”
“a bend found in [cls]” “visible breakage on [cls]”
Bent “[cls] has a slight curve defect” Broken “[cls] with broken areas”
“[cls] with noticeable bending” “[cls] shows signs of breaking”
“a bent wire on [cls]” “cracked or broken spots on [cls]”
“[cls] has a color defect” “[cls] has a contamination defect”
“inconsistent color on [cls]” “foreign particles on [cls]”
Color “[cls] with color discrepancies” Contamination “[cls] is contaminated”
“[cls] has a noticeable color difference” “[cls] contains contaminants”
“[cls] with irregular coloring” “[cls] has impurity issues”
“[cls] has off-color patches” “traces of contamination on [cls]”
“[cls] has a crack defect” “[cls] has a cut defect”
“a crack is present on [cls]” “cut marks on [cls]”
“cracked area on [cls]” “[cls] with visible cuts”
Crack “[cls] with noticeable cracking” Cut “a cut detected on [cls]”
“fine cracks found on [cls]” “[cls] is sliced or cut”
“[cls] shows surface cracks” “surface cut seen on [cls]”
“[cls] has a damaged defect” “[cls] has a fabric defect”
“flawed [cls] with damage” “[cls] has a fabric border defect”
“[cls] with visible damage” . “[cls] has a fabric interior defect”
Damaged “damaged areas on [cls]” Fabric “fabric quality issues on [cls]”
“physical damage seen on [cls]” “[cls] with textile irregularities”
“noticeable wear on [cls]” “fabric borders on [cls] show defects”
“[cls] has a faulty imprint defect” “[cls] has a glue defect”
“[cls] has a print defect” “[cls] has a glue strip defect”
Faulty “incorrect printing on [cls]” Glue “excess glue on [cls]”
Imprint “misaligned print on [cls]” “[cls] with uneven glue application”
“printing errors present on [cls]” “[cls] has visible glue spots”
“[cls] has a blurred print defect” “misplaced glue seen on [cls]”
“[cls] has a hole defect” “[cls] has a liquid defect”
“a hole on [cls]” “flawed [cls] with liquid”
“visible hole on [cls]”’ .. “[cls] with oil”
Hole “[cls] with punctures” Liquid “liquid marks on [cls]”
“small hole found in [cls]” “[cls] with liquid residue”
“perforations present on [cls]” “stains from liquid on [cls]”
“[cls] has a misplaced defect” “[cls] has a missing defect”
“flawed [cls] with misplacing” “flawed [cls] with something missing”
Misplaced “‘[‘cl‘s] shows misalignmen,t!” Missing “[di] h-asAmissing componsnts”
misplaced parts on [cls] ‘missing parts on [cls]
“[cls] with incorrect positioning” “[cls] shows absent pieces”
“positioning defects on [cls]” “certain parts missing from [cls]”
“[cls] has a poke defect” “[cls] has a rough defect”
“[cls] has a poke insulation defect” “rough texture on [cls]”
“visible poke mark on [cls]” “uneven surface on [cls]”
Poke “[cls] has puncture marks” Rough “[cls] is coarser than expected”
“a poke flaw on [cls]” “surface roughness seen on [cls]”
“small poke defect on [cls]” “texture defects on [cls]”
“[cls] has a scratch defect” “[cls] has a squeeze defect”
“flawed [cls] with a scratch” “flawed [cls] with a squeeze”
“visible scratches on [cls]” “squeezed area on [cls]”
Scratch “[cls] with surface scratches” Squeeze “[cls] has compression marks”
“minor scratches seen on [cls]” “[cls] appears squeezed”
“[cls] shows scratch marks” “flattened areas on [cls]”
“[cls] has a thread defect”
“flawed [cls] with a thread”
“loose threads on [cls]”
Thread “[cls] has visible threads”
“untrimmed threads on [cls]”
“threads sticking out on [cls]”




Table 9. Defect-Aware text prompts for all defect types of the MPDD dataset. [cls] represents a variable that takes as value all
product classes in the MPDD dataset.

Defect Type ‘ Defect-Aware Text Prompts H Defect Type ‘ Defect-Aware Text Prompts
“[cls] has a bent defect” “[cls] with a defective painting defect”
“flawed [cls] with a bent lead” “flawed [cls] with painting imperfections”
Bent “a bend found in [cls]” Defective “[cls] has painting inconsistencies”
“[cls] has a slight curve defect” Painting “uneven painting on [cls]”
“[cls] with noticeable bending” “[cls] shows poor paint quality”
“a bent wire on [cls]” “paint defects present on [cls]”
“[cls] becomes flattened” “[cls] with a hole defect”
“[cls] has a flatten defect” ’ahole on [cls]”
. “flattening observed on [cls]” *visible hole in [cls]”
Flattening “[cls] appears compressed” Hole “[cls] with puncture marks”
“[cls] is flattened or squashed” *hole detected in [cls]”
“deformation detected on [cls]” “[cls] has small perforations”
“[cls] with bend and parts mismatch defec” “[cls] with a rust defect”
“[cls] with parts mismatch defect” “[cls] has rust patches”
. “[cls] has mismatched parts” “rust spots on [cls]”’
Mismatch “mismatched components on [cls]” Rust “visible rust on [cls]”
“bend and parts misalignment in [cls]” “[cls] shows signs of rusting”
“[cls] shows part misplacement” “[cls] affected by corrosion”
“[cls] has a scratch defect”
“flawed [cls] with a scratch’
’scratches visible on [cls]”
Scratch “[cls] with surface scratches”
“[cls] has scratch marks”
“minor scratches found on [cls]”

Table 10. Defect-Aware text prompts for all defect types of the MAD dataset. [cls] represents a variable that takes as value all
product classes in the MAD dataset.

Defect Type ‘ Defect-Aware Text Prompts H Defect Type ‘ Defect-Aware Text Prompts
“[cls] has a burr defect” “[cls] has a missing defect”
“sharp burr found on [cls]” “flawed [cls] with something missing”

cls i cls issi ;
“[cls] has excess material on edges” “[cls] has missing components”

Burr “burr formation detected on [cls]” Missing “missing parts on [cls]”
“[cls] exhibits rough edges” “[cls] shows absent pieces”
“[cls] shows protruding material” “certain parts missing from [cls]”’
“[cls] with a stain defect”
Stain “inconsistent color on [cls]”

“[cls] with color discrepancies”




Table 11. Defect-Aware text prompts for all defect types of the Real-IAD dataset. [cls] represents a variable that takes as value all
product classes in the Real-IAD dataset.

Defect Type ‘ Defect-Aware Text Prompts H Defect Type ‘ Defect-Aware Text Prompts
“[cls] has a scratch defect”
“[cls] has a pit defect” “,ﬂ awed [C:IS]. V.Vith a scratCE’
Pit “Small cavities or pits detected on [cls]” Scratch « scratcl.les visible on [cls] "
“[cls] with color discrepancies” [cls] with surface scratches
“[cls] has scratch marks”
“minor scratches found on [cls]”
“[cls] has a deformation defect”
“[cls] appears twisted or misshaped” “[cls] has an abrasion defect”
Deformation “Structural distortion detected on [cls]” Deformation “[cls] has noticeable or scuffing”
“Unexpected shape deformation found in [cls]” “[cls] is affected by continuous rubbing”
“[cls] exhibits rough edges” “Worn or scraped areas found on [cls]”
“[cls] shows signs of bending under stress”
“[cls] has a damaged defect” “[cls] has a missing defect”
“flawed [cls] with damage” “flawed [cls] with something missing”
“[cls] with visible damage” .. “[cls] has missing components”
Damaged “damaged areas on [ clsg]r” Missing “missing parti on [ Ic)ls T’
“physical damage seen on [cls]” “[cls] shows absent pieces”
“noticeable wear on [cls]” “certain parts missing from [cls]”
“[cls] has foreign objects defect” “[cls] has a contamination defect”
“[cls] has a foreign defect” “foreign particles on [cls]”
Foreign “Unexpected foreign material on [cls]” Contamination “[cls] is contaminated”

“[cls] contains an unwanted foreign object”
“[cls] with extra thing”
“[cls] has a defect with extra thing”

“[cls] contains contaminants”
“[cls] has impurity issues”
“traces of contamination on [cls]”




Table 12. Detailed statistics on the MVTec-AD dataset.

Table 13. Detailed statistics on the VisA dataset.
beled every image originally marked as “combined” in the VisA
dataset by identifying each individual defect it contains and as-
signing the image to all corresponding defect categories.

We rela-

N Original Test
Category ‘ Product ‘ Defects ‘ Defect Type Anomalous | Normal

Broken Large Broken 20

Bottle Broken Small Broken 22 20
Cc ination Contamination 21
Bent Wire Bent 13
Cable Swap Misplaced 12
Combined Combined 11
Cut Inner Insulation Cut 14

Cable | eyt Outer Insulation Cut 10 58
Missing Cable Missing 12
Missing Wire Missing 10
Poke Insulation Poke 10
Crack Crack 23
Faulty Imprint Faulty Imprint 22

Capsule Poke Poke 21 23
Scratch Scratch 23
Squeeze Squeeze 20
Crack Crack 18
Cut Cut 17

Hazelnut Hole Hole 18 40
Print Faulty Imprint 17
Bent Bent 25
Color Color 22

Metal Nut Flip Misplaced 23 2
Scratch Scratch 23
Objects Colf)r Col(.)r 25
N Combined Combined 17
Contamination Contamination 21

Pill Crack Crack 26 26
Faulty Imprint Faulty Imprint 19
Pill Type Damaged 9
Scratch Scratch 24
Manipulated Front Bent 24
Scratch Head Scratch 24

Screw Scratch Neck Scratch 25 41
Thread Side Thread 23
Thread Top Thread 23

Toothbrush Defective Damaged 12 30
Bent Lead Bent 10

Transistor Cut Lead Cut 10 60
Damaged Case Damaged 10
Misplaced Misplaced 10
Broken Teeth Broken 19
Combined Combined 16
Fabric Border Fabric 17

Zipper Fabric Interior Fabric 16 32
Rough Rough 17
Split Teeth Misplaced 18
Squeezed Teeth Squeezed 16
Color Color 19
Cut Cut 17

Carpet Hole Hole 17 28
Metal Contamination | Contamination 17
Thread Thread 19
Bent Bent 12
Broken Broken 12

Grid Glue Glue 11 21
Metal Contamination | Contamination 11
Thread Thread 11
Color Color 19
Cut Cut 19

Leather Fold Misplaced 17 32
Glue Glue 19
Textures Poke Poke 18
Crack Crack 17
Glue Strip Glue 18

Tile Gray Stroke Damaged 16 33
Oil Liquid 18
Rough Rough 15
Color Color 8
Combined Combined 11

Wood Hole Hole 10 19
Liquid Liquid 10
Scratch Scratch 21

Category ‘ Product ‘ Defects ‘ Defect Type AnomalolL:le Normal
Bent Bent 15
Melt Melt 52
Pebl Missing Missing 20 100
Scratch Scratch 21
Bent Bent 15
Melt Melt 54
Peb2 Missing Missing 19 100
Scratch Scratch 19
Complex Bent Bent 20
Melt Melt 41
Structure Pcb3 Missing Missing 2 101
Scratch Scratch 25
Burnt Burnt 8
Scratch Scratch 17
Dirt Dirt 39
Pcb4 Damage Damage 19 101
Extra Extra 26
Missing Missing 33
‘Wrong Place ‘Wrong Place 12
Chunk of Wax Missing Missing 15
Damaged Corner of Packaging Damaged 25
Different Colour Spot Spot 22
Candle Extra Wax in Candle Extra 9 100
Foreign Particals on Candle Particals 17
‘Wax Melded Out of the Candle Melded 13
‘Weird Candle Wick ‘Weird Wick 11
Bubble Bubble 49
Discolor Discolor 15
. Capsules Scratch Scratch 15 60
Muliple Leak Leak 20
Misheap Damaged 20
Chip Around Edge and Corner Chip 25
Diffcfcnl Colour Spot Spot 37
Macaronil Similar Colour Spot 100
Small Cracks Crack 14
Middle Breakage Broken 10
Small Scratches Scratches 27
Breakage down the Middle Broken 10
Color Spol Similar to the Object Spot 35
o 0 lefere.nl Color Spot ] 100
Small Chip Around Edge Chip 25
Small Cracks Cracks 12
Small Scratches Scratches 25
Burnt Burnt 15
Corner or Edge Breakage
Middle Breakage Broken 25
Different Colour Spot
Cashew Same Colour Spot Spot 25 50
Small Holes Hole 21
Small Scratches Scratch 16
Stuck Together Stuck 6
Chunk of Gum Missing o
Corner Missing Missing 70
Chewinggum Scratches Scratch 14 50
Similar Colour Spot Spot 25
Single Small Cracks Crack 28
Instance Burnt Burnt 9
Corner or Edge Breakage Broken 30
Middle Breakage
Fryum Different Colour Spot 50
Similar Colour Spot Spot 36
Fryum Stuck Together Stuck 20
Small Scratches Scratch 9
Burnt Burnt 16
Corner and Edge Breakage Broken 25
Different Colour Spot
Pipe Fryum Similar Colour Spot Spot 3 50
Small Scratches Scratch 22
Stuck Together Stuck 10
Small Cracks Crack 10




Table 16. Detailed statistics on the MAD-sim dataset.

Original Test
Product ‘ Defects | Defect Type Anomalous | Normal
Burrs Burrs 88
Table 14. Detailed statistics on the MPDD dataset. Bear | Missing |  Missing 112 36
Stains Stains 59
Burrs Burrs 51
Product Defects Defect Type Original Test Bird Missing Missing 160 30
Anomalous | Normal Stains Stains 40
Hole Hole 12 Burrs Burrs 98
Bracket Black Scratches Scratch 35 32 Cat Missing Missing 151 36
Bracket Brown Bend Mismatch Mismatch 17 2% Stains Stains 58
Parts Mismatch Mismatch 45 Burrs Burrs 72
Bracket White Defective Painting | Defective Painting 13 30 Elephant Missing Missing 149 36
Scratches Scratch 17 Stains Stains 55
Connector Parts Mismatch Mismatch 14 30 Burrs Burrs 67
Major Rust Rust 14 Gorilla | Missing | Missing 137 20
Metal Plate Scratches Scratch 34 26 Stains Stains 35
Total Rust Rust 23 Burrs Burrs 57
Tubes Anomalous Flattening 69 32 Mallard Missing Missing 157 20
Stains Stains 33
Burrs Burrs 101
Obesobeso | Missing Missing 123 36
Stains Stains 61
Burrs Burrs 41
Owl Missing Missing 115 30
Stains Stains 44
Burrs Burrs 29
Parrot Missing Missing 131 36
Stains Stains 42
Burrs Burrs 86
Pheonix Missing Missing 150 36
Stains Stains 69
Burrs Burrs 76
Pig Missing Missing 138 36
Stains Stains 70
Burrs Burrs 63
Puppy Missing Missing 125 36
Stains Stains 47
Burrs Burrs 58
Sabertooth | Missing Missing 136 36
Stains Stains 47
Table 15. Detailed statistics on the MAD-real dataset. Burrs Burrs 61
Scorpion | Missing Missing 121 36
— Stains Stains 53
Product ‘ Defects | Defect Type | Original Test Burrs Burrs 39
| Anomalous  Normal Sheep | Missing | Missing 150 36
Bear Stains Stains 24 5 Stains Stains 63
Bird | Missing | Missing 2 5 Burrs Burrs 66
Elephant | Missing Missing 18 5 Swan M1S§mg Mlssmg 143 36
Parrot Missing Missing 23 5 Stains Stains 41
Puppy Stains Stains 20 5 Burrs Burrs 32
g — — Turtle Missing Missing 130 20
Scorpion | Missing Missing 23 5 Stains Stains 35
Turtle Stains Stains 21 5 Bums Bums 55
Unicorn Mlss"lng Mlss"lng 21 5 Unicorn Missing Missing 132 20
Whale Stains Stains 32 5 Stains Stains 35
Burrs Burrs 71
Whale Missing Missing 127 30
Stains Stains 53
Burrs Burrs 56
Zalika Missing Missing 130 36
Stains Stains 57




Table 17. Detailed statistics on the Real-IAD dataset (Part I).

Table 18. Detailed statistics on the Real-IAD dataset (Part II).

Original Test

Original Test

Product Defects Defect Type Normal —Anomalous
Pit Pit 142
Terminalblock | Missing Parts | Missing Parts 308 145
Contamination | Contamination 106
Abrasion Abrasion 170
Toothbrush Missing Parts | Missing Parts 272 137
Contamination | Contamination 149
Pit Pit 125
Scratch Scratch 127
Toy Missing Parts | Missing Parts 250 126
Contamination | Contamination 126
Pit Pit 67
. Scratch Scratch 60
Toy-brick Missing Parts | Missing Parts 370 81
Contamination | Contamination 53
Deformation Deformation 171
Transistor1 Missing Parts | Missing Parts 265 164
Contamination | Contamination 134
Abrasion Abrasion 20
Scratch Scratch 17
U Block Missing Parts | Missing Parts 436 44
Contamination | Contamination 45
Deformation Deformation 127
Scratch Scratch 54
Usb Missing Parts | Missing Parts 333 83
Contamination | Contamination 39
Pit Pit 85
Abrasion Abrasion 22
Usb Adaptor Scratch Scratch 361 62
Contamination | Contamination 111
Pit Pit 50
. Scratch Scratch 11
Vepill Missing Parts | Missing Parts 398 107
Contamination | Contamination 40
Pit Pit 67
Scratch Scratch 96
Wooden Beads |\ cino Parts | Missing Parts | >0t 112
Contamination | Contamination 117

Pit Pit 7

. Scratch Scratch 12
Woodstick Missing Parts | Missing Parts 442 69
Contamination | Contamination 28
Deformation Deformation 125
. Damage Damage 121
Zipper Missing Parts | Missing Parts 250 125
Contamination | Contamination 129

Product Defects Defect Type Nommal — Anomalous
Deformation Deformation 126
. Scratch Scratch 4
Audiojack Missing Missing 398 56
Contamination | Contamination 27
Pit Pit 65
Scratch Scratch 125
Bottle Cap Missing Parts Missing Parts 369 1
Contamination | Contamination 73
Pit Pit 123
Abrasion Abrasion 68
Button Battery Scratch Scratch 21 109
Contamination | Contamination 117
Scratch Scratch 92
Damage Damage 119
End Cap Missing Parts Missing Parts 289 133
Contamination | Contamination 80
Pit Pit 36
Scratch Scratch 101
Eraser Missing Parts Missing Parts 389 30
Contamination | Contamination 68
Pit Pit 33
. Scratch Scratch 51
Fire Hood Missing Parts Missing Parts 418 62
Contamination | Contamination 23
Missing Parts Missing Parts 111
Mint Foreign Objects | Foreign Objects 305 197
Contamination | Contamination 142
Pit Pit 30
Mounts Missing Parts Missing Parts 385 131
Contamination | Contamination 79
Scratch Scratch 103
Pcb Missing Pailrts Migsing Pe}ns 278 104
Foreign Objects | Foreign Objects 129
Contamination | Contamination 109
Pit Pit 38
Scratch Scratch 28
Phone Battery Damage Damage 349 125
Contamination | Contamination 110
Pit Pit 14
. Scratch Scratch 13
Plastic Nut Missing Parts Missing Parts 442 56
Contamination | Contamination 35
Pit Pit 121
. Scratch Scratch 58
Plastic Plug Missing Parts Missing Parts 368 31
Contamination | Contamination 52
Abrasion Abrasion 64
Porcelain Doll Scratch Scratch 402 43
Contamination | Contamination 89
Scratch Scratch 3
Regulator Missing Parts Missing Parts 471 63
Pit Pit 170
Rolled Strip Base | Missing Parts Missing Parts 250 167
Contamination | Contamination 172
Abrasion Abrasion 148
Sim Card Set Scratch Scratch 305 80
Contamination | Contamination 168
Scratch Scratch 164
Switch Missing Parts Missing Parts 266 152
Contamination | Contamination 161
Damage Damage 128
Tape Missing Parts Missing Parts 397 76
Contamination | Contamination 21




10. Baselines

To demonstrate the performance of MultiADS, we com-
pare MultiADS with broad SOTA baselines. We run ex-
periments for April-GAN [5], and other baseline results
are taken from original papers. If the baseline does not
report results for a specific dataset, then the results are
taken from the latest publication, which includes these
results. Details regarding each baseline are given as fol-
lows:

* PaDiM [7] utilizes a pre-trained Convolutional Neural
Network (CNN) for patch embedding and multivari-
ate Gaussian distributions to get a probabilistic repre-
sentation for a one-class learning setting, the normal
class. Also, it considers the semantic relations of CNN
to improve the localization. Results are taken from
[5, 38] baselines. Source code is available at ht tps :
//github.com/taikiinoued45/PaDiM.

* CLIP [28] is a powerful zero-shot classification
method. Results are taken from [44] baseline, and
to perform the anomaly detection task, they use two
classes of text prompt templates ”A photo of a normal
[cls]” and "A photo of an anomalous [cls]”’, where
“cls” denotes the target class name. The anomaly
score is computed according to Eq. [1] in the main
manuscript. As for anomaly segmentation, they ex-
tend the above computation to local visual embedding
to derive the segmentation. Source code is available at
https://github.com/openai/CLIP.

* CLIP-AC [28] employs an ensemble of text prompt
templates that are recommended for the ImageNet
dataset [28]. Results are taken from [44] baseline,
and they average the generated textual embeddings of
normal and anomaly classes, respectively, and com-
pute the probability and segmentation in the same
way as CLIP. Source code is available at https:
//github.com/openai/CLIP.

* RegAD [13] is a few-shot learning approach that
leverages feature registration as a category-agnostic
approach. This approach trains a single generaliz-
able model and does not require re-training or param-
eter fine-tuning for new categories. Results are taken
from the original publication. Source code is avail-
able at https://github.com/MediaBrain-
SJTU/RegAD.

* CoOp [42] is a representative method for prompt
learning.  Results are taken from [44] baseline
for zero-shot setting and from [45] for few-shot
setting. To adapt CoOp to zero- and few-shot
anomaly detection, authors of [44, 45] replace its
learnable text prompt templates [V1][V2] ... [Vn][cls]
with normality and abnormality text prompt tem-

plates, where V; is the learnable word embed-
dings. The normality text prompt template is defined
as [V1][Vz]...[Vn][normal][cls], and the abnormality
one is defined as [V1][Va]... [Vn][anomalous][cls].
Anomaly probabilities and segmentation are obtained
in the same way as for AnomalyCLIP, and all pa-
rameters are kept the same as in the original paper.
Source code is available at https://github.
com/KaiyangZhou/CoOp.

CoCoOp [41] extends the CoOp work by generaliz-
ing the learned context to wider unseen classes within
the same dataset. CoCoOp learns a lightweight neu-
ral network to generate for each image an input-
conditional token (vector), and the proposed dynamic
prompts adapt to each instance and are less sensitive
to class shift. Results are taken from [44] baseline.
Source code is available at https://github.
com/KaiyangZhou/CoOp.

PatchCore [30] utilizes locally aggregated, mid-level
patch features over a local neighborhood to ensure
the retention of sufficient spatial context. Patch-
Core employs a memory bank for patch features
to leverage nominal context at test time by using
a greedy coreset subsampling. Results are taken
from [5] baseline. Source code is available at
https://github.com/amazon-science/
patchcore—-inspection

WinCLIP [16] is a SOTA zero-shot anomaly detection
method. Results for zero-shot settings are taken from
the original publication and for few-shot settings are
taken from [5] baseline. The authors design a large set
of text prompt templates specific to anomaly detection
and use a window scaling strategy to obtain anomaly
segmentation. Source code is available at https :
//github.com/caoyunkang/WinClip.
April-GAN [5] is an improved version of WinCLIP.
We conducted experiments with this approach and
all parameters are kept the same as in their paper.
April-GAN first adjusts the text prompt templates and
then introduces learnable linear projections to improve
local visual semantics to derive more accurate seg-
mentation. Source code is available at https://
github.com/ByChelsea/VAND-APRIL-GAN.
GraphCore [38] is a few-shot learning approach that
utilizes memory banks to store image features. Re-
sults are taken from the original publication. They em-
ploy graph representation (Graph Neural Networks) to
provide a visual isometric invariant feature (VIIF) as
an anomaly measurement feature. The VIIF reduces
the size of redundant features stored in memory banks.
Results are taken from the original publication. The
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authors have not provided a link to the source code
yet.

* FastRecon [9] is a few-shot learning approach that
utilizes a few normal samples as a reference to re-
construct its normal version, and sample alignment
helps to detect anomalies. Thus, they propose a
regression algorithm with distribution regularization
for the transformation estimation. Results are taken
from the original publication. Source code is avail-
able at https://github.com/FzJun26th/
FastRecon.

* InCTRL [45] is a vision-language few-shot learning
model that proposes an in-context residual learning
approach. It aims to distinguish anomalies from nor-
mal samples by detecting residuals between test im-
ages and in-context few-shot normal sample prompts
from the target domain on the fly. Results are taken
from the original publication. Source code is avail-
able at https://github.com/mala-1lab/
InCTRL.

* PromptAD [25] is a vision-language few-shot learn-
ing approach that learns text prompts for anomaly de-
tection. They propose to concatenate anomaly suf-
fixes to transpose the semantics of normal prompts,
in order to construct negative samples. They aim to
control the distance between normal and abnormal
prompt features through a hyperparameter. Results
are taken from the original publication. Source code
is available at https://github.com/Fulz-
0/PromptAD.

* AnomalyCLIP [44] is a SOTA zero-shot anomaly de-
tection method. Results are taken from the origi-
nal publication. This approach learns a vector rep-
resentation for text prompts for two states: nor-
mal and abnormal. They construct two templates of
text prompts, object-aware text prompts and object-
agnostic text prompts templates. Through an object-
agnostic text prompt template, they aim to learn the
shared patterns of different anomalies. Results are
taken from the original publication. Source code is
available at https://github.com/zghang/
AnomalyCLIP.

11. Experiments

In this section, we provide more details regarding our
approach through ablation studies and the experiments
that were conducted. We also visualize the results and
discuss some insights and limitations of our approach.

11.1. Experiment Details

In this subsection, we detail the experimental setup.
We use the ViT-L-14-336 CLIP backbone from Open-
CLIP [15], pre-trained on the LAION-400M_E32 set-
ting of open-clip. The learning rate is set to 0.001, with
a batch size of 8. The stage number m = 4. The features
are selected from layers 6, 12, 18, and 24.

We adopt a transfer learning setting, training the
model on one dataset and evaluating it on the remain-
ing. Specifically, we train our model on MVTec-AD
and evaluate it on VisA, MPDD, MAD, and Real-IAD,
as well as train on VisA and evaluate on MVTec-AD.
Other combinations are not included in the results, as
most baselines focus on the aforementioned configura-
tions. During training, we exclude all images labeled
with “combined” defects, which indicate multiple de-
fects in a single image. This exclusion is due to the
datasets providing binary anomaly masks that treat all
defects as identical. Since combined defects are rela-
tively rare in the datasets (see Tables 12, 13, 14), we
opted to leave them out during training. However, for
testing, all images with multiple defects are included to
ensure a fair comparison.

11.2. Ablation Studies

Here, we will give more details regarding our ablation
studies and show additional results of the experiments
we have conducted for the multi-type anomaly segmen-
tation (MTAS) task, binary zero-/few-shot anomaly de-
tection task, and zero-batch task.

11.2.1. Global Anomaly Score

To assess the impact of the global anomaly score on
anomaly detection, we conducted ablation studies using
our MultiADS model without the global anomaly score,
referred to as MultiADS-L. As shown in Table 19, re-
moving the global anomaly score leads to a noticeable
performance drop in the zero-shot setting. However,
the performance drop in the few-shot setting is mini-
mal, likely because the additional information provided
by the test data compensates for the absence of global
context.

11.2.2. Defect-Aware Text Prompts

To show the importance of the defect-aware text
prompts, we conduct experiments on the MPDD dataset
with our approach, MultiADS. First, we train our
model on the MVTec-AD dataset, with defect-aware text
prompts constructed for the MVTec-AD dataset. Then,
during the testing phase, instead of using the defect-
aware text prompts constructed for the MPDD dataset,
we use defect-aware text prompts constructed for the
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Table 19. Ablation study for testing without global anomaly score. MultiADS is our proposed method, while MultiADS-L is the

ablated version without including the global anomaly score.

Settings Training — Testing Method AUROC Im;%:ﬁ;ivel AP

. MulGADS 83.6 80.3 86.9
MVTec-AD = MPDD | 1 iiaDS L | 765 (- 79+ 781 (-

. MultiADS 933 89.7 943

Few-shot (k=4) R Ml\iﬁ?f]?? 93'886 89'27 2 94'29 4
MVTec-AD = MPDD |\ 1iADs-L | 85.6 86.8 (- 893 (

Table 20. Ablation Study: Results for MultiADS for each product of the MPDD dataset with different defect-aware text prompts
from the VisA dataset and the MPDD dataset on few-shot (k=1) anomaly detection and segmentation tasks. Our model is trained
on the MVTec-AD dataset. (Bold represents the best performer)

Setting k=1
MVTec — MPDD Pixel-Level Image-Level
Product ) AUROC . Fl-max ' AP . AUPRO ' AUROC 4 Fl-max - AP
VisA  MPDD | VisA MPDD | VisA MPDD | VisA MPDD | VisA MPDD | VisA MPDD | VisA MPDD
Bracket_black 96.7 97.2 11.2 18.7 4.5 11.8 88 89.5 63.4 74.6 78.5 81.6 68.6 80.8
Bracket_brown 96 96.2 14.9 17.6 75 8.7 91 91.1 60.4 53.3 80 79.7 72.5 71.4
Bracket_white 99.7 99.7 20.7 24.5 12.8 15.2 96.5 96.7 73.4 81.1 75 78.3 77 82.5
Connector 95.9 96.4 353 339 337 32.4 87.2 87.8 92.9 91.4 78.8 82.8 88.9 9.3
Metal _plate 96.3 96.3 74.6 73.1 81.2 74.8 90.6 89.8 99 92 97.9 90.1 99.6 97.2
Tubes 98.7 98.8 69 68.7 71 70.4 95 95.5 97.3 97.6 96.4 95.5 99 99.1
Average 97.2 97.4 37.6 394 35.1 35.6 91.4 91.7 81.1 81.7 84.4 84.6 84.3 86.7

VisA dataset. The results are shown in Table 20. We
observe that our approach, MultiADS, performs quite
well even when we utilize the defect-aware text prompts
of the other dataset for all the metrics on pixel-level and
image-level on few-shot anomaly detection and segmen-
tation tasks. Also, we note that to achieve the best per-
formance, especially on the image level, it is crucial to
employ defect-aware text prompts suitable for the prod-
ucts of the testing dataset, the MPDD dataset.

In addition to the results shown in the main
manuscript, in Table 2 we list the segmentation perfor-
mance for some sample defect types that are seen/unseen
during the training phase. We notice that defects such
as stains and scratches are easy to locate and classify,
as they also occur on the training dataset - MVTec-AD.
For unseen defects like burrs and mismatch, our model
achieves slightly lower accuracy. On the other hand, for
other unseen defects such as flattening, we perform with
high precision for the classification task. These results,
similar to results in the main manuscript, reflect that our
approach, MultiADS, has generalization ability on large
and complex datasets and unseen defects in the training
dataset.

Table 21. Results MTAS for zero-shot setting at pixel-level for
sample defect-types. The model is trained on the MVTec-AD
dataset. - indicates unseen defect types while vindicates seen
defect types during training.

(a) MAD-sim
Defects ‘ AUROC Fl1-Score AP
- Burrs 95.56 1.18 1.67
v/ Missing 86.52 2.56 3.08
v Stains 98.19 15.02 9.92
(b) MPDD
Defects | AUROC Fl-Score AP
- Mismatch 88.44 2.56 1.04
- Flattening 96.72 36.06 8.33
v Scratch 96.67 26.99 20.26

11.2.3. Batched Zero-shot Setting

The idea behind the batched zero-shot setting is to utilize
all text samples in X5 without relying on any labels.
This approach can be viewed as a form of domain adap-
tation, enabling the trained model to better align with the
target domain. Inspired by the methodology proposed



Table 22. Image level results for batched zero-shot setting. All
results are AUROC values (%). The numbers of baselines are
taken from AnomalyDINO [6]. 448 and 672 are the resolutions
of the input image.

Setting | Method MVTec VisA
ACR [21] 85.8 /
MuSc [24] 978 9238

Batched

zero-shot AnomalyDINOwas) [6] ~ 93.0 89.7

AnomalyDINO(ﬁn) [()] 94.2 90.7
‘ MultiADS (ours) 96.1 93.1

by AnomalyDINO [6], we employ a memory bank to
facilitate this adaptation process. For each test sample
) € Xieq, let ZF € RP*wXN= denote the adapted im-
age patch embeddings at state 7 for given image 2(*). We
define memory bank M; as the union of all image patch
embeddings at stage ¢ across the entire text set Xeg:

Mi=

2 (F) € Xiegt

{ZF[a,b]ja € [h],b€ [w]}. (D

During testing, for each given image z(*), we compute
the cosine similarity between its adapted image patch
embedding Z¥[a,b] € R™= and all embeddings in the
memory bank M, \ Z¥[a,b]. Since the memory bank
may include anomalous features (due to the unlabeled
setting), directly selecting the nearest neighbor might
not reliably represent nominal behavior. To address this,
and based on the assumption that most patches in the
memory bank are nominal, we replace the nearest neigh-
bor with the k-th nearest neighbor, where k corresponds
to the a-quantile of the similarity scores. Thus, the set
of cosine similarity scores is defined as follows:

D (Z{]a, 0], Mi\ {Z[a,b]}) = {d (Z][a, b],x) |

x € M\ {Z[a. 8]} }
3

where d(-) represents the cosine similarity. The refer-
ence anomaly score for image patch embedding Z¥[a, b]
is defined as follows:

s(Z7[a,b]) = qa(D(Z][a,b], M; \ Zi[a, b)), (9)

where ¢, is the o quantile of the similarity score set.
The comparison of our MultiADS approach with other
baselines is listed in Table 22.

11.2.4. Backbones

In Table 23, we show the impact of different architec-
tures and resolutions for our proposed approach, Mul-
tiADS. To evaluate the performance of our proposed

approach, MultiADS, and other baselines, we perform
zero-shot and few-shot anomaly detection and segmen-
tation on five datasets, MVTec-AD [1], VisA [46],
MPDD [17], MAD [43], and Real-IAD [37]. Results of
other baselines are taken from the original published pa-
pers or the most recent publications. Thus, for some of
the baselines, we are missing the evaluation with differ-
ent metrics, such as F1-max, AP, and AUPRO on pixel-
level, or F1-max and AP for image-level.

11.2.5. Additional Results

In Tables 24, 25, and 26, we show results for our ap-
proach, MultiADS, and other baselines on a few-shot
setting with k& € [1,2,4, 8] on anomaly detection and
segmentation tasks on three datasets, VisA, MPDD, and
MVTec-AD, respectively. In Tables 27, 28, and 29, we
show results for our approach, MultiADS, on a few-shot
setting with & € {1,2} on anomaly detection and seg-
mentation tasks for each product of the VisA, MPDD,
and MVTec-AD datasets, respectively. In Tables 30 and
31, we show results for the variant of our approach,
MultiADS-F, on the few-shot setting with & € {1,2}
on anomaly detection and segmentation tasks for each
product of the VisA and MPDD datasets, respectively.

Furthermore, in Table 32, we show results for our
proposal, MultiADS, and the most recent baseline, Ada-
CLIP, for all products of the Real-IAD dataset. We note
that our proposal outperforms AdaCLIP for all metrics,
and the largest improvement of our method is at the im-
age level. Similarly, in Table 33, we show results for our
proposal, MultiADS, and the most competitive baseline,
April-GAN, for all products of the MAD dataset. We
note that our proposal overall outperforms April-GAN
for almost all metrics, and the largest improvement of
our method is at the pixel level.

11.3. Visualizations

In this subsection, we present additional visualizations
of our anomaly segmentation results. We include eight
examples of products from the MVTec-AD, VisA, and
MPDD datasets: hazelnut (Figure 7), screw (Figure 8),
and leather (Figure 9) from MVTec-AD; pipe_fryum
(Figure 10), and capsule (Figure 11) from VisA; and
connector (Figure 12) and tube (Figure 13) from MPDD.
All segmentation visualizations are performed in a few-
shot (k = 4) setting. Specifically, the models for
hazelnut, screw, and leather were trained on the VisA
dataset; the models for pipe_fryum, capsule, and candle
were trained on the MVTec-AD dataset; and the models
for connector and tube were trained on the MVTec-AD
dataset. We discuss some insights and limitations in the
caption of these figures.



Table 23. Ablation study for training and testing with different architectures/resolutions for BADS. MultiADS applies the ViT-L-14
architecture with a resolution of 336.

Settings . . Image-Level

Dataset | Architecture | Resolution AUROC — Fl-max AP

ViT-B-16 224 74 76.6 79

VisA ViT-B-32 224 68.4 74.6 73.5
ViT-L-14 224 75.2 78.4 80.6
Zero-shot YiT—L—14 336 83.6 80.3 86.9
ViT-B-16 224 67.7 772 74.4

ViT-B-32 224 60.7 75 68.8

MPDD ViT-L-14 224 71.6 77.8 76.8
ViT-L-14 336 78.3 79.2 78.4

ViT-B-16 224 90 86 91.9
. ViT-B-32 224 83.1 81.4 85.4

VisA .

ViT-L-14 224 92 88 93.5
ViT-L-14 336 93.3 89.7 94.3

Few-shot (k=4) VIiT-B-16 224 80.2 81.6 80
ViT-B-32 224 78.2 83.1 80.2

MPDD ViT-L-14 224 82 82.9 84.3
ViT-L-14 336 85.6 87.2 89.4

Table 24. Few-shot anomaly detection and segmentation on the VisA Datasets. April-GAN baseline and our model are trained
on the MVTec-AD dataset. (- denotes the results for this metric are not reported in the original paper; bold represents the best
performer)

Settings k=1 k=2
VisA Pixel-Level Image-Level Pixel-Level Image-Level
Method Venue AUROC AUPRO | AUROC Fl-max AP | AUROC AUPRO | AUROC Fl-max AP
PaDiM ICPR21 89.9 64.3 62.8 75.3 68.3 92.0 70.1 67.4 75.7 71.6
CoOp cv22 - - - - - - - 83.5 - -

PatchCore CVPR23 95.4 80.5 79.9 81.7 82.8 96.1 82.6 81.6 82.5 84.8

WinCLIP CVPR23 96.4 85.1 83.8 83.1 85.1 96.8 86.2 84.6 83.0 85.8
April-GAN CVPR23 96.0 90.0 91.2 86.9 93.3 96.2 90.1 92.2 87.7 94.2
PromptAD CVPR24 96.7 - 86.9 - - 97.1 - 88.3 - -

InCTRL CVPR24 - - - - - - - 87.7 -
AnomalyGPT | AAAI24 96.2 - 87.4 - - 96.4 - 88.6 - -
MultiADS (ours) 97.1 92.7 91.9 88.3 93.1 97.2 93.1 93.3 89.5 93.9
MultiADS-F (ours) 96.6 91.7 92 88.1 93.9 96.7 91.9 92.8 88.5 94.4
Settings k=4 k=8
VisA Pixel-Level Image-Level Pixel-Level Image-Level
Method Venue AUROC AUPRO | AUROC Fl-max AP | AUROC AUPRO | AUROC Fl-max AP
PaDiM ICPR21 93.2 72.6 72.8 78.0 75.6 - - 78.1 - -
CoOp cv22 - - 84.2% - - - - 84.8 -

PatchCore CVPR23 96.8 84.9 85.3 84.3 87.5 - - 87.3 -

WinCLIP CVPR23 97.2 87.6 87.3 84.2 88.8 - - 88.0 - -
April-GAN CVPR23 96.2 90.2 92.6 88.4 94.5 96.3 90.2 92.7 88.5 94.6
PromptAD CVPR24 97.4 - 89.1 - - - - - - -

InCTRL CVPR24 - - 90.2* - - - - 90.4 -
AnomalyGPT | AAAI24 96.7 - 90.6 - - - - - - -
MultiADS (ours) 96.9 91.1 93.3 89.7 94.3 97.4 93.5 94.7 91.3 94.9
MultiADS-F (ours) 97.0 91.5 92.8 88.5 94.6 96.9 92.1 93.8 89.5 95.1




Table 25. Few-shot anomaly detection and segmentation on the MPDD Dataset. April-GAN baseline and our model are trained
on the MVTec-AD dataset. (- denotes the results for this metric are not reported in the original paper; bold represents the best

performer)
Settings k=1 k=2
MPDD Pixel-Level Image-Level Pixel-Level Image-Level
Method Venue AUROC AUPRO | AUROC Fl-max AP | AUROC AUPRO | AUROC Fl-max AP
PaDiM ICPR21 73.9 - 57.5 - - 75.4 - 58.0 - -
RegAD ECCV22 92.6 - 60.9 - - 93.2 - 63.4 - -
PatchCore | CVPR22 79.4 - 68.9 772 - 84.4 - 75.5 81.7 -
April-GAN | CVPR23 96.9 91.4 84.6 86.8 88.6 96.9 91.4 84.6 86.8 88.6
GraphCore | ICLR23 95.2 - 84.7 - - 95.4 - 85.4 - -
FastRecon | ICCV23 96.4 - 72.2 79.1 - 96.7 - 76.1 82.8 -
MultiADS (ours) 97.4 91.7 81.7 84.6 86.7 97.1 92.4 86.6 86.6 90.1
MultiADS-F (ours) 97.7 92.2 80.1 82.5 84 97.8 92.4 83.8 85.8 86.9
Settings k=4 k=8
MPDD Pixel-Level Image-Level Pixel-Level Image-Level
Method Venue AUROC AUPRO | AUROC Fl-max AP | AUROC AUPRO | AUROC Fl-max AP
PaDiM ICPR21 75.9 - 58.3 - - 76.2 - 58.5 - -
RegAD ECCV22 93.9 - 68.8 - - 95.1 - 71.9 - -
PatchCore | CVPR22 92.8 - 77.8 82.4 - 92.8 - 77.8 82.4 -
April-GAN | CVPR23 96.9 91.4 84.6 86.8 88.6 96.7 91 86 87.8 90.8
GraphCore | ICLR23 95.7 - 85.7 - - 95.9 - 86.0 - -
FastRecon | ICCV23 97.2 - 79.3 83.5 - 97.2 - 79.3 83.5 -
MultiADS (ours) 97.5 94.1 84.3 84.8 87.2 97.7 93.1 833 87.6 88.1
MultiADS-F (ours) 97.8 94.4 86.2 88.5 88.8 98 92.8 85 85.2 89.1

Table 26. Few-shot anomaly detection and segmentation on the MVTec-AD Dataset. April-GAN baseline and our model are trained
on the VisA dataset. (- denotes the results for this metric are not reported in the original paper; bold represents the best performer)

Settings k=1 k=2
MVTec-AD Pixel-Level Image-Level Pixel-Level Image-Level
Method Venue AUROC AUPRO | AUROC Fl-max AP | AUROC AUPRO | AUROC Fl-max AP
PaDiM ICPR21 89.9 64.3 62.8 75.3 68.3 92.0 70.1 67.4 75.7 71.6
PatchCore CVPR23 95.4 80.5 79.9 81.7 82.8 96.1 82.6 81.6 82.5 84.8
WinCLIP CVPR23 96.4 85.1 83.8 83.1 85.1 96.8 86.2 84.6 83.0 85.8
April-GAN CVPR23 96.0 90.0 91.2 86.9 93.3 96.2 90.1 922 87.7 94.2
PromptAD CVPR24 96.7 - 86.9 - - 97.1 - 88.3 - -
AnomalyGPT | AAAI24 96.2 - 87.4 - - 96.4 - 88.6 - -
MultiADS (ours) 93.2 90.6 93 94 96.4 93.2 90.8 93.5 94.5 96.6
Settings k=4 k=8
MVTec-AD Pixel-Level Image-Level Pixel-Level Image-Level
Method Venue AUROC AUPRO | AUROC Fl-max AP | AUROC AUPRO | AUROC Fl-max AP
PaDiM ICPR21 93.2 72.6 72.8 78.0 75.6 - - - - -
PatchCore CVPR23 96.8 84.9 85.3 84.3 87.5 - - - - -
WinCLIP CVPR23 97.2 87.6 87.3 84.2 88.8 - - - - -
April-GAN CVPR23 95.9 91.8 92.8 92.8 96.3 96.1 92.2 93.3 93.1 96.5
PromptAD CVPR24 97.4 - 89.1 - - - - - - -
AnomalyGPT | AAAI24 96.7 - 90.6 - - - - - - -
MultiADS (ours) 93.3 90.9 96.6 95.4 98.1 93.4 91.2 97.2 96 98.5




Table 27. Results for MultiADS for each product of the VisA dataset on few-shot anomaly detection and segmentation tasks. Our
model is trained on the MVTec-AD dataset.

Settings k=1 k=2
VisA Pixel-Level Image-Level Pixel-Level Image-Level
Product AUROC Fl-max AP AUPRO | AUROC Fl-max AP | AUROC Fl-max AP AUPRO | AUROC Fl-max AP
Candle 98.7 39.7 25.2 97 91.2 88.1 90.8 98.7 393 24.7 97.1 92 88.8 91
Capsules 98.1 47.1 39.9 90.7 95.4 92.1 97.6 98.3 48.8 44.2 92.9 96.5 92.5 98.1
Cashew 94.6 49.3 41.8 96.3 91 89.7 95.5 94.3 49.5 41.4 96.5 95 922 97.6
Chewinggum 99.7 72.4 76.1 95.1 98.4 97 99.4 99.6 71.1 73.6 94.7 98.4 96.4 99.3
Fryum 95 354 29.8 93 96.6 92.9 98.3 95.1 36.7 30.7 933 97.3 95.9 98.9
Macaronil 99.5 33.6 26.2 95.6 90.8 84 92.9 99.5 30.1 22.8 96.1 90.6 83.7 923
Macaroni2 98.7 26.8 14.1 90.4 85.8 80.2 89.2 98.8 23.8 12.5 89.6 83 75.6 85.6
Pcbl 96.6 36.1 29.9 93.2 94.9 90.6 94.1 97 42.5 36.2 93.5 93.5 88.6 923
Pcb2 95.4 27.4 19.1 84.7 71.4 72.7 78.5 95.6 359 249 86.3 87.5 82.7 87.4
Pcb3 93.8 429 324 86.5 86.4 81.3 87.4 94.1 50.1 39.8 873 90.9 84 91.2
Pcb4 96.6 383 34 91.9 96.4 93.8 94.5 96.7 39.6 34.3 92.1 96.1 93.7 93.3
Pipe_fryum 98.1 50.1 40.8 97.8 98.9 97.5 99.3 98.1 51.1 41 97.9 99 99.5 99.3
Average 97.1 41.6 34.1 92.7 91.9 88.3 93.1 97.2 43.2 35.5 93.1 93.3 89.5 93.9

Table 28. Results for MultiADS for each product of the MPDD dataset on few-shot anomaly detection and segmentation tasks. Our
model is trained on the MVTec-AD dataset.

Settings k=1 k=2
MPDD Pixel-Level Image-Level Pixel-Level Image-Level
Product AUROC Fl-max AP AUPRO | AUROC Fl-max AP | AUROC Fl-max AP AUPRO | AUROC Fl-max AP
Bracket_black 97.2 18.7 11.8 89.5 74.6 81.6 80.8 98.3 35 253 94.3 82.4 82.1 88.9
Bracket_brown 96.2 17.6 8.7 91.1 533 79.7 71.4 96.2 19.9 11.1 90.1 65.8 81 78.1
Bracket_white 99.7 24.5 15.2 96.7 81.1 78.3 82.5 99.6 23.7 14.1 96.2 84.1 81.1 85
Connector 96.4 339 324 87.8 914 82.8 89.3 96.2 35.1 343 87.7 93.8 85.7 91
Metal_plate 96.3 73.1 74.8 89.8 92 90.1 97.2 96.8 75 77.8 90.7 95.7 93.7 98.5
Tubes 98.8 68.7 70.4 95.5 97.6 95.5 99.1 98.8 69.2 71.2 95.7 97.9 96.3 99.2
Average 97.4 39.4 35.6 91.7 81.7 84.6 86.7 97.7 43 39 92.4 86.6 86.6 90.1

Table 29. Results for MultiADS for each product of the MVTec-AD dataset on few-shot anomaly detection and segmentation tasks.
Our model is trained on the VisA dataset.

Settings k=1 k=2
MVTec-AD Pixel-Level Image-Level Pixel-Level Image-Level
Product AUROC Fl-max AP AUPRO | AUROC Fl-max AP | AUROC Fl-max AP AUPRO | AUROC Fl-max AP
Bottle 933 63.2 66.9 89.3 97.2 96.7 99.2 93.4 63.6 67.3 89.3 96.9 96.7 99.1
Cable 84.8 373 34.1 81 82.7 80.8 90.3 83.8 39.8 35.1 80.6 84.6 822 91
Capsule 95.3 36.6 31.1 93.6 73.6 93.4 91.6 95.4 36.7 30.6 94 72.9 93 91.4
Carpet 99.1 73.1 78 97.3 99.7 98.3 99.9 99.1 72.9 77.6 97.6 99.8 98.9 99.9
Grid 98.3 453 40.7 94.5 95.8 96.5 98.1 98.6 45.6 42.6 95.1 97.7 97.4 98.9
Hazelnut 98 61 63.9 96 99.8 99.3 99.9 98.2 63.1 66.4 96.2 98.9 97.9 99.3
Leather 99.6 59.3 60.8 99.2 98.9 99.5 99.6 99.6 59.1 61 99.2 100 100 100
Metal_nut 83.8 40.9 43.6 85.5 97.1 96.8 99.3 83.8 41.5 45 85.8 99.7 98.4 99.9
Pill 88.8 40.4 38.6 96.3 96.4 96.9 99.2 88.6 40.3 38.2 96.3 95.5 97.2 99
Screw 98 34.7 28.6 93.3 78.8 87.5 91.2 98 355 31.1 93.3 76.9 86.5 91.3
Tile 95.2 69.6 64 91.7 98 96.4 99.2 95.2 69.6 64.1 91.4 98.4 97 99.3
Toothbrush 98.1 59.2 56 95.6 99.7 98.4 99.9 98 58.7 56.4 95.5 99.7 98.4 99.9
Transistor 71.4 25 22.9 59.1 82.8 75.4 80.1 72.4 27.1 24.5 59.8 85 78.6 81.2
Wood 96.4 67.9 68.8 95.7 99.1 97.4 99.7 96.5 68.1 69.3 95.8 99.3 97.5 99.8
Zipper 97.2 63.8 63.1 91.2 95.9 96.3 98.8 97.3 64.8 64 91.4 97.4 97.1 99.3
Average 93.2 51.8 50.7 90.6 93 94 96.4 93.2 524 51.5 90.8 93.5 94.5 96.6




Table 30. Results for MultiADS-F for each product of the VisA dataset on few-shot anomaly detection and segmentation tasks. Our
model is trained on the MVTec-AD dataset.

Settings k=1 k=2

VisA Pixel-Level Image-Level Pixel-Level Image-Level
Product AUROC Fl-max AP AUPRO | AUROC Fl-max AP | AUROC Fl-max AP AUPRO | AUROC Fl-max AP
Candle 98.7 40.4 27.1 97.1 90.4 84.4 91 98.7 40 26.7 97 90.6 85.7 91.1
Capsules 97.6 472 40.6 88.1 93.1 91.1 96.6 97.7 48.2 423 89.6 93.8 89.7 96.8
Cashew 94.1 394 32.1 96.6 91.7 89.2 95.7 93.9 39.9 31.6 96.6 94.3 91.3 97.3
Chewinggum 99.6 77.6 82.2 93.1 98.9 97.4 99.5 99.6 77.4 81.9 93.1 98.3 97.4 99.3
Fryum 94.3 333 27 92 93.8 933 974 94.4 34.1 27.5 923 94.7 93.8 98
Macaronil 99.5 35.7 26 96.2 89.1 82.4 91.7 99.5 35 24.5 96.4 90.3 82.4 92.5
Macaroni2 98.8 26.8 14.3 89.8 84.3 779 88.7 98.8 25.5 13.7 89.3 82.8 772 86.3
Pcbl 95.2 232 17.3 92 95.8 89.3 96.2 95.7 25 19.1 92.3 94.9 87.1 95.4
Pcb2 94.4 31 21.6 82.3 83.7 78.8 85.7 94.5 35 24.4 83.3 87.9 80.4 90.2
Pcb3 93.5 39.9 29.9 83.6 86.1 80.4 88 93.7 46.1 355 84 89.6 83 90.5
Pcb4 96.5 39.7 35.1 91.6 97.5 94.1 96.7 96.5 40.5 35.4 91.6 97.4 94.2 96.5
Pipe_fryum 97.4 43.4 343 97.7 99.1 99 99.4 97.4 43 33.9 97.6 99 99.5 99.3
Average 96.6 39.8 323 91.7 92 88.1 93.9 96.7 40.8 33 91.9 92.8 88.5 94.4

Table 31. Results for MultiADS-F for each product of the MPDD dataset on few-shot anomaly detection and segmentation tasks.
Our model is trained on the MVTec-AD dataset.

Settings k=1 k=2
MPDD Pixel-Level Image-Level Pixel-Level Image-Level
Product AUROC Fl-max AP AUPRO | AUROC Fl-max AP | AUROC Fl-max AP AUPRO | AUROC Fl-max AP
Bracket_black 97.6 25 18.2 91.8 73.1 77.1 82.8 98.1 32.1 237 94.1 78.6 81.1 86.2
Bracket_brown 95.9 18.5 9.8 88.9 54.6 79.7 74.4 95.9 21.1 13.4 87.9 65.4 81 80.6
Bracket_white 99.6 222 14.1 95.8 74.6 78.9 69.8 99.6 22.4 12.8 95.4 75.4 81.1 70.4
Connector 96.3 30.8 273 87.3 84.8 70.6 79.8 96 31.8 28.6 86.9 89 82.8 86.7
Metal_plate 97.6 80.4 783 93.2 98.4 97.3 99.4 98.1 82.5 81.4 94.2 98.9 97.3 99.6
Tubes 99 65.6 68.9 96 95.4 91.5 98.1 99 66.2 69.5 96.2 95.3 91.4 98
Average 97.7 40.4 36.1 92.2 80.1 82.5 84 97.8 42.7 38.2 92.4 83.8 85.8 86.9




Table 32. Results for MultiADS and the most recent baseline approach, AdaCLIP, for each product of the Real-IAD dataset on
few-shot (k=4) anomaly detection and segmentation tasks. Both models are trained on the MVTec-AD dataset.

Baseline MultiADS AdaCLIP
Real-IAD Pixel-Level Image-Level Pixel-Level Image-Level
Product AUROC Fl-max AP AUPRO | AUROC Fl-max AP | AUROC Fl-max AP AUPRO | AUROC Fl-max AP
Audiojack 98.4 54.6 49.9 89.3 75.8 72.8 71.8 97.21 4247 3746 - 66.2 53.68  57.39
Bottle Cap 99 41.5 34.9 92 81 71.5 81.3 98.4 34.8 30.06 - 86.84 76.87  80.65
Button Battery 97.5 47.7 46.7 89.3 72.9 75.4 82 96.69 45.7 45.98 - 69.47 7445 7894
End Cap 96 30.6 21.7 86.8 77.3 76.8 84.4 90.59 17.74 7.89 - 60.45 74.85  67.59
Eraser 99.8 62.2 63.8 98.6 922 86.2 925 99.09 59.5 59.52 - 71.49 6043  67.37
Fire hood 99.5 57.2 58.6 97.8 94.1 81.5 87.5 99.36 51.82 54 - 87.76 7236  73.05
Mint 97.2 44 36.5 76 67.9 74.7 79.1 94.16 41.09 3441 - 64.47 74.69 7519
Mounts 99.8 60.7 58.6 99.3 91.3 87 78.6 99.68 58.08  58.96 - 8531 75.75 7796
Pcb 97.5 43.1 37.5 89.2 81.7 79.6 89.5 96.13 29.74  24.58 - 77.41 78.7 85.46
Phone Battery 99.4 61.8 61.2 95.3 90.5 85.6 92.7 97.51 5898 5742 - 61.29 63.37  65.15
Plastic Nut 98.8 37 37.1 93.5 85.9 60.1 65.7 97.1 37.57  38.56 - 81.14 53.85 5851
Plastic Plug 99.1 47.8 40.4 96.3 79.5 70.2 80.7 95.23 4629  39.14 - 73.36 64.37  70.65
Porcelain Doll 99.8 45.8 45.4 99 95.2 86.2 92.7 91.65 42.4 34.37 - 63.37 5236  50.13
Regulator 96.6 38.7 29.7 78.4 78.1 51.1 554 88.1 3.34 1.91 - 42.27 21.92 1148
Rolled Strip Base 99.7 68.2 63.4 99 99 97.5 99.5 98.83 4842 44.04 - 65.33 80.32  80.01
Sim Card Set 99.8 68.7 72.6 98.4 97.3 94 97.8 99.72 66.37  71.28 - 83.06 79.91 86.61
Switch 92.8 245 19.2 86.3 80.3 81.6 89 83.55 21.81 15.82 - 82.29 82.49 89.5
Tape 99.8 58.8 57.5 99.4 98.4 92.8 97.9 98.6 48.59  46.93 - 96.95 89.64  95.18
Terminalblock 99 65.2 60.7 96.7 92.8 89.9 95.9 98.53 52.16  50.18 - 61.13 71.85  68.61
Toothbrush 98 47.1 40.4 93.7 87.3 84.3 92.8 98.48 4537  43.02 - 61.84 78.65  69.81
Toy 84.2 26 17.8 758 80.3 83.3 89.9 80.32 19.47 12.37 - 47.04 80.13  68.09
Toy Brick 98.9 56.5 56.9 91.2 85.9 75.6 85.2 97.73 32.03 2541 - 54.69 59.04 439
Transistor 94.7 37 27.2 80.2 79.4 80.3 88.6 86.28 21.05 12.47 - 59.39 7197  72.56
U Block 99.2 53.8 50.2 95.8 87.7 77.3 83.3 95.71 3223 2241 - 78.29 69.38 7575
Usb 99.1 47.5 41.4 96.7 83.1 73.9 82.6 96.67 49.59  45.06 - 54.48 39.1 39.55
Usb Adaptor 98.8 37.8 28.4 925 86.9 77.5 84.3 97.63 42.81 33.58 - 80.96 7429 80.75
Vepill 98.3 67 65.4 88.5 84.3 74.8 82 95.45 4335 4093 - 52.28 SLI1 4374
Wooden Beads 98.4 47.6 442 89.6 79.5 75.4 86.2 95.39 19.8 13.34 - 69.82 72,57  77.64
Woodstick 99.1 63.7 66.7 96.7 92 72.7 78.9 99.57 58.02  59.74 - 78.77 54 51.17
Zipper 98 40.7 36.9 96.1 97.9 96.6 98.8 98.51 4478  41.15 - 88.31 86.38  94.81
Average 97.9 49.4 45.7 91.9 85.8 79.5 85.8 95.39 40.51 36.73 - 70.18 68.15  68.57

Table 33. Results for MultiADS and the most competitive baseline approach, April-GAN, for each product of the MAD dataset on
few-shot (k=4) anomaly detection and segmentation tasks. Both models are trained on the MVTec-AD dataset.

Baseline MultiADS April-GAN
MAD Pixel-Level Image-Level Pixel-Level Image-Level
Product AUROC Fl-max AP AUPRO | AUROC Fl-max AP | AUROC Fl-max AP AUPRO | AUROC Fl-max AP
Bear 91.8 16.9 11.9 82.9 71.9 93.7 94.6 91.2 13.1 8.5 79.8 64.1 93.5 92.5
Bird 91.5 9.3 49 76.6 64.8 94.4 92.6 90.8 7.9 4.6 74.4 66.3 94.4 93.8
Cat 94.4 8.7 4.9 86.4 57 94.5 92.3 94.1 9.2 5.6 84.5 58.4 94.5 92.6
Elephant 72.5 6.7 3.8 67.4 72.9 93.9 95.8 71.5 6.7 3.7 65.7 64.6 93.9 94
Gorilla 93.3 11.8 59 82.2 52.1 96.2 92.7 92.3 10.1 5.7 713 554 96.2 93.9
Mallard 86.9 14.4 6.7 67.2 62 95.6 95 86.3 15.4 8 64.6 55.7 95.6 93.8
Obesobeso 95.1 20.7 13.2 89.5 58.7 94.5 90.8 94.2 17.2 11.6 86.5 64.2 94.1 93.7
Owl 92.8 15.9 9.6 81.4 72.6 93.2 94.2 92.4 12.5 7.5 79.7 67 93 93.4
Parrot 85.7 9.2 5.1 66 66.5 92 91.7 85.2 72 44 68.5 59 91.8 89.8
Pheonix 85.7 4.4 2 73.9 52.6 94.4 90.3 85.4 4.8 2.3 73.2 53.8 94.4 90.6
Pig 95.5 13.9 10.2 86.5 61 94 93.2 95.3 14 9.5 85 62.9 94 93.9
Puppy 88.2 12.8 7.7 75.2 68.7 92.9 94.1 87.5 9.8 6.9 72.6 63.4 92.9 92.6
Sabertooth 91.7 6.4 4.7 77.6 63.8 93.2 92.9 91 59 4.2 74.9 60.6 93.1 91.9
Scorpion 90.7 8.7 6.2 82.7 62.1 92.9 91.8 91 8.8 6.8 81.7 65.2 92.9 93.3
Sheep 94.2 12.5 9 85.4 63.5 93.3 93.1 94.2 12.1 8.8 84.6 60.5 93.3 92.7
Swan 91 10.6 43 77.4 51 933 89.1 90.7 8.5 39 76.4 57.3 93.3 90.4
Turtle 91.5 12.6 7.7 77 59.6 95.2 93.7 90.9 15.4 9.4 74.2 62.6 95.2 95
Unicorn 87.6 5.1 4.1 74.3 54.6 95.7 94 87.3 53 4 71.3 60 95.7 95
Whale 89.5 13.3 7.4 82 58.1 94.4 92.8 89.3 16.1 9.2 80.7 67.5 94.7 94.7
Zalika 86.6 6.6 49 68.9 68 93.5 93.8 86 6 4.6 65.9 65.8 93.1 93.5
Average 89.8 11 6.7 78 62.1 94 92.9 89.3 10.3 6.5 76.1 61.7 94 93.1




Figure 7. This visualization showcases the hazelnut product from the MVTec AD dataset (trained on the VisA dataset). The first
row displays the input images, the second row presents the ground truth masks of anomalies, and the third row shows the predicted
anomaly maps generated by the model. The model is trained on the VisA dataset and evaluated on the MVTec AD dataset using a
few-shot setting with & = 4. As shown in the figure, our approach effectively distinguishes defect types such as scratches (Columns
1, 2) and holes (Columns 3, 4). However, for large cracks (Columns 6, 7), the method tends to focus on the edges while marking
the interior as normal. This behavior is likely due to the patch-level features being more localized and lacking global context.
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Figure 8. This visualization showcases the screw product from the MVTec AD dataset (trained on the VisA dataset). Our model
successfully detects defects such as scratches (Columns 1-3, 7-9) and bends (Columns 4-6) in the front part. Our model also
allocates some attention to the screw body.
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Figure 9. This visualization showcases the leather product from the MVTec AD dataset. Our approach can easily identify the
defect of cut (Columns 1-3), fold (Columns 4-6), and poke (Columns 7-9).



Figure 10. This visualization showcases the pipe_fryum product from the VisA dataset (trained on the MVTec-AD dataset). Our
model can identify the defects like color spots (Columns 1-3), broken (Columns 4-5), and scratches (Columns 6-9).

Figure 11. This visualization showcases the capsule product from the VisA dataset (trained on the MVTec-AD dataset). Our model
effectively identifies defects such as leakage (Columns 1-5), misshapes (Columns 6-7), and scratches (Column 8) with clear
accuracy. However, it tends to overlook bubble defect (Columns 1 and 9), and product highlights are occasionally misclassified as
defects (Column 9).

Figure 12. This visualization showcases the connector product from the MPDD dataset (trained on the MVTec-AD dataset). Our
model effectively identifies part-missing defects. However, wrinkles in the green background can sometimes mislead the model,
causing them to be misclassified as anomalies.



Figure 13. This visualization showcases the tube product from the MPDD dataset (trained on the MVTec-AD dataset). Our model
successfully identifies flattened tubes but also introduces some noise, such as misclassifying the edges of the tubes as anomalies.

Figure 14. This visualization showcases the phone battery product from the Real-IAD dataset (trained on the MVTec-AD dataset).
Our model successfully identifies defects like contamination, scratch, and damage.

Figure 15. This visualization showcases the sim card set product from the Real-IAD dataset (trained on the MVTec-AD dataset).
Our model successfully identifies defects like scratch and damage
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