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Under high enthalpy conditions, the calculation of transport properties such as viscosity

and thermal conductivity needs to account for non-equilibrium effects, including vibrational

non-equilibrium and the dissociation of molecules. Current models require computationally

intensive mixing rules and are limited to certain temperature ranges. With scale-resolving

simulation becoming more commonplace, there is a need for efficient formulations that can

cover a wide range of temperatures. In this contribution, a simplified formulation is proposed

for the viscosity and thermal conductivity of air in the temperature range 100𝐾 to 9000𝐾.

Thermal conductivity is decomposed into ro-translational and vibrational contributions for

molecular species. The predictions are applicable to both equilibrium and non-equilibrium

conditions. For equilibrium air, the predictions are typically within a few percent of reference

data. An application to a transitional mixing layer, starting with partially dissociated air at

a temperature of 6000𝐾, is presented. The mixing layer is simulated with a high-order finite

difference method and undergoes inflectional instability and transition to turbulence. With the

new method the transport properties are within 2.2% of reference values, while the reduced

complexity means that the simulations are substantially faster.

Nomenclature

𝐴★ = Lennard-Jones potential mixture transport property quantity

𝑎𝑎𝑣 = average value of non-diagonal matrix element

𝑐𝑝 = mixture specific heat at constant pressure, J/(kg · K)

𝑐𝑝𝑠 = specific heat at constant pressure for species 𝑠, J/(kg · K)

𝐷𝑠 = effective diffusion coefficient for species 𝑠, m2/s

𝐸 = total energy, J/kg

𝑒𝑣 = mixture vibrational energy, J/kg
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𝑒𝑣,𝑠 = vibrational energy for species 𝑠, J/kg

𝑒∗𝑣,𝑠 = equilibrium vibrational energy for species 𝑠, J/kg

𝜖/𝑘 = potential parameter, K

𝐻 = total enthalpy, J/kg

ℎ𝑠 = enthalpy for species 𝑠, J/kg

ℎ◦
𝑓𝑠

= enthalpy of formation for species 𝑠, J/kg

𝐾 = total thermal conductivity, W/(m · K)

𝐾𝑐 = thermal conductivity critical enhancement, W/(m · K)

𝐾0 = dilute gas thermal conductivity, W/(m · K)

𝐾𝑟 = rotational component of thermal conductivity, W/(m · K)

𝐾𝑡 = translational component of thermal conductivity, W/(m · K)

𝐾𝑡𝑟 = ro-translational component of thermal conductivity, J/(m · s)

𝐾𝑣 = vibrational component of thermal conductivity, J/(m · s)

𝑘 = Boltzmann constant, erg/K

𝐿𝑥 , 𝐿𝑦 , 𝐿𝑧 = domain lengths in 𝑥, 𝑦 and 𝑧 directions respectively, m

𝑀𝑠 = molecular weight for species 𝑠, kg/(kg · mol)

𝑁𝐴 = Avogadro number, mol/(g · mol)

𝑁𝑖 , 𝑡𝑖 , 𝑑𝑖 , 𝑙𝑖 = constants used for the Lemmon-Jacobsen model

𝑝 = mixture pressure, Pa

𝑅𝑖 = thermal conductivity ratio

𝜌 = mixture density, kg/m3

𝜌𝑐 = critical density, kg/m3

𝜌𝑠 = density for species 𝑠, kg/m3

𝜎𝑖 𝑗 = binary collision diameter, m

𝜎𝑠 = collision diameter for species 𝑠, m

𝑇 = translational temperature, K

𝑇∗ = reduced temperature (𝑘𝑇/𝜖), K

𝑇𝑐 = critical temperature, K

𝑇𝑣 = vibrational temperature, K

𝑇𝑒 = electronic temperature, K

𝜏𝑠 = vibrational relaxation for species 𝑠, s

𝑢 = velocity component in 𝑥 direction, m/s
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𝑢𝑖, 𝑗 ,𝑘 = velocity vector in the 𝑥, 𝑦, and 𝑧 directions

𝑣 = velocity component in 𝑦 direction, m/s

𝑤 = velocity component in 𝑧 direction, m/s

𝑋𝑠 = mole fraction for species 𝑠

¤𝜔𝑠 = mass rate of production of species 𝑠, kg/m3 · s

R = universal gas constant , J/(mol · K)

𝜇 = mixture viscosity, kg/(m · s)

𝜇0 = dilute gas viscosity, kg/(m · s)

𝜇𝑟𝑒 = residual fluid viscosity, kg/(m · s)

𝛿𝑖, 𝑗 = Kronecker delta

Ω
(𝑙,𝑠)
𝑖 𝑗 = weighted average of the collision cross section between species 𝑖 and 𝑗 , m2

Ω(𝑙,𝑠) = collision cross section, m2

I. Introduction

The hypersonic flight regime presents significant challenges for both experimental studies—due to limitations

in measurement techniques and difficulties in controlling background turbulence levels—and for simulations,

owing to the presence of shock waves and steep temperature gradients near surfaces. As computational power

increases, scale-resolved simulations, such as direct numerical simulations (DNS) and large-eddy simulations (LES),

are increasingly complementing experimental efforts and providing fundamental insights. Much of the work to date has

focused on ‘cold’ or ‘classical’ hypersonic conditions, where high-temperature effects are absent, and most simulations

have utilised Sutherland’s law for viscosity and a constant Prandtl number to estimate thermal conductivity. However,

these approximations break down under ‘hot’ or ‘high-enthalpy’ conditions, which require a more fundamental approach

to gas dynamics modeling [1–4]. Current models for these conditions are complex and computationally demanding;

for example, the Yos-Gupta model [5] (defined below) incorporates detailed mixing rules but is only accurate above

1000𝐾, which would exclude, for example, the flow near cooled walls. In this connection, a DNS/LES code would

preferably not require the use of conditional statements to apply different formulations across different temperature

ranges, especially when evaluating potentially billions of grid points over millions of iterations. This paper therefore

aims to construct efficient models that are valid over a wide temperature range.

In strongly non-equilibrium flows, where the characteristic timescales of the flow become comparable to those of

relaxation processes, it becomes necessary to couple the equations governing macroscopic parameters with those for

physico-chemical kinetics. Under these conditions, transport coefficients, heat flux, and diffusion velocities are directly

influenced by the non-equilibrium state [6]. Consequently, accurately capturing the effects of non-equilibrium kinetics
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on transport properties and their formulation becomes crucial. By employing the distribution function as a solution to

the Boltzmann equation, which provides expressions for the flux vectors, transport coefficients are accordingly defined in

terms of these flux vectors [7]. Chapman and Enskog independently derived general formulae for transport coefficients,

effectively closing the transport equations [6, 8]. The Chapman-Enskog kinetic theory of gases applies strictly only to

monatomic gases or species with no internal degrees of freedom, where the interaction potential remains spherically

symmetric. However, viscosity and diffusion are unaffected by the presence of internal degrees of freedom, allowing

the theory to be applicable for most polyatomic species [7]. Since then, Chapman-Enskog formulations have been

generalised and extended to encompass broader molecular models, including those with internal degrees of freedom,

ionized gases, and thermo-chemical non-equilibrium.

When deriving transport coefficients for flow simulations, two primary considerations must be addressed. The first

is the evaluation of the Chapman-Enskog formulation for multi-species mixtures, which involves lengthy calculations

and inverse matrix operations. The second is the determination of collision cross-section terms for all possible species

pairs. While the complex calculations required for the first are often simplified through approximations that maintain

good accuracy [7, 9], the latter is addressed either by expressing intermolecular potential functions analytically—using

models such as the rigid sphere and Lennard-Jones potentials—or by utilising experimental data to infer intermolecular

interactions [10, 11]. Additionally, in high enthalpy flows involving molecules, the presence of internal degrees of

freedom must be considered. Although viscosity is unaffected by internal modes, thermal conductivity is dependent on

the nature of these internal modes [7].

Recent studies on high-temperature transport properties include comparisons of transport property models for

Mars entry [12], evaluations of transport properties for ablative heat shields [13], and analyses of diffusion theory for

high-temperature multi-species gases [14]. Each of these studies references the Yos mixing rule [9, 15] in conjunction

with the collision integral method to derive accurate transport properties, supplemented by integral data from sources

such as Gupta et al. [5, 16] or more recent data from Wright et al. [17, 18]. For air-specific species, Palmer and

Wright [19] compare four different methods for calculating 11-species air viscosity at high temperatures, assessing both

accuracy and computational efficiency. Additionally, four distinct methods are evaluated for computing frozen thermal

conductivity [20]. Both studies compare the Yos method with first-order approximations of multi-component mixture

viscosity and thermal conductivity, concluding that the Yos model provides excellent agreement for non-ionized or

weakly ionized flows.

High-fidelity simulations of boundary layer flows and the transition to turbulence under high enthalpy conditions

have included significant contributions by Passiatore et al. [21, 22, 23], who model viscosity and thermal conductivity

following Blottner’s approach [24]. As will be discussed, Wilke’s mixing rule [25], used within this model, requires

embedded loops over all species. This process can become computationally expensive in large-scale simulations

involving grid resolutions on the order of 108 − 109 points. Similarly, studies on high enthalpy channel flows [26], DNS
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of transitional boundary layers under high enthalpy [27], and shock standoff distances in hypersonic flows around blunt

bodies [28] apply Wilke’s mixing rule with various models for species-specific viscosity and thermal conductivity.

Other research studies on compressible isotropic turbulence with vibrational non-equilibrium [29, 30] and chemically

reacting hypersonic flow simulations [31] have modelled viscosity using Sutherland’s law [32] with updated constants.

In this paper, we present and validate a computationally efficient formulation for viscosity and thermal conductivity

that offers improvements for DNS/LES applications by balancing accuracy with cost-effectiveness, making it a

potentially advantageous alternative to conventional mixing rules. The model is based on a five-species air mixture

(𝑂,𝑂2, 𝑁, 𝑁2, 𝑁𝑂) and is applicable across temperatures from 100𝐾 to 9000𝐾, where ionization effects can be

reasonably neglected. The model is subsequently evaluated in simulations of a thermal and chemical non-equilibrium

free shear layer flow under high enthalpy conditions.

II. Formulation
The governing equations for fluid flow with thermo-chemical non-equilibrium consist of the continuity, momentum,

vibrational and total energy conservation equations [2]. The continuity equations incorporate chemical reaction of the

mixture and thermal energy exchange between the ro-translational and vibrational modes. The equations have been

simplified to a two temperature representation of the energy modes, where the electronic mode is disregarded and only

the five neutral species of air are taken into account.

𝜕
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𝜌𝑠 +

𝜕
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𝜏𝑠
+
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]
(4)

The governing equations rely on three main assumptions [1]. Firstly, the flow is assumed to be as continuum.

Secondly, the vibrational energy is assumed to be populated by a Boltzmann distribution, corresponding to a single

vibrational temperature for which the Harmonic Oscillator (HO) model is applied. Strictly this is valid for only lower

vibrational levels, however the HO model is considered to be sufficient for the present purposes. Thirdly, the energy
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modes are represented by two temperatures. The rotational and translational modes are considered to be coupled and

hence represented by the translational temperature 𝑇 . The vibrational mode is represented by the vibrational temperature

𝑇𝑣 and there is no temperature representing the electronic mode 𝑇𝑒 since ionisation is disregarded.

The pressure is calculated using Dalton’s law of partial pressure as

𝑝 =
∑︁

𝜌𝑠
R

𝑀𝑠

𝑇 , (5)

where 𝜌𝑠 is the species density, R is the universal gas constant, 𝑀𝑠 is the species molecular mass and 𝑇 is the

ro-translational temperature. Implementing the Rigid Rotor (RR) and Harmonic Oscillator (HO) model, the enthalpy of

the mixture per unit mass is given by

𝜌ℎ =
∑︁
𝑠

𝜌𝑠 ℎ𝑠 =
∑︁
𝑠

𝜌𝑠

(
3
2

R𝑇

𝑀𝑠

+ R𝑇

𝑀𝑠

+ 𝜃𝑠/𝑇𝑣
𝑒𝜃𝑠/𝑇𝑣 − 1

R𝑇

𝑀𝑠

+ R𝑇

𝑀𝑠

+ ℎ◦𝑓𝑠

)
, (6)

where ℎ◦
𝑓𝑠

is the species enthalpy of formation and 𝜃𝑠 is the molecular species characteristic vibrational temperature.

Values for 𝑀𝑠 , 𝜃𝑠 , and ℎ◦
𝑓𝑠

were taken from Gnoffo et al. [2]. A five species air composition comprises the five reactions

𝑁2 + 𝑀 ←→ 2𝑁 + 𝑀 ,

𝑂2 + 𝑀 ←→ 2𝑂 + 𝑀 ,

𝑁𝑂 + 𝑀 ←→ 𝑁 +𝑂 + 𝑀 , (7)

𝑁2 +𝑂 ←→ 𝑁𝑂 + 𝑁 ,

𝑁𝑂 +𝑂 ←→ 𝑂2 + 𝑁 ,

where 𝑀 is the third body representing the other heavy particles. For the finite-rate chemistry, Park’s two temperature

model (with
√
𝑇𝑇𝑣 as the forward reacting temperature) is used, with chemical reaction rates given by Park [4] for

the dissociation of nitric oxide (𝑁𝑂) into atomic nitrogen (𝑁) and atomic oxygen (𝑂) and Park et al. [33] for all the

other reactions. A Landau-Teller formulation of energy exchange is used, with vibrational relaxation rates expressed

by Millikan and White [34] with coefficients from Park [4]. For the simulations conducted here, thermal diffusion is

disregarded and mass diffusion is modelled using a constant Schmidt number of 0.71 such that 𝐷𝑠 = 𝜇/(𝜌Sc), similar

to other studies [35, 36]. Comparisons to a full binary diffusion treatment showed negligible differences in the results

for the mixing layer cases presented later.

The governing equation require models for fluid properties. Here we focus on the viscosity 𝜇 and thermal conductivity

𝐾. In the following subsections (II.A to II.E) existing methodologies are explained. Two of these are then used as a

reference for developing a single model in subsection II.F that is optimised for temperatures from 100𝐾 to 9000𝐾 . This
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section also provides some important notes on the implementation.

A. Hirschfelder-Lennard-Jones (HLJ)

According to the model of Hirschfelder et al [7], applicable to a lower temperature regime, the viscosity for a single

species 𝑠 and a mixture can respectively be expressed as

𝜇𝑠 = 266.93
( √

𝑀𝑠𝑇

𝜎2
𝑠Ω
(2,2) (𝑇∗𝑠 )

)
× 10−8 (8)

𝜇 = 10−8
∑︁
𝑖=1

𝑋2
𝑖

𝑋2
𝑖
/𝜇𝑖 + 2.308

∑
𝑘≠𝑖

𝑋𝑖𝑋𝑘

𝐴★
𝑖𝑘
𝜇𝑖𝑘

𝑀𝑘

(𝑀𝑖+𝑀𝑘 )
, (9)

with

𝜇𝑖𝑘 = 266.93

(√︁
2𝑀𝑖𝑀𝑘𝑇/(𝑀𝑖 + 𝑀𝑘)
𝜎2
𝑖𝑘
Ω
(2,2)
𝑖𝑘
(𝑇∗

𝑖𝑘
)

)
× 10−8,

where 𝜇𝑠 and 𝜇 represent the viscosity of a pure gas and a gas mixture in (𝑘𝑔/𝑚 · 𝑠) [7]. The force constants 𝜖 and 𝜎

are determined from viscosity measurements along with the quantity 𝐴★. 𝑋𝑠 is the mole fraction for species 𝑠, 𝑀𝑠

is the species molecular weight in grams, and Ω
(2,2)
𝑖𝑘
(𝑇∗

𝑖𝑘
) is the collision integral evaluated using the binary reduced

temperature 𝑇∗
𝑖𝑘

. The expression given for this model has been simplified by incorporating the assumption that the

off-diagonal elements of the full form of viscosity given for the multi-component gas mixtures have little contribution

and hence can be overlooked, resulting in a simple form of the rigorous multi-component mixtures viscosity [7]. It was

verified that Eq. (9) was in good agreement with the full Chapman-Enskog formulation given by Hirschfelder et al.

[7]. The Lennard-Jones model provides a realistic potential function to calculate the transport properties for non-polar

molecules when compared to other simple definitions. The collision cross sections, Ω(𝑖, 𝑗 ) , from this model have been

devised in the form of tables in terms of the reduced temperature 𝑇∗ = 𝑘𝑇/𝜖 [7]. Additionally, for the binary mixture

𝜎𝑖 𝑗 = (𝜎𝑖 + 𝜎𝑗 )/2 and 𝜖𝑖 𝑗 =
√
𝜖𝑖𝜖 𝑗 .

The formulation for the coefficient of thermal conductivity is described similarly to that of viscosity

𝐾𝑠 = 8.3224 × 10−2

√︁
𝑇/𝑀𝑠

𝜎2
𝑠Ω
(2,2) (𝑇∗𝑠 )

,

𝐾𝑠 =
15
4

R

𝑀𝑠

𝜇𝑠 , (10)

where 𝐾𝑠 is the coefficient of thermal conductivity for a pure gas in (𝑊/𝑚 · 𝐾) composed of a monatomic species

𝑠, R is the universal gas constant (here in 𝑐𝑎𝑙/𝐾 · 𝑚𝑜𝑙𝑒), and 8.3224 × 10−2 includes the conversion factor from

(𝑐𝑎𝑙/𝑐𝑚 · 𝑠 · 𝐾) to (𝑊/𝑚 · 𝐾).

To calculate the thermal conductivity of a mixture with polyatomic species, a semi-empirical method is used, since
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the thermal conductivity of mixtures is not proportional to the mixture viscosity as seen with a pure gas formulation.

This is done by using the formulation for a mixture of monatomic species with correction from experimental data of

each molecule. The full formulation for the monatomic mixture, [𝐾𝑚𝑖𝑥]𝑚𝑜𝑛, is given by Hirschfelder et al. [7]. The

ratio of the experimental and theoretical (Eq. (10)) result is computed and used in the relation

𝐾𝑚𝑖𝑥 = [𝐾𝑚𝑖𝑥]𝑚𝑜𝑛 [𝑋1𝑅1 + 𝑋2𝑅2], (11)

with

𝑅𝑖 =
(𝐾𝑖)𝑒𝑥𝑝
(𝐾𝑖)𝑚𝑜𝑛

. (12)

To calculate the viscosity and thermal conductivity, the force constants 𝜎 and 𝜖/𝑘 must be defined. The two

adjustable parameters are found using experimental data of the substance at two different temperatures. Various studies

have provided different parameters for each air species and for air as a whole [7, 8, 37–39]. When using the force

constants to compute the viscosity within the lower temperature range, those given by Poling et al. [38] and Hirschfelder

et al. [7] align well with Yos-Gupta at around 2000𝐾 where Yos-Gupta is assumed to be correct. On the other hand,

those given by Childs and Hanley [40] and Lemmon and Jacobsen [39] match well with each other but compute slightly

higher values of viscosity. For this study, those given by Hirschfelder are used, where two different force constants are

provided with temperature limits tailored to be more accurate at their respective temperatures, one below temperatures

of 300𝐾 and other up to 1000𝐾 .

B. Yos-Gupta

When considering air at high temperatures, in most approximations to the Chapman-Enskog formulation the transfer

of momentum from one species to other is either neglected or has been replaced by a constant empirical value. However,

the model presented by Yos [9] accounts for this interaction. The mixing rule is defined as

𝜇 or 𝐾𝑡𝑟 =

∑
𝑠 𝑋𝑠/(𝐴𝑠 + 𝑎𝑎𝑣)

1 − 𝑎𝑎𝑣
∑

𝑠/(𝐴𝑠 + 𝑎𝑎𝑣)
, (13)

8



where 𝑋𝑠 is the species mole fraction, 𝜇 and 𝐾𝑡𝑟 are defined in terms of (𝑔/𝑐𝑚 · 𝑠) and (𝑐𝑎𝑙/𝑐𝑚 · 𝑠 · 𝐾) respectively,

and 𝑎𝑎𝑣 is the average value of the non-diagonal matrix elements defined as

𝑎𝑎𝑣 =

∑
𝑖, 𝑗 𝑋𝑖𝑋 𝑗

(
1
𝐴𝑖
− 1

𝐴 𝑗

)2
𝑎𝑖 𝑗∑

𝑖, 𝑗 𝑋𝑖𝑋 𝑗

(
1
𝐴𝑖
− 1

𝐴 𝑗

)2 , (14)

𝐴𝑖 =
∑︁
𝑙

𝑋𝑙𝐵𝑖𝑙 . (15)

The parameters 𝑎𝑖 𝑗 and 𝐵𝑖𝑙 are computed differently for viscosity and thermal conductivity. For viscosity, 𝑎𝑖 𝑗 and 𝐵𝑖𝑙

are defined as

𝑎𝑖 𝑗 =
𝑁𝐴

(𝑀𝑖 + 𝑀 𝑗 )

[
2Δ(1)

𝑖 𝑗
− Δ(2)

𝑖 𝑗

]
, (16)

𝐵𝑖𝑙 =
𝑁𝐴

𝑀𝑖

Δ
(2)
𝑖𝑙
, (17)

where 𝑁𝐴 is the Avogardo number in (𝑚𝑜𝑙𝑒/𝑔 · 𝑚𝑜𝑙𝑒) and 𝑀𝑖 is the species molecular weight in grams. Also,

Δ
(1)
𝑖 𝑗

= 8/3 × (1.5460 × 10−20)
[

2𝑀𝑖𝑀 𝑗

𝜋R𝑇 (𝑀𝑖 + 𝑀 𝑗 )

]1/2
𝜋Ω̄
(1,1)
𝑖 𝑗

, (18)

Δ
(2)
𝑖 𝑗

= 16/5 × (1.5460 × 10−20)
[

2𝑀𝑖𝑀 𝑗

𝜋R𝑇 (𝑀𝑖 + 𝑀 𝑗 )

]1/2
𝜋Ω̄
(2,2)
𝑖 𝑗

, (19)

where R is the universal gas constant in (𝑐𝑎𝑙/𝑔 ·𝑚𝑜𝑙𝑒 · 𝐾). The collisional integrals 𝜋Ω̄(1,1)
𝑖 𝑗

and 𝜋Ω̄(2,2)
𝑖 𝑗

are expressed

as curve fits in the form

𝜋Ω̄
(1,1)
𝑖 𝑗

= exp (𝐷11) 𝑇 [𝐴11 ln(𝑇 )2+𝐵11 ln(𝑇 )+𝐶11] , (20)

𝜋Ω̄
(2,2)
𝑖 𝑗

= exp (𝐷22) 𝑇 [𝐴22 ln(𝑇 )2+𝐵22 ln(𝑇 )+𝐶22] , (21)

where 𝑇 is the translational temperature and coefficients 𝐴11, 𝐵11, 𝐶11, 𝐷11, 𝐴22, 𝐵22, 𝐶22 and 𝐷22 are given by [5].

Assuming Eucken’s approximation, the mixture thermal conductivity 𝐾 can be expressed as

𝐾 = 𝐾𝑡 + 𝐾𝑟 + 𝐾𝑣 , (22)

where 𝐾𝑡 is the translational contribution, 𝐾𝑟 is the rotational contribution, and 𝐾𝑣 is the vibrational contribution to the
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thermal conductivity. For the translational thermal conductivity, 𝑎𝑖 𝑗 and 𝐵𝑖𝑙 are defined as

𝑎𝑖 𝑗 = (4.184 × 107)
2𝑀𝑖𝑀 𝑗

15𝑘 (𝑀𝑖 + 𝑀 𝑗 )2

[(
33
2
− 18

5
𝐵∗𝑖 𝑗

)
Δ
(1)
𝑖 𝑗
− 4Δ(2)

𝑖 𝑗

]
, (23)

𝐵𝑖𝑙 =
2 (4.184 × 107)
15𝑘 (𝑀𝑖 + 𝑀𝑙)2

×
[
8𝑀𝑖𝑀𝑙 Δ

(2)
𝑖𝑙
+ (𝑀𝑖 − 𝑀𝑙)

(
9𝑀𝑖 − 15𝑀𝑙/2 + 18 𝐵∗𝑖𝑙 𝑀𝑙/5

)
Δ
(1)
𝑖𝑙

]
, (24)

where 𝑘 is the Boltzmann constant (in 𝑒𝑟𝑔/𝐾). Similar to the collision integrals, the ratio 𝐵∗
𝑖 𝑗

is given as a curve fit with

the form

𝐵∗𝑖 𝑗 = exp (𝐶) 𝑇 [𝐴𝑙𝑛(𝑇 )+𝐵] , (25)

with coefficients 𝐴, 𝐵 and 𝐶 defined by Gupta et al. [5]. The contribution from the internal excitation energy of the

molecules can be expressed as

𝐾𝑟 = 2.3901 × 10−8𝑘
∑︁
𝑖


( (𝑐𝑝𝑖 )𝑟𝑜𝑡

R

)
𝑋𝑖∑

𝑗 𝑋 𝑗Δ
(1)
𝑖 𝑗

 , (26)

𝐾𝑣 = 2.3901 × 10−8𝑘
∑︁
𝑖


( (𝑐𝑝𝑖 )𝑣𝑖𝑏

R

)
𝑋𝑖∑

𝑗 𝑋 𝑗Δ
(1)
𝑖 𝑗

 , (27)

(28)

where (𝑐𝑝𝑖 )𝑟𝑜𝑡 is the rotational contribution to the specific heat of species 𝑖 and (𝑐𝑝𝑖 )𝑣𝑖𝑏 is the vibrational contribution

evaluated by the vibrational temperature (𝑇𝑣), both expressed in (𝑐𝑎𝑙/𝑔 ·𝑚𝑜𝑙𝑒 · 𝐾). For the transport properties defined

in this section, conversion factors to SI units are required where (𝑐𝑎𝑙/𝑐𝑚 · 𝑠 · 𝐾) for thermal conductivity is converted

to (𝑊/𝑚 · 𝐾) by a factor of 418.4 and (𝑔/𝑐𝑚 · 𝑠) for viscosity is converted to (𝑘𝑔/𝑚 · 𝑠) by a factor of 0.1.

C. Lemmon and Jacobsen

The formulations for 𝜇 and 𝐾 developed by Lemmon and Jacobsen [39] are derived from a combination of theoretical

models for the dilute gas and empirical equations representing the residual contributions from molecular interactions.

The equations governing the dilute gas utilise the Chapman-Enskog theory, with polynomial fits for collision integrals

that are calibrated to fit experimental data. The improved model proposed by Olchowy and Sengers [41] is employed,

while the residual contribution follows an approach similar to that of Lemmon et al. [42]. This results in a formulation

that is applicable across all liquid and vapour states. The model uncertainty is given as 2% for nitrogen and 5% for

oxygen and air, with somewhat larger deviations near the critical point. In their report, Lemmon and Jacobsen [39]
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compare the model predictions with more than 150 sets of experimental data, demonstrating its robustness and accuracy

within these uncertainty ranges.

Following this model, the viscosity is expressed using the equation

𝜇 = (𝜇0 + 𝜇𝑟𝑒) × 10−6, (29)

where 𝜇 is given in (𝑘𝑔/𝑚 · 𝑠), 𝜇0 is the dilute gas viscosity, and 𝜇𝑟𝑒 is the residual fluid viscosity. The equation for the

dilute gas is given as

𝜇0 =
0.0266958

√
𝑀𝑇

𝜎2Ω★
, (30)

Ω★ = exp

(
4∑︁
𝑖=0

𝑏𝑖 [ln(𝑇/(𝜖/𝑘))]𝑖
)
, (31)

where 𝑀 is the molecular mass in grams, 𝑇 is the translational temperature, 𝜎 is the force constant and Ω★ is the

collision cross section fitted to experimental data with constants given by Lemmon and Jacobsen [39].

The thermal conductivity is expressed using the equation

𝐾 = 𝐾0 + 𝐾𝑟𝑒 + 𝐾𝑐, (32)

where 𝐾0 is the dilute gas thermal conductivity, 𝐾𝑟𝑒 is the residual fluid thermal conductivity, and 𝐾𝑐 is the thermal

conductivity critical enhancement. The dilute gas thermal conductivity is given as

𝐾0 = 𝑁1
[
𝜇0 × 10−6] + 𝑁2

(
𝑇𝑐

𝑇

) 𝑡2
+ 𝑁3

(
𝑇𝑐

𝑇

) 𝑡3
, (33)

where 𝑇𝑐 is the critical temperature, 𝜇0 is the dilute gas viscosity given in 𝑁.𝑠/𝑚2 and 𝑁1, 𝑁2, 𝑁3, 𝑡2, 𝑡3 are species

specific constants given in [39].

If a dilute gas is considered, where particle interactions are negligible (typically at low pressures and high

temperatures), the critical and residual enhancements (see [39] for details) can be neglected due to sufficiently low

density. In this study, the contributions of residual and critical enhancements were found to be minimal and have

therefore been neglected.

D. Blottner

Blottner et al. [24] compute the viscosity and thermal conductivity of a gas mixture using Wilke’s semi-empirical

mixing rule [25], where the viscosity of each individual species is evaluated through polynomials. These curve fits are

based on data from Yos [9], Yun and Mason [10], effectively representing Yos’s curve fits. The curve-fitting relation for
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viscosity is given in the form

𝜇𝑠 = 0.1 exp(𝐶) 𝑇 [𝐴 ln(𝑇 )+𝐵] , (34)

where 𝐴,𝐵 and 𝐶 are coefficients given in [24], 𝑇 is the translational temperature and the constant 0.1 is the converting

factor to SI units of (𝑘𝑔/𝑚 · 𝑠). The species thermal conductivity is expressed in terms of viscosity with Euken’s

molecular correction factor given in the form

𝐾𝑠 =
𝜇𝑠

𝑀𝑠

[
𝑐𝑝𝑠

𝑀𝑠

R
+ 1.25

]
, (35)

where 𝑀𝑠 is the species molecular weight in grams, 𝑐𝑝𝑠 is the species specific heat and R is the universal gas constant.

The mixing rule is then expressed in terms of

𝜇 =

𝑠∑︁
𝑖=1

𝑋𝑖𝜇𝑖∑𝑠
𝑗=1 𝑋 𝑗𝜙𝑖 𝑗

, (36)

𝐾 =

𝑠∑︁
𝑖=1

𝑋𝑖𝐾𝑖∑𝑠
𝑗=1 𝑋 𝑗𝜙𝑖 𝑗

, (37)

where 𝑋𝑖 is the species mole fraction and

𝜙𝑖 𝑗 =

[
1 +

√︂
𝜇𝑖

𝜇 𝑗

(
𝑀 𝑗

𝑀𝑖

)1/4
]2 [
√

8

√︄
1 + 𝑀𝑖

𝑀 𝑗

]−1

. (38)

The mixture rule used in this method has been noted to give inappropriate results for partially ionised gases and deviate

from other valid results for temperatures above 10, 000𝐾 . Therefore, Blottner’s method is only recommended to be used

for non- or slightly-ionised gases [24].

E. Sutherland

The Sutherland model represents the molecules as rigid spheres with the addition of a weak attractive force when

the spheres are not in contact. While this model is rather crude from a theoretical perspective, it does provide a more

rapid variation of viscosity than the simpler rigid sphere model [43]. The viscosity of a gas to a first approximation

using this model is given by

𝜇 = 𝜇𝑒𝑥𝑝

(
𝑇

𝑇𝑒𝑥𝑝

)3/2 𝑇𝑒𝑥𝑝 + 𝑆
𝑇 + 𝑆 , (39)

where 𝜇𝑒𝑥𝑝 represents the experimental viscosity at temperature 𝑇𝑒𝑥𝑝, and 𝑆 is the Sutherland constant, which

quantifies the strength of the attractive intermolecular forces, being proportional to the mutual potential energy between
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two molecules in contact [8]. The constants used in this work are those given by Hirschel [44], where 𝑆 is 110.4,

𝜇𝑒𝑥𝑝 = 1.846 × 10−5 𝑘𝑔/(𝑚 · 𝑠) and 𝑇𝑒𝑥𝑝 = 300𝐾 .

F. Present Model

In high-enthalpy flows aimed at simulating hypersonic conditions, extensive calculations are required to produce

accurate transport properties, such as those in the model provided by Yos [9], which can significantly increase the overall

computational time and resources. Additionally, these models do not accurately represent transport properties at lower

temperatures. As a compromise between performance and accuracy, more precise viscosity and thermal conductivity

models across their respective temperature ranges have been approximated using simpler polynomial expressions, with

coefficients valid for temperatures ranging from 100𝐾 to 9000𝐾 .

The polynomial for the present model is expressed in the form

Φ =

∑
𝑖=𝑎𝑡𝑜𝑚

15𝑋𝑖 +
∑

𝑖=𝑚𝑜𝑙

30𝑋𝑖

𝑃(𝑎, 𝑏, 𝑐, 𝑑) ∑
𝑖=𝑎𝑡𝑜𝑚

𝑋𝑖 + 𝑃(𝑒, 𝑓 , 𝑔, ℎ)
∑

𝑖=𝑚𝑜𝑙

𝑋𝑖
, (40)

with

𝑃(𝐴, 𝐵, 𝐶, 𝐷) = |𝐴 + 𝐵 𝑇2 + 𝐶 ln(𝑇) + 𝐷/𝑇 |, (41)

where 𝑋𝑖 is the species mole fraction and coefficients 𝑎, 𝑏, 𝑐, 𝑑, 𝑒, 𝑓 , 𝑔 are given in Table 1. The split into summed atom

and summed molecular contributions and the omission of a separate mixing rule simplifies the final form.

As mentioned earlier, for a more complete definition of thermal conductivity, the total thermal conductivity can be

decomposed into different modes as

𝐾 = 𝐾𝑡 + 𝐾𝑟 + 𝐾𝑣 ,

where 𝐾𝑡 represents the contribution from the translational mode of the species, 𝐾𝑟 from the rotational mode, and 𝐾𝑣

from the vibrational mode. In modelling high-enthalpy effects, particularly for non-equilibrium air at temperatures

below 9000𝐾 , among these three contributions to frozen thermal conductivity, the rotational mode can reasonably be

assumed to couple with the translational mode and is therefore governed by the translational temperature, while the

vibrational contribution is governed by the vibrational temperature. Consequently, given the correspondence of the

provided expressions to air at temperatures below 9000𝐾 , in the present model the thermal conductivity is expressed

in terms of 𝐾, 𝐾𝑡𝑟 , and 𝐾𝑣 , which represent the total thermal conductivity, the ro-translational thermal conductivity,

and the vibrational thermal conductivity, respectively. The total thermal conductivity and ro-translational thermal
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Table 1 Coefficients for viscosity and thermal conductivity for the present model.

𝑎 𝑏 𝑐 𝑑 𝑒 𝑓 𝑔 ℎ

𝜇 -2.0989e+05 -5.2310e-06 1.9855e+04 -2.7244e+08 1.2667e+06 3.3933e-04 -1.3007e+05 3.5234e+08
𝐾 3.2315e+02 2.1022e-07 -3.5288e+01 8.0676e+04 -4.5599e+02 -1.8431e-07 4.6392e+01 -3.0308e+05
𝐾𝑡𝑟 2.1762e+02 2.1403e-07 -2.4067e+01 1.0838e+05 -9.8842e+02 -5.1961e-07 1.0492e+02 -2.3396e+05

Table 2 Coefficients for the species vibrational thermal conductivity.

𝐴 𝐵 𝐶 𝐷 𝐸 𝐹 𝐺

𝐾𝑣,𝑁2 1.9200e-04 -3.9290e-06 1.4026e-08 -4.8403e-12 7.5275e-16 -5.0128e-20 1.0884e-24
𝐾𝑣,𝑂2 -1.1446e-03 7.2095e-06 6.2555e-09 -2.6587e-12 4.2901e-16 -2.5152e-20 3.0436e-25
𝐾𝑣,𝑁𝑂 -4.2658e-04 9.8630e-07 1.1229e-08 -4.2799e-12 7.0384e-16 -4.8694e-20 1.1027e-24

conductivity are both defined using the expression provided in Eq. (40), while the vibrational thermal conductivity for

each species is defined using sixth-order polynomials in the form

𝐾𝑣𝑖 = |𝑋𝑖
[
𝐴𝑖 + 𝐵𝑖 𝑇𝑑 + 𝐶𝑖 𝑇

2
𝑑 + 𝐷𝑖 𝑇

3
𝑑 + 𝐸𝑖 𝑇

4
𝑑 + 𝐹𝑖 𝑇

5
𝑑 + 𝐺𝑖 𝑇

6
𝑑

]
|, (42)

where 𝑇𝑑 is defined as
√
𝑇𝑇𝑣 and the coefficients 𝐴𝑖 , 𝐵𝑖 , 𝐶𝑖 , 𝐷𝑖 , 𝐸𝑖 , 𝐹𝑖 , 𝐺𝑖 are given in Table 2 separately for each

molecular species. To calculate the total vibrational thermal conductivity (𝐾𝑣) the species vibrational mode can be

summed as

𝐾𝑣 =
∑︁
𝑖=𝑚𝑜𝑙

𝐾𝑣𝑖 . (43)

Following Eucken’s expression for total thermal conductivity, one can also calculate the ro-translational thermal

conductivity by subtracting the vibrational contribution

𝐾𝑡𝑟 = 𝐾 −
( ∑︁
𝑖=𝑚𝑜𝑙

𝐾𝑣𝑖

)
. (44)

The polynomial given as Eq. (40) separates the contributions to transport properties between molecules and atoms.

This division enables a more accurate representation of transport properties in chemically non-equilibrium flows, where

the composition deviates from the equilibrium composition for which they were optimised. Additionally, the polynomial

given as Eq. (42) is in standard form without division between species, as atoms do not contribute to vibrational modes.

The selected polynomial forms and their coefficients were optimised to accurately represent the respective transport

properties across equilibrium and various non-equilibrium flow states for temperatures ranging from 100𝐾 to 9000𝐾 . The
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reference data used for the optimisation included equilibrium compositions between temperatures 100𝐾 to 9000𝐾 and

four additional frozen compositions for temperatures 1000𝐾 to 9000𝐾 , representing highly chemically non-equilibrium

states. Data points across this temperature range were weighted toward lower temperatures to improve alignment in this

region. The selection of equilibrium composition only for temperatures below 1000𝐾 allows for greater accuracy in this

range, as non-equilibrium states are less likely to occur at these temperatures in practical cases. Meanwhile, selecting

frozen chemistry data for temperatures above 1000𝐾 improves the fit for chemically non-equilibrium states. As a result,

Eq. (40) is used to define the total viscosity, total thermal conductivity, and ro-translational thermal conductivity, while

Eq. (42) is used to define the species vibrational thermal conductivity, with the capability to represent total vibrational

thermal conductivity through Eq. (43).

When establishing a reference value for the data, the Hirschfelder-Lennard-Jones (HLJ) model was chosen for

viscosity between 100𝐾 and 1400𝐾, while the Yos-Gupta model was used from 1400𝐾 to 9000𝐾. Hirschfelder et al.

[7] demonstrate that the Lennard-Jones potential is one of the more accurate models for gases up to 1100𝐾 , given the

appropriate force constants are applied. The collision integrals in the Yos-Gupta method correlate directly with data

from Yun et al. [11] and Vanderslice et al. [45], reported to be accurate from 1000𝐾 to 15, 000𝐾 . This combination is

therefore assumed to provide a good reference over the entire temperature range.

For thermal conductivity, the HLJ model was used from 100𝐾 to 700𝐾 applying the semi-empirical method of

Hirschfelder et al. [7], with correction factors for each species provided by the model from Lemmon and Jacobsen

[39]. Given that air composition in this range is a combination of 𝑁2 and 𝑂2 only, the gas was assumed to be a binary

mixture. The semi-empirical method, combined with correction factors, was selected due to limited theoretical models

for mixture thermal conductivity with polyatomic species; thus, thermal conductivity is calculated as a mixture of

monatomic species, with vibrational contributions added through experimental data. Notably, Eucken’s correction factor

for polyatomic species does not yield acceptable results for mixture thermal conductivity [7]. The Lemmon-Jacobsen

model [39] used for experimental data representation was reduced by 0.5% for 𝑁2 to better fit temperatures above 300𝐾 .

The default Lemmon-Jacobsen model and its accuracy compared to experimental data are provided by Lemmon and

Jacobsen [39]. For temperatures between 700𝐾 and 9000𝐾 , the Yos-Gupta model was used.

Thus, while the overall model selection was guided by accuracy within each range, the exact temperature boundaries

were set where the models intersect, resulting in a smoother overall representation of the transport properties and better

alignment when optimising polynomial coefficients. A standard least squares method was used for the optimisation.

Comments on implementation

Table 3 presents a selection of calculated properties at various temperatures, along with their corresponding

compositions. The compositions were chosen to be close to the equilibrium composition at each respective temperature.

To calculate the mixture viscosity, Eq. (40) should be used with the respective coefficients provided in Table 1. This
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Table 3 Results from the present model for code verification.

𝑇 𝑋𝑂 𝑋𝑂2 𝑋𝑁 𝑋𝑁2 𝑋𝑁𝑂 𝜇 𝐾 𝐾𝑡𝑟 𝐾𝑣

100 0.00 0.21 0.00 0.79 0.00 7.1580e-06 9.1655e-03 1.0545e-02 1.2805e-04
298 0.00 0.21 0.00 0.79 0.00 1.7564e-05 2.4819e-02 2.5514e-02 4.2750e-04
2000 0.01 0.20 0.00 0.78 0.01 6.5898e-05 1.1750e-01 9.6982e-02 2.0617e-02
5000 0.33 0.00 0.03 0.62 0.02 1.3187e-04 2.5485e-01 2.1730e-01 3.6434e-02
9000 0.21 0.00 0.78 0.01 0.00 2.4960e-04 5.3366e-01 5.2967e-01 1.2956e-03

formulation covers both equilibrium and non-equilibrium states. For thermal conductivity, it can be noted that the fitting

process results in values of 𝐾 that are not exactly equal to the sum of 𝐾𝑡𝑟 and 𝐾𝑣 , particularly at the extremes of the

temperature range. The most accurate results can be achieved by taking into account whether the flow is in equilibrium,

in weakly non-equilibrium, or in a strongly non-equilibrium state. The recommended approaches are as follows:

1) Equilibrium State: For thermally equilibrium simulations, where heat flux is expressed in terms of the derivative

of a single temperature in the governing equations, a single expression for total thermal conductivity, as defined

by Eq. (40) with 𝐾 coefficients from Table 1, is sufficient.

2) Weakly Non-Equilibrium State: For thermal non-equilibrium simulations in which the translational, rotational,

and vibrational contributions to thermal conductivity are expressed separately using derivatives of translational

and vibrational temperatures, 𝐾 should be expressed in terms of 𝐾𝑡𝑟 and 𝐾𝑣 . Under near thermal and chemical

equilibrium conditions, it is recommended to use Eq. (43) for 𝐾𝑣 , and Eq. (44) for 𝐾𝑡𝑟 .

3) Strongly Non-Equilibrium State: For highly chemical and thermal non-equilibrium states, Eq. (40) should be

used for 𝐾𝑡𝑟 , and Eq. (43) for 𝐾𝑣 , with an added correction factor for 𝐾𝑡𝑟 defined as:

𝐾𝑡𝑟 = Φ − | 2.03 (𝑇 − 𝑇𝑣) 𝑇 × 10−10 | (45)

where Φ is the prediction from Eq. (40). This correction insures a better agreement of the ro-translational thermal

conductivity in thermal non-equilibrium states by incorporating the vibrational temperature in the formulation.

The practical cases that follow will give a better representation of what conditions can be classified as being close to

equilibrium. If the extent of non-equilibrium condition cannot be estimated in advance, then the third option can be

used, which gives a maximum error of 14% at 100𝐾 and below 4% for temperatures above 200𝐾 in cases where the

flow is in equilibrium.

16



III. Results
The proposed model from the previous section is evaluated for accuracy against the existing models for a series of

tests. Firstly, the ability to reproduce property values in thermal and chemical equilibrium is demonstrated. Secondly, a

0D heat bath case is used to study strong non-equilibrium states with no fluid motion. Thirdly, numerical simulations of

2D and 3D mixing layer case in non-equilibrium are considered. Finally, the computational savings are demonstrated.

A. Model evaluation in equilibrium

(a) Viscosity against temperature for the full temperature range.
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(b) Viscosity against temperature for lower temperatures.

Fig. 1 Comparison of viscosity of the present model against other models for thermo-chemical equilibrium air.

Figure 1a shows the viscosity of a five-species air mixture at atmospheric pressure in thermal and chemical

equilibrium, calculated using various models across a temperature range of 100𝐾 to 9000𝐾. The present model

(equilibrium formulation) is shown with the solid black line. A subset of the same data is shown in Fig. 1b, focusing on

the lower temperature range, from 100𝐾 to 1000𝐾. It is evident that no single existing model can accurately capture
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(a) Thermal conductivity against temperature for the full temperature range.

(b) Thermal conductivity against temperature for lower temperatures.

Fig. 2 Comparison of thermal conductivity of the present model against other models for thermo-chemical
equilibrium air. The colour scheme is given in the legend in (a) and the linestyle is given in the legend in (b).

viscosity over the entire temperature range, with the HLJ and Sutherland models having large errors at high temperatures

and the Yos-Gupta and Blottner models having significant errors at low temperatures. It is also notable that the Blottner

and Yos-Gupta models diverge from each other at higher temperatures, specifically between 4000𝐾 and 8000𝐾. In

contrast, the present model aligns closely with the selected reference models across each temperature segment, showing

strong agreement with the HLJ model for temperatures below 1000𝐾 and the Yos-Gupta model for temperatures above

this threshold.

Figure 2a (over the full temperature range) and Fig. 2b (for lower temperatures) shows the present model alongside

other thermal conductivity models, highlighting the distinct contributions to thermal conductivity from ro-translational

and vibrational modes. Note that the line colour is shown in the legend for part (a) of the figure and the line style in the

legend for part (b). Significant discrepancies are observed between the results computed by Blottner, Yos-Gupta, and HLJ.
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Similar to the viscosity comparison, there is a clear divergence between the Blottner and Yos-Gupta models at higher

temperatures, as well as between HLJ and the other two models at lower temperatures. Additionally, the vibrational

contribution to thermal conductivity in the Blottner model shows a larger discrepancy compared to Yos-Gupta and

HLJ, as Blottner’s model uses the Eucken correction factor, which is less accurate than semi-empirical or experimental

data-based methods like Yos-Gupta and HLJ.
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Fig. 3 Error of each property against the respective reference model at each temperature.

Figure 3 presents the relative percentage error of the present model, compared to the reference models across the

whole temperature range. In comparison to the reference models, the present model for viscosity exhibits relatively

higher errors at lower temperatures, with a maximum error of 4% at 300𝐾 relative to HLJ, and an error below 2% for

temperatures above 400𝐾 relative to Yos-Gupta. The total thermal conductivity 𝐾 calculated using Eq. (40) demonstrates

small errors, with a maximum error of 4% at around 200𝐾. The ro-translational thermal conductivity 𝐾𝑡𝑟 shows a

maximum error of 14% at 100𝐾, but remains below 4% for temperatures above 200𝐾. Additionally, calculating 𝐾𝑡𝑟

using Eq. (44) yields a maximum error of 5% at 300𝐾 . Errors in 𝐾𝑣 at temperatures below 800𝐾 can be disregarded, as

𝐾𝑣 ≪ 𝐾𝑡𝑟 .

Figure 4 presents the Prandtl number, 𝑃𝑟 = 𝑐𝑝𝜇/𝐾 , calculated using the transport properties from the present model

alongside those in the literature, which are based on empirical or experimental data. For the comparisons, the specific

heat for air was calculated using the NASA-9 polynomials [46]. The choice of force constants in the Lennard-Jones

model for viscosity calculations significantly influences the alignment with various data sources. For example, the force

constants provided by Hirschfelder et al. [7] align well with Hilsenrath et al. [47], while those by Lemmon and Jacobsen

[39] are naturally compatible with the Lemmon-Jacobsen model. The Prandtl number for air reported by Cengel et al.
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(a) Prandtl number against temperature for lower temperatures.
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(b) Prandtl number against temperature for higher temperatures.

Fig. 4 Comparison of Prandtl number from the present model against other data.

[48] follows a trend similar to that of the present model, albeit with a slight shift. Given the considerable spread in

experimental data above 400𝐾 and the noticeable differences between the derived transport properties of the Yos-Gupta

model and the Lemmon-Jacobsen data, the Prandtl number calculated from the present model is considered to fall

within the range of available data.

Additional evaluations were performed to assess the accuracy of the present model under different pressures and to

examine its robustness in calculating the transport properties for arbitrary chemical compositions. These are shown in

Appendix A.

B. Model evaluation in thermo-chemical non-equilibrium (0D heat bath)

As a first test of non-equilibrium, a 0D heat bath is used. This is a simple configuration with the fluid at rest, which is

useful to show how the viscosity and thermal conductivity of the fluid change under the influence of chemical reactions
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and vibrational relaxation. To assess the performance of the transport property models (using Eq. (45)), a heat bath

simulation was conducted in which the flow initially exists in a state of strong thermal and chemical non-equilibrium

state and then relaxes toward equilibrium. The simulation starts with a standard air composition at atmospheric pressure,

with the vibrational temperature set as 300𝐾 , the density as 0.05𝑘𝑔/𝑚3, the simulation pressure set to 100000𝑃𝑎 and

the simulation time-step was set to 2.0 × 10−8𝑠. The corresponding translational temperature is around 7000𝐾 , putting

the flow into severe non-equilibrium. Time advancement was conducted with both 3rd and 4th order Runge-Kutta (RK)

schemes, concluding that the 4th order scheme handled the initial highly non-equilibrium chemical relaxation with more

precision. The results shown used the 4th order RK scheme with the time step given above.

Figure 5 illustrates various flow parameters as they evolve over time 𝑡 towards equilibrium using implementation

(3) from Sec. II.F. Figure 5a shows the mole fraction of each air species. As the simulation begins in a chemically

non-equilibrium state, chemical reactions start to occur and the molecules dissociate, also forming NO. Figure 5b displays

the translational and vibrational temperatures, highlighting the transition from an initial vibrational non-equilibrium

state to equilibrium. The overshoot of the vibrational temperature above the translational temperature, followed by the

final relaxation to equilibrium, is attributed to the ongoing chemical reactions. The markers for Fig. 5a and 5b are the

same parameters calculated with half the time-step, showing the same results with errors of the order 0.008% and hence

presenting a validation of the time advancement scheme.

The calculated viscosity and thermal conductivity are shown in Fig. 5c and Fig. 5d during the simulation. Different

line styles in both figures represent various models, while in Fig. 5d, different colours indicate the different contributions

to thermal conductivity. The values of both transport properties using the present model closely follow the same trends

as results obtained using the Yos-Gupta and Blottner models. As the flow tends to the final equilibrium state, the results

are in very close agreement with Yos-Gupta model. Throughout the non-equilibrium region the results of the present

model are closer to Yos-Gupta than the Blottner model, even though the present model consists of a simplified mixing

rule.

C. Model evaluation for 2D and 3D mixing layers

Mixing layers are examples of inhomogeneous flows that have been used to study the properties of compressible

turbulence [49, 50]. Starting from a laminar flow a transition to turbulence starts from a Kelvin-Helmholtz instability,

caused by the inflectional nature of the initial velocity profile [51]. In this study a temporally evolving mixing layer,

periodic in the streamwise direction, is constructed in 2D and 3D computational domains. The initial velocity profile is

configured as two uniform flows in opposite directions, defined by a hyperbolic profile where a disturbance is then
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(b) Relaxation of translational and vibrational temperatures.
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(c) The viscosity calculated at each iteration. (d) The thermal conductivity calculated at each iteration.

Fig. 5 Heat bath simulation.

superimposed via the 𝑣-component of velocity. These components are defined as

𝑢 = 𝑢∞ tanh
(

2𝑦
𝛿𝜔

)
, (46)

𝑣 = 0.01𝑢∞ cos
(

2𝜋𝑥
𝐿𝑥

)
𝑒−(𝑦/𝛿𝜔 )/10, (47)

where 𝑢∞ is the free stream velocity, 𝑦 is the cross-stream direction, 𝛿𝜔 is the vorticity thickness, 𝑥 is the streamwise

direction and 𝐿𝑥 is the length of the domain in the 𝑥 direction. Temperature is initially constant everywhere, equal to the

free-stream temperature.

The simulations are carried out using OpenSBLI [52], an open-source finite difference flow solver. The spatial and

temporal discretisation of the equations is performed using a fourth-order central differencing scheme for space and a

fourth-order Runge-Kutta method for time. The code is open source and has been extensively validated, as documented
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in Lusher et al. [52, 53] and references therein. In addition, Chapelier et al. [54] compared seven different compressible

flow solvers for a compressible Taylor-Green problem, showing excellent agreement across codes that used different

numerical methods. For the present simulation, the initial conditions and problem specifications are defined in Table

4. The chemical composition of the flow was set to near equilibrium. The simulation employed periodic boundary

conditions in the 𝑥 direction, while extrapolation boundary conditions were applied at the base and top of the domain.

The domain length in the 𝑥 direction (𝐿𝑥) was set to 0.044𝑚, and in the 𝑦 direction (𝐿𝑦) to 0.197𝑚, to minimize the

influence of acoustic wave reflections on the mixing process. The grid resolution was configured as 180 × 325 points in

the 𝑥 and 𝑦 directions, respectively, with a hyperbolic stretch factor applied in the 𝑦 direction to concentrate the spatial

resolution where needed. The grid was determined after an initial sensitivity study, with grid sensitivity shown later for

the more challenging 3D case. Additionally, a binomial filter was employed at the upper and lower boundaries of the

domain to attenuate acoustic waves, effectively simulating a quiet free-stream environment. For modelling the mixing

layer cases, the third method described in Sec. II.F was utilised.

Table 4 Initial conditions for the shear layer case.

𝑢∞ 𝜌∞ 𝑝∞ Δ𝑡 𝛿◦𝜔 𝑌◦
𝑂

𝑌◦
𝑂2 𝑌◦

𝑁
𝑌◦
𝑁2 𝑌◦

𝑁𝑂

740 m/s 0.02 kg/m3 53 kPa 7.0×10−8 s 2.961957 mm 0.208 0.003 0.226 0.562 0.001

Fig. 6 Error in viscosity and thermal conductivity of present model compared to the Yos-Gupta model, each
column depicting a different time (𝑠). a) Passive scalar, b) Error in viscosity, c) Error in total thermal

conductivity.

Figure 6 illustrates the development of the 2D mixing layer with each panel representing the same spatial domain.
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Each column corresponds to a different time step in the simulation and each row illustrates a different parameter. Row

"a" shows the passive scalar, providing a visual representation of the vortex roll-up evolution. As the vortex forms,

the core temperature of the vortex decreases while the stagnation point temperature rises. There is minimal chemical

reaction (less than 3% change in composition), primarily involving the dissociation of 𝑁2 into 𝑁 in regions where

temperature changes occur. Given the fast chemical reaction timescales relative to flow timescales, the simulation can

be considered to be locally in chemical equilibrium. Thermal non-equilibrium is primarily concentrated in the vortex

core and in regions of flow expansion and compression, where the vibrational temperature lags behind the translational

temperature. Row "b" of Fig. 6 gives the absolute value of the percentage relative difference in viscosity across the

flow field, calculated by comparing Yos-Gupta with the present model. Row "c" displays the corresponding percentage

difference in total thermal conductivity, comparing Yos-Gupta with the present model. The present model achieves

a maximum error of 0.7% for viscosity and 2.2% for thermal conductivity. In terms of error distribution, row "b"

primarily reveals that the maximum deviation is located in the vortex core. Regarding thermal conductivity, row "c"

displays similar trends to that observed in viscosity, with additional errors in regions of thermal non-equilibrium where

the vibrational temperature is elevated compared to the translational temperature. For comparison, the Blottner model

showed much larger maximum errors of 4.0% and 7.1% for viscosity and thermal conductivity, respectively.

Figure 7 illustrates a 3D mixing layer under the same conditions as the 2D case study. Here, periodic boundary

conditions are applied to the lateral boundaries of the domain, while the top and bottom boundaries are set to extrapolation,

similar to the 2D configuration. The initial conditions defining the flow profile and the imposition of the disturbance are

given by

𝑢 = 𝑢∞ tanh
(

2𝑦
𝛿𝜔

)
, (48)

𝑣 = 0.05𝑢∞ cos
(

2𝜋𝑥
𝐿𝑥

)
cos

(
2𝜋𝑧
𝐿𝑧

)
exp

[
−

(
𝑦

𝛿𝜔

)
/10

]
, (49)

𝑤 = 0, (50)

where 𝐿𝑧 is the length of the grid in the 𝑧 direction and 𝑤 is the initial velocity in the 𝑧 direction. The temperature is

initialized equal to the free-stream temperature. The grid resolution was chosen as 220 × 385 × 220 points for the 𝑥,𝑦

and 𝑧 directions respectively. The domain length in the 𝑧 direction was set identical to the 𝑥 direction, 0.044𝑚. Figure

7a displays the Q-criterion as iso-surfaces set at 6 × 1010𝑠−2, with thermal non-equilibrium contours on the iso-surfaces.

The thermal non-equilibrium contour is defined as the difference between the vibrational and translational temperatures

(𝑇𝑣 − 𝑇), illustrating the degree of thermal non-equilibrium in the flow field. Regions depicted in red correspond

to thermally hot states (higher vibrational temperature), while blue regions indicate thermally cold states (higher

translational temperature). By the end of the simulation at 𝑡 = 2.8 × 10−4s shown on Fig. 7a , large-scale vortices have
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(a) Colour contours of thermal non-equilibrium (𝑇𝑣 −𝑇) superimposed on a Q-Criterion iso-surface at time 2.8× 10−4𝑠.
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(b) Relative error of momentum thickness in percentage relative to Yos-Gupta, with dots showing the grid sensitivity of
the Yos-Gupta results based on a fine grid simulation.

Fig. 7 Three dimensional simulation of the mixing layer and comparison between the transport models.

broken down into small scales. Figure 7b compares the error in non-dimensional momentum thickness of the Blottner

model and the present model relative to the Yos-Gupta model, a quantity reflective of the characteristics of developing

shear mixing layers. Consistent with the 2D simulation results, the Blottner model shows larger discrepancies compared

to the Yos-Gupta method, whereas the present model closely aligns with Yos-Gupta. The markers present in this figure

are the respective parameter for a case with a denser grid by a factor of 1.6 in each direction, demonstrating the grid

sensitivity and validating the grid convergence for the case studies carried out. As shown, the grid is converged with

close to zero percent error during the mixing layer development, with the additional slight deviation in the dissipation

region which is reflective of the different turbulence structures being formed based on the grid density. It should be

noted that by the end of the simulation the turbulence has lost its determinism, meaning that small changes in initial
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condition are amplified sufficiently to break the spanwise symmetry. Thus, the larger errors at later times in Fig. 7 reflect

the changing nature of the simulated turbulent flow, from deterministic to stochastic, rather than increased sensitivity to

the grid or errors in the property modelling.

This case provides a representative example of a three-dimensional flow with the presence of high-enthalpy effects,

enabling the evaluation of the present model for determining transport properties.

D. Computational performance

To assess the computational cost of the models, simulations were conducted on a single computational node using a

single NVIDIA A100 GPU. The computational cost was measured by the run time, excluding input/output. Figure

8 presents the computing times for the different viscosity and thermal conductivity formulations used in the 2D and

3D cases. Any difference in performance reflects the combined efficiency gained from both viscosity and thermal

conductivity coefficients.
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Fig. 8 Computational cost of each model for a 2D and 3D mixing layer simulation, given in terms of time. YG:
Yos-Gupta, B: Blottner, PM: Present Model, C: Constant Transport Property.

The present model demonstrated a 45% improvement in efficiency for 2D simulations compared to the Yos-Gupta

model, while the Blottner model showed an 11% improvement. For the 3D cases, the present model exhibited 58.5%

greater efficiency, while the Blottner model achieved a 16.7% increase relative to the Yos-Gupta model. Additionally,

the simulations were conducted with a constant viscosity and thermal conductivity as a reference. These improvements

were achieved using a finite difference code optimised in nearly every computational aspect (including work array storage

reduction, exploiting the automatic code generation [55]), making the contribution of transport property calculations

to overall performance comparatively significant. Given the number of operations required to compute viscosity

and thermal conductivity coefficients in the Yos-Gupta model, the contribution to the overall computational time is

substantial. Reductions in the relative performance figures would be expected for applications where shock capturing is
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required. Nevertheless, the increased performance and consistent levels of accuracy over a wide temperature range

make the present model attractive for use in scale-resolving simulations.

IV. Conclusion
The purpose of this paper was to develop a streamlined, efficient model for viscosity and thermal conductivity that

balances accuracy with computational performance. This model is intended for five-species air (𝑂,𝑂2, 𝑁, 𝑁2, 𝑁𝑂) in

thermal and chemical non-equilibrium flow conditions. The model utilises eight coefficients for viscosity and total

thermal conductivity, expressed as functions of species mole fraction and temperature. The vibrational contribution to

thermal conductivity is represented by a sixth-order polynomial. To align with high-enthalpy non-equilibrium governing

equations, the contributions from translational and rotational modes to thermal conductivity are combined into a single

term, while the vibrational contribution is specified for each molecular species separately. The separation between

molecular and monatomic contributions enhances accuracy for chemical non-equilibrium flows.

In terms of accuracy for equilibrium air at atmospheric pressure, the proposed viscosity model demonstrated only a

4% worst-case error at lower temperatures and below 1.5% error for temperatures above 3000𝐾 relative to the reference

model. The total and ro-translational thermal conductivity exhibited errors below 4% for temperatures above 300𝐾.

Additionally, the Prandtl number computed using the proposed model displayed an error of 1.5% for temperatures

between 150𝐾 and 3000𝐾 with maximum error of 3.5% when compared to the Prandtl number evaluated using the

reference model. To further assess the model’s performance in more practical situations, additional test cases were

conducted. Firstly, a heat bath case with highly thermal and chemical non-equilibrium states was considered, and

secondly, a free shear layer case was simulated in both 2D and 3D, with the latter test case including transition to

turbulence. In the 0D heat bath case, the proposed model was more accurate than the Blottner model when compared to

the Yos-Gupta model. For the 2D mixing layer case, the proposed viscosity model showed a maximum error of 0.7%

through the simulation, compared to Blottner’s 4.0%. For thermal conductivity, the proposed model had a maximum

error of 2.2%, while Blottner’s model showed an error of 7.1%. These case studies confirm that the proposed model

effectively represents transport properties in non-equilibrium flows.

In terms of computational performance, the proposed model was 45% more efficient in 2D simulations of a mixing

layer compared to the Yos-Gupta model, while the Blottner model achieved only an 11% improvement in efficiency.

For 3D simulations, the proposed model was 58.5% more efficient than Yos-Gupta, with Blottner’s model, achieving

a 16.7% gain in efficiency. Therefore, the viscosity and thermal conductivity model developed in this paper for

high-enthalpy flows represents a balance between efficiency and accuracy across a broad temperature range of 100𝐾 to

9000𝐾 . It aligns closely with the Yos-Gupta model in terms of accuracy and is an improvement on the Blottner model

in non-equilibrium conditions.

The approach presented for modelling the viscosity and thermal conductivity offers a good framework to achieve
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computational efficiency and improved accuracy when compared with existing models. The same framework could in

principle be used to represent other chemical mixtures or additional flow properties such as diffusion coefficients. For

higher temperatures, the influence of ionisation could also be implemented by adding expressions for the contribution

from the electronic modes.

Appendix

A. Accuracy and Robustness

Two additional cases for evaluating the present model are demonstrated in this section. First, Fig. 9 shows the

transport properties derived using the present model at various constant pressures for equilibrium air over the temperature

range of 100𝐾 to 9000𝐾. Since the equilibrium composition depends on both pressure and temperature, a change in

pressure results in a corresponding change in the equilibrium composition at a given temperature. This case effectively

demonstrates the accuracy of the present model in capturing the effect of a chemically non-equilibrium state. The present

model produces reasonable results, when compared to the more accurate Yos-Gupta model for high temperatures with

negligible differences for temperatures below 5000𝐾 . For turbulence to be present, simulations at higher temperatures

than this would normally be associated with pressures above 104 Pa [22, 35], where the errors are lower. If necessary,

using the same approach presented here, the model coefficients could be re-optimised for extreme pressures..
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Fig. 9 Relative error of viscosity (solid line), total thermal conductivity (dashed line), and ro-translational
thermal conductivity (dashed-dotted line) at different pressures.

Second, to assess the robustness of the present model in chemically non-equilibrium states, a series of 100 random

compositions were selected and evaluated across the temperature range of 1000𝐾 to 9000𝐾. This was achieved by

calculating the properties using both the present model and the Yos-Gupta model, holding the composition constant
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across the temperature range, and then statistically deriving the relative mean error as a percentage. This analysis style

provides insights into the model’s performance in highly chemically non-equilibrium conditions. Figure 10 shows the

resulting error.
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Fig. 10 Evaluation of the robustness of the present model in highly chemical non-equilibrium state.
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