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ABSTRACT

In this paper, we report on three of the largest (in terms of simulation domain size) and longest (in terms of duration) 3D
general relativistic radiation magnetohydrodynamic simulations of supercritical accretion on to black holes. The simulations
are all set for a rapidly rotating (a, = 0.9) stellar-mass (Mpy = 6.62M) black hole. The simulations vary in their initial target
mass accretion rates (assumed measured at large radius), with values sampled in the range m = M/Mggq = 1-10. We find in
practice, though, that all of our simulations settle close to a net accretion rate of #ipe = 7ty — Higy = 1 (over the radii where
our simulations have reached equilibrium), even though the inward mass flux (measured at large radii) 7, can exceed 1000 in
some cases. This is possible because the outflowing mass flux ., adjusts itself to very nearly cancel out r;,, so that at all radii
Mye; & Mgqq. In other words, these simulated discs obey the Eddington limit. We compare our results with the predictions of
the slim disc (advection-dominated) and critical disc (wind/outflow-dominated) models, finding that they agree quite well with
the critical disc model both qualitatively and quantitatively. We also speculate as to why our results appear to contradict most

previous numerical studies of supercritical accretion.
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1 INTRODUCTION

Supercritical accretion, where mass is fed into a system above the
nominal Eddington limit, plays a crucial role in many astrophysical
settings. It may be a factor in the formation of the first supermassive
black holes (Volonteri & Rees 2005; Schneider et al. 2023; Bennett
et al. 2024); it likely governs the early evolution of tidal disruption
events (TDEs; Dai et al. 2018; Wu, Coughlin & Nixon 2018); and it
is important for understanding the observational appearance of ultra-
luminous X-ray sources (ULXs; King et al. 2001; Kaaret, Feng &
Roberts 2017; King, Lasota & Middleton 2023).

The Eddington limit is defined as the state in which there is a
perfect balance between the gravitational force attracting matter to
a central object and the outward radiation force coming from that
object. Assuming an electron-scattering opacity, a pure hydrogen
composition, and spherical symmetry gives the standard expression
Logg = FOMaumpc 3 o8 (@) ergs! . (1

or M o)
If we assume the luminosity is powered by accretion on to a black
hole, then it is common to take Lgqg = Mggqc?, where Mgy is the
corresponding Eddington mass accretion rate and 7 is the radiative
efficiency of the disc.

Supercritical accretion has been widely studied, both from an
observational perspective and theoretically (see Kaaret et al. 2017;
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King et al. 2023, and references therein). The fundamental issue with
supercritical accretion is that, if all the gravitational binding energy
of the accreting matter were liberated locally in the form of radiation,
as in the standard disc model, then the radiative forces would exceed
the gravitational ones, and the disc cannot be in balance. Broadly
speaking, two classes of solutions have been proposed to address this
problem. The first posits that not all of the energy is actually radiated
locally; instead, some of it is advected into the black hole before it
has time to escape.' The most popular solution within this class is the
so-called ‘slim’ disc (Abramowicz et al. 1988; Beloborodov 1998;
Sadowski 2009). In the second class of solutions, the excess liberated
energy is used to drive an outflow, effectively limiting the amount
of matter that actually accretes to smaller radii (Shakura & Sunyaev
1973). One example of a solution in this class is the ‘critical’ disc
(Fukue 2004). There are also models that combine some degree of
advection and outflow (Fukue 2004; Poutanen et al. 2007).
Supercritical accretion has also been studied numerically (e.g.
Ohsuga et al. 2005; Jiang, Stone & Davis 2014; Sadowski & Narayan
2016; Takahashi, Mineshige & Ohsuga 2018; Asahina & Ohsuga
2022; Utsumi et al. 2022). However, all previous numerical studies
differ from the work we present in one or more crucial aspects.
For instance, many studies were performed in two-dimensions using
an explicit viscosity (e.g. Ohsuga et al. 2005; Kitaki et al. 2021;
Hu et al. 2022; Yoshioka et al. 2022). Such simulations preclude

'Note that for accreting objects that have physical surfaces, such as neutron
stars, all of the liberated accretion energy must ultimately escape.
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any magnetohydrodynamic (MHD) turbulence, magnetically driven
outflows, and any non-axisymmetric effects. Others were initialized
with a finite torus of gas (e.g. Jiang et al. 2014; Sadowski & Narayan
2016; Utsumi et al. 2022). Such simulations can never truly achieve
a global steady state, as the mass reservoir is continuously depleted.
More importantly, most of these simulations started with tori that
were smaller than their corresponding trapping radius r ~ ripyr,,
where r, = GMgn/ ¢?is the gravitational radius and migy is the mass
feeding rate measured at the black hole,? possibly forcing them to
favour the advective, rather than outflow, solution (Kitaki et al. 2021;
Yoshioka et al. 2022). Since our simulations correct many of these
issues, we feel they offer an important new perspective in the study
of supercritical accretion.

Since our work focuses on large steady-state accretion discs, the
results are probably most applicable to the case of ULXs. TDEs
likely have relatively small discs with rapidly varying mass accretion
rates, whereas ULXs have comparatively large discs and more stable
accretion rates (although see Middleton et al. 2022). The numerical
simulations reported in this paper have been specifically designed to
match the latter conditions.

In this paper, we first describe our numerical set-up (Section 2),
then highlight results regarding the actual feeding rate of material on
to the black hole, as well as the luminosity of the disc (Section 3).
We also compare our results to the two broad classes of supercritical
accretion models (Section 4) and compare our results with previous
numerical studies (Section 5). We end with our concluding thoughts
(Section 6).

2 NUMERICAL SET-UP

All of our simulations are performed using the general relativistic
radiation MHD (GRRMHD) code Cosmos++ (Anninos, Fragile &
Salmonson 2005). We use high-resolution shock-capturing (Fragile
et al. 2012) to solve for the flux and gravitational source terms
of the gas and radiation; for the magnetic fields, we evolve the
magnetic vector potential (Fragile et al. 2019); and for the radiation,
we use the (grey opacity) M, closure scheme (Fragile, Olejar &
Anninos 2014). Together, these allow us to evolve the following 12
conserved fields: the fluid density D = W p, the fluid total energy
density & = —/—gT/, the fluid momentum density S; = /—gT?,
the magnetic vector potential A;, the radiation total energy density
R = /—gR), and the radiation momentum density R ; = ./—gRY,
where W = /—gu' is the generalized boost factor, g is the four-
metric determinant, p is the rest-mass density, u* is the fluid four-
velocity, TV is the fluid stress-energy tensor, and R*” is the radiation
stress-energy tensor. The fluid and radiation fields are coupled
through the radiation four-force density

G" = —p(ki + k" )R"u, 2
Toas — T,

—p { [KS + 4k* (7gasm md) +Kp — K?] 3)

XR“ﬁuauﬂ —|—K]§aRT§aS}uﬂ , )

where we assume Planck and Rosseland mean opacities «j =
2.8 x 108 TK_m,ngs em? g~! and k= 7.6 x 102 T/ Pegs CM?
g1, respectively, and «* = 0.34 cm? g~! for the scattering opacity,
appropriate for solar metallicity with mean molecular weight © =

2Throughout this paper, riz refers to mass accretion rates scaled to Eddington,
ie.m= M/MEdd
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0.615 and a hydrogen-mass fraction of X = 0.7. We use the 9D
numerical inversion scheme with analytic derivatives from Fragile
et al. (2014) to recover the primitive fluid and radiation fields. The
necessary magnetic field components, including the face-centred
conserved fields B’ and zone-centred primitive field B!, are recovered
from the updated vector potential (Fragile et al. 2019).

To initialize our simulations, we start from the Novikov & Thorne
(1973) generalization of the Shakura—Sunyaev (Shakura & Sunyaev
1973) thin disc. As we are only considering a limited radial range,
we do not require all three regions of the solution. Instead, we only
initialize the so-called ‘inner’ (radiation-pressure-dominated) region,
which should exist out to r 2 100r, at the accretion rates we are
considering. We follow the form of the Novikov—Thorne solutions
given in Abramowicz & Fragile (2013). This simply requires us to
choose a mass for the black hole Mgy, a target mass feeding rate g
measured at large radius, and a Shakura—Sunyaev viscosity parameter
ass for the disc. We choose ass = 0.02 for our initial set-up, though
it is difficult to specify a priori what value we should use, as there
are multiple possible sources of angular momentum transport in our
simulations (MHD turbulence and magnetically driven winds), and
we cannot know ahead of time what effective « they will lead to.
Ultimately, however, our goal is just to begin the simulations from
some reasonable initial conditions that cover a large radial range. As
explained later, we then give the discs plenty of time to approach
their true solutions.

From the Novikov-Thorne solution, all we actually require
are the radial dependencies of the height H(R) and mid-plane
density po(R) of the disc.®* We also include a small radial ve-
locity VR(R), associated with the slow inward drift of material
through the disc (Penna, Sadowski & McKinney 2012). The ini-
tial azimuthal velocity is taken to be Keplerian, V?(R) = Q =
(Mpu/ R [1+ a,(Myu/R)'?] .

For the vertical profile, we solve for hydrostatic equilibrium
assuming a polytropic equation of state with 'yt = 4/3. The solution
yields

72 1/(’nt—1)
p(R, z) = po [1 - W] ©)
and
Po(R,2) = kp™ ©)
where
G Mgy H? o

T T — DA R
~Nt(UnT )Py

For the background, we initialize a cold (e =3 x 10~ %emaxr ~2)
low density (o = 107 ppaxr ~/?) free-falling (u” = —+/rpu/r) fluid,
where rgy = (1 + /1 — aﬁ) r¢ is the radius of the black hole and
a, is its dimensionless spin.

Assuming the gas and radiation are in local thermodynamic
equilibrium inside the disc for the initial, analytic solution, we
partition the pressure as
kb )OTgas 1

m

+ gaR Tgts ) (8)

where /i1 = umy and ar = 4o /c is the radiation constant. We can
now solve this quartic equation for Ty (R, z). This temperature is

PIOI:Pgas+Prad:

3We take r as the spherical-polar radius and R = r sin as the cylindrical
one.
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also used to set the initial radiation field. In the frame of the fluid,
the radiation energy density is taken to be
Epg = agT, ©)

gas ?

while the flux, F', is initially set equal to the gradient of this quantity.
To get the radiation density in the radiation rest frame, Eg, and the
radiation rest-frame four-velocity, u‘,é, we follow the transformation
procedure outlined in Sadowski et al. (2013).

One issue with the inner region of the Shakura—Sunyaev thin-disc
solution is that it is thermally unstable (Shakura & Sunyaev 1976), as
confirmed in earlier numerical work (Jiang et al. 2013; Mishra et al.
2016; Fragile et al. 2018). One mechanism that can stabilize such
discs is the introduction of strong (particularly, toroidal) magnetic
fields (Begelman & Pringle 2007), which require particular global
magnetic field topologies to maintain (Sadowski 2016; Mishra et al.
2022). The present simulations start from one such configuration:
a zero-net-flux quadrupole field that has two poloidal field loops of
opposite polarity stacked vertically, one on top of the other, about the
mid-plane of the disc. The two poloidal loops are greatly elongated in
the radial direction, extending from near the inner radius of the disc
to nearly the outer boundary of our simulation domain. To initialize
this field, we first set the azimuthal component of the vector potential
to

Ve=232H) sin (71 R /Finax)

Ay o R , 10
¢ ‘ 1+e2 (10
where 1y, is the maximum radius of the grid, and
2 2
Z (R—R)
A:m(ﬁ+—7ﬁ——1, an

where R, = max(risco, R), and risco is the usual innermost stable
circular orbit radius. We then set the poloidal components of the
magnetic field as B = —0y A4 and B = 0, A,. These choices keep
the initial magnetic field divergence-free and confined within the
initial disc. This particular field configuration is subject to a strong
radial shear amplification (leading to a growth of the B¢ component)
due to the orbital motion of the disc (the so-called €2-dynamo).
Along with the normal magnetorotational-instability (MRI)-driven
amplification, this has been shown to help stabilize similar discs
against thermal instability (Sadowski 2016; Mishra et al. 2022).

The simulations are run on a nested (statically refined) spherical-
polar grid with resolution concentrated near the black hole and
towards the mid-plane. We use a logarithmic radial coordinate,
x1 = 14 In(r/rgn), to cover the range from 0.9 rgy < r < 1000 7.
As such, these are the largest three-dimensional supercritical accre-
tion simulations in terms of the size of the disc that we are aware
of, comparable to earlier large-domain two-dimensional simulations
(Kitakietal. 2021; Yoshioka et al. 2022). The advantage of using such
large discs and starting from a Shakura—Sunyaev solution instead of a
finite torus is that the simulations can be run for very long times with
nearly steady mass accretion rates. It also gives us an opportunity
to capture the critical radius, given analytically by (Fukue 2004;
Poutanen et al. 2007):

~ 5 )
Ter ~ §m07 (12)
on the grid, which is the radius inside of which the radiative forces
overcome gravity and the traditional disc solution is no longer valid.
This has not been the case in most previous numerical work (see
Kitaki et al. 2021). We include the full polar (0 <6 <) and
azimuthal (0 < ¢ < 27) domains. To improve the resolution near
the mid-plane, a concentrated polar coordinate, 6 = x, + & sin(2xy),
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is used. The base mesh has a resolution of 48 x 32 x 24 zones in
{x1, x2, ¢}. Outflow boundary conditions are applied at the inner and
outer radial limits of the domain, while transmissive boundaries are
applied at the poles and periodic boundaries are used in ¢.

As mentioned before, we already know that the Shakura—Sunyaev
disc solution is invalid once the mass accretion rate exceeds Edding-
ton, so another option would have been to start our simulations with
one of the supercritical disc solutions proposed in Section 1. How-
ever, since one of our goals is to assess which class of supercritical
solution is applicable to large steady-state discs, we choose, instead,
to start from the Shakura—Sunyaev solution and simply give our discs
sufficient time to find their preferred supercritical states. To do this in
a computationally efficient way, we start all of our simulations on a
very low resolution, two-level mesh (base mesh plus one refinement
layer for an effective resolution of 96 x 64 x 48) and allow them
to Tun o fyop 2 700001, where t, = GM /c*. This is longer than
the thermal time-scale of the disc (z ~ [«$2]™!) out to r 2 1507,
and the accretion time-scale (fo.c ~ r/|V'|) out to r 2 20r,. After
this initial ‘burn-in’ period, we increase the resolution in one of our
simulations by adding another refinement layer before running it for
an additional 150001,. A plot of this high-resolution disc and grid
is shown in Fig. 1.

The modest resolutions of our two-level meshes mean that we are
not formally resolving the MRI (quality factors Q; = Aygryi/Ax; of
Qo ~ 1 and Q4 ~ 4, respectively, where Amgrr; = 2mvai/|V? is
the wavelength of fastest growing MRI mode, Ax; is a typical zone
length,and vy ; = /b'b;/ p is Alfvén speed in directionsi = {0, ¢}).
This may lead to our relatively low values for o = (W;;/Pot):
of 1073-1072. However, one has to be careful here. First, we are
not using the typical set-up of a dipole magnetic field inside a
finite torus that has been carefully studied and from which the
‘standard’ Q values are mostly derived (Hawley, Guan & Krolik
2011; Hawley et al. 2013). In fact, for our configuration, with a
vertically stacked quadrupole field, there is very little B to be
found in the bulk of the disc. This means our simulations are
probably less reliant on the typical axisymmetric modes of the MRI
and more dependent on the non-axisymmetric ones, which have
been far less studied in terms of saturation values and resolution
requirements. Furthermore, with regard to Qy, there are two current
sheets that form in our simulations, one a little above the mid-
plane and another a little below; this is in contrast to the single
current sheet associated with the standard dipole field. This means
there will also be regions with relatively weak B? fields. Finally,
since much of the angular momentum transport in these discs is
likely in the form of winds, it is unclear how critical the MRI
actually is. Additional work will be needed to clarify all of these
issues.

In this paper, we report three simulations that vary in their nominal,
or intended, mass accretion rate riig = M / Meqq (assumed measured
at large radius), their maximum radial extent ry,, and angular
concentration parameter /, as detailed in Table 1. In all other respects,
the simulations are the same, with Mpy = 6.62Mg and a, = 0.9
(nnt = 0.156).

3 RESULTS

3.1 Mass accretion

3.1.1 Black hole growth rates

If the mass accretion rate M is assumed constant throughout, such
that the mass accretion rate on to the black hole equals whatever
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Figure 1. Disc and grid configuration at the start of a9r20L3 (the high-resolution interval for simulation a9r20). The left panel shows the statically refined grid,
as well as the radiative flux (arbitrary units). The red colours indicate outgoing flux, while the blue colours indicate flux moving towards the black hole. The
right panel shows the logarithm of the gas density, covering three orders of magnitude, as well as magnetic field streamlines launched from a uniform sample

of points in the plane of this slice.

Table 1. Simulation models and parameters.

(Lout(req)) (Lin(req))s

nitg rmax/rg h tslop/tg req/rg (min(req))t (rBH): Lrad Lrad (n):
a9r5 1 300 0.12 71625 32 67 1.8 <6.3 <64 <0.5
a9r20 4 1000 0.35 165771 49 42 1.2 <50 <26 <0.7
a9r50 10 1000 0.35 100000 32 23 1.9 <38 <1.6 <04
value is fed in at the outer edge of the disc M, then the black hole " " " " " '
—e— aorb -=k- a9rb0 —+— a9r20L3

mass will grow linearly as
Meu(t) = Meu(to) + Mot 13)

where Mpgy(ty) is the initial mass, and the growth time will be
Tgrow = Mpu(t0)/ M,. However, whenever the mass-accretion rate at
the outer edge exceeds the Eddington rate, accretion at the inner edge
is expected to be suppressed to

Mgy ~ Mgaq , (14)
and the black hole mass grows exponentially as
Mgu(1) = Mpn(to)e'/ ™ , (15)

where the growth time is Now Tgow ~ Mpu(fo)/ Mgaq. Numerically,
this corresponds t0 Tgow ~ 4.4 x 108y yr in the super-Eddington
case, which leads to difficulties when trying to understand how black
holes can reach masses of up to 10°M, by the time the Universe
was < 700 Myr old (Banados et al. 2018; Yang et al. 2021). So, our
first goal with our supercritical simulations is to confirm whether the
mass accretion rate on to the black hole really is limited.

In Fig. 2, we report the time history of mass accretion on to the
black hole

Mgu(rpn, 1) = —//\/—_gpurdeqb (16)

for all three simulations. The remarkable finding is that they all
produce mass accretion rates on to the black hole within a factor of
3 of Mgaq despite covering a full order of magnitude difference in
their target value . The mpgy values are also remarkably steady
over time, though there is some evidence for slow secular trends
towards increasing gy lasting at least 70000 ¢, in all three cases.

1l
10°F a9r20

MBH

1071 L ) ) ) ) ) ) ]
0 25 50 75100 125 150 175
t[x10% ¢,

Figure 2. Mass accretion rate through the black hole event horizon in
units of the Eddington accretion rate sty = Mpn/Mgdq, smoothed using
moving averages over 20 consecutive dumps (* 1850 ¢, in time). The shaded
regions show the 1o standard deviations, and the black dashed line shows the
Eddington limit.

Additionally, there is maybe a slight jump up in 71gy wWhenever we
increase the resolution of our a9r20 simulation.* Still, the clustering
of our results around migy ~ 1 is noteworthy.

4Throughout this paper, we refer to the high-resolution extension of simula-
tion a9r20 as a9r20L3.
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10* - .

o Min

10 102 103
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Figure 3. Mass fluxes, both inward (r2i,) and outward (7i14y), as well as the
net mass flux rines = ritin — Higy, all scaled to Eddington and time averaged
from ¢ = 500001, or 100000 ¢, to f5p for the a9r5 (top), a9r20 (middle),
and a9r50 (bottom) simulations. The other curves report the portion of 7oy
that has a positive Bernoulli parameter (71,,) and an analytic estimate for
min(r) = [Min(rer) — mpulr/roe (black, dotted curve). The shaded regions
show lo standard deviations.

3.1.2 How the Eddington limit is achieved

It is very instructive to see how each of these simulations achieves
these nearly identical values of rigy. Fig. 3 shows time-averaged
radial profiles of mass flux, both inwards

Min(r, 1) = —//«/—g,omin{ur,O}de(p (17)
and outwards
Mou(r, t) = //./—gpmax{u’,O}d9d¢, (18)

for all three simulations. These data are time averaged from 7 =
50000¢, until £y, for simulations a9r5 and a9r50 and from ¢ =
100 000 #, until £y, for simulation a9r20. We also plot Mo = Min —

MNRAS 540, 2820-2829 (2025)

M, which is an important quantity, as in a steady state, this should
be constant as a function of radius (regardless of what supercritical
disc model applies). Thus, we can see from Fig. 3 that we have
achieved a reasonably steady state out to > 30r, in all three cases.
Lastly, Fig. 3 includes M,,, which represents the portion of Moy
that has a positive Bernoulli parameter Be = —(7, 4+ R} + pu') > 0
(Sadowski & Narayan 2016) and thus is likely to be unbound and
ultimately escape to infinity. The fact that 1, significantly exceeds
My, in Fig. 3 implies that much of the material moving outwards
on our computational domain may eventually turn around and fall
back towards the black hole. However, using the Bernoulli parameter
to define the unbound outflow is a fairly conservative estimate, as
it is possible for matter to be launched with a negative Be, yet
receive additional acceleration and ultimately escape (Yoshioka et al.
2022). As this does not happen within our computational domain,
the ultimate fate of this material remains uncertain. As a final note
on how these quantities are measured, we emphasize that the mass
outflow rates (M, and M,,) are cumulative; in other words, at
any given radius they could include matter launched from that or
any interior radius. They simply report how much mass is moving
outwards through a given radius at a given time, irrespective of where
it launched from.

An important takeaway from Fig. 3 is that m;, and i, both
approach 1 at the inner boundary of the computational domain (i.e.
at the black hole event horizon). This is achieved despite the fact that
M, can be quite large (easily > 100) at large radius. This is possible
because the mass outflow 7, carefully balances the inflow (compare
the blue and orange curves in each panel). In fact, the magnitudes
of mi, and rigy, are so large and the balance so finely tuned that the
difference between the two, e, shows large statistical fluctuations,
particularly on the low side, since it often changes sign (explaining
the large green shaded regions in the top two panels of the figure).

Table 1 reports values for (migy),, the time-averaged mass ac-
cretion rates on to the black hole for each simulation. These results
strongly suggest that Mgyq is a meaningful limit for these simulations,
and the discs adjust as necessary to meet it. As mentioned previously,
this could have major implications for the growth of supermassive
black holes in the very early Universe. It is also a somewhat
surprising result in that it disagrees with practically all previous
numerical simulations of supercritical accretion, a point we return to
in Section 5.

The reader may wonder how the inward mass accretion rates in
Fig. 3 can exceed our reported values for 71 by an order of magnitude
or more at large radii. First, it may help to emphasize that each r1(r)
comes from an integral over a full 47 sr shell. So, especially in the
outer disc where there is a lot of mass, if the disc simply sloshes
around, it will appear as very large values of m (both inward and
outward). Additionally, since none of our simulations have reached
steady-state solutions at large radii, what we are seeing there may
prove to just be an unfortunate transient state set up by our imperfect
initial conditions. However, we find it reassuring that the total mass
within our computational domain drops by less than 8 per cent even
in our longest duration simulation, so despite what appear to be very
large fluxes, we are not actually gaining or losing that much mass
compared to what we start with; it is just moving around a lot.

3.2 Radiative luminosity

By definition, ULXSs are suspected to be examples of supercritical
accretion. The functional definition of a ULX is an off-nucleus X-
ray point source with a luminosity Lx > 10*° erg s~!. This limit
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is chosen because it lies, more or less, at the Eddington limit for
a stellar mass object (compare to equation 1), meaning that ULXs
either represent normally accreting objects with mass above what is
expected for a stellar remnant (possibly an intermediate-mass black
hole), or they are stellar remnants apparently emitting above their
Eddington limit. We now know that at least some ULXs host neutron
stars (i.e. stellar remnants, e.g. Bachetti et al. 2014; Fiirst et al. 2016)
and suspect others host stellar-mass black holes (Middleton et al.
2013; Cseh et al. 2014; Middleton & King 2017), so we take ULXs
as at least one example of a steadily accreting supercritical system
to which our results may apply.

Since the defining characteristic of ULXs is that they have apparent
isotropic X-ray luminosities at or above the Eddington limit, it is
important for us in this study to look at what radiative luminosity
we get from each of our simulations and how that luminosity is
distributed in space (since we do not expect ULXs to appear ultra-
luminous from all directions; Begelman, King & Pringle 2006;
Middleton et al. 2021).

In Fig. 4, we report the time-averaged radiative luminosity

Lipa(r,t) = —//./—gR{ded), (19)

integrated over the full 47 sr. We report both the outward (v, > 0)
and inward (u’; < 0) contributions as a function of radius for all
three simulations. The inward luminosity is attributable to photons
that are trapped within the accreting gas. The net luminosity, Lye =
Loy — Lin, reflects the difference between these two components.

Generally, we find that the overall (outward) radiative luminosity
is a few times Lgqq, consistent with expectations for a supercritical
accretion disc. However, just as the inward luminosity consists of
radiation that is trapped in the accreting gas, some of the outward
luminosity may also be trapped in the optically thick wind, some of
which is still bound and may fall back to the disc. For this reason,
our Lo, likely represents an upper limit of what an observer may
measure. Also the luminosities in Fig. 4 represent integrals over the
complete radial shell, so they are true, total luminosities, and are
thus unlikely to match what an observer would infer from any one
particular viewing angle.

Another point regarding the radiative luminosity (Fig. 4) is that
the net value L, changes sign between 5 and 8r, for all of our
simulations, with most of the radiation moving towards the black
hole inside that radius and away from the black hole outside it. This
dip represents the trapping radius r,, for each of our simulations. We
note that this trapping radius is relatively close to the inner edge of
the disc, so we conclude that advection is not a prominent source
of cooling beyond about 20r, in our simulations. Also, to be clear,
there is still some L, even inside ry, as can be seen in Fig. 4. The
point is, though, there is more L;, than Ly, so in terms of cooling
the gas, advection is dominant in that region.

An important distinction between optically thick accretion discs
and stellar objects is that we do not expect the radiation from discs
to be isotropic. Rather, we expect most of it to come out within an
optically thin cone centred about the black hole spin axis. Fig. 5
shows that the region around the pole in each case is both relatively
evacuated of material and lies outside the effective photosphere of
the disc, so is optically thin. We locate the effective photosphere by
integrating the quantity —(u, + u, )k.p inwards from the outer radial
boundary of the simulation domain along lines of constant 6 until
we reach values > 1, where the effective opacity is k. = 1/0.5«gk*.

We can also measure how much radiation is escaping at different
angles with respect to the black hole spin axis. We show results for
this in Fig. 6. Not surprisingly, near the poles, the luminosity is orders
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Figure 4. Radiative luminosity, both outward (L) and inward (Ljy,), as
well as the net luminosity Lpet = Loyt — Lin, all scaled to Eddington and time
averaged from ¢ = 5000017, or 100000¢, to fyop for the a9r5 (top), a9r20
(middle), and a9150 (bottom) simulations. The black dotted curve reports
an analytic estimate for Loy (r) = In(r /risco). The shaded regions show 1o
standard deviations. The trapping radius ry, is apparent as the sharp dip in Lpe¢
around r ~ 5rg, where it actually changes sign from inflowing (for r < ry)
to outflowing (for r > ry).

of magnitude greater than in the equatorial plane. This provides a
simple explanation for why some suspected ULXs, even within our
own Galaxy, do not appear to us as such (Begelman et al. 2006;
Middleton et al. 2021; Veledina et al. 2024). Interestingly, all of our
simulations show very similar 6 profiles in Fig. 6, meaning they
would all appear to be roughly the same luminosity, when viewed
from the same inclination. One odd feature, however, is the drop in
the radiative flux right along the pole. We note, though, that similar
drops have been seen in other numerical studies (e.g. Jiang et al. 2014;
Sadowski et al. 2014; Utsumi et al. 2022). In our case, this may have
to do with our use of the M closure, although that explanation would
not apply to Jiang et al. (2014). Also, the drop is not as pronounced
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Figure 5. Psueudocolour plot of time- and azimuthally averaged gas density and fluid velocity streamlines for simulations a9r5 (first panel), a9r20 (second
panel), a9r50 (third panel), plus the high-resolution extension a9r20L3 (last panel). The white lines represent the effective photospheres, while the red dashed
lines delineate the Be = 0 boundaries. Time averaging is over the intervals from # = 50 000 ¢, 1000007, or 159 000 7, t0 Ztop, depending on the simulation.
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Figure 6. Contribution to the radiative luminosity measured at req, broken
down into polar angle bins, showing that most of the radiation escapes close to
the poles. The black dotted curve suggests Lyaq(6) o< 1/(1 — | cos 8]). Data are
time averaged over the intervals from t = 50 000¢,, 100000 #¢, or 159 000 ¢,
10 Zstop, depending on the simulation, and the shaded regions show 1o standard
deviations.

in the high-resolution extension simulation a9r20L3, suggesting this
could also be a resolution issue near the pole.

3.3 Kinetic luminosity

Some ULXs are accompanied by optical nebulae (e.g. Kaaret, Ward
& Zezas 2004) or radio bubbles (e.g. Berghea et al. 2020) with
extents of 10-100 pc. These nebulae are thought to be powered by
the the ULX itself through some combination of radiation and mass
outflow. Indeed, there are now convincing observations of both jets
(Middleton et al. 2013; Cseh et al. 2014) and winds (Middleton et al.
2014,2015; Pinto, Middleton & Fabian 2016; Kosec et al. 2021) from
ULXs, with inferred kinetic luminosities on a par with the radiative
output. Thus, in addition to radiative luminosities, it is important
for us to also examine the kinetic luminosities in the simulations,
following

Lyin(r, 1) = — //v—gpur(ut + v —8)dode . (20
We do this in Fig. 7, where we compare the time histories of the

radiative and kinetic luminosities. Each luminosity is measured at
the maximum radius for which each simulation has come into inflow
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Figure 7. Radiative (fop panel) and kinetic (bottom panel) luminosities as a
function of time measured at req for each simulation. Data have been smoothed
by using a moving boxcar averaging window of 20 consecutive dumps. The
shaded regions show lo standard deviations.

equilibrium, 7.y, based on 71, being flat in Fig. 3. The values for 7,
Lou(req), and Lygy(req) are reported for each simulation in Table 1.

The kinetic luminosities are smaller than the radiative ones by
about a factor of 2 for the a9r20 and a9r50 simulations, but are
roughly equal for the a9r5 one. This is consistent with the fact that the
a9r5 simulation exhibits mass outflows in Fig. 3 that are significantly
stronger than the other simulations.

As mentioned before, we have measured all of our luminosities
through the full 47 sr, even though some of the outward radiation
may be trapped in the bound outflow and potentially fall back to the
black hole at larger radii. Notice that in Fig. 5, the Be = 0 surface
often lies very close to the photosphere, suggesting that most of the
radiation passing through the photosphere will escape, while at least
some of that within it will remain trapped. Thus, our luminosities
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likely represent the upper limits of what could be observed. For this
reason, some other groups have chosen to report luminosities only
from their optically thin or unbound regions. In that case, all of
their radiation is likely to reach an observer; however, it probably
represents a lower limit on the total luminosity since some of the
radiation in the optically thick wind should eventually escape as well.
Thus, current simulations can really only bracket what the observed
luminosity should be.

4 COMPARISON WITH SUPERCRITICAL DISC
MODELS

As mentioned in Section 1, there are two broad classes of supercritical
disc models: those based on advective cooling (e.g. slim discs) and
those based on radiatively driven outflows (e.g. critical discs). In this
section, we attempt to compare our results with these two classes of
models to see if our simulations support either one.

One issue we have to settle before we can make such a comparison
is what ‘input’ mass accretion rate to consider. All analytic models of
accretion are based on the assumption that the input mass accretion
rate at large radii is fixed. However, even though our simulations
have run for extended periods, they have not reached a steady state
all the way to their outer boundaries. Therefore, it would not make
sense to use the i values there as our input mass accretion rates.
Likewise, although we started all of our simulations with a target
mass accretion rate in mind based on the Shakura—Sunyaev thin-disc
model, this 719 was a poor guess at best. We had no way of knowing
a priori what the effective viscosity (parametrized by «) would be.
Not surprisingly, the measured values for 71, are quite different, in
general, from our target values and are highly radially dependent.
Therefore, for the rest of our analysis, we will use as our input mass
accretion rate the value of 7, measured at req, where again r.q is the
maximum radius out to which the net mass accretion rate has reached
a steady value. The measured values for (ri;,(7eq)), are reported for
each simulation in Table 1.

4.1 Slim disc model

The slim-disc model (Abramowicz et al. 1988) assumes that all of
the supplied gas reaches the black hole. In other words, the inward
mass accretion rate M;, is constant as a function of radius and there
are no outflows. This is the first sign that our simulations do not agree
with this model, as we see significant mass outflow M, and a highly
radially dependent M;, in Fig. 2.

Because all of the gas ultimately reaches the black hole in the slim
disc model, it necessarily requires some of the radiation to also be
advected into the black hole to prevent the outward radiation pressure
from overwhelming the inward gravitational force. The prediction is
that the photon trapping radius should scale with the mass accretion
rate such that r, ~ nrisco. Taking our observed value of 7ti,(req)
as the best measure of 71 in our simulations, this would predict a
trapping radius of r, 2 100r, for the a9r5 and a9r20 simulations,
about 20 times further out than what we actually observe in Fig. 4.
This is another sign that our simulations do not agree well with the
slim-disc model.

Another key difference between the slim disc model and the
standard Shakura—Sunyaev one is that, while the Shakura—Sunyaev
model assumes a purely Keplerian rotation profile, the slim disc
requires most of the disc to be slightly sub-Keplerian, with only a
small inner super-Keplerian region (Abramowicz et al. 1988). We,
instead, find that our discs all have almost perfectly Keplerian rotation
profiles (see Fig. 8).
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Figure 8. Density-weighted time-averaged angular velocity profiles of the
discs divided by a purely Keplerian profile. Our profiles differ by no more
than a few percent from purely Keplerian. Data are again time averaged over
the intervals from # = 50000 ¢, 100 000 ¢, or 159 000 #¢ to t5top, depending
on the simulation, and the shaded regions show 1o standard deviations.

4.2 Critical disc model

As mentioned previously, the critical disc model (e.g. Fukue 2004)
relies on mass outflows to keep the disc below the critical mass
accretion rate. Nominally, the outflows should apply to r < r, and
it should be the case that nig,(r < ro) = W (r < rep) — migy. In
other words, how much matter goes out must match the excess of
what is trying to be fed in minus what is actually making it into the
black hole. For r¢ > rgy, this implies 74, should be quite close
to iy, Which is exactly what we see in Fig. 2. In fact, the very
large variability in 7, in Fig. 2 owes to the fact that riry, and gy
have such close numerical values that the difference between them
often changes sign. There is also reasonable quantitative agreement
between our accretion profiles and the critical disc model, as Fig.
3 shows that r1;,(r) closely follows [, (rer) — mpulr /rer (Poutanen
et al. 2007).

There are also predictions for how the luminosity should vary
for a critical disc inside r.,. According to Fukue (2004), it should
go as L(r)/Lgqq o In(r/rgg), which actually matches the profiles
we find for Lo, in Fig. 4 fairly well. Another confirmation is the
dependence of L;,q on 0. Fig. 6 shows that this agrees with Fukue
(2011): L(0)/Lggq o< 1/(1 — | cos 6]), except right at the poles where
the simulation data suddenly drop. Finally, the critical disc model
predicts that the disc should maintain a nearly Keplerian velocity
profile, consistent with what we report in Fig. 8. To conclude, our
m(r), L(r), L(8), and V?(r) profiles all agree with the predictions of
the critical disc model.

5 COMPARISON WITH OTHER NUMERICAL
WORK

As mentioned in the Introduction, a number of other groups have
performed simulations of supercritical accretion discs, and yet, our
results appear to be distinct from all previous studies in at least
one key aspect: all of our simulations trend towards mpgy ~ 1. In
other words, our simulations appear to confirm the Eddington limit,
whereas other numerical studies do not. In Table 2, we provide
a sampling of previous simulation results from a variety of other
groups (additionally see table 2 of Toyouchi et al. 2024). Noticeable
is that all of those simulations found rizgy 2 10.
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Table 2. Sampling of published supercritical accretion simulation results. We report the input mass accretion rate 71, the measured ri1gy, the radiative efficiency
7, the ratio of kinetic to radiative luminosities Lin/Lrad, and the ratio of the critical radius to the radius of the torus pressure maximum or the circularization
radius of the gas r¢;/7¢ir. Since most of these simulations used non- or slowly rotating black holes, we assume a radiative efficiency of 10 per cent when defining
MEqq in this table. In many cases, we were unable to extract the values of i1 from the information provided in the original paper. In those cases, our estimate
of r¢, is based on migy, which will generally be much smaller than 71, making our estimates of r¢; stringent lower limits.

Reference 1t 1MBH n Liin/Lrad Ter/Teir
Jiang et al. (2014) e ~22 0.045 ~ 0.2 >1.5
Sadowski & Narayan cee > 10 ~ 0.03 0-1.4 >04
(2016)

Abarca, Kluzniak & e 22 ~ 0.09 ~0.1 >0.9
Sadowski (2018)

Utsumi et al. (2022) > 10 0.003-0.03 0.01-0.4 > 0.5
Yoshioka et al. (2022) 35-200 11-38 0.01-0.02 0.02-0.29 2> 0.02

We have a few ideas about why our simulations may have yielded
different results:

(1) Most previous simulations started from a finite torus of gas, and
in many of them, the critical radius r.., where the radiation pressure
first exceeds gravity, lies beyond the pressure maximum of the torus.
This may prevent the disc from having the necessary space and time
to fully adjust to the radiation pressure before accreting. This was
already pointed out in Kitaki et al. (2021).

(ii) In other cases, it must be that the ratio of the advection
time-scale to the radiation diffusion time-scale is much smaller
than in our simulations. This could be due to a loss of angular
momentum support, leading to significantly sub-Keplerian angular
velocity profiles and short advection times in the other simulations.
Or the low o values in our own simulations may lead to unrealistically
large advection times.

(iii) Another possibility is that the radiation diffusion time-scale
in the other simulations is much longer, either because of differences
between the radiative transport methods or because some of those
simulations lack MHD turbulence, which can give the radiation easier
channels to escape from the disc.

(iv) Finally, our unique starting magnetic field topology could
also be a contributor. Perhaps some field topologies are more prone
to driving Blandford—Payne (Blandford & Payne 1982) winds than
others, possibly altering Mgy, OF yield lower saturation values for o,
altering M.

Since we think our methodology and set-up are more appropriate
for simulating large supercritical accretion discs, as may be applica-
ble to ULXs, than any previous simulations, we stand by our finding
that such discs are locally Eddington limited at all radii, even when
g > 1.

Not surprisingly, since we measure comparable luminosities to
previous simulations, but significantly smaller 7i1py, our discs yield
radiative efficiencies that are an order of magnitude or more higher.
Using our values for Loy (req) and Mgy, we measure radiative
efficiencies of (1), = 0.3—0.7. This is somewhat higher than the
efficiency expected from thin-disc theory (0.156). However, as
mentioned in Section 3.2, our values for L, should be viewed as
upper limits, meaning our values for n are also upper limits. To avoid
confusion, we remind our readers that our simulations are not done
in the magnetically arrested disc limit, which can also result in high
radiative efficiencies (Thomsen et al. 2022).

6 CONCLUSIONS

We have reported on one of the first sets of large (radially extended)
three-dimensional GRRMHD simulations of supercritical accretion
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on to black holes. This work is most directly applicable to ULX
systems, but may also tell us something about the growth history of
black holes over cosmic time.

The most notable finding in our work is that all of our simulations
trend towards migy ~ 1. The takeaway is that for supercritical discs
fed by thin Keplerian discs at large radii, it appears Mgyq is a
meaningful limit,> though this should be validated over a wider
parameter range. This is in good agreement with long-standing
theory, but poses a significant challenge when trying to understand
the growth of the first supermassive black holes. Either they cannot
grow from steady long-term accretion from a large aligned, Keplerian
disc or they cannot start from stellar mass accretors.

To help interpret our results, we tested them against two broad
classes of models of supercritical accretion: advection-dominated
slim discs and outflow-dominated critical discs. We found that our
results do not agree with the main predictions of the slim disc, as
we see significant mass outflow, a small trapping radius, and nearly
perfectly Keplerian velocity profiles. By contrast, our results agree
well with the critical disc model, where mass outflow closely balances
mass inflow at all radii to produce a net accretion rate close to Mgqq.
We also found that our luminosity profiles, both in radius L(r) and
polar angle L(9), match the predictions of the critical disc model.

We caution that it is unclear whether or not we resolve the critical
radius r,, within our computational domain. One way to identify this
radius would be to look for where the profile of #;,(r) (or likewise
mou(r)) flattens out (i.e. becomes independent of r). Unfortunately,
we do not see convincing evidence for such plateaus in Fig. 3 for
any of our simulations. This tells us that r., must lie beyond the
equilibrium radius rq achieved in each simulation (see Table 1). It
could be that extending these simulations further in time would allow
us to eventually capture 7, on the grid, or it could be that we would
need to extend the grid even further out in radius. Alternatively,
we could try other disc parameters to see if we could bring 7, to
a smaller radius that is more easily captured. Regardless of how it
is accomplished, it is an important goal to try to capture r. within
the computational domain, and we will continue to work towards
that in future simulations. However, this does not alter any of the
conclusions we put forth in this study.

Our result of the Eddington limit being enforced in all our
simulations is surprising, as it sits in contrast to nearly all previous
numerical simulations of supercritical accretion. We speculated in
Section 5 that this likely has to do with differences in how we set

SThe Eddington limit does not apply whenever the angular momentum of the
gas is so low that it cannot circularize as a disc before it accretes into the
black hole (Fragile et al. 2012; Inayoshi, Haiman & Ostriker 2016).

Gz0z 1snbny ¢ uo Jesn uoydweyinos 1o AusiaAiun Aq 861151 8/0282/S/0tS/e1oNiB/S_IUW/WOoD dNo-oIWwspeoe//:sdny WoJj papeojumoq



up our simulations compared to all other work. If so, that is an
important lesson to consider for anyone thinking of doing simulations
of supercritical accretion in the future. One clear point seems to be
that if the circularization radius of the gas r.; is smaller than the
critical radius r, then the disc may not be able to adjust fully to the
critical solution and will therefore be forced to favour the advective
one, as may be appropriate for TDEs but not ULXs.
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