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ABSTRACT
In this paper, we report on three of the largest (in terms of simulation domain size) and longest (in terms of duration) 3D
general relativistic radiation magnetohydrodynamic simulations of super-critical accretion onto black holes. The simulations are
all set for a rapidly rotating (𝑎∗ = 0.9), stellar-mass (𝑀BH = 6.62𝑀⊙) black hole. The simulations vary in their initial target
mass accretion rates (assumed measured at large radius), with values sampled in the range ¤𝑚 = ¤𝑀/ ¤𝑀Edd = 1-10. We find in
practice, though, that all of our simulations settle close to a net accretion rate of ¤𝑚net = ¤𝑚in − ¤𝑚out ≈ 1 (over the radii where
our simulations have reached equilibrium), even though the inward mass flux (measured at large radii) ¤𝑚in can exceed 1,000 in
some cases. This is possible because the outflowing mass flux ¤𝑚out adjusts itself to very nearly cancel out ¤𝑚in, so that at all radii
¤𝑀net ≈ ¤𝑀Edd. In other words, these simulated discs obey the Eddington limit. We compare our results with the predictions of

the slim disc (advection-dominated) and critical disc (wind/outflow-dominated) models, finding that they agree quite well with
the critical disc model both qualitatively and quantitatively. We also speculate as to why our results appear to contradict most
previous numerical studies of super-critical accretion.
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1 INTRODUCTION

Super-critical accretion, where mass is fed into a system above the
nominal Eddington limit, plays a crucial role in many astrophysical
settings. It may be a factor in the formation of the first supermassive
black holes (Volonteri & Rees 2005; Schneider et al. 2023; Bennett
et al. 2024); it likely governs the early evolution of tidal disruption
events (TDEs; Dai et al. 2018; Wu et al. 2018); and it is important for
understanding the observational appearance of ultra-luminous X-ray
sources (ULXs; King et al. 2001; Kaaret et al. 2017; King et al.
2023).

The Eddington limit is defined as that state in which there is a
perfect balance between the gravitational force attracting matter to
a central object and the outward radiation force coming from that
object. Assuming an electron-scattering opacity, a pure hydrogen
composition, and spherical symmetry gives the standard expression

𝐿Edd =
4𝜋𝐺𝑀BH𝑚p𝑐

𝜎𝑇
= 1.3 × 1038

(
𝑀BH
𝑀⊙

)
erg s−1 . (1)

If we assume the luminosity is powered by accretion onto a black
hole, then it is common to take 𝐿Edd = 𝜂 ¤𝑀Edd𝑐

2, where ¤𝑀Edd is the
corresponding Eddington mass accretion rate and 𝜂 is the radiative
efficiency of the disc.

Super-critical accretion has been widely studied, both from an
observational perspective and theoretically (see Kaaret et al. 2017;
King et al. 2023, and references therein). The fundamental issue with
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super-critical accretion is that, if all the gravitational binding energy
of the accreting matter were liberated locally in the form of radiation,
as in the standard disc model, then the radiative forces would exceed
the gravitational ones, and the disc cannot be in balance. Broadly
speaking, two classes of solutions have been proposed to address this
problem. The first posits that not all of the energy is actually radiated
locally; instead, some of it is advected into the black hole before it
has time to escape1. The most popular solution within this class is the
so-called “slim” disc (Abramowicz et al. 1988; Beloborodov 1998;
Sądowski 2009). In the second class of solutions, the excess liberated
energy is used to drive an outflow, effectively limiting the amount
of matter that actually accretes to smaller radii (Shakura & Sunyaev
1973). One example of a solution in this class is the “critical” disc
(Fukue 2004). There are also models that combine some degree of
advection and outflow (Fukue 2004; Poutanen et al. 2007).

Super-critical accretion has also been studied numerically (e.g.,
Ohsuga et al. 2005; Jiang et al. 2014; Sądowski & Narayan 2016;
Takahashi et al. 2018; Asahina & Ohsuga 2022; Utsumi et al. 2022).
However, all previous numerical studies differ from the work we
present in one or more crucial aspects. For instance, many stud-
ies were performed in two-dimensions using an explicit viscosity
(e.g., Ohsuga et al. 2005; Kitaki et al. 2021; Hu et al. 2022; Yosh-
ioka et al. 2022). Such simulations preclude any magnetohydrody-
namic (MHD) turbulence, magnetically driven outflows, and any

1 Note that for accreting objects that have physical surfaces, such as neutron
stars, all of the liberated accretion energy must ultimately escape.
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non-axisymmetric effects. Others were initialized with a finite torus
of gas (e.g., Jiang et al. 2014; Sądowski & Narayan 2016; Utsumi et al.
2022). Such simulations can never truly achieve a global steady state,
as the mass reservoir is continuously depleted. More importantly,
most of these simulations started with tori that were smaller than their
corresponding trapping radius 𝑟tr ∼ ¤𝑚BH𝑟𝑔, where 𝑟𝑔 = 𝐺𝑀BH/𝑐2

is the gravitational radius and ¤𝑚BH is the mass feeding rate measured
at the black hole2, possibly forcing them to favor the advective, rather
than outflow, solution (Kitaki et al. 2021; Yoshioka et al. 2022). Since
our simulations correct many of these issues, we feel they offer an
important new perspective in the study of super-critical accretion.

Since our work focuses on large, steady-state accretion discs, the
results are probably most applicable to the case of ULXs. TDEs
likely have relatively small discs with rapidly varying mass accretion
rates, whereas ULXs have comparatively large discs and more stable
accretion rates (although see Middleton et al. 2022). The numerical
simulations reported in this paper have been specifically designed to
match the latter conditions.

In this paper, we first describe our numerical setup (Section 2),
then highlight results regarding the actual feeding rate of material
onto the black hole, as well as the luminosity of the disc (Section 3).
We also compare our results to the two broad classes of super-critical
accretion models (Section 4) and compare our results with previous
numerical studies (Section 5). We end with our concluding thoughts
(Section 6).

2 NUMERICAL SETUP

All of our simulations are performed using the general relativistic
radiation MHD (GRRMHD) code Cosmos++ (Anninos et al. 2005).
We use high-resolution shock-capturing (Fragile et al. 2012) to solve
for the flux and gravitational source terms of the gas and radiation; for
the magnetic fields, we evolve the magnetic vector potential (Fragile
et al. 2019); and for the radiation, we use the (gray opacity) M1 clo-
sure scheme (Fragile et al. 2014). Together, these allow us to evolve
the following 12 conserved fields: the fluid density 𝐷 = 𝑊𝜌, the
fluid total energy density E = −√−𝑔𝑇0

0 , the fluid momentum density
S 𝑗 =

√−𝑔𝑇0
𝑗
, the magnetic vector potential A𝑖 , the radiation total

energy density R =
√−𝑔𝑅0

0 , and the radiation momentum density
R 𝑗 =

√−𝑔𝑅0
𝑗
, where 𝑊 =

√−𝑔𝑢𝑡 is the generalized boost factor, 𝑔
is the four-metric determinant, 𝜌 is the rest-mass density, 𝑢𝜇 is the
fluid four-velocity, 𝑇 𝜇𝜈 is the fluid stress-energy tensor, and 𝑅𝜇𝜈 is
the radiation stress-energy tensor. The fluid and radiation fields are
coupled through the radiation four-force density

𝐺𝜇 = −𝜌(𝜅a
𝐹 + 𝜅𝑠)𝑅𝜇𝜈𝑢𝜈 (2)

−𝜌
{[
𝜅𝑠 + 4𝜅𝑠

(
𝑇gas − 𝑇rad

𝑚𝑒

)
+ 𝜅a

𝐹 − 𝜅a
𝐽

]
(3)

×𝑅𝛼𝛽𝑢𝛼𝑢𝛽 + 𝜅a
P𝑎𝑅𝑇

4
gas

}
𝑢𝜇 , (4)

where we assume Planck and Rosseland mean opacities 𝜅a
P =

2.8 × 1023 𝑇−7/2
K 𝜌cgs cm2 g−1 and 𝜅a

R = 7.6 × 1021 𝑇−7/2
K 𝜌cgs cm2

g−1, respectively, and 𝜅s = 0.34 cm2 g−1 for the scattering opac-
ity, appropriate for solar metallicity with mean molecular weight
𝜇 = 0.615 and a hydrogen-mass fraction of 𝑋 = 0.7. We use the 9D
numerical inversion scheme with analytic derivatives from Fragile

2 Throughout this paper, ¤𝑚 refers to mass accretion rates scaled to Eddington,
i.e., ¤𝑚 = ¤𝑀/ ¤𝑀Edd.

et al. (2014) to recover the primitive fluid and radiation fields. The
necessary magnetic field components, including the face-centered,
conserved fields B𝑖 and zone-centered, primitive field 𝐵𝑖 are recov-
ered from the updated vector potential (Fragile et al. 2019).

To initialize our simulations, we start from the Novikov & Thorne
(1973) generalization of the Shakura-Sunyaev (Shakura & Sunyaev
1973) thin disc. As we are only considering a limited radial range, we
do not require all three regions of the solution. Instead, we only ini-
tialize the so-called “inner” (radiation-pressure-dominated) region,
which should exist out to 𝑟 ≳ 100𝑟𝑔 at the accretion rates we are con-
sidering. We follow the form of the Novikov-Thorne solutions given
in Abramowicz & Fragile (2013). This simply requires us to choose a
mass for the black hole 𝑀BH, a target mass feeding rate ¤𝑚0 measured
at large radius, and a Shakura-Sunyaev viscosity parameter 𝛼SS for
the disc. We choose 𝛼SS = 0.02 for our initial setup, though it is diffi-
cult to specify a priori what value we should use, as there are multiple
possible sources of angular momentum transport in our simulations
(magnetohydrodynamic turbulence and magnetically driven winds),
and we cannot know ahead of time what effective 𝛼 they will lead to.
Ultimately, however, our goal is just to begin the simulations from
some reasonable initial conditions that cover a large radial range. As
explained later, we then give the discs plenty of time to approach
their true solutions.

From the Novikov-Thorne solution, all we actually require are
the radial dependencies of the height 𝐻 (𝑅) and mid-plane density
𝜌0 (𝑅) of the disc3. We also include a small radial velocity 𝑉𝑅 (𝑅),
associated with the slow inward drift of material through the disc
(Penna et al. 2012). The initial azimuthal velocity is taken to be

Keplerian, 𝑉 𝜙 (𝑅) = Ω = (𝑀BH/𝑅3)1/2
[
1 + 𝑎∗ (𝑀BH/𝑅3)1/2

]−1
.

For the vertical profile, we solve for hydrostatic equilibrium as-
suming a polytropic EOS with ΓNT = 4/3. The solution yields

𝜌(𝑅, 𝑧) = 𝜌0

[
1 − 𝑧2

2𝐻2

]1/(ΓNT−1)
(5)

and

𝑃tot (𝑅, 𝑧) = 𝜅𝜌ΓNT , (6)

where

𝜅 =
𝐺𝑀BH𝐻

2

ΓNT (ΓNT − 1)𝜌ΓNT−1
0 𝑅3

. (7)

For the background, we initialize a cold (𝑒 = 3× 10−6𝑒max𝑟−2), low
density (𝜌 = 10−4𝜌max𝑟−3/2), free-falling (𝑢𝑟 = −

√︁
𝑟BH/𝑟) fluid,

where 𝑟BH =

(
1 +

√︃
1 − 𝑎2

∗

)
𝑟𝑔 is the radius of the black hole and 𝑎∗

is its dimensionless spin.
Assuming the gas and radiation are in local thermodynamic equi-

librium inside the disc for the initial, analytic solution, we partition
the pressure as

𝑃tot = 𝑃gas + 𝑃rad =
𝑘b𝜌𝑇gas

𝑚̄
+ 1

3
𝑎R𝑇

4
gas , (8)

where 𝑚̄ = 𝜇𝑚𝐻 and 𝑎R = 4𝜎𝐵/𝑐 is the radiation constant. We can
now solve this quartic equation for 𝑇gas (𝑅, 𝑧). This temperature is
also used to set the initial radiation field. In the frame of the fluid,
the radiation energy density is taken to be

𝐸rad = 𝑎𝑅𝑇
4
gas , (9)

3 We take 𝑟 as the spherical-polar radius and 𝑅 = 𝑟 sin 𝜃 as the cylindrical
one.

MNRAS 000, 1–11 (2025)
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while the flux, 𝐹𝑖 , is initially set equal to the gradient of this quantity.
To get the radiation density in the radiation rest frame, 𝐸𝑅 , and the
radiation rest-frame four-velocity, 𝑢𝜇

𝑅
, we follow the transformation

procedure outlined in Sądowski et al. (2013).
One issue with the inner region of the Shakura-Suynaev thin-disc

solution is that it is thermally unstable (Shakura & Sunyaev 1976), as
confirmed in earlier numerical work (Jiang et al. 2013; Mishra et al.
2016; Fragile et al. 2018). One mechanism which can stabilize such
discs is the introduction of strong (particularly, toroidal) magnetic
fields (Begelman & Pringle 2007), which require particular global
magnetic field topologies to maintain (Sądowski 2016; Mishra et al.
2022). The present simulations start from one such configuration:
a zero-net-flux quadrupole field that has two poloidal field loops of
opposite polarity stacked vertically, one on top of the other, about the
midplane of the disc. The two poloidal loops are greatly elongated in
the radial direction, extending from near the inner radius of the disc
to nearly the outer boundary of our simulation domain. To initialize
this field, we first set the azimuthal component of the vector potential
to

𝐴𝜙 ∝ 𝑅1.5𝑧

√︁
𝑒 (−2.5𝑧2/𝐻2 ) sin (𝜋𝑅/𝑟max)

1 + 𝑒Δ
, (10)

where 𝑟max is the maximum radius of the grid, and

Δ = 10
(
𝑧2

𝐻2 + (𝑅 − 𝑅𝑡 )2

𝐻2 − 1
)
, (11)

where 𝑅𝑡 = max(𝑟ISCO, 𝑅), and 𝑟ISCO is the usual ISCO4 ra-
dius. We then set the poloidal components of the magnetic field
as B𝑟 = −𝜕𝜃 𝐴𝜙 and B 𝜃 = 𝜕𝑟 𝐴𝜙 . These choices keep the ini-
tial magnetic field divergence-free and confined within the initial
disc. This particular field configuration is subject to a strong radial
shear amplification (leading to a growth of the B𝜙 component) due
to the orbital motion of the disc (the so-called Ω-dynamo). Along
with the normal, magnetorotational-instability(MRI)-driven ampli-
fication, this has been shown to help stabilize similar discs against
thermal instability (Sądowski 2016; Mishra et al. 2022).

The simulations are run on a nested (statically refined), spherical-
polar grid with resolution concentrated near the black hole and to-
ward the midplane. We use a logarithmic radial coordinate, 𝑥1 =

1 + ln(𝑟/𝑟BH), to cover the range from 0.9 𝑟BH ≤ 𝑟 ≲ 1000 𝑟𝑔. As
such, these are the largest three-dimensional, super-critical accretion
simulations in terms of the size of the disc that we are aware of, com-
parable to earlier large-domain, two-dimensional simulations (Kitaki
et al. 2021; Yoshioka et al. 2022). The advantage of using such large
discs and starting from a Shakura-Sunyaev solution instead of a finite
torus is that the simulations can be run for very long times with nearly
steady mass accretion rates. It also gives us an opportunity to capture
the critical radius, given analytically by (Fukue 2004; Poutanen et al.
2007):

𝑟cr ≈
5
3
¤𝑚0 , (12)

on the grid, which is the radius inside of which the radiative forces
overcome gravity and the traditional disc solution is no longer valid.
This has not been the case in most previous numerical work (see
Kitaki et al. 2021). We include the full polar (0 ≤ 𝜃 ≤ 𝜋) and
azimuthal (0 ≤ 𝜙 ≤ 2𝜋) domains.To improve the resolution near
the midplane, a concentrated polar coordinate, 𝜃 = 𝑥2 + ℎ sin(2𝑥2)
is used. The base mesh has a resolution of 48 × 32 × 24 zones in

4 Innermost Stable Circular Orbit

{𝑥1, 𝑥2, 𝜙}. Outflow boundary conditions are applied at the inner and
outer radial limits of the domain, while transmissive boundaries are
applied at the poles and periodic boundaries are used in 𝜙.

As mentioned before, we already know that the Shakura-Sunyaev
disc solution is invalid once the mass accretion rate exceeds Edding-
ton, so another option would have been to start our simulations with
one of the super-critical disc solutions proposed in Section 1. How-
ever, since one of our goals is to assess which class of super-critical
solution is applicable to large, steady-state discs, we choose, instead,
to start from the Shakura-Suynaev solution and simply give our discs
sufficient time to find their preferred super-critical states. To do this
in a computationally efficient way, we start all of our simulations on a
very low resolution, two-level mesh (base mesh plus one refinement
layer for an effective resolution of 96 × 64 × 48) and allow them to
run to 𝑡stop ≳ 70, 000 𝑡𝑔, where 𝑡𝑔 = 𝐺𝑀/𝑐3. This is longer than
the thermal timescale of the disc (𝑡th ∼ [𝛼Ω]−1) out to 𝑟 ≳ 150 𝑟𝑔
and the accretion timescale (𝑡acc ∼ 𝑟/|𝑉𝑟 |) out to 𝑟 ≳ 20 𝑟𝑔. After
this initial “burn-in” period, we increase the resolution in one of our
simulations by adding another refinement layer before running it for
an additional 15, 000 𝑡𝑔. A plot of this high-resolution disc and grid
is shown in Figure 1.

The modest resolutions of our two-level meshes mean that we are
not formally resolving the MRI (quality factors 𝑄𝑖 = 𝜆MRI,𝑖/Δ𝑥𝑖 of
𝑄 𝜃 ≈ 1 and 𝑄𝜙 ≈ 4, respectively, where 𝜆MRI,𝑖 = 2𝜋𝑣𝐴,𝑖/|𝑉 𝜙 | is
the wavelength of fastest growing MRI mode, Δ𝑥𝑖 is a typical zone
length, and 𝑣𝐴,𝑖 =

√︁
𝑏𝑖𝑏𝑖/𝜌 is Alfvén speed in directions 𝑖 = {𝜃, 𝜙}).

This may lead to our relatively low values for 𝛼 ≡ ⟨𝑊𝑟 𝜙̂/𝑃tot⟩𝑡 of
10−3 − 10−2. However, one has to be careful here. First, we are not
using the typical setup of a dipole magnetic field inside a finite torus
that has been carefully studied and from which the “standard” Q
values are mostly derived (Hawley et al. 2011, 2013). In fact, for
our configuration, with a vertically stacked quadrupole field, there
is very little B 𝜃 to be found in the bulk of the disk. This means
our simulations are probably less reliant on the typical axisymmetric
modes of the MRI and more dependent on the non-axisymmetric
ones, which have been far less studied in terms of saturation values
and resolution requirements. Furthermore, with regard to 𝑄𝜙 , there
are two current sheets that form in our simulations, one a little above
the midplane and another a little below; this is in contrast to the
single current sheet associated with the standard dipole field. This
means there will also be regions with relatively weak B𝜙 fields.
Finally, since much of the angular momentum transport in these
discs is likely in the form of winds, it is unclear how critical the MRI
actually is. Additional work will be needed to clarify all of these
issues.

In this paper, we report three simulations that vary in their nominal,
or intended, mass accretion rate ¤𝑚0 = ¤𝑀/ ¤𝑀Edd (assumed measured
at large radius), their maximum radial extent 𝑟max, and angular con-
centration parameter ℎ, as detailed in Table 1. In all other respects,
the simulations are the same, with 𝑀BH = 6.62𝑀⊙ and 𝑎∗ = 0.9
(𝜂NT = 0.156).

3 RESULTS

3.1 Mass Accretion

3.1.1 Black Hole Growth Rates

If the mass accretion rate ¤𝑀 is assumed constant throughout, such
that the mass accretion rate onto the black hole equals whatever value
is fed in at the outer edge of the disc ¤𝑀0, then the black-hole mass

MNRAS 000, 1–11 (2025)
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Figure 1. Disc and grid configuration at the start of a9r20L3 (the high-resolution interval for simulation a9r20). The left panel shows the statically refined grid,
as well as the radiative flux (arbitrary units). Red colors indicate outgoing flux, while blue colors indicate flux moving toward the black hole. The right panel
shows the logarithm of the gas density, covering 3 orders of magnitude, as well as magnetic field streamlines launched from a uniform sample of points in the
plane of this slice.

¤𝑚0 𝑟max/𝑟𝑔 ℎ 𝑡stop/𝑡𝑔 𝑟eq/𝑟𝑔 ⟨ ¤𝑚in (𝑟eq ) ⟩𝑡 ⟨ ¤𝑚BH ⟩𝑡
⟨𝐿out (𝑟eq )⟩𝑡

𝐿Edd

⟨𝐿kin (𝑟eq )⟩𝑡
𝐿Edd

⟨𝜂⟩𝑡

a9r5 1 300 0.12 71,625 32 67 1.8 ≤ 6.3 ≤ 6.4 ≤ 0.5
a9r20 4 1,000 0.35 165,771 49 42 1.2 ≤ 5.0 ≤ 2.6 ≤ 0.7
a9r50 10 1,000 0.35 100,000 32 23 1.9 ≤ 3.8 ≤ 1.6 ≤ 0.4

Table 1. Simulation models and parameters

will grow linearly as

𝑀BH (𝑡) = 𝑀BH (𝑡0) + ¤𝑀0𝑡 , (13)

where 𝑀BH (𝑡0) is the initial mass, and the growth time will be
𝜏grow = 𝑀BH (𝑡0)/ ¤𝑀0. However, whenever the mass-accretion rate
at the outer edge exceeds the Eddington rate, accretion at the inner
edge is expected to be suppressed to

¤𝑀BH ≈ ¤𝑀Edd , (14)

and the black hole mass grows exponentially as

𝑀BH (𝑡) = 𝑀BH (𝑡0)𝑒𝑡/𝜏grow , (15)

where the growth time is now 𝜏grow ≈ 𝑀BH (𝑡0)/ ¤𝑀Edd. Numerically,
this corresponds to 𝜏grow ≈ 4.4 × 108𝜂 yr in the super-Eddington
case, which leads to difficulties when trying to understand how black
holes can reach masses of up to 109𝑀⊙ by the time the universe was
< 700 Myr old (Bañados et al. 2018; Yang et al. 2021). So, our first
goal with our super-critical simulations is to confirm whether the
mass accretion rate onto the black hole really is limited.

In Figure 2, we report the time history of mass accretion onto the
black hole

¤𝑀BH (𝑟BH, 𝑡) = −
∫ ∫ √−𝑔𝜌𝑢𝑟d𝜃d𝜙 (16)

for all three simulations. The remarkable finding is that they all
produce mass accretion rates onto the black hole within a factor of
3 of ¤𝑀Edd despite covering a full order of magnitude difference in
their target value ¤𝑚0. The ¤𝑚BH values are also remarkably steady
over time, though there is some evidence for slow secular trends

toward increasing ¤𝑚BH lasting at least 70, 000 𝑡𝑔 in all three cases.
Additionally, there is maybe a slight jump up in ¤𝑚BH whenever we
increase the resolution of our a9r20 simulation5. Still, the clustering
of our results around ¤𝑚BH ≈ 1 is noteworthy.

3.1.2 How the Eddington limit is achieved

It is very instructive to see how each of these simulations achieves
these nearly identical values of ¤𝑚BH. Figure 3 shows time-averaged
radial profiles of mass flux, both inward

¤𝑀in (𝑟, 𝑡) = −
∫ ∫ √−𝑔𝜌min{𝑢𝑟 , 0}d𝜃d𝜙 (17)

and outward

¤𝑀out (𝑟, 𝑡) =
∫ ∫ √−𝑔𝜌max{𝑢𝑟 , 0}d𝜃d𝜙 , (18)

for all three simulations. These data are time averaged from 𝑡 =

50, 000 𝑡𝑔 until 𝑡stop for simulations a9r5 and a9r50 and from 𝑡 =

100, 000 𝑡𝑔 until 𝑡stop for simulation a9r20. We also plot ¤𝑀net =
¤𝑀in − ¤𝑀out, which is an important quantity, as in a steady state,

this should be constant as a function of radius (regardless of what
super-critical disc model applies). Thus, we can see from Figure
3 that we have achieved a reasonably steady state out to ≳ 30𝑟𝑔
in all three cases. Lastly, Figure 3 includes ¤𝑀un, which represents
that portion of ¤𝑀out that has a positive Bernoulli parameter 𝐵𝑒 =

5 Throughout this paper, we refer to the high-resolution extension of simu-
lation a9r20 as a9r20L3.

MNRAS 000, 1–11 (2025)
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0 25 50 75 100 125 150 175
t [×103 tg]

10−1

100

101

ṁ
B

H

a9r5

a9r20
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Figure 2. Mass accretion rate through the black hole event horizon in units
of the Eddington accretion rate ¤𝑚BH = ¤𝑀BH/ ¤𝑀Edd, smoothed using moving
averages over 20 consecutive dumps (≈ 1, 850 𝑡𝑔 in time). The shaded re-
gions show the 1𝜎 standard deviations, and the black dashed line shows the
Eddington limit.

−(𝑇 𝑡
𝑡 + 𝑅𝑡

𝑡 + 𝜌𝑢𝑡 ) > 0 (Sądowski & Narayan 2016) and thus is
likely to be unbound and ultimately escape to infinity. The fact that
¤𝑚out significantly exceeds ¤𝑚un in Figure 3 implies that much of
the material moving outward on our computational domain may
eventually turn around and fall back toward the black hole. However,
using the Bernoulli parameter to define the unbound outflow is a
fairly conservative estimate, as it is possible for matter to be launched
with a negative 𝐵𝑒, yet receive additional acceleration and ultimately
escape (Yoshioka et al. 2022). As this does not happen within our
computational domain, the ultimate fate of this material remains
uncertain. As a final note on how these quantities are measured, we
emphasize that the mass outflow rates ( ¤𝑀out and ¤𝑀un) are cumulative;
in other words, at any given radius they could include matter launched
from that or any interior radius. They simply report how much mass
is moving outward through a given radius at a given time, irrespective
of where it launched from.

An important takeaway from Figure 3 is that ¤𝑚in and ¤𝑚net both
approach 1 at the inner boundary of the computational domain (i.e.,
at the black hole event horizon). This is achieved despite the fact
that ¤𝑚in can be quite large (easily > 100) at large radius. This is
possible because the mass outflow ¤𝑚out carefully balances the inflow
(compare the blue and orange curves in each panel). In fact, the
magnitudes of ¤𝑚in and ¤𝑚out are so large and the balance so finely
tuned that the difference between the two, ¤𝑚net, shows large statistical
fluctuations, particularly on the low side, since it often changes sign
(explaining the large green shaded regions in the top two panels of
the figure).

Table 1 reports values for ⟨ ¤𝑚BH⟩𝑡 , the time-averaged mass ac-
cretion rates onto the black hole for each simulation. These results
strongly suggest that ¤𝑀Edd is a meaningful limit for these simulations,
and the discs adjust as necessary to meet it. As mentioned previously,
this could have major implications for the growth of super-massive
black holes in the very early universe. It is also a somewhat surpris-
ing result in that it disagrees with practically all previous numerical
simulations of super-critical accretion, a point we return to in Section
5.

The reader may wonder how the inward mass accretion rates in
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Figure 3. Mass fluxes, both inward ( ¤𝑚in) and outward ( ¤𝑚out), as well as the
net mass flux ¤𝑚net = ¤𝑚in − ¤𝑚out, all scaled to Eddington and time averaged
from 𝑡 = 50, 000 𝑡𝑔 or 100, 000 𝑡𝑔 to 𝑡stop for the a9r5 (top), a9r20 (middle),
and a9r50 (bottom) simulations. The other curves report that portion of ¤𝑚out
that has a positive Bernoulli parameter ( ¤𝑚un) and an analytic estimate for
¤𝑚in (𝑟 ) = [ ¤𝑚in (𝑟cr ) − ¤𝑚BH ]𝑟/𝑟cr (black, dotted curve). The shaded regions

show 1𝜎 standard deviations.

Figure 3 can exceed our reported values for ¤𝑚0 by an order of mag-
nitude or more at large radii. First, it may help to emphasize that
each ¤𝑚(𝑟) comes from an integral over a full 4𝜋 steradian shell. So,
especially in the outer disc where there is a lot of mass, if the disc
simply sloshes around, it will appear as very large values of ¤𝑚 (both
inward and outward). Additionally, since none of our simulations
have reached steady-state solutions at large radii, what we are seeing
there may prove to just be an unfortunate transient state set up by our
imperfect initial conditions. However, we find it reassuring that the
total mass within our computational domain drops by less than 8%
even in our longest duration simulation, so despite what appear to
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be very large fluxes, we are not actually gaining or losing that much
mass compared to what we start with; it is just moving around a lot.

3.2 Radiative Luminosity

By definition, ULXs are suspected to be examples of super-critical
accretion. The functional definition of a ULX is an off-nucleus, X-
ray point source with a luminosity 𝐿X > 1039 erg s−1. This limit is
chosen because it lies, more or less, at the Eddington limit for a stellar
mass object [compare to eq. (1)], meaning that ULXs either represent
normally accreting objects with mass above what is expected for a
stellar remnant (possibly an intermediate mass black hole), or they
are stellar remnants apparently emitting above their Eddington limit.
We now know that at least some ULXs host neutron stars (i.e., stellar
remnants, e.g. Bachetti et al. 2014; Fürst et al. 2016) and suspect
others host stellar-mass black holes (Middleton et al. 2013; Middleton
& King 2017; Cseh et al. 2014), so we take ULXs as at least one
example of a steadily accreting super-critical system to which our
results may apply.

Since the defining characteristic of ULXs is that they have appar-
ent, isotropic X-ray luminosities at or above the Eddington limit, it
is important for us in this study to look at what radiative luminos-
ity we get from each of our simulations and how that luminosity is
distributed in space (since we do not expect ULXs to appear ultra-
luminous from all directions; Begelman et al. 2006; Middleton et al.
2021).

In Figure 4, we report the time-averaged radiative luminosity

𝐿rad (𝑟, 𝑡) = −
∫ ∫ √−𝑔𝑅𝑟

𝑡 d𝜃d𝜙 , (19)

integrated over the full 4𝜋 steradians. We report both the outward
(𝑢𝑟

𝑅
> 0) and inward (𝑢𝑟

𝑅
< 0) contributions as a function of ra-

dius for all three simulations. The inward luminosity is attributable
to photons that are trapped within the accreting gas. The net lumi-
nosity, 𝐿net = 𝐿out − 𝐿in, reflects the difference between these two
components.

Generally, we find that the overall (outward) radiative luminosity
is a few times 𝐿Edd, consistent with expectations for a super-critical
accretion disc. However, just as the inward luminosity consists of
radiation that is trapped in the accreting gas, some of the outward
luminosity may also be trapped in the optically thick wind, some of
which is still bound and may fall back to the disc. For this reason,
our 𝐿out likely represents an upper limit of what an observer may
measure. Also the luminosities in Figure 4 represent integrals over
the complete radial shell, so they are true, total luminosities, and are
thus unlikely to match what an observer would infer from any one
particular viewing angle.

Another point regarding the radiative luminosity (Figure 4) is that
the net value 𝐿net changes sign between 5 and 8𝑟𝑔 for all of our
simulations, with most of the radiation moving toward the black hole
inside that radius and away from the black hole outside it. This dip
represents the trapping radius 𝑟tr for each of our simulations. We
note that this trapping radius is relatively close to the inner edge of
the disc, so we conclude that advection is not a prominent source
of cooling beyond about 20𝑟𝑔 in our simulations. Also, to be clear,
there is still some 𝐿out even inside 𝑟tr, as can be seen in Figure 4. The
point is, though, there is more 𝐿in than 𝐿out, so in terms of cooling
the gas, advection is dominant in that region.

An important distinction between optically thick accretion discs
and stellar objects is that we do not expect the radiation from discs
to be isotropic. Rather, we expect most of it to come out within an
optically thin cone centered about the black hole spin axis. Figure 5
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Figure 4. Radiative luminosity, both outward (𝐿out) and inward (𝐿in), as well
as the net luminosity 𝐿net = 𝐿out − 𝐿in, all scaled to Eddington and time
averaged from 𝑡 = 50, 000 𝑡𝑔 or 100, 000 𝑡𝑔 to 𝑡stop for the a9r5 (top), a9r20
(middle), and a9r50 (bottom) simulations. The black, dotted curve reports an
analytic estimate for 𝐿out (𝑟 ) = ln(𝑟/𝑟ISCO ) . The shaded regions show 1𝜎
standard deviations. The trapping radius 𝑟tr is apparent as the sharp dip in 𝐿net
around 𝑟 ≈ 5𝑟𝑔 , where it actually changes sign from inflowing (for 𝑟 < 𝑟tr)
to outflowing (for 𝑟 > 𝑟tr).

shows that the region around the pole in each case is both relatively
evacuated of material and lies outside the effective photosphere of
the disc, so is optically thin. We locate the effective photosphere by
integrating the quantity −(𝑢𝑡 + 𝑢𝑟 )𝜅e𝜌 inward from the outer radial
boundary of the simulation domain along lines of constant 𝜃 until we
reach values ≥ 1, where the effective opacity is 𝜅e =

√︃
0.5𝜅a

R𝜅
s.

We can also measure how much radiation is escaping at different
angles with respect to the black hole spin axis. We show results for this
in Figure 6. Not surprisingly, near the poles, the luminosity is orders
of magnitude greater than in the equatorial plane. This provides a

MNRAS 000, 1–11 (2025)



Simulations of super-critical accretion 7

50 100 150 200 250
R [rg]

−100

−50

0

50

100

z
[r
g
]

50 100 150 200 250
R [rg]

50 100 150 200 250
R [rg]

50 100 150 200 250
R [rg]

-5.7

-5.2

-4.6

-4.1

-3.6

-3.1

-2.6

-2.0

-1.5

-1.0

lo
g
<
ρ
>
φ
,t

[g
cm
−

3
]

Figure 5. Psuedocolor plot of time- and azimuthally averaged gas density and fluid velocity streamlines for simulations a9r5 (first panel), a9r20 (second panel),
a9r50 (third panel), plus the high-resolution extension a9r20L3 (last panel). The white lines represent the effective photospheres, while the red, dashed lines
delineate the 𝐵𝑒 = 0 boundaries. Time averaging is over the intervals from 𝑡 = 50, 000 𝑡𝑔 , 100, 000 𝑡𝑔 , or 159, 000 𝑡𝑔 to 𝑡stop, depending on the simulation.
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Figure 6. Contribution to the radiative luminosity measured at 𝑟eq, broken
down into polar angle bins, showing that most of the radiation escapes close
to the poles. The black, dotted curve suggests 𝐿rad (𝜃 ) ∝ 1/(1 − | cos 𝜃 | ) .
Data are time averaged over the intervals from 𝑡 = 50, 000 𝑡𝑔 , 100, 000 𝑡𝑔 ,
or 159, 000 𝑡𝑔 to 𝑡stop, depending on the simulation, and the shaded regions
show 1𝜎 standard deviations.

simple explanation for why some suspected ULXs, even within our
own galaxy, do not appear to us as such (Begelman et al. 2006;
Middleton et al. 2021; Veledina et al. 2024). Interestingly, all of our
simulations show very similar 𝜃 profiles in Figure 6, meaning they
would all appear to be roughly the same luminosity, when viewed
from the same inclination. One odd feature, however, is the drop in the
radiative flux right along the pole. We note, though, that similar drops
have been seen in other numerical studies (e.g., Jiang et al. 2014;
Sądowski et al. 2014; Utsumi et al. 2022). In our case, this may have
to do with our use of the M1 closure, although that explanation would
not apply to Jiang et al. (2014). Also, the drop is not as pronounced
in the high-resolution extension simulation a9r20L3, suggesting this
could also be a resolution issue near the pole.

3.3 Kinetic Luminosity

Some ULXs are accompanied by optical nebulae (e.g. Kaaret et al.
2004) or radio bubbles (e.g. Berghea et al. 2020) with extents of

10–100 parsecs. These nebulae are thought to be powered by the
the ULX itself through some combination of radiation and mass
outflow. Indeed, there are now convincing observations of both jets
(Middleton et al. 2013; Cseh et al. 2014) and winds (Middleton et al.
2014, 2015; Pinto et al. 2016; Kosec et al. 2021) from ULXs, with
inferred kinetic luminosities on a par with the radiative output. Thus,
in addition to radiative luminosities, it is important for us to also
examine the kinetic luminosities in the simulations, following:

𝐿kin (𝑟, 𝑡) = −
∫ ∫ √−𝑔𝜌𝑢𝑟 (𝑢𝑡 +

√−𝑔𝑡𝑡 )d𝜃d𝜙 . (20)

We do this in Figure 7, where we compare the time histories of the
radiative and kinetic luminosities. Each luminosity is measured at
the maximum radius for which each simulation has come into inflow
equilibrium, 𝑟eq, based on ¤𝑚net being flat in Figure 3. The values
for 𝑟eq, 𝐿out (𝑟eq), and 𝐿kin (𝑟eq) are reported for each simulation in
Table 1.

The kinetic luminosities are smaller than the radiative ones by
about a factor of two for the a9r20 and a9r50 simulations, but are
roughly equal for the a9r5 one. This is consistent with the fact that
the a9r5 simulation exhibits mass outflows in Figure 3 that are sig-
nificantly stronger than the other simulations.

As mentioned before, we have measured all of our luminosities
through the full 4𝜋 steradians, even though some of the outward
radiation may be trapped in the bound outflow and potentially fall
back to the black hole at larger radii. Notice that in Figure 5, the 𝐵𝑒 =

0 surface often lies very close to the photosphere, suggesting that most
of the radiation passing through the photosphere will escape, while at
least some of that within it will remain trapped. Thus, our luminosities
likely represent the upper limits of what could be observed. For this
reason, some other groups have chosen to report luminosities only
from their optically thin or unbound regions. In that case, all of
their radiation is likely to reach an observer; however, it probably
represents a lower limit on the total luminosity since some of the
radiation in the optically thick wind should eventually escape as well.
Thus, current simulations can really only bracket what the observed
luminosity should be.

4 COMPARISON WITH SUPER-CRITICAL DISC MODELS

As mentioned in Section 1, there are two broad classes of super-
critical disc models: those based on advective cooling (e.g., slim
discs) and those based on radiatively driven outflows (e.g., critical
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Figure 7. Radiative (top panel) and kinetic (bottom panel) luminosities as a
function of time measured at 𝑟eq for each simulation. Data have been smoothed
by using a moving boxcar averaging window of 20 consecutive dumps. The
shaded regions show 1𝜎 standard deviations.

discs). In this section, we attempt to compare our results with these
two classes of models to see if our simulations support either one.

One issue we have to settle before we can make such a comparison
is what “input” mass accretion rate to consider. All analytic models of
accretion are based on the assumption that the input mass accretion
rate at large radii is fixed. However, even though our simulations
have run for extended periods, they have not reached a steady state
all the way to their outer boundaries. Therefore, it would not make
sense to use the ¤𝑚 values there as our input mass accretion rates.
Likewise, although we started all of our simulations with a target
mass accretion rate in mind based on the Shakura-Sunyaev thin-disc
model, this ¤𝑚0 was a poor guess at best. We had no way of knowing
a priori what the effective viscosity (parameterized by 𝛼) would be.
Not surprisingly, the measured values for ¤𝑚in are quite different, in
general, from our target values and are highly radially dependent.
Therefore, for the rest of our analysis, we will use as our input mass
accretion rate the value of ¤𝑚in measured at 𝑟eq, where again 𝑟eq is the
maximum radius out to which the net mass accretion rate has reached
a steady value. The measured values for ⟨ ¤𝑚in (𝑟eq)⟩𝑡 are reported for
each simulation in Table 1.

4.1 Slim Disc Model

The slim-disc model (Abramowicz et al. 1988) assumes that all of
the supplied gas reaches the black hole. In other words, the inward
mass accretion rate ¤𝑀in is constant as a function of radius and there
are no outflows. This is the first sign that our simulations do not agree
with this model, as we see significant mass outflow ¤𝑀out and a highly
radially dependent ¤𝑀in in Figure 2.
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Figure 8. Density-weighted, time-averaged angular velocity profiles of the
discs divided by a purely Keplerian profile. Our profiles differ by no more than
a few percent from purely Keplerian. Data are again time averaged over the
intervals from 𝑡 = 50, 000 𝑡𝑔 , 100, 000 𝑡𝑔 , or 159, 000 𝑡𝑔 to 𝑡stop, depending
on the simulation, and the shaded regions show 1𝜎 standard deviations.

Because all of the gas ultimately reaches the black hole in the slim
disc model, it necessarily requires some of the radiation to also be
advected into the black hole to prevent the outward radiation pressure
from overwhelming the inward gravitational force. The prediction is
that the photon trapping radius should scale with the mass accretion
rate such that 𝑟tr ≈ ¤𝑚0𝑟ISCO. Taking our observed value of ¤𝑚in (𝑟eq)
as the best measure of ¤𝑚0 in our simulations, this would predict a
trapping radius of 𝑟tr ≳ 100𝑟𝑔 for the a9r5 and a9r20 simulations,
about twenty times further out than what we actually observe in
Figure 4. This is another sign that our simulations do not agree well
with the slim-disc model.

Another key difference between the slim disc model and the stan-
dard Shakura-Sunyaev one is that, while the Shakura-Sunyaev model
assumes a purely Keplerian rotation profile, the slim disc requires
most of the disc to be slightly sub-Keplerian, with only a small inner,
super-Keplerian region (Abramowicz et al. 1988). We, instead, find
that our discs all have almost perfectly Keplerian rotation profiles
(see Figure 8).

4.2 Critical Disc Model

As mentioned previously, the critical disc model (e.g., Fukue 2004)
relies on mass outflows to keep the disc below the critical mass
accretion rate. Nominally, the outflows should apply to 𝑟 < 𝑟cr, and
it should be the case that ¤𝑚out (𝑟 < 𝑟cr) = ¤𝑚in (𝑟 < 𝑟cr) − ¤𝑚BH. In
other words, how much matter goes out must match the excess of
what is trying to be fed in minus what is actually making it into the
black hole. For 𝑟cr ≫ 𝑟BH, this implies ¤𝑚out should be quite close
to ¤𝑚in, which is exactly what we see in Figure 2. In fact, the very
large variability in ¤𝑚net in Figure 2 owes to the fact that ¤𝑚in and ¤𝑚out
have such close numerical values that the difference between them
often changes sign. There is also reasonable quantitative agreement
between our accretion profiles and the critical disc model, as Figure 3
shows that ¤𝑚in (𝑟) closely follows [ ¤𝑚in (𝑟cr) − ¤𝑚BH]𝑟/𝑟cr (Poutanen
et al. 2007).

There are also predictions for how the luminosity should vary
for a critical disc inside 𝑟cr. According to Fukue (2004), it should
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go as 𝐿 (𝑟)/𝐿Edd ∝ ln(𝑟/𝑟BH), which actually matches the profiles
we find for 𝐿out in Figure 4 fairly well. Another confirmation is the
dependence of 𝐿rad on 𝜃. Figure 6 shows that this agrees with (Fukue
2011): 𝐿 (𝜃)/𝐿Edd ∝ 1/(1 − | cos 𝜃 |), except right at the poles where
the simulation data suddenly drops. Finally, the critical disc model
predicts that the disc should maintain a nearly Keplerian velocity
profile, consistent with what we report in Figure 8. To conclude, our
¤𝑚(𝑟), 𝐿 (𝑟), 𝐿 (𝜃), and 𝑉 𝜙 (𝑟) profiles all agree with the predictions
of the critical disc model.

5 COMPARISON WITH OTHER NUMERICAL WORK

As mentioned in the Introduction, a number of other groups have
performed simulations of super-critical accretion discs, and yet, our
results appear to be distinct from all previous studies in at least
one key aspect: all of our simulations trend towards ¤𝑚BH ≈ 1. In
other words, our simulations appear to confirm the Eddington limit,
whereas other numerical studies do not. In Table 2, we provide a
sampling of previous simulation results from a variety of other groups
(additionally see Table 2 of Toyouchi et al. 2024). Noticeable is that
all of those simulations found ¤𝑚BH ≳ 10.

We have a few ideas about why our simulations may have yielded
different results:

• Most previous simulations started from a finite torus of gas, and
in many of them, the critical radius 𝑟cr, where the radiation pressure
first exceeds gravity, lies beyond the pressure maximum of the torus.
This may prevent the disc from having the necessary space and time
to fully adjust to the radiation pressure before accreting. This was
already pointed out in Kitaki et al. (2021).

• In other cases, it must be that the ratio of the advection timescale
to the radiation diffusion timescale is much smaller than in our sim-
ulations. This could be due to a loss of angular momentum support,
leading to significantly sub-Keplerian angular velocity profiles and
short advection times in the other simulations. Or the low 𝛼 values
in our own simulations may lead to unrealistically large advection
times.

• Another possibility is that the radiation diffusion timescale in
the other simulations is much longer, either because of differences
between the radiative transport methods or because some of those
simulations lack MHD turbulence, which can give the radiation easier
channels to escape from the disc.

• Finally, our unique starting magnetic field topology could also
be a contributor. Perhaps some field topologies are more prone to
driving Blandford-Payne (Blandford & Payne 1982) winds than oth-
ers, possibly altering ¤𝑀out, or yield lower saturation values for 𝛼,
altering ¤𝑀in.

Since we think our methodology and setup are more appropriate for
simulating large, super-critical accretion discs, as may be applicable
to ULXs, than any previous simulations, we stand by our finding
that such discs are locally Eddington limited at all radii, even when
¤𝑚0 ≫ 1.

Not surprisingly, since we measure comparable luminosities to
previous simulations, but significantly smaller ¤𝑚BH, our discs yield
radiative efficiencies that are an order of magnitude or more higher.
Using our values for 𝐿out (𝑟eq) and ¤𝑀BH, we measure radiative ef-
ficiencies of ⟨𝜂⟩𝑡 = 0.3-0.7. This is somewhat higher than the ef-
ficiency expected from thin-disc theory (0.156). However, as men-
tioned in Section 3.2, our values for 𝐿out should be viewed as upper
limits, meaning our values for 𝜂 are also upper limits. To avoid con-
fusion, we remind our readers that our simulations are not done in

the magnetically arrested disk (MAD) limit, which can also result in
high radiative efficiencies (Thomsen et al. 2022).

6 CONCLUSIONS

We have reported on one of the first sets of large (radially extended),
three-dimensional GRRMHD simulations of super-critical accretion
onto black holes. This work is most directly applicable to ULX
systems, but may also tell us something about the growth history of
black holes over cosmic time.

The most notable finding in our work is that all of our simulations
trend toward ¤𝑚BH ≈ 1. The takeaway is that for super-critical discs
fed by thin, Keplerian discs at large radii, it appears ¤𝑀Edd is a mean-
ingful limit6, though this should be validated over a wider parameter
range. This is in good agreement with long-standing theory, but poses
a significant challenge when trying to understand the growth of the
first supermassive black holes. Either they cannot grow from steady,
long-term accretion from a large, aligned, Keplerian disk or they
cannot start from stellar mass accretors.

To help interpret our results, we tested them against two broad
classes of models of super-critical accretion: advection-dominated
slim discs and outflow-dominated critical discs. We found that our
results do not agree with the main predictions of the slim disc, as
we see significant mass outflow, a small trapping radius, and nearly
perfectly Keplerian velocity profiles. By contrast, our results agree
well with the critical disc model, where mass outflow closely balances
mass inflow at all radii to produce a net accretion rate close to ¤𝑀Edd.
We also found that our luminosity profiles, both in radius 𝐿 (𝑟) and
polar angle 𝐿 (𝜃) match the predictions of the critical disc model.

We caution that it is unclear whether or not we resolve the critical
radius 𝑟cr within our computational domain. One way to identify this
radius would be to look for where the profile of ¤𝑚in (𝑟) (or likewise
¤𝑚out (𝑟)) flattens out (i.e., becomes independent of 𝑟). Unfortunately,
we do not see convincing evidence for such plateaus in Figure 3 for
any of our simulations. This tells us that 𝑟cr must lie beyond the
equilibrium radius 𝑟eq achieved in each simulation (see Table 1). It
could be that extending these simulations further in time would allow
us to eventually capture 𝑟cr on the grid, or it could be that we would
need to extend the grid even further out in radius. Alternatively, we
could try other disc parameters to see if we could bring 𝑟cr to a
smaller radius that is more easily captured. Regardless of how it is
accomplished, it is an important goal to try to capture 𝑟cr within the
computational domain, and we will continue to work toward that in
future simulations. However, this does not alter any of the conclusions
we put forth in this study.

Our result of the Eddington limit being enforced in all our sim-
ulations is surprising, as it sits in contrast to nearly all previous
numerical simulations of super-critical accretion. We speculated in
Section 5 that this likely has to do with differences in how we set up
our simulations compared to all other work. If so, that is an impor-
tant lesson to consider for anyone thinking of doing simulations of
super-critical accretion in the future. One clear point seems to be that
if the circularization radius of the gas 𝑟cir is smaller than the critical
radius 𝑟cr, then the disc may not be able to adjust fully to the critical
solution and will therefore be forced to favor the advective one, as
may be appropriate for TDEs but not ULXs.

6 The Eddington limit does not apply whenever the angular momentum of
the gas is so low that it cannot circularize as a disk before it accretes into the
black hole (Fragile et al. 2012; Inayoshi et al. 2016).
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Reference ¤𝑚0 ¤𝑚BH 𝜂 𝐿kin/𝐿rad 𝑟cr/𝑟cir

Jiang et al. (2014) · · · ∼ 22 0.045 ∼ 0.2 ≥ 1.5
Sądowski & Narayan (2016) · · · ≥ 10 ≈ 0.03 0-1.4 ≥ 0.4

Abarca et al. (2018) · · · 22 ≈ 0.09 ∼ 0.1 ≥ 0.9
Utsumi et al. (2022) · · · ≳ 10 0.003-0.03 0.01-0.4 ≥ 0.5

Yoshioka et al. (2022) 35-200 11-38 0.01-0.02 0.02-0.29 ≳ 0.02

Table 2. Sampling of published super-critical accretion simulation results. We report the input mass accretion rate ¤𝑚0, the measured ¤𝑚BH, the radiative efficiency
𝜂, the ratio of kinetic to radiative luminosities 𝐿kin/𝐿rad, and the ratio of the critical radius to the radius of the torus pressure maximum or the circularization
radius of the gas 𝑟cr/𝑟cir. Since most of these simulations used non- or slowly rotating black holes, we assume a radiative efficiency of 10% when defining ¤𝑀Edd
in this table. In many cases, we were unable to extract the values of ¤𝑚0 from the information provided in the original paper. In those cases, our estimate of 𝑟cr is
based on ¤𝑚BH, which will generally be much smaller than ¤𝑚0, making our estimates of 𝑟cr stringent lower limits.
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