
University of Southampton Research Repository

Copyright © and Moral Rights for this thesis and, where applicable, any accompanying data are

retained by the author and/or other copyright owners. A copy can be downloaded for personal non-

commercial research or study, without prior permission or charge. This thesis and the accompanying

data cannot be reproduced or quoted extensively from without first obtaining permission in writing

from the copyright holder/s. The content of the thesis and accompanying research data (where appli-

cable) must not be changed in any way or sold commercially in any format or medium without the

formal permission of the copyright holder/s.

When referring to this thesis and any accompanying data, full bibliographic details must be given, e.g.

Thesis: Junlin Zhou (2025) ”Multiple Model Control of Functional Electrical Stimulation Electrode

Arrays”, University of Southampton, Faculty of Engineering and Physical Science, School of Electron-

ics and Computer Science PhD Thesis, xvii, 137 pages.

Data: Junlin Zhou (2025). N/A





UNIVERSITY OF SOUTHAMPTON

Multiple Model Control of Functional
Electrical Stimulation Electrode Arrays

by

Junlin Zhou

Supervisor: Prof. Christopher Freeman, Prof. William Holderbaum, Dr
Ann-Marie Hughes

ORCiD: https://orcid.org/0009-0003-9888-9759

A thesis submitted for the
degree of Doctor of Philosophy

in the
Faculty of Engineering and Physical Science
School of Electronics and Computer Science

August 2025

http://www.southampton.ac.uk
http://orcid.org/https://orcid.org/0009-0003-9888-9759




University of Southampton

Abstract

Faculty of Engineering and Physical Science
School of Electronics and Computer Science

Doctor of Philosophy

Multiple Model Control of Functional Electrical Stimulation Electrode Arrays

by Junlin Zhou

Functional electrical stimulation (FES) is an upper limb stroke rehabilitation technology
that can enable patients to recover their lost movement by assisting intensive and goal-
oriented task training. Unfortunately, existing commercial FES devices using single-
pad electrode cannot provide selective muscle activation, hence their tracking accuracy
is limited. Electrode arrays combining multiple pads in a single structure have recently
been developed, and can more accurately assist wrist and finger movements. How-
ever, the set-up procedures currently used to locate the best stimulation sites are very
time-consuming, and not suitable for a home use scenario. Their accuracy is also lim-
ited as they are predominantly open-loop. To date, Iterative Learning Control (ILC)
has achieved the best performance for FES array tracking control tasks. Unfortunately
it requires a large number of model identification tests that slow down the training,
and must be repeated for different desired trajectories. All these drawbacks lead to
prohibitive inconvenience for users and prevent translation to clinical or home envi-
ronments.

To address this, an estimation-based multiple model switched iterative learning con-
trol (EMMILC) framework is proposed. This combines the most successful adaptive
and learning properties of existing FES controllers employed for single pad systems.
A novel multiple-model design procedure guaranteeing robust performance is devel-
oped, and initial experimental results using single-pad electrode results are then pre-
sented to confirm efficacy of the approach. Experimental results show that EMMILC
can reduce tracking error to 20% of its initial value within five trials, and maintain
the same level of error in the presence of pronounced muscle fatigue. This architec-
ture outperforms the standard ILC approach, and confirms the fundamental proof of
concept. The EMMILC approach is then extended for application to electrode array
technology, and simulations using a realistic model confirm significant improvement
compared with existing controllers.
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Chapter 1

Introduction

A stroke affects approximately 100,000 people in the UK every year, and is the leading
cause of death and disability. Over 70% of unilateral stroke survivors have reported
impaired contralateral upper-limb function, especially in their hands and wrists [Meyer
et al., 2014]. Over four hundred stroke patients were interviewed in [Wyller et al., 1997],
and reported that impaired upper-limb function was the main reason for their decrease
in subjective well-being one year after stroke. Another survey of stroke survivors found
that they were frustrated, angry and disappointed by rehabilitation often neglecting
their upper-limb dysfunction [Sullivan et al., 2019].

These findings are reflected by evidence showing that intensive (i.e. lasting more than
three hours per day) goal-oriented task practice is more effective in promoting recov-
ery post stroke than less intensive rehabilitation [Ballester et al., 2022]. Unfortunately
conventional therapy only consists of repeating simple movements assisted by a ther-
apist. This is only effective for patients with less severe impairments who can finish at
least a portion of the training on their own, but patients with more severe impairments
require assistive technology to provide visual, auditory and tactile feedback during
goal-oriented training [Lum et al., 2002].

Functional Electrical Stimulation (FES) is the most popular upper limb assistive tech-
nology [Hughes et al., 2014]. It has been shown to encourage voluntary effort and
reduce dependence on personal carers, and hence can significantly improve quality of
life [Anderson, 2004]. In a survey of over four hundred patients, carers and health-
care professionals, 84% stated that FES was more safe, evidence-based and suitable for
home-use during upper-limb rehabilitation compared to other assistive technologies
[Hughes et al., 2014]. However, it is clear that current FES devices are inadequate and
cannot assist intensive goal orientated task practice. Existing FES devices typically use
one or two pairs of large electrode pads above the target muscle to activate one or two
muscle groups. These are simple to use, but at a cost of poor muscle selectivity when
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assisting finger-level movements [Donovan-Hall et al., 2011]. Accurate electrode posi-
tioning is also crucial to performance, which many users cannot accomplish.

To address poor muscle selectivity, electrode arrays have been developed by several
research groups, and combine multiple electrode pads grouped in a single structure.
Although they have been applied to drop-foot, their primary application has been to
achieve functional hand and wrist gestures. Typically a simple set-up procedure is used
to locate the optimal pad(s) which induce the desired movements. However, the set-up
takes too long (>30 minutes) and is not suited for a home-use scenario. This is a critical
limitation to both user acceptance and high-intensity rehabilitation. The remarkable
performance has been achieved using Iterative Learning Control (ILC), an approach
which harnesses the repeated nature of FES rehabilitation training to improve accuracy.
A data driven ILC approach has been demonstrated which can achieve an average joint
error of less than five degrees during pointing, pinching and hand opening gestures
[Freeman, 2014]. However, this requires a large number of identification tests and takes
approximately 10 minutes to perform. When the desired gesture is modified, it must
be repeated.

The aim of this thesis is to develop an FES array control approach that significantly
reduces the time taken to deploy. This would enable FES arrays to be used in the home,
potentially bringing intensive goal-orientated rehabilitation to millions of users. Ulti-
mately the system should support the wide variability of daily hand activities used in
every day life [Dollar, 2014].

The approach taken is inspired by a multiple model adaptive control (MMAC) frame-
work that has been demonstrated with conventional single pad electrodes in a non-
ILC setting [Brend et al., 2015]. This MMAC framework involves designing a set of
underlying models that may represent the human arm dynamics, and then selecting
the controller associated with the model that best fits the measured data. In this way
MMAC adapts to effects like fatigue and spasticity, and can potentially negate the need
for identification tests (if the set of models is sufficiently large). Tests with MMAC were
promising, and it is the only FES controller to be tested with multiple healthy/impaired
subjects in experiments that induce full fatigue.

1.1 Research Aim and Contributions

This thesis aims to address the above limitations by combining the accuracy of ILC with
the robustness properties of MMAC and its ability to reduce or even eliminate identifi-
cation tests. It builds on the estimation-based multiple model switched ILC (EMMILC)
introduced in [Freeman and French, 2015] and constitutes the first implementation of
multiple model adaptive ILC within FES based rehabilitation. It will be developed first
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using single-pad electrodes, before being expanded for application to electrode array
technology in the later chapters of this thesis.

The main contributions of research are as follows:

• This thesis performs the first comprehensive experimental verification of the EM-
MILC framework, where a novel multiple-model design procedure is developed
that generates the minimum number of controllers needed to stabilise a given un-
certainty space. This thesis also constructs an uncertainty space of dynamic mod-
els that realistically capture the true range of physiological dynamics encountered
during FES based stimulation of the wrist. Both components are underpinned by
a well established theoretical framework based on the gap metric.

• This research produces experimental results using EMMILC applied to a realistic
upper-limb FES application that maintain high levels of tracking performance in
the presence of model uncertainty, fatigue and electrode misalignment. For the
first time, these findings have demonstrated a significant improvement over con-
ventional ILC algorithms applied to upper-limb stroke rehabilitation, achieved
without the need for extra identification tests. They show that EMMILC can de-
liver the robustness necessary to adapt to the variety of situations encountered in
a home scenario.

• This research also develops spatial misalignment models for both single-pad elec-
trodes and electrode arrays. This is the first application of EMMILC using elec-
trode arrays. These spatial misalignment models are used to derive a realignment
ILC strategy that can physically adjust stimulation sites. Numerical verification
of the realignment EMMILC confirms its capability of significantly reducing spa-
tial errors.

• To implement realignment EMMILC, this research also designs and manufactures
the first camera-based low-footprint hardware array platform, which is suitable
for home-use. Experimental results confirm its effectiveness to deliver selective
stimulation and its compatibility with the realignment EMMILC approach. They
also demonstrate the feasibility of EMMILC in addressing the primary challenges
for upper-limb FES rehabilitation in practice.

This research has featured in the following publications:

• J. Zhou, C. T. Freeman and W. Holderbaum, ”Multiple-model iterative learning
control with application to stroke rehabilitation,” Control Engineering Practice, 154,
106134, DOI: 10.1016/j.conengprac.2024.106134, 2025,

• J. Zhou, C. T. Freeman and W. Holderbaum, ”Multiple Model Iterative Learning
Control for FES-based Stroke Rehabilitation,” 2023 American Control Conference
(ACC), May 31 - June 2, 2023
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• J. Zhou, C. T. Freeman and W. Holderbaum, ”Multiple Model Iterative Learning
Control with Application to Upper Limb Stroke Rehabilitation,” 2023 International
Interdisciplinary PhD Workshop (IIPHDW), May 3 - May 5, 2023

1.2 Thesis Structure

The organisation of this thesis is as follows:

Chapter 2 performs a comprehensive review of the literature and confirms that none of
the existing FES studies based on a single-pad electrodes or electrode arrays can adapt
effectively to fatigue and spasticity, which limits the feasibility of these upper-limb FES
control solutions to achieve adequate robust performance. This subsequently justifies
employing ILC approach.

Chapter 3 presents a comprehensive overview encompassing ILC methods utilised in
FES-based rehabilitation, along with a summary of strategies for the robust analysis of
ILC performance. A general ILC method and a robust filter used in this research are
also defined.

Chapter 4 reviews the current multiple-model control approaches with an emphasis on
their drawbacks, and motivates EMMILC which embeds a general form of uncertainty,
and guarantees long-term robust stability. Theoretical properties are summarised and
a practical multiple-model design procedure is developed.

Chapter 5 simulates the designed EMMILC framework on the key rehabilitation prob-
lem of wrist extension, and also compares its performance with conventional ILC de-
sign.

Chapter 6 confirms the proof of concept by applying EMMILC experimentally with
unimpaired participants using single-pad electrodes. As in the previous simulations,
experimental results are provided to compare EMMILC and conventional ILC in han-
dling muscle fatigue and electrode misalignment.

Chapter 7 investigates the effect of single-pad electrode misalignment on conventional
ILC and EMMILC approaches. It develops a systematic misalignment model and eval-
uates the performance degradation caused by spatial errors, highlighting the necessity
of electrode array reconfiguration.

Chapter 8 extends the EMMILC framework to electrode arrays by proposing a rigorous
MIMO modeling approach. It introduces a dynamic compensation strategy for array
misalignment, and then embeds this strategy within EMMILC. Numerical evaluation is
performed to compare the tracking performance of the realignment ILC and EMMILC
approaches.
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Lastly, Chapter 9 concludes the thesis and proposes the plan of future work.
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Chapter 2

Literature Review

Stroke is a sudden and devastating cerebrovascular brain attack, which can be divided
into two types. Firstly, cerebral ischemic stroke is caused by a blood clot that blocks
blood from entering the brain. Secondly, hemorrhagic stroke is caused by bleeding in
the brain due to a physical trauma, necrosis or rupture of the cerebral blood vessels.
Both types of stroke can lead to permanent neurological damage or even death. In the
UK, 100, 000 people are affected by strokes each year, and there are 1.3 million survivors
[State of Nation, 2020]. About 80% of survivors have impaired upper limb functional
movement [Hayward et al., 2019]. Due to the serious implications of stroke, there has
been a surge in research interest focused on stroke rehabilitation in recent years. The
following section will present an overview of stroke rehabilitation, including its objec-
tives, the fundamental mechanisms, and the treatment approaches.

2.1 Upper Limb Stroke Rehabilitation

Stroke rehabilitation is a systematic process aimed at enabling stroke survivors who
have impaired functional movement to return to an optimal level of motor functions,
improve independence, and enhance the quality of life [Brandstater and Shutter, 2002].
The effectiveness of stroke rehabilitation largely depends on neuroplasticity, which en-
courages brain to fuse new connections in the motor cortex that replace those lost by
stroke. The establishment of these new connections allows the brain to ‘relearn’ lost
motor functions, thus supporting functional recovery after stroke. Evidence from pre-
vious studies [Dromerick et al., 2015; Zeiler and Krakauer, 2013] has demonstrated that
the first three months post-stroke exhibit enhanced neuroplasticity, allowing increased
responsiveness to exogenous stimuli and experiences, resulting in improved recovery
outcomes. It has been shown that the best recovery outcome is achieved by intensive
practice of repetitive functional tasks [Dobkin, 2004; Kwakkel, 2006] which enable the
brain to receive the necessary haptic, proprioceptive and visual feedback. Recovery of
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upper-limb function is one of the primary goals of stroke rehabilitation. Because those
daily living activities involving upper-limb function (e.g. grasping) are significant for
personal care. The upper-limb dysfunction reduces the independence of stroke patients
in performing personal care activities and adversely affects their quality of life [Macie-
jasz et al., 2014; Nichols-Larsen et al., 2005]. Effective upper-limb rehabilitation can
be achieved through repetitive task training. French and Watkins [2016] investigated
the effectiveness of repetitive practice after stroke by evaluating 33 trials with 1853
participants. The evidence demonstrated that intensive repetitive task training can ef-
fectively enhance upper-limb motor function, with benefits lasting up to six months
post-therapy.

Conventional therapy consists of repeating movements assisted by a therapist and has
been found to be ineffective, with only 32% of patients recovering upper limb function
after three months and only 36% reporting a full recovery after twelve months [Sturm
et al., 2002]. This is because conventional therapy tasks are not usually intensive or
goal-orientated, and do not encourage voluntary effort which reduces the outcome of
stroke rehabilitation [Burridge and Ladouceur, 2001; Sinkjaer and Popovic, 2003]. A
key issue is that many patients are unable to perform upper limb movements without
assistance, and therefore do not get feedback and therefore do not recover the function
lost from stroke.

To address this issue, assistive technology directly assists upper-limb movements us-
ing electrical or mechanical devices. They facilitate intensive training by automating
training execution, consequently minimising clinical contact time with therapists and
encouraging voluntary effort [Hughes et al., 2014]. Most end users of assistive tech-
nology prefer to practice goal-oriented upper-limb tasks such as washing, dressing,
cooking, and eating with knife and fork [Sivan et al., 2014; van Ommeren et al., 2018].
Assistive technology can achieve these goal-oriented task practice using real analog
games [Hochstenbach-Waelen and Seelen, 2012]. These can be implemented using a
variety of advanced technologies, including virtual reality [Saposnik and Levin, 2011],
robotic therapy [Mehrholz et al., 2009], constraint induced movement therapy [Sirtori
et al., 2010], and functional electrical stimulation (FES) [Langhorne et al., 2009]. They
have the potential to be performed outside the hospital without therapist’s support
[Reinkensmeyer et al., 2012], thereby offering the possibility for home-based upper-
limb stroke rehabilitation with enhanced cost efficiency [Hughes et al., 2014].

2.2 Functional Electrical Stimulation

Among these assistive technologies, Hughes et al. [2014] investigated 152 health care
professionals, and 63% of them thought FES is more safe, evidence-based, suitable for
home-use, durable and reliable than the other assistive technologies, which made FES
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the most popular upper limb therapy. FES comprises a sequence of electrical pulses
(see Figure 2.1) which are used to artificially activate muscle nerves. FES is usually
applied using a pair of electrode pads placed on the skin above the target muscle. The
application of FES was first introduced by Liberson et al. [1961] for lower limb reha-
bilitation to address drop-foot and was recommended by Teasell et al. [2003] several
years later as an effective therapy for the hemiplegic upper limb. In recent year, the lat-
est UK National Clinical Guidelines for stroke [London: Intercollegiate Stroke Working
Party, 2023] strongly recommended using FES during daily practice of repeated upper-
limb movements. This indicates that FES has gained widespread clinical acceptance,
especially for upper limb treatment.

Many clinical studies have been carried out to investigate the effect of FES on stroke
participants with impaired upper-limb function. These employed FES to assist exer-
cise over a number of weeks, and used clinical and functional assessment measures
to gauge its effect, typically the Fugl-Meyer Assessment (FMA) and Action Research
Arm Test (ARAT). Veerbeek et al. [2014] performed a meta-analysis of randomised con-
trolled trials (RCTs) which used FES to systematically examine its effectiveness. They
found that 22 RCTs with 894 subjects demonstrated that neuromuscular stimulation of
the wrist/finger flexors/extensors has a significant beneficial effect on impaired mo-
tor function of the paretic upper limb function and muscle strength. They also found
that 25 RCTs with 492 subjects showed that electromyography-triggered neuromuscu-
lar stimulation of the wrist/finger extensors has a significant beneficial effect on mea-
sures of upper limb impairment including arm-hand activities. Howlett et al. [2015]
performed a similar meta-analysis of 8 RCTs with 192 participants, and found that im-
paired upper limb activities are effectively improved by FES.

2.2.1 Commercial Systems

With the development of FES approach, a variety of commercial FES systems have been
clinically trialed. These systems can be categorised into implanted, semi-implanted
percutaneous, and transcutaneous electrode types. The implanted FES systems [Keith
et al., 1989] such as Freehand [Triolo et al., 1996] and percutaneous FES systems [Handa
et al., 1989] such as NECFesmate [Triolo et al., 1996] surgically implant the electrodes
on the target muscle sites identified prior to surgery. However, the electrodes need
invasive and costly surgery to implant and must be precisely replaced. Also, the skin
interface of the external control unit requires periodical maintenance, which is incon-
venient for users [Peckham and Creasey, 1992].

On the other hand, transcutaneous FES electrodes are placed on the surface of skin
and are inexpensive and convenient, making them far more popular. Existing FES sys-
tems typically employ one or two pairs of large (generally 5cm × 5cm) electrical pads
to activate one or two muscle groups [Keller and Kuhn, 2008; Popović et al., 2013].
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However, they provide poor muscle selectivity when used to assist movements such
as finger-level gestures [Ward et al., 2020]. The most advanced commercial system is
the NESS Handmaster system [Snoek et al., 2000] and its improved version Bioness-H200
[Micera et al., 2010], provides more muscle selectivity as it can activate and control five
different muscles of the hand/wrist. This system requires precise placement of the elec-
trodes within a set-up session, and this alignment is then maintained in future sessions
as the system comprises a large plastic unit that encases the wrist. The FES is applied in
open-loop and is preprogrammed by the therapist. However, besides the poor muscle
selectivity, there is also evidence to show that the performance of the large single-pad
systems above highly depends on the placement of the electrodes, and misalignment of
pads could lead to discomfort [Micera et al., 2010] and degraded effectiveness [Crema
et al., 2018].

2.2.2 Electrode Arrays

To target greater selectivity and reduce fatigue, academic research in recent years has
developed transcutaneous electrode arrays comprising multiple electrode pads com-
bined in a single structure. Electrodes are either arranged in a generic pattern or are
placed specifically to target the underlying geometry of muscle groups. Systems using
the former approach employ a large number of electrodes, but have few independent
stimulation channels. Prominent examples are Shefstim [Gopura et al., 2010], SMART-
move [SMARTmove project, 2020] and INTFES [Velik et al., 2011] which support 64,
24 and 16 electrodes respectively, each with a single stimulation channel that can be
demultiplexed to a set of desired electrode pads.

Systems which adopt the alternative approach of targeting specific muscle groups use
fewer electrode elements, but typically use an independent channel for each muscle
group. A leading example of this type is the HandNMES system [Snoek et al., 2000],
in which 10 independent channels of stimulation are produced by a customised Re-
haStim stimulator with two DeltaStim demultiplexers (Hasomed GmbH, Magdeburg,
Germany).

As FES systems continue to advance, the application of electrode arrays has been in-
creasingly employed to assist upper limb movements. Bijelić et al. [2004] and Bijelić
et al. [2005] positioned two 6 × 4 electrode arrays at the dorsal and volar sides of the
forearm. Each electrode was triggered by switching each pad in turn, and the optimal
pad was located by therapists. The functional grasp was generated without coupling
from the wrist. A more advanced method is using a metric to find the optimal elec-
trode location. Popović and Popović [2009] configured the same array and sequentially
activated each pad, but recorded eight pads that resulted in a minimum error between
measured and desired joint angles. The functional grasp was produced with sufficient
small deviation of wrist and finger. O’Dwyer et al. [2006] placed a 2 × 2 array on the
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patient’s forearm. All of the pad configurations were tested, and sensory data were
recorded. The optimal configuration was selected by following a metric, which had
the hand extension angle between 15◦ ± 5◦, and both of the finger flexion and hand
adduction/abduction were less than the thresholds of 25% of their maximum angles.
A more sophisticated approach selected a group of adjacent electrodes to form a virtual
electrode (VE), Gopura et al. [2010] shifted a 2 × 2 VE to the next adjacent VE along the
8 × 8 Shefstim array so that each VE could be tested sequentially, in order to select the
optimal VE, which is similar to the single-electrode identification procedure. However,
it could take 12 to 37 minutes [Prenton et al., 2014] for each VE identification, which is
time-consuming for users.

To address this problem, Malešević et al. [2010a] and Malešević et al. [2010b] posi-
tioned a 4 × 4 array at the dorsal side of forearm, and visually inspected and recorded
the evoked flexion in a form to train an artificial neural network (ANN), in order to
distinguish between the waveform shapes of different hand responses instead of con-
tinuous activation for identification of virtual electrodes. As a result, the ANN method
achieved 100% accurate classification on the training set, and was validated on all data
sets to yield 90% accuracy. Nevertheless, a bespoke ANN was required for different
patients, which was inconvenient and hence the clinical feasibility was limited, but
no such extra time was mentioned in this study. Imatz-Ojanguren et al. [2016] placed
a 32 electrode matrix on the wrist posterior/anterior. A recurrent fuzzy ANN was
trained with 3 fuzzy terms (Gaussian membership functions) and wrist and ring finger
feedback, in order to model FES evoked wrist, thumb, and finger movements, hence
reducing the set-up time. The mean accuracy of the neural network was in the range
of 60% to 99%, which was deemed acceptable. However, the training protocol required
45 minutes for each of the 6 subjects, which is very time-consuming. Only one random
electrode was activated at a time, which could be uncomfortable to patients and induce
inaccurate movements and hence inaccurate training data.

Keller et al. [2006a] positioned a 10 × 6 array at the dorsal side of forearm. A model-
based closed-loop real-time controller was used based on muscle model that incorpo-
rates linear activation dynamics and static nonlinearity [Le et al., 2010], in order to
identify the VE with a higher accuracy compared to the previous approaches, and pro-
duced the strongest force for a specific finger but had the least coupling with other
fingers. A recursive algorithm was employed to identify the linear part of wrist model
and adjust parameters online to adapt to time-varying effects. However, it was illus-
trated that although the parameters changes were adapted, the tracking accuracy was
not sufficiently good during the whole tracking task. Also, the model identification
took time, which was not measured in this study, but it significantly increased the total
set-up time. To enhance performance in upper-limb exercises, a variety of FES con-
trollers have been developed for a general class of FES systems. These will be reviewed
in the next section.
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FIGURE 2.1: Symmetric FES impulses (two periods) with amplitudes equal to a1 and
a2, and a pulsewidth of pw.

2.3 General FES controllers

Meta-analyses confirm that FES control approaches used in clinical upper-limb stud-
ies are still overwhelmingly open-loop or triggered by electromyography [Kristensen
et al., 2022]. Open-loop FES controllers are typically feasible for clinical use due to
their simple sensor-free implementation. Nevertheless, the absence of feedback cor-
rections in these controllers often results in poor accuracy. A small number of clini-
cal studies have employed simple closed-loop feedback systems [Hodkin et al., 2018;
Pelton et al., 2012; Resquı́n et al., 2016a; leung Chan et al., 2009], which incorporate
real-time feedback correction and can adapt to disturbances. However, their tracking
accuracy is still relatively low, particularly due to the slow system response and onset
of muscle fatigue. Controllers often require extensive tuning for each subject [Wiarta
et al., 2020; Resquı́n et al., 2016b] which is impractical in clinical practice due to time
constraints and lack of expertise. Higher accuracy tracking has been achieved using
model-based FES upper-limb control strategies, including model predictive [Wolf and
Schearer, 2022; Westerveld et al., 2014], optimal [Sa–e et al., 2020], active disturbance
rejection [Liu et al., 2020], and sliding mode [Oliveira et al., 2017; Rouse et al., 2016; Wu
et al., 2017] control. To avoid the need for time-consuming identification, [Tan et al.,
2011; Razavian et al., 2018; Wolf and Schearer, 2019, 2018] used only partial model in-
formation, however this degraded tracking accuracy. Like all the above methods, a
further drawback was their inability to adequately compensate for fatigue, spasticity
and other physiological effects.

Adaptive FES model-based controllers have attempted to improve performance. A
prominent example is multiple-model adaptive control (MMAC) [Brend et al., 2015]
which defines a set of ‘candidate’ plant models, and a corresponding set of optimal
controllers. A bank of Kalman filters are used to switch in the controller whose model
best fits the observed plant data. An experimental evaluation with five subjects per-
forming isometric elbow force tracking showed it improved accuracy by 22% com-
pared with standard optimal control. Together with [Wolf et al., 2020], this is the only
model-based upper-limb controller tested in experiments with multiple subjects that
induced prolonged muscle fatigue. There have been other significant advancements
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in robust upper-limb FES controllers, including switched designs to address electrome-
chanical delays [Allen et al., 2022a; Sharma et al., 2011], varying geometry of the upper-
limb muscles [Allen et al., 2022b], or co-activation of antagonistic muscles [Sun et al.,
2023]. However, they cannot provide guaranteed high performance tracking in the
presence of arbitrarily large, unstructured model uncertainty. These approaches have
been tested with unimpaired subjects. With one exception [Alibeji et al., 2017], they
have not progressed to tests with neurologically impaired participants.

2.4 Iterative learning control

Iterative learning control (ILC) is formulated for systems that repeat the same finite du-
ration tracking task over and over again, and aims to capture the idiom that ‘practice
makes perfect’. ILC has demonstrated significant potential of being applied across di-
verse fields, supported by both theoretical frameworks and experimental validations.
In manufacturing and robotics, ILC enhances precision in repetitive tasks such as pick-
and-place operations [Uchiyama, 1978; Arimoto et al., 1984b; Gunnarsson and Norrlöf,
2001], and industrial printing [Blanken et al., 2020; Blanken and Oomen, 2019]. For en-
ergy physics, ILC optimises free-electron lasers [Rogers et al., 2010; Rezaeizadeh and
Smith, 2017], and tokamak plasma control for nuclear fusion [Felici and Oomen, 2015].
Precision mechatronics leverage ILC for servo systems [Paszke et al., 2016, 2007] and
additive manufacturing [Wang et al., 2018; Balta et al., 2024]. Other ILC applications in-
clude high-precision quantum control using data-driven gradient ILC [Wu et al., 2018],
and optimisation of feed conversion rate in broiler production [Johansen et al., 2019].
Healthcare is one of the most popular ILC applications. Advanced researches include
drop foot neuroprosthesis for gait [Seel et al., 2016; Nahrstaedt et al., 2008b], ventricular
assist devices for avoiding the dilatation of the ventricle [Ketelhut et al., 2019], and also
FES-based upper-limb stroke rehabilitation [Hughes et al., 2009; Freeman et al., 2012].

ILC is one of the few model-based control schemes that have been applied to FES-based
upper-limb control with impaired patients. It has shown its success in five clinical trials
[Freeman, 2016] with more than 30 patients with stroke [Kutlu et al., 2016a] or multiple
sclerosis [Sampson et al., 2016]. The earlier section 2.1 highlighted that achieving effec-
tive rehabilitation outcomes depends on the intensive repetition of goal-oriented task
training. This has been demonstrated to facilitate neuroplasticity and improve motor
recovery of the upper limb. This repetitive nature of rehabilitation training inherently
aligns with the operational principles of ILC. As a result, ILC stands out among all FES
controllers as a principled method that is particularly well-suited to the clinical setting
and repetitive nature of rehabilitation exercise.

Beyond post-stroke motor therapy, iterative-learning control (ILC) has been harnessed
for a variety of biometric/biomedical tasks. In cardiovascular support, Ketelhut et al.
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[2019] designed a norm-optimal ILC that varies the cycle length of a rotary left-ventricular-
assist device so it can follow rapid changes in preload, afterload and heart-rate while
avoiding ventricular dilatation or back-flow. Complementary work shows that a learning-
based flow-profile regulator can even minimise the stroke-work imposed on the failing
ventricle during continuous-flow assistance, highlighting the energy-saving potential
of ILC in circulatory devices. In neuromotor restoration, Nahrstaedt et al. applied ILC
to a gait neuro-prosthesis, updating stimulation from step to step so that users repro-
duced a near-physiological walking trajectory Freeman et al. [2012], while Seel et al.
[2016] introduced a multivariable learning controller for an adaptive drop-foot stimu-
lator that simultaneously corrected foot pitch and roll, yielding more natural ground-
clearance and landing in paretic gait. Collectively, these studies illustrate how ILC’s
trial-by-trial refinement can extend well beyond stroke rehabilitation to optimise both
implantable devices and functional-electrical-stimulation systems across the biometric
spectrum.

2.5 Summary

A variety of control approaches for electrode arrays have been reviewed (Table 2.1).
The initial approaches used a manual search with no performance metric and produced
finger volar/dorsal flexion/extension with the wrist deviating by less than 15◦. Sub-
sequent studies used automatic searching employing various metrics, which produced
a small deviation in the wrist, finger or the hand extension angle, and finger flexion
and hand adduction/abduction were within the pre-defined ranges that correspond
to their metrics. Following this, artificial neural network approaches were employed
to speed up the identification, and the reviewed studies trained the ANN with an ac-
curacy which varied from 60% to 100%. Model-based ILC approaches were also em-
ployed to achieve a higher tracking accuracy, and the reviewed studies showed that
the tracking errors were reduced and typically less than 5 degrees after a few ILC trials.
However, all the approaches must be repeated after any array movement or a change
in desired gesture, and all of these approaches are very time-consuming due to the
set-up process and model identification, which is inconvenient for practical use. Also,
none of these studies can adapt to muscle fatigue/spasticity, which limits their feasibil-
ity to achieve satisfactory robust performance. These limitations fundamentally limit
the ability of FES to deliver intensive, goal-orientated therapy in the homes of people
with stroke. The next chapter will comprehensively review the general methods of ILC,
including robustness analysis and implementing details in this research.
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TABLE 2.1: Review of the existing EAs, VE identifications and corresponding configurations.

Source Size of
electrodes

cathode
layout

Stimulator Sensor used for
data capture

VE identi-
fication

Criteria no. of
subjects

Bijelić et al.
[2004]

single
electrode
5cm × 8cm

6 × 4 array,
1cm2 pad

Actigrip CS, 4
channels

data glove, six
joint angles were
measured

manual sufficient good fin-
ger flexion/extension
tracking

3

Bijelić et al.
[2005]

single
electrode
5cm × 8cm

6 × 4 array Actigrip CS, 4
channels

four goniome-
ters, six joint
angles were
measured

manual effective flexion for
palmar grasp, but it
was degraded by hand-
forearm movement

3

O’Dwyer
et al. [2006]

two multi-pad
electrodes:
bipolar setup

2 × 1 array
and 2 × 2
array, 2.5cm
diameter
electrodes

Neurotech
NT2000, 2 chan-
nels

glove with
accelerometer-
based goniome-
ter and flex
sensors, four
angles were
measured

automatic The functional grasp
can be evoked with
small standard devia-
tion (hand extension of
15◦ ± 5◦, finger flexion
< threshold, hand
adduction/abduction
< threshold)

10 (healthy)
patients to
capture
healthy
motion

Popović
and
Popović
[2009]

single
electrode
7cm × 10cm

6 × 4 array,
0.8cm2 circular
pad

UNA-FET elec-
tronic stimulator,
4 channels

flexible goniome-
ters, seven joint
angles were mea-
sured

automatic,
VE has the
minimum
aggregate
error

functional grasping
was evoked with small
variabilities, however,
the joint angles were
small

6

Gopura
et al. [2010]

single
electrode,
7cm × 7cm

8 × 8 array Stimulator
designed by
Sheffield Teach-
ing Hospitals
NHS Founda-
tion Trust, 64
channels

5-camera Qual-
isys motion
capture sys-
tem (Proreflex,
Qualisys AB,
Sweden)

automatic,
2 × 2 VE

maximum value of dor-
siflexion and inversion
angles observed during
the twitch response

10
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TABLE 2.2: Review of the existing EAs, VE identifications and corresponding configurations (continued).

Source Size of
electrodes

cathode
layout

Stimulator Sensor used for
data capture

VE identi-
fication

Criteria no. of
subjects

Malešević
et al.
[2010a]

INTEFES sin-
gle electrode,
unknown size

4 × 4 square
array, un-
known pad
size

FES module
(monophase),
unknown chan-
nel

flexible go-
niometers, three
joint angles and
muscle twitch
responses were
measured

Could be
switched
between
manu-
al/auto-
matic

ANN was trained to
distinguish between
different types of hand
movements and define
correlation of each pad
and activated muscle
beneath

6 (healthy)
to distin-
guish hand
movement

Malešević
et al.
[2010b]

INTEFES sin-
gle electrode,
unknown size

4 × 4 array,
unknown pad
size

FES module
(monophase),
unknown chan-
nel

ADXL 330 ac-
celerometer to
record hand
movement

automatic ANN was trained to
distinguish between
wrist or fingers flex-
ion/extension detect
correlation of each pad
and activated muscle
beneath

3 (healthy)
to distin-
guish wrist
or fingers
flexion/ex-
tension

Imatz-
Ojanguren
et al. [2016]

single elec-
trode, un-
known size

32 pads array
corresponds to
muscle geom-
etry

FES: a stimulator
from TECNALIA
Research & Inno-
vation, unknown
channel

a sensorized
glove based
on inertial and
fiber-optic bend
sensors

automatic mean accuracy of the
ANN was in the range
of 60% to 99%

6

Velik et al.
[2011]

INTFES single
electrode, un-
known size

4 × 4 array,
unknown pad
size

INTFES stimula-
tor, 1 channel

goniometers automatic
(minimum
aggregate
error)

N/A N/A
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TABLE 2.3: Review of the existing EAs, VE identifications and corresponding configurations (continued).

Source Size of
electrodes

cathode
layout

Stimulator Sensor used for
data capture

VE identi-
fication

Criteria no. of
subjects

Keller et al.
[2006a]

single
electrode
5cm × 5cm

10 × 6 array,
1cm2 pad

Compex Motion
stimulator, 4
channels

four finger
force sensors to
measure force
response

automatic
(random
order)

The measured force
was shown to track
estimated force during
hand grasp with the
presence of coupling,
the muscle fatigue was
adapted

8

Kutlu et al.
[2016b]

single elec-
trode

4 × 6 array FES stimulator
(Odstock Medical
Ltd., Salisbury,
UK), 4 channel

PrimeSense
Carmine 1.09
(Apple Inc., Cal-
ifornia) depth
camera to mea-
sure hand and
wrist joint angles

automatic Newton method iter-
ative learning control
(section 3.1.7) to adjust
FES

4 (stroke), 2
(healthy)

Excell et al.
[2013],
Freeman
[2014]

single elec-
trode

5 × 8 array modified com-
mercial stimu-
lator (Odstock,
UK), 4 channel

data glove (5DT
14 Ultra, 5DT,
USA) to measure
14 angles of flex-
ion/extension
and radial/ulnar
deviation

automatic Newton method itera-
tive learning control to
adjust FES by minimiz-
ing an objective func-
tion in terms of the
difference between de-
sired movement and
measured response

N/A





19

Chapter 3

General Methods

The previous chapter showed that iterative learning control (ILC) is one of the most
successful control methods to adjust FES within stroke rehabilitation both using indi-
vidual pads and via electrode arrays. Therefore, this chapter provides an overview of
ILC, focusing on general ILC methods that have been used in FES based rehabilitation.
It also summarises the analysis and design approaches used in this thesis that have
scope to improve current ILC performance in this field.

3.1 Control Objectives

Fundamentally, ILC is formulated for systems that repeat the same finite duration
tracking task over and over again, and aims to capture the idiom that ‘practice makes
perfect’. It does this by updating the control input for the current trial at the task using
information from previous trials. The basic ILC update law studied in [Arimoto et al.,
1984a] has the form

uk+1 = uk + f (ek),

ek = yref − yk.
(3.1)

Here uk+1 is the control signal for the (k + 1)th trial (sometimes termed ‘iteration’) and
f (·) is some function of the tracking error signal ek, which is the difference between the
desired reference trajectory yref and the measured system plant output yk. The general
framework of ILC is illustrated by Figure 3.1.

ILC aims to force tracking error ek to be bounded or ideally converge to zero after a
finite number of trials. In addition, the control input signal uk is also required to con-
verge to a fixed control signal ud. Mathematically, the control objective can be expressed
as

lim
k→∞

∥ek∥ = 0, lim
k→∞

uk = ud. (3.2)
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FIGURE 3.1: General ILC update framework in two dimensions (time and trials) de-
scribed by (3.1) with a filter Q applied. The learning operator is denoted L, the lifted

plant is denoted G, and j is the trial number. Figure from [Bristow et al., 2006].

where ∥ · ∥ is a suitable norm.

ILC is a two dimensional process, since it operates along-the-trial and from trial to
trial. Typically the system is described in discrete-time and the former dimension is
therefore captured using the sample number t = 0, 2, 3, ..., N − 1 where N is the number
of samples in one trial [Bristow et al., 2006]. To aid analysis, ILC can then be ‘lifted’ from
the time dimension by stacking the input and output signals into vectors of length
N, and writing the system dynamics and ILC update equations as static mappings
between these vectors. This then embeds the along-the-trial dynamics into a simple
form.

For example, consider the linear time-invariant (LTI) discrete-time single input single
output (SISO) system with state-space dynamics given by

xk(t + 1) = Axk(t) + Buk(t), xk(0) = x0

yk(t) = Cxk(t) + Duk(t), t = 0, 1, ..., N − 1
(3.3)

where A is an n × n matrix, B is an n × 1 vector, C is a 1 × n vector and D is a scalar.
The initial state is reset to x0 at the start of the next trial. The lifted input and output
signals on the kth trial are respectively

uk = [uk(0), uk(1), uk(2), ..., uk(N − 1)]T ∈ RN , (3.4)

yk = [yk(0), yk(1), yk(2), ..., yk(N − 1)]T ∈ RN (3.5)

The lifted system dynamics for system (3.3) over the kth trial are then

yk = Guk, (3.6)
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where the ‘lifted’ plant G is the Toeplitz matrix⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

D 0 · · · 0 0 0
CB D · · · 0 0 0

CAB CB · · · 0 0 0
...

... . . . ...
...

...
CAN−2B CAN−3B · · · CB D 0
CAN−1B CAN−2B · · · CAB CB D

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
∈ RN×N. (3.7)

The reference trajectory signal yref is

yref = [yref(0), yref(1), yref(2), ..., yref(N − 1)]T ∈ RN (3.8)

and the tracking error ek over the kth trial is computed as

ek = yref − yk. (3.9)

The most common class of ILC update selects update (3.1) to take the form

uk+1 = uk + Lek (3.10)

where L is an N × N matrix [Bristow et al., 2006]. The lifted form then enables ILC
convergence conditions to be easily computed. From (3.6), (3.9) and (3.10) it is easy to
show that

ek+1 = (I − LG)ek (3.11)

where I denotes the N × N identity matrix. It follows that the error norm ∥ek∥ will
asymptotically converge to zero as k tends to infinity if

max
i

|λi(I − LG)| < 1. (3.12)

where λi(A) denotes the ith eigenvalue of any N × N matrix A. Asymptotic conver-
gence may still generate large errors, so many researchers employ the stricter notion of
monotonic convergence. This requires that

∥I − LG∥ < 1 (3.13)

which follows by applying norms to (3.11) to obtain ∥ek+1∥ ≤ ∥I − LG∥∥ek∥. Here
the l2-norm of bounded signals is assumed, and will be in the remainder of the report
unless otherwise stated.

Compared with open-loop and simple closed-loop FES controllers reviewed in earlier
section, ILC bridges their gap by using offline feedback across repeated trials. ILC
achieves this by using information from previous executions (like closed-loop systems),
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but without needing real-time feedback (like open-loop systems). This makes ILC
particularly suitable for structured, repetitive tasks like those in stroke rehabilitation,
where long-term accuracy and convergence are critical. Different structures of ILC up-
dates are now reviewed in the next section. Early ILC algorithms do not use model in-
formation [Arimoto et al., 1984a; Nahrstaedt et al., 2008a; Freeman et al., 2005], thereby
maintaining their widespread popularity due to simplicity. This has meant they have
also been applied to FES based stroke rehabilitation and are now reviewed.

3.1.1 P-type ILC

Proportional ‘P-type’ ILC was proposed by Arimoto et al. [1985] and is given by

uk+1(t) = uk(t) + βek(t) (3.14)

where β is a positive scalar selected by the designer. Comparing with the general form
(3.10), this corresponds to L = βI, so that the error evolution (3.11) for P-type ILC is

ek+1 = (I − βG)ek (3.15)

Hence asymptotic convergence condition (3.12) becomes

max
i

|λi(I − βG)| < 1, (3.16)

which simplifies to |1 − βD| < 1 given the form of G of (3.7). As shown in [Arimoto
et al., 1985], this means P-type ILC is only suitable for systems with D ̸= 0 (i.e. systems
with relative degree 0). Therefore, this is a serious limitation for P-type ILC. According
to (3.13), P-type ILC monotonically converges if

∥I − βG∥ < 1 (3.17)

which is clearly even more restrictive than the previous condition. This means P-type
usually has large error norms before finally converging. The P-type ILC approach has
been used to control a single-pad electrode in drop foot rehabilitation [Nahrstaedt et al.,
2008a; Müller et al., 2017] and in upper limb stimulation [Dou et al., 1999].

3.1.2 D-type ILC

To expand the class of systems on which ILC can be applied, a derivative ‘D-type’
update form was proposed in [Arimoto et al., 1985] and discretised in [Saab, 1995] to
give

uk+1(t) = uk(t) + β[ek(t + 1)− ek(t)]. (3.18)
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in which ek(t + 1)− ek(t) denotes the error difference with respect to successive time
samples, and β is still a positive gain. It was shown in [Arimoto et al., 1985] that D-type
ILC expands the class of admissible systems compared to P-type ILC. In particular,
it guarantees asymptotic convergence with systems whose state-space D term equals
zero, provided

|I − βCB| < 1 (3.19)

holds. This follows directly by applying the update form (3.18) within condition (3.12).
Therefore D-type ILC expands the class of admissible systems to include those with
relative degree 1.

However, a new limitation arises from D-type ILC since its use of the error derivative
makes the algorithm vulnerable to noise and disturbances. Thus, D-type ILC is rarely
used in practical control problems and has not been applied within rehabilitation.

3.1.3 Phase-lead ILC

The constraint was further released by the ’phase-lead’ ILC algorithm, which was orig-
inally proposed by [Park et al., 1998] and expanded in [Freeman et al., 2005] and [Cai
et al., 2008]. This has form

uk+1(t) = uk(t) + βek(t + λ). (3.20)

Phase-lead ILC shifts the error signal forwards in time by an estimated system time
delay λ, in order to compensate for the time delay. The phase-lead ILC has been shown
to outperform P-type and D-type ILC in [Freeman et al., 2005].

Comparing with general form (3.10), this corresponds to

L =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 · · · 0 β 0 · · · 0

0 · · · 0 0 β
...

...
...

...
... . . . ...

0 · · · 0 0 0 · · · β

0 · · · 0 0 0 · · · 0
... · · · ...

...
... · · · ...

0 · · · 0 0 0 · · · 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
∈ RN×N. (3.21)

It is shown in [Freeman et al., 2005] that Phase-lead ILC only converges to, and main-
tains, zero error for systems that are pure time delays. However, this can be partially
rectified by adding a suitable low-pass filter to the update. Phase-lead ILC has proven
successful in FES based stroke rehabilitation since it can provide reasonable tracking
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accuracy without requiring a system model. It is applied to the triceps for upper limb
reaching tasks and used in a clinical trial [Freeman et al., 2009b].

3.1.4 Gradient descent ILC

To address the limitations of simple ILC structures, the field rapidly expanded to lever-
age model-based updates in order to provide greater accuracy and convergence prop-
erties for wider system classes. Examples of the broad range of model-based ILC ap-
proaches are contained in [Bristow et al., 2006; Owens, 2016; Rogers et al., 2023] and the
references therein. These ILC schemes have also been applied to FES based upper limb
rehabilitation, with standard model-based updates proving most accurate. Tests with
stroke participants showed they outperforming conventional model-based strategies
by an order of magnitude [Freeman, 2016]. The leading examples are based on optimis-
ing a suitably chosen objective function that involves the tracking error. Advantages
of these optimisation-based ILC approaches often include accurate performance and
satisfactory robustness, together with control over the trial-to-trial convergence prop-
erties. This has led to their success in a wide variety of practical applications.

Perhaps the first optimisation-based ILC approach is gradient-descent ILC, proposed in
[Furuta and Yamakita, 1987] and later developed in [Owens et al., 2009]. The approach
considers the optimisation problem

min
uk+1

∥ek+1∥2 (3.22)

and applies the gradient descent minimisation approach to solve it. The iterative solu-
tion corresponds to the ILC update

uk+1 = uk + βG⊤ek (3.23)

where the transpose term G⊤ is the lifted realisation of the plant adjoint operator. Com-
paring with general form (3.10), this corresponds to L = βG⊤ and substituting this
learning operator into (3.12) means asymptotic convergence can be achieved if

max
i

|λi(I − βG⊤G)| < 1. (3.24)

Similarly, substituting L = βG⊤ into (3.13) means that monotonic convergence can be
achieved if

∥I − βG∗G∥ < 1. (3.25)

and it follows that scalar gain β must satisfy

0 < β <
2

∥GG⊤∥ =
2

∥G∥2 . (3.26)
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However, [Owens et al., 2009] showed that the convergence rate of gradient-descent
ILC is often very slow due to the small value of learning gain β needed to satisfy (3.26).
This has been confirmed in practical evaluation on electro-mechanical systems [Free-
man et al., 2005] and in several applications to FES based stroke rehabilitation such as
triceps [Freeman et al., 2009b], only simulation [Soska et al., 2013] and entire forearm
[Huo et al., 2020]. Another limitation is the need for a system model to be identified.

3.1.5 Inverse ILC

The inverse ILC approach was proposed by [Harte et al., 2005] and aims to maximise
the convergence rate using the update law

uk+1 = uk + βG−1ek (3.27)

where scalar β denotes the chosen learning rate or step size. The matrix G−1 is the
inverse of the system dynamics (3.7), and can only be computed if D ̸= 0 (i.e. the sys-
tem has relative degree 0). Comparing with general form (3.10), the learning operator
corresponds to L = βG−1. It follows from (3.12) that inverse ILC will asymptotically
converge if

max
i

|λi(I − βG−1G)| < 1 ⇒ |1 − β| < 1 ⇒ 0 < β < 2. (3.28)

Similarly, inverse ILC monotonically converges if

∥I − βG−1G∥ < 1 ⇒ ∥I − βI∥ < 1 ⇒ 0 < β < 2, (3.29)

and so the available range for learning gain β are the same (and convergence will al-
ways be monotonic). Inverse model-based ILC can converge rapidly because if β = 1,
then the error evolution (3.11) becomes

ek+1 = (I − LG)ek = (I − βG−1G)ek = (I − G−1G)ek = 0. (3.30)

In other words, the tracking error converges to zero in one trial.

As well as only being applicable to relative degree zero systems, inverse ILC also en-
counters problems with non-minimum phase plants (having zeros outside the unit
circle) since this produces an unstable inverse [Owens and Chu, 2014]. In addition,
[Harte et al., 2005] also stated that the algorithm amplifies uncertainties and distur-
bances, which could lead to degraded tracking performance and even potential in sta-
bility issues. Practical studies in robotics confirmed both rapid convergence and poor
robustness properties [Ratcliffe et al., 2004], however lack of robustness has meant it
has not been applied in rehabilitation.
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3.1.6 Norm Optimal ILC

Norm optimal iterative learning control (NOILC) was first proposed by [Amann et al.,
1996] and provides an elegant approach to balance convergence speed and robustness
properties. For dynamic system (3.6), the control input for the next trial uk+1 is com-
puted by solving the optimisation problem

uk+1 = arg min
uk+1

(||r − Guk+1||2Q + ||uk+1 − uk||2R). (3.31)

where Q and R are symmetric positive definite and positive semi-definite weighting
matrices respectively. These act as weights to emphasise the reference signal tracking
and the change of control signal between adjacent trials, respectively. Here the norm is
defined as ∥x∥W = x⊤Wx for vector x and compatible symmetric weight W.

It is straightforward to show that minimisation (3.31) is solved using the update

uk+1 = uk + R−1G⊤Qek+1. (3.32)

However, the error for the next trial ek+1 cannot be directly acquired due to the need for
causality. Further manipulation leads to a causal solution using the feedforward ILC
update

uk+1 = uk + (I + GR−1G⊤Q)−1R−1G⊤Qek. (3.33)

which was proposed in [Barton and Alleyne, 2009]. Comparing with general form
(3.10), the learning operator corresponds to L = (I + GR−1G⊤Q)−1R−1G⊤Q. Substi-
tuting this into (3.12) means that the tracking error of NOILC asymptotically converges
if

max
i

|λi(I − (I + GR−1G⊤Q)−1R−1G⊤QG)| < 1 (3.34)

which was shown in [Amann et al., 1996] to be satisfied for all choices of Q and R. The
monotonic condition (3.13) is

∥I − (I + GR−1G⊤Q)−1R−1G⊤QG)|∥ < 1 (3.35)

and it was shown in [Amann et al., 1996] that this is equivalent to

1
1 + σ2 < 1. (3.36)

where the scalar σ > 0 denotes the smallest singular value of the lifted plant matrix G.
Hence as long as G is full rank (has D ̸= 0) it will converge monotonically.

Moreover, [Amann et al., 1996] also proposed an alternative implementation compris-
ing a feedforward update combined with state feedback. This differs from the standard
ILC structure, and was motivated by improving the robustness of algorithm against
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disturbances. This feedback and feedforward NOILC update law is given by

uk+1(t) = uk(t)− (BTK(t)B+ R(t))−1BTK(t)A[xk+1(t)− xk(t)] + R−1BTξk+1(t) (3.37)

over t = 1, 2, 3, ..., N samples. Here K(t) and ξk+1(t) denote the state feedback matrix
(independent of ILC trial number) and the feedforward term (for the trial k + 1), re-
spectively. Therefore, K(t) and ξk+1(t) can be computed offline iteratively by solving
the discrete-time Riccati equation [Amann et al., 1996]

K(t) = ATK(t + 1)A + CTQ(t + 1)C

− ATK(t + 1)B(BTK(t + 1)B + R(t + 1))−1BTK(t + 1)A,
(3.38)

ξk+1(t) = (I + K(t)BR−1BT)−1(ATξk+1(t + 1) + CTQ(t)ek(t)); ξk+1(N) = 0 (3.39)

Equations (3.38) and (3.39) are solved recursively in a ”reverse” time sequence (t =

N, ..., 3, 2, 1) with the initial conditions given by K(N) = 0 and ξk+1(N) = 0. Addition-
ally, the matrix xk+1(t) in (3.37) denotes the state variable for the (k + 1)th trial at time
instant t. It can be estimated by ˆ︁xk+1(t) provided by a suitable observer of the form

ˆ︁xk+1(t) = Axk+1(t − 1) + Buk+1(t − 1) + Le(yk+1(t − 1)− Cxk+1(t − 1)) (3.40)

where Le is the observer gain vector. NOILC has been applied in robotic studies [Rat-
cliffe et al., 2006a] and in FES based rehabilitation [Freeman et al., 2009b]. In all cases it
provided accurate tracking, however it is computationally expensive to implement and
requires an accurate model. Furthermore, a predictive NOILC extension [Amann et al.,
1998] computes the current control signal in terms of the present and future predicted
errors, allowing further adjustment of the convergence rate.

3.1.7 Newton method based ILC

Newton method based ILC was proposed in [Lin et al., 2006] and aims to solve non-
linear ILC problems by applying the Newton method within the ILC framework. It
assumes a general form of nonlinear system with the dynamics given in lifted form by
the vector mapping

yk = g(uk). (3.41)

The Newton method based ILC update is then given by

uk+1 = uk + g′(uk)
−1ek (3.42)

where N × N matrix g′(uk) denotes the derivative of the vector function g(uk) which
corresponds to the linearised lifted system dynamics about operating point uk. Since
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the inverse system g′(uk)
−1 is difficult to compute in some cases, [Lin et al., 2006] de-

composed the update into two separate ILC problems. First (3.42) is rewritten as

uk+1 = uk + fk+1 with fk+1 = g′(uk)
−1ek. (3.43)

The inverse term fk+1 = g′(uk)
−1ek can then be solved by calculating fk+1 such that

ek = g′(uk) fk+1 (3.44)

which corresponds to a standard ILC problem with ek acting as the reference. This is
solved in simulation using any suitable ILC method (e.g. NOILC) and avoids comput-
ing the inverse directly.

If Newton-based ILC is applied to the linear case, it simplifies to the inverse ILC law
(3.27). Convergence conditions and rates were analysed in [Lin et al., 2006] for the
nonlinear case. Newton-based ILC has been applied to FES-based rehabilitation. For
example, [Freeman, 2014], [Kutlu et al., 2016b] were introduced in the previous chapter,
and most notably applied to the FES electrode array problem in [Ward et al., 2020].

3.2 ILC based on 2D systems theory

Previous ILC approaches used information measured on the current trial to update the
next control signal and reduce the tracking error in the subsequent trial. However, dy-
namic changes along the trial may lead to instantaneous degradation of performance
or even instability that cannot easily be addressed by trial-to-trial ILC. Therefore, 2D
system analysis has been extensively applied to ILC, e.g. in [Ayatinia et al., 2022; Hlad-
owski et al., 2010; Mandra et al., 2019; Rogers et al., 2007]. For analysis purposes, a
discrete-time state space uncertain model is often formulated as

xk+1(t + 1) = A(α)xk+1(t) + Buk+1(t), xk+1(0) = x0

yk+1(t) = Cxk+1(t), t = 0, 1, ..., N − 1,
(3.45)

where A(α) belongs to a bounded convex set which is defined as{︄
A(α) : A(α) =

N

∑
i=1

αi Ai,
N

∑
i=1

αi = 1, αi ≥ 0

}︄
. (3.46)

A general form of ILC update for this repetitive process is given by

uk+1(t) = uk(t) + L1[xk+1(t)− xk(t)] + L2ek(t + 1), (3.47)
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where L1 and L2 are learning gains that enforce both along the trial and trial-to-trial
convergence, respectively. They can be obtained by solving Linear Matrix Inequalities
(LMIs) that have been analysed in [Rogers et al., 2007].

3.3 ILC robustness analysis

An essential aspect of ILC that has been widely studied is long-term robust stability
[Bradley, 2010; Meng and Moore, 2017; Freeman et al., 2005], which refers to the sys-
tem’s ability to maintain stability after initial convergence, even in the presence of mod-
elling errors. For example, Ratcliffe et al. [2005] showed that a common ILC update
will diverge if a multiplicative model uncertainty has a phase angle greater than 90◦

in magnitude. Addressing long-term stability is especially crucial in a rehabilitation
setting to ensure that the intensive FES training remains effective, comfortable and safe
over extended periods of use.

To address this, previous robust analysis has focused on parametric uncertainties, which
were considered in Ahn et al. [2005]. Here bounds on the Schur stability radius for ro-
bust ILC design were produced by considering parametric uncertainties existing in the
system’s Markov parameters. A learning gain matrix was designed to satisfy this ro-
bustness bound. Xu and Xu [2013] dealt with the output-constrained problems with
parametric system uncertainties. A new ILC scheme was derived from a novel barrier
Lyapunov function to satisfy the constraints. More studies relate to the unstructured
uncertainties which do not impose an explicit form of uncertainty. Here P is denoted as
the nominal model, and ∆ is an arbitrary system operator representing the uncertainty.
The additive uncertainty P + ∆ was studied in Donkers et al. [2008], taking a linear un-
certainty operator ∆ and a linear model that was controlled using norm optimal ILC.
Owens et al. [2014] employed the same ILC update under multivariable conditions,
but analysed multiplicative uncertainty applied to the linear model. Hätönen et al.
[2006] and Freeman et al. [2009c] considered uncertainty in the frequency domain by
employing the Fourier transform of the system’s impulse response. They found that if
the phase margin of the uncertain plant lies within the ±90◦ tube around the nominal
plant, then the gradient ILC and inverse ILC updates will have a bounded error norm
that monotonically converges to zero. Any delay will violate the convergence condi-
tion, but in practice the update is still reasonably robust to a delay. However, these
studies still require some highly structured form (e.g. additive or multiplicative) to
describe uncertainties, and in practice uncertainties do not fit these forms. Hence the
results obtained above are very conservative.

The limitations of the above uncertainty forms were addressed by work in Bradley
[2010], which did not assume restrictive forms of uncertainties (e.g. additive, multi-
plicative or linear operators). It applied a general framework to a class of ILC schemes
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and produced bounds for robust stability. It was hence less conservative in practical
cases. The stability results in Bradley [2010] were derived by applying the gap metric
to the ILC framework, which will be introduced next.

3.3.1 Gap metric

The gap metric was introduced in [Zames and El-sakkary, 1980], and characterises the
distance between two dynamic systems in terms of the difference between their graphs.
This assumes a standard (non-ILC) setting, with the system running over an infinite
time duration. To avoid confusion P will be used to represent an unlifted system oper-
ator in the remainder of this thesis, and a subscript will be used to denote its underlying
parametrisation. For example, let p = (Ap, Bp, Cp, Dp) be a set of discrete-time state-
space matrices, then plant Pp is the system

Pp : u1 ↦→ y1 :

{︄
x(t + 1) = Apx(t) + Bpu1(t), x(0) = x0

y1(t) = Cpx(t) + Dpu1(t), t = 0, 1, · · ·
(3.48)

Defining the gap first requires the notion of the graph of the system Pp. This is denoted
Mp and comprises the set of all bounded input and output signals compatible with Pp,
e.g. for a SISO plant, the graph is

Mp :=
{︁

ω ∈ l2 × l2 | ω = (u1, Ppu1)
}︁

. (3.49)

Now suppose there is another system, Pp∗ , with graph M∗
p. Then the directed gap,

introduced in [Georgiou and Smith, 1989], is defined as

δ⃗(Mp,Mp∗) := sup
ω∈Mp,ω ̸=0

inf
v∈Mp∗

∥ω − v∥
∥ω∥ . (3.50)

This is interpreted as: for every signal pair in Mp, find the distance to the nearest signal
pair in M∗

p. Then take the largest of these distances. A metric must be symmetrical in
Pp and Pp∗ , and therefore the gap is taken as the largest directed gap between the two
systems, i.e.

δ(Pp, Pp∗) := max{δ⃗(Mp∗ ,Mp), δ⃗(Mp,Mp∗)}. (3.51)

3.3.2 Robust Stability

The gap metric was used to characterise the robust stability of a closed-loop system in
[Georgiou and Smith, 1989]. This considered the general closed-loop system shown in
Figure 3.2, where again Pp is assumed to be an unlifted plant operator.



3.3. ILC robustness analysis 31

FIGURE 3.2: Closed-loop system structure for ILC robustness analysis.

The system input and output signals are u1, y1 respectively. Similarly, Cc is an unlifted
control operator with input signal y2 and output signal u2. Signal yref is again the
reference trajectory, and u0, y0 are disturbance signals. The feedback connection shown
in Figure 3.2 is written as [Pp, Cc] with the associated signals

u1 = u0 − u2, y1 = Ppu1, u2 = Ccy2, y2 = y0 + yref − y1. (3.52)

Stability of the closed-loop system was defined by introducing the mapping between
external disturbance and internal signals as

ΠPp//Cc :

(︄
u0

y0

)︄
↦→
(︄

u1

y1

)︄
(3.53)

so for the linear case

ΠPp//Cc =

(︄
(I − CcPp)−1 −(I − CcPp)−1Cc

Pp(I − CcPp)−1 −Pp(I − CcPp)−1Cc

)︄
. (3.54)

The closed-loop system is then said to be gain stable if ∥ΠPp//Cc∥ < ∞. Now suppose
that controller Cc is designed so that [Pp, Cc] is a stable system, however Pp is then
exchanged with a different system Pp∗ . It was shown in [Georgiou and Smith, 1989]
that the gap metric provides a simple condition to establish if the new closed-loop
system [Pp∗ , Cc] is stable. The theorem is stated as follows:

Theorem 3.1. Given plant Pp and ILC design Cc designed for Pp and let the closed-loop system
[Pp, Cc] be stable such that condition 3.61 holds. Assume another system is denoted as Pp∗ , the
system [Pp∗ , Cc] is also gain stable if

δ(Pp, Pp∗) < ∥ΠPp//Cc∥−1. (3.55)

This analysis was applied to ILC by Bradley [2010], and the key results are summarised
in the next section.
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3.3.3 Robust Stability of ILC

The ILC plant dynamics (3.6) and update (3.10) do not fit into the structure of Figure 3.2
since they operate in a batch-wise manner. Therefore, Theorem 3.1 cannot be applied.
Bradley [2010] overcome this problem simply by redefining the signals and systems in
an equivalent form. First the unlifted plant Pp, with p = (Ap, Bp, Cp, Dp) is lifted to
produce the matrix

Pp̂ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Dp 0 · · · 0 0 0
CpBp Dp · · · 0 0 0

Cp ApBp CpBp · · · 0 0 0
...

... . . . ...
...

...
Cp AN−2

p Bp Cp AN−3
p Bp · · · CpBp Dp 0

Cp AN−1
p Bp Cp AN−2

p Bp · · · Cp APBp CpBp Dp

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (3.56)

Then, the ILC plant dynamics (3.6) are written as

y1(k) = Pp̂u1(k). (3.57)

This is equivalent to yk = Pp̂uk where the ith element of vector u1(k) equals uk(i). Simi-
larly, ILC update (3.10) is written as

u2(k + 1) = u2(k)− Ly2(k), (3.58)

which enables ILC to be expressed as a conventional discrete-time system, in which
each ‘sample’ is a whole ILC trial. The ILC update can hence be denoted by the lifted
operator u2 = Cĉy2, and likewise matrix Pp̂ can also be expressed in the operator form
y1 = Pp̂u1. It follows that both systems can be written as lifted state-space systems,
with respective state-space parameterisations, p̂ = (0, 0, 0, Pp̂) and ĉ = (I,−L, I, 0).
With definitions (3.57) and (3.58), ILC then fits into the structure of Figure 3.2. Using
these operators, ILC is bounded as

||ΠPp̂//Cĉ || ≤ ∥(Pp̂, I)∥
(︃ ||(I, Pp̂)⊤∥∥QĉL∥

1 − σ
+ 1
)︃

, (3.59)

where Qĉ ∈ RN×N is a robust filter that is applied to the right hand side of (3.58), and
the positive scalar

σ := ∥Qĉ(I − LĉPp̂)∥. (3.60)

The 1-norm and ∞-norm cases of the bound (3.59) were derived in [Bradley, 2010], and
the proof was extended to the 2-norm case in our initial research [Zhou et al., 2025]. The
full extended result is given in Appendix A. This bound ||ΠPp̂//Cĉ || can then be used
in Theorem 3.1 to yield a transparent robust stability condition for ILC. Note that for a
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non-zero robust stability margin, it follows from (3.59) and (3.60) that

∥Qĉ(I − LĉPp̂)∥ < 1, (3.61)

which agrees with the standard convergence condition (3.13).

3.4 Research Problems

Over the course of fifteen years, ILC has progressed from purely elbow extension to
full arm reaching tasks including hand and wrist motion via a 24 channel FES electrode
array [Excell et al., 2013]. Specifically, this control approach identified a static linear
mapping between each electrode pad in the array and the resulting motion. It then
used this mapping to update the stimulation in order to get closer to the desired ges-
ture. This was repeated until a sufficiently small tracking error between measured and
desired gestures was achieved. [Freeman, 2014] placed a 5 × 8 array on the subject’s
forearm, a subset of array elements that covered the target muscle was selected in terms
of the previous experimental input and output data, and the structure information of
the prior system. A class of ILC algorithm was tested on 2 unimpaired subjects to pro-
duce pointing, pinching and open-hand gestures. Experimental results demonstrated
that each ILC trial reduced the tracking error to approximately 30%, and eventually the
error was less than 5 degrees after 3 trials. This approach was used clinically by [Kutlu
et al., 2016b; Excell et al., 2013]. The former study placed a 4× 6 array on the dorsal side
of forearm, and the tracking error was reduced by an average of 50.3% after 6 trials. The
latter study placed a 5 × 8 array on the same position, and the ILC approach reduced
the mean percentage error by approximately 30% for each trial, and was less than 5
degrees after 3 trials. However, when the authors later applied the method in clinical
sessions with stroke participants, time constraints meant the model was not identified
accurately. This produced a much worse performance than in their earlier tests. Also,
an extra model identification step was usually required after each trial to ensure the
precision of the model, which took extra time, and it was not considered in these stud-
ies. Recent trials which avoided extra identification after each trial by reusing previous
models yielded significantly degraded tracking accuracy [Kutlu et al., 2016a].

To solve the above deficiencies, a new control approach is needed that requires little
or no model identification tests, but is capable of accurate tracking in the presence of
substantial model uncertainty (e.g. fatigue, spasticity and electrode movement). ILC
is an obvious starting point given its pedigree in rehabilitation, and there already exist
a range of robust ILC algorithms that may be suitable for application in rehabilita-
tion. However, closer inspection reveals these have focused on highly structured para-
metric [Ahn et al., 2005; Xu and Xu, 2013] or multiplicative/additive [Donkers et al.,
2008; Owens et al., 2014; Freeman et al., 2009c] forms. Model predictive and simple
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adaptive strategies have also been embedded into the ILC framework to address time-
iteration-dependent uncertainties. Unfortunately, their accuracy is subject to modelling
error [Ma et al., 2021] and relies on restrictive assumptions on the form of uncertain-
ties [Zhang et al., 2023]. Methods that can be applied to more general uncertainties
typically require substantial identification/training time, excessive tuning, or place ad-
ditional structural assumptions [Lee et al., 2000; Meng and Moore, 2017; Meng, 2019]. A
promising avenue are ILC approaches that update the model in order to better capture
the plant dynamics. Li and Zhang [2010]; Li et al. [2014] used fuzzy neural networks
to approximate multiple underlying nonlinear models and select the best one for ILC
at every time sample. [Longman et al., 2011] updated the model in between ILC tri-
als using a standard model identification approach. This focused on linear systems,
and only considered inverse ILC. It also did not provide any stability or robust per-
formance guarantees. Instead of switching between different ILC updates, [Zhu et al.,
2015] specified multiple linear models to capture unknown iteration-varying parame-
ters, and designed a single ILC update using H∞ tools which can stabilise all specified
models. Similarly, [Padmanabhan et al., 2021] captured parametric uncertainty by pro-
ducing multiple linear models, and designed ILC using a convex combination of all
plants. Unfortunately, there is currently no switched multiple model framework that
derives robust performance bounds for the most common ILC update structure when
the plant model is subject to a general class of modelling uncertainty specified by the
designer. Additionally, there is no principled multiple-model guidelines allowing the
designer to systematically and efficiently generate the required plant models and as-
sociated ILC updates. In terms of application, none of the above approaches has been
used in FES upper limb rehabilitation.

3.5 General ILC Implementation

To address these challenges, this thesis aims to present and validate a multiple-model
ILC framework, which can guarantee long-term performance during practical upper-
limb FES rehabilitation tasks. To achieve this, the first step is to define a general ILC
method used in this research. Taking example from [Bristow et al., 2006], the common
ILC update applied with the system defined in section 3.3.3 is

u2(k + 1) = Q[u2(k)− Ly2(k)], (3.62)

where Q ∈ RmN×mN is a robustness filter and L ∈ RmN×nN is a learning operator in
terms of the lifted plant model Pp̂. From section 3.3.3, signal y2 is the measured tracking
error, which, in the absence of disturbance, is yre f − y1.
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The monotonic ILC convergence condition is

σ := ∥Q(I − LPp̂)∥ < 1 (3.63)

where Pp̂ is the lifted plant defined by (3.56). If there are no disturbances, i.e. (u0, y0)⊤ =

0, guarantees

y1(k) → (I − Q(I − LPp̂))−1QLPp̂yre f as k → ∞.

In particular, if Q = I, then tracking objective (3.2) holds. Note that ∥ · ∥ denotes the
2-norm throughout this paper.

However, the ILC update (3.62) in practical implementation may amplify errors at high
frequencies due to phase lags [Elci et al., 2002], causing oscillatory or divergent behav-
ior during convergence. Additionally, unmodeled high-frequency dynamics further
destabilise the learning process, degrading performance for practical ILC implementa-
tion [Huang et al., 2014]. To address this, the Q-filter in (3.62) employs low-pass filter-
ing strategy. However, low-pass filter causes a phase shift in the filtered signal, leading
to decreased tracking performance. To address this, a zero-phase filtering strategy [Elci
et al., 2002; Rotariu et al., 2008] is applied to the low-pass filter, where the signal is ini-
tially filtered in the standard forward time direction and then the same filter is applied
in reverse order to restore its phase.

In implementation, a standard low-pass filter is first designed, with its order and cut-
off frequency appropriately selected to reject high frequency components. This thesis
utilises a 5th-order 3Hz low-pass Butterworth filter, denoted by Q f . The effectiveness
of this filter Q f for robotic upper-limb systems controlled by ILC was proved by [Elci
et al., 2002], where the tracking error was reduced by a factor of 100 over 6 ILC trials in
the presence of high-frequency vibration disturbances. The Q f filter can be established
in MATLAB scripts using Signal Processing Toolbox (’butter’ function), and it is repre-
sented in state-space form as f = (A f , B f , C f , D f ). This then yields the lifted low-pass
filter Q f̂ by applying the lifted transformation (3.56). Consequently, a zero-phase low-
pass filter expressed as Q = Q⊤

f̂
Q f̂ can be fitted into the general ILC update (3.62), and

this will be used in the subsequent section within a multiple model framework.

3.6 Summary

A variety of ILC updates have been reviewed, including the simple structure forms
P-type, D-type and phase-lead ILC. These algorithms do not involve any explicit plant
models in their ILC updates, and usually do not provide a satisfactory performance.
More advanced methods are model based, including gradient descent, inverse, norm
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optimal and Newton method based ILC. These algorithms give the best performance,
however, they are not robust to model uncertainties and it usually takes a long time to
identify a model, which poses a particular problem in stroke rehabilitation.

Existing ILC robustness analysis to incorporate the different types of uncertainties has
been reviewed, but these approaches have focused on the specific forms of uncertain-
ties, which limits their practical utility. A more comprehensive approach based on the
gap metric has therefore been summarised. This approach will form the basis of more
advanced ILC approaches in the next chapter.
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Chapter 4

Multiple Model Framework of ILC

Previous practical application of ILC typically leads to long-term instabilities, caused
by high frequency components building up over time. This is caused by disturbance
and model uncertainty, as discussed in the previous chapter. An obvious way to ad-
dress this is to update the plant models between ILC trials in order to better capture the
model dynamics. This approach is a special case of multiple model adaptive control,
which has been used for many years in the standard (non ILC) setting as summarised
next.

Many multiple model control approaches have been proposed, including multiple model
adaptive estimation [Lainiotis, 1976a] and multiple model adaptive control [Lainiotis,
1976b; Saridis and Dao, 1972] which ‘blend’ together state control signals from vari-
ous models to form a resultant control signal. Robust multiple model adaptive control
[Fekri et al., 2004a,b] is similar but uses output feedback controllers instead of state
controllers. A later variation of this idea is multiple model switched adaptive con-
trol [Morse, 1996, 1997], which switches between control signals instead of blending
them, and uses the observed error as the performance criterion that determines when a
switch occurs. More recently, estimation based multiple model switched adaptive con-
trol (EMMSAC) was proposed [Buchstaller and French, 2016a,b], which uses optimal
disturbance estimation to measure the performance of each model. It then switches in
the controller corresponding to the model that best matches the measured data. Unlike
previous approaches, EMMSAC has the advantage of robust stability bounds that do
not scale with the number of plant models.

Multiple model frameworks have also been applied to ILC. Li and Zhang [2010] and
Li et al. [2014] considered a nonlinear system with unknown time-varying parametric
uncertainty that satisfied uniformly global Lipschitz conditions. Then, fuzzy neural
networks were employed to approximate these unknown models and select the best
one at every time sample. Strict constraints were also required on the iteration-varying
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learning gain for asymptotic convergence. It was illustrated by an example that long-
term instability could still occur within only a few trials. Longman et al. [2011] also
applied a model update procedure using inverse ILC for linear systems, and employed
identification procedures to determine the plant models used by ILC. No uncertainty
constraint form was stipulated, and there was also no theoretical evidence to guarantee
either robust stability or tracking performance. Unlike the previous methods, Zhu et al.
[2015] specified multiple linear models with relative degree one or greater than one, in
order to capture the true plant from some possible plants having unknown iteration-
varying parameters that must satisfy strict restrictions. Instead of switching between
different ILC updates, they designed a single ILC update using H∞ methods which
could adapt to those uncertainties. However, if the initial state varies randomly along
the ILC trials, i.e. white noise, the robust convergence cannot be guaranteed. More
recently, Padmanabhan et al. [2021] considered a linear time-invariant system with rel-
ative degree one and uncertainties on its system’s Markov parameters. The bounds of
Markov parameters were specified by the designer and hence produced multiple un-
derlying plant models, each of these models were recursively updated at every time
sample and approach to the true parameters. The ILC update was designed using a
convex combination of all these underlying models at each time sample, but there was
lack of theoretical evidence to show stability of the overall controller.

In summary, a variety of multiple model frameworks have been applied, but most of
them only considered a restricted form of uncertainty, i.e. parametric or other structural
uncertainties. There is currently no switched multiple model framework that derives
robust performance bounds for the most common ILC update structure when the plant
model is subject to a general class of modelling uncertainty specified by the designer.
Additionally, there is no principled multiple-model guidelines allowing the designer
to systematically and efficiently generate the required plant models and associated ILC
updates. In terms of application, none of the above approaches has been used in FES
upper limb rehabilitation.

4.1 Estimation-based Multiple Model Switched ILC

In Freeman and French [2015], EMMSAC was first applied to the ILC framework. Like
its non-ILC counterpart, this produced performance bounds that did not degrade as
models were added. The framework was called Estimation-based Multiple Model
Switched Iterative Learning Control (EMMILC) and is now described.

The basic idea is to design a set of candidate plant models {Pp1 , Pp2 , Pp3 , ..., PpNp
} that

may represent the uncertain true plant. These are each then lifted using (3.7) to produce
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the lifted candidate plant set

P = {Pp̂1
, Pp̂2

, Pp̂3
, ..., Pp̂Np

}.

An ILC design procedure K : P → C is then applied to each model to result in a
corresponding set of ILC controllers

C = {Cĉ1 , Cĉ2 , Cĉ3 , ..., CĉNc
}.

As in the last chapter, Pp̂i
and Cĉj can be referred to simply by their state-space pa-

rameterisations p̂i = (0, 0, 0, Pp̂i
) and ĉj = (I,−Lj, I, 0) respectively, hence ĉj = K( p̂i)

denotes the controller designed for the plant p̂i. Note that Nc is smaller than Np if more
than one plant is associated with the same controller.

The objective of EMMILC is to ensure bounded-input bounded-output stability for
any true plant Pp∗ ∈ U by appropriately switching between controllers Cĉ ∈ C. For
each trial, the selection of the appropriate ILC update is determined through a bank
of Kalman estimators, which aim to establish how well each plant model fits the mea-
sured data (u2, y2) shown in Figure 3.2. Every estimator E( p̂) computes a residual,
denoted as r p̂, corresponding to the magnitude of the minimal external signal (u0, y0)

depicted in Figure 3.2 that is needed to explain the observed data (u2, y2). Specifically,
suppose N [0,k]

p̂ (u2, y2) is the set of all disturbances (u0, y0) compatible with plant Pp̂, the
measured signals (u2, y2) and the signal connections in Figure 3.2 over ILC trials [0, k].
The residual on trial k is then defined as

r p̂[k] = inf{r ≥ 0|r = ∥v0∥, v0 ∈ N [0,k]
p̂ (u2, y2)}. (4.1)

Since ILC trials are independent, this can be calculated recursively as

r p̂[k] =
√︂
(r p̂[k − 1])2 + (rk

p[N − 1])2, r p̂[0] = 0 (4.2)

where the unlifted residual over interval [0, t] on trial k is

rk
p[t] = inf{r ≥ 0|r = ∥v0∥, v0 ∈ N [0,t]

p (ũ2(k, ·), ỹ2(k, ·))}. (4.3)

Here N [0,t]
p (ũ2(k, ·), ỹ2(k, ·)) is the unlifted equivalent of N [0,k]

p̂ (u2, y2) on trial k. It is
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shown in [Willems, 2004] that (4.3) can be computed by the standard discrete-time un-
lifted Kalman filter using the unlifted ‘along-the-trial’ update

x̃p(t + 1/2) = x̃p(t)− Σp(t)C⊤
p [CpΣp(t)C⊤

p + I]−1

· [ỹ2(k, t) + Cp x̃p(t)] (4.4)

Σp(t + 1/2) = Σp(t)− Σp(t)C⊤
p [CpΣp(t)C⊤

p + I]−1

· CpΣp(t) (4.5)

x̃p(t + 1) = Ap x̃p(t + 1/2) + Bp(ũ2(k, t)) (4.6)

Σp(t + 1) = ApΣp(t + 1/2)A⊤
p + BpB⊤

p (4.7)

with initial conditions Σp(0), x̃p(0) and sample number t ∈ [0, N − 1]. The required
rk

p[N − 1] is then given by the weighted norm

rk
p[N − 1] =

[︄
N−1

∑
t=0

∥ỹ2(k, t) + Cp x̃p(t)∥2
[CpΣp(t)C⊤

p +I]−1

]︄ 1
2

. (4.8)

Computations (4.2), (4.4)-(4.8) require significantly less computational effort compared
to solving (4.1) because they do not involve large matrices. The ILC update correspond-
ing to the candidate plant with the smallest residual is then used to compute the next
trial’s control input. The switching signal is therefore defined by

q(k) := arg min
p∈P

r p̂[k] ∀k ∈ N (4.9)

with corresponding ILC operator CK(q(k)). The overall EMMILC framework is illus-
trated by Figure 4.1.

FIGURE 4.1: EMMILC framework: the bank of estimators E(·) defined by (4.2), (4.4)-
(4.8) outputs the residuals r p̂1

to r p̂n
, the minimum residual is used to produce the

switching signal q, which then selects the next ILC update to apply to true plant Pp∗ .
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The conditions for stability when EMMILC is applied to an unknown true plant Pp̂∗

belonging to an uncertainty space U were derived in Freeman and French [2015] and
consist of two criteria and bounds on the internal signals. These are now outlined in
a simple manner, facilitating the following development of an effective design frame-
work.

Consider that the true plant Pp∗ ∈ U . Let P denote a set of candidate plant models tak-
ing the state space form (3.3), and let C represent a set of corresponding ILC controllers
constructed using (3.58) such that the condition in (3.61) is satisfied. The EMMILC ap-
proach defined by (4.2), (4.4)-(4.9) ensures the stabilisation of the true plant Pp∗ on the
condition that the following two requirements are fulfilled:

1) ∃ p̂ ∈ P , s.t. δ( p̂, p̂∗) < ρ(P , C,U ), (4.10)

where δ is the gap metric and ρ is a function involving controller set C, plant set P
and uncertainty space U . Since the true plant p̂∗ is unknown, this criterion specifies
a minimum gap distance between models covering the uncertainty space. The second
criterion is

2) ∃ĉ ∈ C, s.t. ∥Π p̂//ĉ∥ < ∞ ∀ p̂ ∈ U , (4.11)

which means there must exist a stabilising controller for every plant in the uncertainty
space. Criteria (4.10) and (4.11) are illustrated by Figures 4.2a and 4.2b, respectively.

(A) Criterion (4.10): uncertainty set U is cov-
ered by balls with radius ρ.

(B) Criterion (4.11): circle is set of
p̂ ∈ U such that ∥Π p̂//ĉ∥ < ∞.

FIGURE 4.2: Illustration of criteria (4.10) and (4.11).

If the above conditions are satisfied, the controller signals of the switched closed-loop
system [Pp̂∗ , CK(q)] are guaranteed to be bounded with respect to their ideal values as

∥(u2, y2)
⊤∥(−P−1

p̂∗ ,0)⊤ < η(P , C,U )∥(u0, y0)
⊤∥, (4.12)

where observed signal (u2, y2), external disturbances (u0, y0) are defined in Figure 3.2,
and η is a positive scalar function defined in [Freeman and French, 2015]. This is a
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simplified restatement of [Freeman and French, 2015] which contains the full computa-
tion of functions ρ and η. Note that EMMILC is an extension of the MMAC framework
developed in [Buchstaller and French, 2016a] for feedback stabilisation.

Unfortunately, ρ(P , C,U ) has a large computational burden, and the results are also
conservative (i.e. more candidate plants are specified than required). To address this,
the next section proposes a simplified approach that could be used for practical design.

4.2 Multiple Model Design Procedure

This section presents a novel design procedure, marking a significant contribution of
this research. Firstly it does not require calculating ρ(P , C,U ), which greatly simplifies
the approach. Secondly, it minimises the number of candidate models, and therefore
the computational burden and memory resources. This is critical in practice since EM-
MILC will be implemented on a microcontroller, which has limited computational re-
sources. In rehabilitation the eventual goal is to embed the controller within a highly
portable, or even wearable, system. Therefore memory and computation reduction is
even more pressing.

Firstly, criterion (4.11) requires all plants in the uncertainty set U to be stabilised. The
obvious approach to satisfy this is using Theorem 3.1 and selecting a minimal candi-
date plant set P such that the union of ‘gap balls’ (see Figure 4.2a) includes the set U .
This is expressed by first defining a gap ball centred on p̂ ∈ P as

B( p̂, K, γ) := { p̂} ∪ { p̂1 ∈ PLTI | δ( p̂, p̂1) < γ||Π p̂//K( p̂)||−1} ∩ U , p̂ ∈ P , (4.13)

and then requiring
U ⊂ R, where R := ∪ p̂∈U B( p̂, K, γ), (4.14)

where γ can be taken as 1, and PLTI is the set of all LTI SISO plants.

However, criterion (4.10) may not be satisfied. Therefore, the tuning parameter 0 <

γ ≤ 1 is employed within (4.13) to reduce the radius of the gap balls. As γ → 0, (4.10)
will always be satisfied for any ρ, avoiding the need to explicitly calculate it.

To compute the minimal candidate plant set P that satisfies (4.13) and (4.14), the ap-
proach is to define a set of many (more than needed) plant models, H = {Pp̂1

, Pp̂2
, ..., Pp̂Nm

},
that are uniformly distributed in the uncertainty space U , then remove those plants that
are not needed since they lie within an existing gap ball. When all unnecessary models
are removed, we hence obtain the minimum set P . The overall approach to achieve
this is stated in Algorithm 1.
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Algorithm 1 Procedure to generate the minimal candidate plant set P
Input: ILC design procedure K, and 0 < γ ≤ 1
Output: Minimal candidate plant set P

Define H = {Pp̂1
, Pp̂2

, ..., Pp̂Nm
} as the finest grid that computational resources allow;

Set S = {0, 0, ..., 0} with Nm elements, Sj denoting the jth element;
for each i ∈ {1, 2, 3, ..., Nm} do

for each j ∈ {1, 2, 3, ..., Nm} do
if ∃a ∈ {1, 2, 3, ..., Nm}, s.t. Sa = 0 then

Design Qĉi , Lĉi for ĉi = K(pi) to reach a compromise between minimising (3.59)
and (3.61).
if δ( p̂i, p̂j) < γ||Π p̂i//K( p̂i)

||−1 then
Sj = i;

end if
else

Delete repetitions from S, set Np = |S|;
P = {Pp̂S1

, Pp̂S2
, Pp̂S3

, ..., Pp̂SNp
}; Exit loops;

end if
end for

end for
Return P .

The resulting ILC controller set is then C = {CK( p̂1)
, CK( p̂2)

, CK( p̂3)
, ..., CK( p̂SNp

)}. This is

illustrated in Figure 4.3.

FIGURE 4.3: Illustration of Algorithm 1, the ‘black’ plant models are not needed and
removed from the initial plant set H. The left ‘red’ plants form the minimal candidate

plant set P , which still covers the uncertainty space U .



44 Chapter 4. Multiple Model Framework of ILC

4.3 Summary

This chapter has reviewed existing multiple model control frameworks, which address
stability and performance issues caused by model uncertainties within the standard
ILC framework. However, most lack theoretical robust performance guarantees, or a
principled design procedure. An exception is the EMMILC approach introduced in
Freeman and French [2015] which applies EMMSAC to the ILC framework. A promis-
ing design procedure has been developed to design the candidate plant set in order
to satisfy the stability conditions of EMMILC. This procedure requires the designer to
choose only one variable (γ) that transparently trades computational load with per-
formance whilst satisfying criteria (4.10) and (4.11). It is then implemented in an al-
gorithmic form (Algorithm 1). This design procedure will be tested using a realistic
rehabilitation case study in the next chapter.
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Chapter 5

Numerical Evaluation on Wrist Model

Chapter 2 highlighted the limitations of current ILC applications to FES-based stroke
rehabilitation. To address these, EMMILC with the design procedure developed in
Chapter 4 will be implemented on the key problem of wrist extension, and the resulting
performance will be compared with conventional ILC design.

5.1 Wrist model

Wrist dynamics are a critical component of functional movement, and are incorporated
in most advanced FES rehabilitation systems. They take the form of FES activated
muscle actuating the rigid body dynamics (RBD) of the wrist and hand. The former
is most commonly represented by a Hammerstein structure, comprising an isometric
recruitment curve (IRC) and linear activation dynamics (LAD) [Le et al., 2010; Peaden
and Charles, 2014]. The overall model is shown in Figure 5.1.

FIGURE 5.1: Hammerstein structure H(s) with u(t) equal to the stimulation level, v(t)
the muscle output torque and the wrist angle y(t).

The isometric recruitment curve is often approximated by a static gain, hIRC, in which
case the overall model adopts the general form

H(s) = hIRC · ω2
n

s2 + 2ωns + ω2
n
· 1

Iss2 + Bss + Ks
. (5.1)
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This plant (5.1) can readily be placed in the state-space form (3.48), and thereby ex-
pressed as the unlifted plant Pp, with p = (Ap, Bp, Cp, Dp). It can then be transformed
into its equivalent lifted form

Pp̂ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Dp 0 · · · 0 0 0
CpBp Dp · · · 0 0 0

Cp ApBp CpBp · · · 0 0 0
...

... . . . ...
...

...
Cp AN−2

p Bp Cp AN−3
p Bp · · · CpBp Dp 0

Cp AN−1
p Bp Cp AN−2

p Bp · · · Cp APBp CpBp Dp

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (5.2)

This lifted plant Pp̂ then embeds the ILC plant dynamics

y1(k) = Pp̂u1(k), (5.3)

which fits into the closed-loop structure of Figure 3.2, and can be applied within Theo-
rem 3.1 to yield robust performance bounds.

In practice, parameters within the model (5.1) are often subject to uncertainties, which
result from individual difference, or physiological variations (e.g.,muscle fatigue/s-
pasticity). To evaluate the system, practical parameter values are summarised from
the tests performed by previous studies. Nominal parameter values from Charles and
Hogan [2012], Charles and Hogan [2011], Peaden and Charles [2014] and Park et al.
[2017] are listed in Table 5.1. Stiffness and inertia typically vary most between individ-
uals, and their ranges are also given.

TABLE 5.1: Values of wrist parameters.

Parameter Symbol Nominal value Uncertainty range Unit
IRC constant hIRC 0.0117 N/A N/A

Natural frequency ωn 9.4248 N/A rads/s
Stiffness Ks 1.62 0.62 ∼ 3.24 Nm/rad
Damping Bs 0.128 N/A Nms/rad

Inertia Is 0.0045 0.0007 ∼ 0.00612 Nms2/rad

The aim is to control the FES applied to wrist system (5.1) such that the output tracks
a desired movement profile as accurately as possible. However, its dynamics will be
subject to the variation in parameters defined in Table 5.1.

5.2 Numerical Settings and Controller Design

The controller design in this section is implemented using MATLAB R2023a scripts,
specifically employing the control system toolbox and the signal processing toolbox.
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The system operates in discrete-time with a sampling frequency of 40 Hz. A fixed-
step solver with automatic selection is employed, with the fixed-step size set to the
system sampling period Ts = 0.025 seconds, consistent with existing clinical imple-
mentations. The control objective is to achieve accurate tracking of a predefined wrist
flexion-extension trajectory, which simulates tasks involving functional grasp and re-
lease, with a total length of T = 6 seconds. This reference trajectory is illustrated by
Figure 5.2. The model uncertainty set U comprises the parametric uncertainty ranges
defined in Table 5.1.

FIGURE 5.2: The reference trajectory that simulates the wrist flexion (positive half) and
the extension (negative half) movements.

The inverse ILC update (3.27) with step size β = 1 is employed due to its rapid conver-
gence. A 10th order zero-phase low-pass filter Q with cut-off frequency 5Hz is selected
to provide robustness against high frequency noise and disturbances. The control de-
sign procedure Cĉ, ĉ = K( p̂) is hence given by

u2(k + 1) = Q[u2(k)− P−1
p̂ y2(k)], ∀Pp̂ ∈ H. (5.4)

To design the candidate model set, Algorithm 1 is now implemented using tuning pa-
rameter γ = 1. This is chosen to establish whether a minimum plant model set can
provide satisfactory performance. Within Algorithm 1, Nm = 100 is selected as the size
of the initial plant set since it takes about one hour to compute the minimum plant set,
which is deemed acceptable for each implementation.

The output of Algorithm 1 is a minimal candidate plant set P = {Pp̂1
, Pp̂2

, ..., Pp̂Np
}

comprising Np = 34 plants (66 having been removed). The corresponding candidate
controller set C = {Cĉ1 , Cĉ2 , Cĉ3 , ..., CĉNp

} also contains 34 ILC controllers.
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5.3 Evaluation of Tracking Performance

Having controller set designed, EMMILC will be compared to standard ILC, with the
latter designed using the nominal model. This will be implemented using Simulink
script also in MATLAB R2023a. The configuration of the solver is consistent with the
setup described in the previous section. According to Table 5.1, the nominal plant Pp̂ f

has parameters Ks = 1.62, Is = 0.0045, Bs = 0.1280, hIRC = 0.0117 and ωn = 9.4248. In
contrast, the true plant Pp̂∗ has an identical set of parameters, with the exception that
Ks = 3.24. The true values of Ks are chosen from the uncertainty range in Table 5.1,
in order to approximately model a fatigued wrist (double the nominal stiffness). This
aims to simulate and evaluate the control algorithms on a realistic case. This true plant
is not one of those in the set P , which means the perfect estimation of the true plant is
impossible. To replicate experimental conditions, the external disturbances (u0, y0) in
Figure 3.2 are chosen as white noise with a signal-to-noise ratio of 10% (one tenth of the
reference signal).

First the nominal model Pp̂ f is applied with white noise (u0, y0), and a fixed controller
CK( p̂ f ) designed using the nominal model Pp̂ f . After 20 ILC trials, the baseline tracking
performance is shown in Figure 5.3 a). As a comparison, the standard ILC controller
CK( p̂ f ) is then applied with the fatigued true plant Pp̂∗ . After 20 ILC trials, the true
performance is shown in Figure 5.3 b).

FIGURE 5.3: The tracking plots of the standard ILC over 20 trials with closed-loop
systems a): [Pp̂ f , CK( p̂ f )] showing baseline performance and b): [Pp̂∗ , CK( p̂ f )] showing

reduced performance.

Compared to the baseline performance shown in Figure 5.3 a), Figure 5.3 b) shows error
norm rapidly diverges, and inspection of closed-loop poles confirms that convergence
conditions (3.12) and (3.13) are not satisfied, so that the tracking error does not properly
converge with the fatigued true model Pp̂∗ . Due to the limitation of control signals, this
diverging result is unachievable in practice. This motivates the application of EMMILC
also with the white noise (u0, y0) added. The final tracking performance of EMMILC is
shown by Figure 5.4.
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FIGURE 5.4: Tracking plots of EMMILC including a): tracking performance at trial
20 with γ = 1, and error norm ∥y2(k)∥ convergence for each ILC trial. b): EMMILC

switching signal for each ILC trial.

Figure 5.4 a) shows the error norm slowly diverges also for EMMILC with γ = 1, and
inspection of closed-loop poles confirms that convergence conditions (3.12) and (3.13)
are not satisfied, so that the system is also unstable. This is because the switching signal
(see Figure 5.4 b)) estimates the true plant Pp̂∗ as either Pp̂19

or Pp̂24
and cannot make a

decision for the remainder of the trials, but inspection of parameter values shows that
both Pp̂19

and Pp̂24
are different from the true plant Pp̂∗ , hence the switched controller

leads to another instability issue. This means the criterion (4.10) is not satisfied, and
the minimum plant model set produced with γ = 1 cannot provide satisfactory perfor-
mance.

To achieve satisfactory performance, the solution is to reduce the value of γ which
hence increases the number of candidate plants Np. There will always exist a value of
γ that provides a stable closed loop system, as explained in Section 4.2. To measure the
improvement in performance, an index E is introduced by accumulating the magnitude
of tracking errors for all 20 trials. This is given by

E =
20

∑
k=1

∥y2(k)∥. (5.5)

Different values of γ were tested, with corresponding performances measured using
(5.5). The results are shown in Table 5.2. Similar to the result with γ = 1 shown in
Figure 5.4, the tracking plots and switching signals for γ = 0.5, γ = 0.25, and γ = 0.125
are shown in Figure 5.5, 5.6, and 5.7 respectively.

As shown in Figure 5.5 a), the system designed using γ = 0.5 is stable but the perfor-
mance is still poor due to multiple error spikes. The switching signal shown in Figure
5.5 b) indicates that the estimated true plant is most probably Pp̂40

, although there re-
mains a minor likelihood of it being Pp̂33

. With γ = 0.5, the candidate plant set with
Np = 64 still yields suboptimal performance due to the restricted number of candidate
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TABLE 5.2: Results comparing performance of EMMILC for different γ values.

γ in equ. (4.13) Value of E Np Convergence?
γ = 1 4.7743 36 No

γ = 0.5 4.4495 64 Yes
γ = 0.25 3.4927 81 Yes
γ = 0.125 2.4309 100 Yes

FIGURE 5.5: Tracking plots of EMMILC including a): tracking performance at trial 20
with γ = 0.5, and error norm ∥y2(k)∥ convergence for each ILC trial. b): EMMILC

switching signal for each ILC trial.

FIGURE 5.6: Tracking plots of EMMILC including a): tracking performance at trial 20
with γ = 0.25, and error norm ∥y2(k)∥ convergence for each ILC trial. b): EMMILC

switching signal for each ILC trial.

plant models, none of which can accurately represent the true plant. Then, when γ is
reduced to 0.25, the estimated plant is most likely to be Pp̂80

, but it still has a chance
to be Pp̂73

. Inspection of parameters shows the plant Pp̂80
is very close to the nomi-

nal model. Hence the criterion (4.10) is satisfied by implementing the candidate plant
set with Np = 81, which effectively improves the tracking performance. Then further
increasing the number of plants until Np = 100 does not improve the performance
E significantly compared with Np = 81. This is because the estimated plant is Pp̂100

,
whose parameters are very close to Pp̂80

. Although the true estimated plant models
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FIGURE 5.7: Tracking plots of EMMILC including a): tracking performance at trial 20
with γ = 0.125, and error norm ∥y2(k)∥ convergence for each ILC trial. b): EMMILC

switching signal for each ILC trial.

are very similar, the measured performance E provided in Table 5.2 demonstrates an
improvement when incorporating more candidate plant models.

5.4 Summary

This chapter has implemented the EMMILC approach on a realistic wrist model and
uncertainty set. A comparison between conventional ILC and EMMILC illustrated the
robustness of the latter. Different values of γ have been tested, and it has been demon-
strated that including more controllers provides greater robust performance. How-
ever, the uncertainty was limited to two wrist parameters. In practice the performance
could also be affected by other parameters, i.e. misalignment of electrodes and muscle
fatigue/spasticity, hence practical experiments are needed to further evaluate the ap-
proach. In this case the plant model set should be expanded to capture more possible
uncertainties that will occur during experiments.
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Chapter 6

Experimental Evaluation

The previous simulations have demonstrated the effectiveness of EMMILC when ap-
plied to a simple linear wrist model. Evaluation will be further extended in this chap-
ter by applying EMMILC experimentally to the human wrist using FES applied using
single-pad electrodes. This functional movement task has been selected as it is a fun-
damental component of FES-based upper limb stroke rehabilitation. As in Chapter 5,
conventional ILC will also be compared with EMMILC to evaluate the effectiveness of
the multiple-model framework.

6.1 System Description

In order to evaluate EMMILC, tests will be conducted using a validated instrumented
wrist rig which has been used in clinical trials to assess impairment in stroke. This is
described in Turk et al. [2008] and is shown in Figure 6.1. The wrist rig supports the
arm and restricts movement to only the horizontal plane.

FIGURE 6.1: Experimental set-up (permission received from Turk et al. [2008]).
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6.1.1 Hardware Components

A potentiometer at the hinge joint under the wrist stand measures the wrist angle with
a maximum range from −90◦ to 90◦. The potentiometer can be calibrated prior to each
test session by setting the extended wrist stand at specified angles marked on the rig
[Turk et al., 2008]. This involves setting the extended lever to user-specified angles θ1

and θ2, and recording the corresponding analog voltages V1 and V2, respectively. The
variation in angle with respect to each volt can be calculated as

∆θ =
θ2 − θ1

V2 − V1
, (6.1)

which then gives the wrist angle θ(t) by recording the voltage V(t) at any time t

θ(t) = ∆θV(t), (6.2)

with validation confirmed that the systematic error the potentiometer amounts to ±2◦.

The software is first programmed using Simulink toolbox and subsequently deployed
onto a Raspberry Pi 4B board (Raspberry Pi Foundation, UK). This low-cost portable
hardware is aligned with the intention that the ultimate system be deployable in the
user’s own home. The Raspberry Pi board reads the real-time wrist angles θ(t) in
Simulink from the rig seat via a SPI master transfer block contained in the Simulink
Support Package for Raspberry Pi Hardware, enabling precise data timing through a
dedicated clock input. This is critical for accurately measuring wrist angles in real-
time, ensuring a high level of data integrity. However, the Raspberry Pi board only has
digital I/O ports, which cannot directly read the analog data produced by the rig seat.
To tackle this issue, an analogue-to-digital converter (ADC) is required, facilitating effi-
cient data transmission between the rig seat and the Raspberry Pi board. The ’mcp3008’
ADC module (Microchip) is selected for its SPI communication compatibility and op-
erational voltage range between 2.7V and 5.5V, allowing it to be powered directly by
the Raspberry Pi board [MathWorks, 2023].

The Raspberry Pi board then generates two 40Hz pulse-width modulated (PWM) square
wave signals. Signals u f cr and uecr denote the pulsewidth of these pulse trains, which
both have a maximum value of 300µs. These are sent to a commercial stimulator unit
(Odstock Medical Limited, Salisbury, UK) which amplifies them to generate the FES
pulses, with stimulation currents ranging from 0 to 115mA. The sampling frequency in
all tests is 40Hz. The control system was also programmed using the Matlab/Simulink
toolbox for Raspberry Pi and deployed onto the Raspberry Pi hardware using external
mode. The system components are shown in Figure 6.2.
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FIGURE 6.2: Upper-limb FES system components

6.1.2 Model Structure

The objective is to stimulate wrist flexion and extension so that the wrist angle follows
a desired trajectory. Bi-directional wrist movement is achieved via stimulation of the
Flexor Carpi Radialis (FCR) and Extensor Carpi Radialis (ECR) muscles. Each muscle
can be modelled as a Hammerstein structure, comprising a static non-linearity in series
with linear activation dynamics, as was shown in Figure 5.1. However, unlike in the
previous chapter, here the static non-linearity will not be approximated by a scalar gain
as was done to produce linear model (5.1). Instead, the nonlinear functions are included
to produce the structure shown in Figure 6.3, in which hIRC, f cr(·) and hIRC,ecr(·) are the
IRC components for the FCR and ECR muscles respectively. In addition, hLAD, f cr(s) and
hLAD,ecr(s) denote the LAD components for the FCR and ECR muscles respectively.

FIGURE 6.3: Wrist model excited by stimulation inputs u f cr and uecr to wrist flexor
and extensor muscles respectively, with output torques ω f cr and ωecr. Signal y1 is the

angular response.

To produce a single input system, a static function is added to split the control signal
u1(t) between the two muscles. This strategy is known as co-activation, and is widely
used in FES-based upper-limb studies [Copur et al., 2016; Bó et al., 2016; Klauer et al.,
2019]. The signal computed for the FCR muscle is denoted u f cr and the signal for the
ECR muscle is denoted uecr. Each has a maximum value of 300µs. The co-activation
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function takes the following form

u f cr(t) =

{︄
u1(t) + uc, f cr, 0 ≤ u1(t) ≤ 300 − uc, f cr

uc, f cr, uc,ecr − 300 ≤ u1(t) < 0
(6.3)

uecr(t) =

{︄
uc,ecr, 0 ≤ u1(t) ≤ 300 − uc, f cr

uc,ecr − Keu1(t), uc,ecr − 300 ≤ u1(t) < 0
(6.4)

where uc, f cr, uc,ecr ≥ 0 are the co-activation levels selected during calibration. In gen-
eral, the co-activation level should be minimised to avoid impeding movements and
expediting the occurrence of fatigue [Zhang et al., 2020]. In addition, it reduces the
operational range of u1(t) and the range of the angular response. The co-activation
function is illustrated by Figure 6.4 a).

Ke=b

Ke=a

h IRC 1(u (t))

h IRC 1 IRC,ecr 1 1(-u (t))=-h (-u (t)),u (t)<0

h IRC 1 IRC,fcr 1 1(u (t))=h (u (t)),u (t) 0≥

u1(t)

u1(t)

FIGURE 6.4: Linearisation of dynamics hIRC shown by a): Co-activation levels
uc, f cr, uc,ecr that are properly selected to remove dead-zone in each IRC. b): hIRC, f cr

and hIRC,ecr without co-activation [solid line] and with co-activation [dashed line].

Scalar Ke > 0 is used to scale the input applied to one of the muscles for the purpose of
equalising their response. The co-activation function enables the two IRC functions to
be combined into a single composite function given by

hIRC(u1(t)) :

{︄
hIRC, f cr(u1(t) + uc, f cr)− hIRC,ecr(uc,ecr), 0 ≤ u1 < 300 − uc, f cr

hIRC, f cr(uc, f cr)− hIRC,ecr(uc,ecr − Keu1(t)), uc,ecr − 300 ≤ u1 < 0
(6.5)

For hIRC(u1(t)) to produce zero output when u1(t) = 0, it is clearly necessary to choose
uc, f cr, uc,ecr such that hIRC, f cr(uc, f cr) = hIRC,ecr(uc,ecr). The response is shown in Figure
6.4 b), where the solid line represents the case of zero co-activation (uc, f cr = uc,ecr = 0),
and therefore corresponds to the two original IRC functions (hIRC, f cr and hIRC,ecr). The
dotted line shows the responses after co-activation (uc, f cr > 0, uc,ecr > 0) is applied. It is
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clear that the original functions are translated so that the points (uc, f cr, hIRC, f cr(uc, f cr))

and (uc,ecr, hIRC,ecr(ue, f cr)) now lie at the origin. This translation is illustrated by the red
arrows in Figure 6.4 b). The overall effect is to remove the dead-zone in the IRC forms.

If co-activation is applied such that the slopes of the two functions are similar, then the
overall response hIRC(u1(t)) can be approximated by a straight line in a region about
the origin. Therefore, the static nonlinearity hIRC(u1(t)) can be approximated by a static
gain hIRC in the Hammerstein structure (5.1), which significantly simplifies the model
representation. This approximation is valid within the linearised region introduced by
proper co-activation, as shown by the dashed line before saturation in Figure 6.4 b).
This scaling can be accomplished by selecting a set-point u1(t) = ū1 and setting Ke to
satisfy

hIRC, f cr(ū1 + uc, f cr) = hIRC,ecr(Keū1 + uc,ecr) (6.6)

Two values of Ke are illustrated in Figure 6.4(b) to show how this scales the ECR com-
ponent of hIRC(u1(t)).

In Copur et al. [2016]; Freeman et al. [2015] it was assumed that the LAD dynamics
are identical, hLAD, f cr(s) = hLAD,ecr(s) = hLAD(s), in which case the system can be
expressed in the Hammerstein form shown in Figure 6.5. If the co-activation and scal-

FIGURE 6.5: Hammerstein structure with isometric recruitment curve hIRC(u1(t)), lin-
ear active dynamics hLAD(s) and rigid body dynamics hRBD(s).

ing approaches described above are applied, hIRC(u1(t)) can then be approximated
by a scalar gain, hIRC. The overall model form can be represented by the operator
Pp : u1 ↦→ y1, where

Y1(s) = hIRC
1

Iss2 + Bss + Ks⏞ ⏟⏟ ⏞
hRBD(s)

ω2
n

s2 + 2ωns + ω2
n⏞ ⏟⏟ ⏞

hLAD(s)

U1(s), (6.7)

where Y1(s), U1(s) are the respective Laplace transforms of the signals y1 and u1. This
matches the model form (5.1).

6.2 Test Procedure

Ethics approval was granted by the University of Southampton Ethics and Research
Governance Online (ERGO), ID 57751. Participants are required to be healthy and
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unimpaired to avoid adding confounding factors to the experiment. To avoid inter-
ference from stimulation, they must not be attached to any electronic equipment such
as a pacemaker. The tracking tasks also require participants to not have any cognitive
or visual disorders. Results will be presented from a single participant (25 years old,
male). Note that testing is extended to more participants in Section 6.5.

The subjects sat upright and placed their right forearm on the support as shown in
Figure 6.1. Using standard guidelines [Freriks et al., 1999], two Pals PLUS (5 × 5cm)
surface electrodes were placed on the forearm to stimulate the FCR and ECR mus-
cles. The amplitude of the FES stimulation was first set by applying stimulation with
a pulsewidth of 300µs to each muscle in turn, and then increasing the amplitude to the
maximum comfortable value. Each co-activation threshold was chosen by gradually
increasing the stimulation level from 0 until the subject’s wrist moves. This yielded
uc, f cr = uc,ecr = 110µs. Inevitably one muscle would generate a greater force than
the other for a fixed pulsewidth. To equalise the muscle strengths, the gain Ke value
was used to scale the ECR input, as shown in Figure 6.3. To achieve this, a slow sine-
wave input signal u1 was applied to move the wrist, and the gain was then selected as
Ke = 0.9 to produce a symmetrical angular response.

6.3 System Identification

The first step in the EMMILC design process is to define the plant uncertainty set U .
In Chapter 5 this was achieved using data extracted from the literature, however in
practice this is likely to produce a conservatively large set. Therefore identification
tests were conducted in order to reduce the degree of conservatism.

The idea is to collect several sets of input-output data that represent varied muscle
conditions (e.g. fatigued, non-fatigued) and environments (e.g. electrodes positioned
differently). The FES input sequence used in each data set must be sufficient to excite
the arm dynamics. This will be achieved by applying a frequency-varying stimulation
input u2. The resulting wrist movement is recorded to produce the data set (u1, y2). A
parameterised models of the form (6.7) is then identified from this data set. When this
is repeated for every data set, to produce a range of values for each of the parameters
in (6.7). This then defines the uncertainty space U .

The next controller design steps then follow those of Chapter 5. Set U is sampled with
a fine resolution to form the initial plant set H which is used as an input to Algorithm
1. This produces a minimal candidate plant set P to be used in the EMMILC design
procedure.

The rest of this section demonstrates the identification procedure, including data col-
lection, model identification/validation, and construction of the candidate set.
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6.3.1 Identification and Evaluation

As stated, the input sequence must sufficiently excite the subject’s wrist. It was shown
in [Mann et al., 1989] that the average frequency of 24 wrist activities of daily living
is approximately 1Hz, with a 0 ∼ 5Hz frequency bandwidth. To substantially capture
the frequency components of wrist activities, the input for identification has therefore
been chosen to comprise a sequence of sine-wave signals with frequencies equal to
0.6Hz, 0.9Hz, 1.2Hz, 1.5Hz and 1.8Hz, as shown in Figure 6.6. This input signal is

FIGURE 6.6: Input chirp signal (frequency-varying sine-wave). This will be imple-
mented twice, and the gap will not be recorded as a part of the input signal.

applied twice for an overall duration of 280 seconds in order to collect sufficient data
points, of which the first half of the data points are used to fit a wrist model of the
form (6.7), and the second half is used to validate the accuracy of the identified model.
This experiment is conducted 7 times per day with no rest time in between in order to
capture muscle fatigue dynamics. This is repeated on 3 separate days to capture the
variation due to electrode positioning. As a result, the overall input/output data set
used for identification is defined as

ZN
i,j = {ui,j(1), yi,j(1), ui,j(2), yi,j(2), ..., ui,j(N), yi,j(N)}, (6.8)

where i = 1, 2, 3 and j = 1, 2, ..., 7 denote the indices of the day and trial, respectively,
with data length N.

The effect of fatigue elicited by these tests is illustrated in Figure 6.7, which compares
the output response data across all 7 trials conducted within a single day. It shows that
the magnitude of the response decreases to approximately 61% of its initial value due
to muscle fatigue. This shows the underlying wrist dynamics have been appropriately
captured by the set ZN

i,j.



60 Chapter 6. Experimental Evaluation

FIGURE 6.7: The effect of fatigue shown by the decrease in output magnitude across
all 7 trials, which are conducted within a single day.

The plant identified using the input/output data from the set ZN
i,j will be denoted pi,j. To

identify pi,j, the first step is to define the possible range of variation for each parameter
in (6.7). These ranges are denoted [Kmin

s , Kmax
s ], [Imin

s , Imax
s ], [Bmin

s , Bmax
s ], [ωmin

n , ωmax
n ],

and [hmin
IRC, hmax

IRC]. Their values can be chosen to directly match the ranges in Table 5.1.
Then the identification can be formulated as the optimisation problem

pi,j := min
Ks ∈ [Kmin

s , Kmax
s ],

Is ∈ [Imin
s , Imax

s ],
Bs ∈ [Bmin

s , Bmax
s ],

ωn ∈ [ωmin
n , ωmax

n ],
hIRC ∈ [hmin

IRC, hmax
IRC]

(︄
N/2

∑
k=1

yi,j(k)− ŷi,j(k)

)︄2

, (ui,j, yi,j) ∈ ZN
i,j, (6.9)

where ŷi,j is the result of applying input ui,j to the discrete form of system (6.7). This
can be computing using

x(k + 1) = Adx(k) + Bdui,j(k) (6.10)

ŷi,j(k) = Cdx(k), x(0) = 0

where k = 0, 1, 2... denotes the sample index. System (6.10) is the discrete representa-
tion of system (6.7), and has matrices

Ad = eAcTs , Bd = (eAcTs − I)A−1
c Bc, Cd = Cc, Dd = Dc. (6.11)
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where (Ac, Bc, Cc, Dc) correspond to the state-space realisation of system (6.7) with sam-
pling time Ts, and are given by

Ac =

⎡⎢⎢⎢⎢⎣
0 1 0 0
0 0 1 0
0 0 0 1

−a0 −a1 −a2 −a3

⎤⎥⎥⎥⎥⎦ , Bc =

⎡⎢⎢⎢⎢⎣
0
0
0
1

⎤⎥⎥⎥⎥⎦ , Cc =
[︂
b0 0 0 0

]︂
, Dc =

[︂
0
]︂

(6.12)

where b0 = hIRCω2
n/Is, a0 = (ω2

nKs)/Is, a1 = (2ωnKs + ω2
nBs)/Is, a2 = (Ks + 2ωnBs +

ω2
n Is)/Is, a3 = (Bs + 2Isωn)/Is. The objective is to solve the constrained optimisation

problem (6.9) for each data set ZN
i,j, and obtain an optimal parameterised model with

the best fit parameters (Ks, Is, Bs, ωn, hIRC). This is implemented in MATLAB scripts
using Optimisation Toolbox (’fmincon’ function).

Having found the optimal parameterised model pi,j, the next step is to evaluate how
well the I/O data (ui,j, yi,j) ∈ ZN

i,j fits the plant pi,j. To do this, the fitting and validating
accuracy denoted as Fpi,j and Vpi,j respectively, are defined as

Fpi,j =

⎛⎜⎝1 −

⌜⃓⃓⎷∑
N
2

k=1[yi,j(k)− ŷi,j(k)]2

∑N
k=1[yi,j(k)]2

⎞⎟⎠× 100, (6.13)

Vpi,j =

⎛⎜⎝1 −

⌜⃓⃓⎷∑N
k= N

2 +1[yi,j(k)− ŷi,j(k)]2

∑N
k=1[yi,j(k)]2

⎞⎟⎠× 100, (6.14)

where ŷi,j is the simulated output for model pi,j defined above. The resulting accuracy
is shown by Figure 6.8 and is similar to previous studies [Copur et al., 2016].

FIGURE 6.8: Identification accuracy of a): fitting Fpi,j and b): validating Vpi,j computed
directly by following the identification approach (6.9)-(6.10) for i = 1, 2, 3 and j =

1, 2, ..., 7.
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To validate the identification approach (6.9)-(6.10), it was compared against a num-
ber of leading approaches [Simpkins, 2012] that are implemented within the MATLAB
Identification Toolbox. These include parametric identification methods for state-space
models, transfer functions (both continuous and discrete time), an autoregressive ex-
ogenous (ARX) model, and nonparametric identification of an impulse response model.
These methods were all implemented using the same I/O data set ZN

i,j. The fitting of
each form has been evaluated using (6.13) and (6.14). Results are shown in Figure 6.9,
Figure 6.10 and Figure 6.11, and all show a very similar level of accuracy.

FIGURE 6.9: Identification accuracy of a): fitting Fp1,j and b): validating Vp1,j for j =
1, 2, ..., 7. SS: state-space model. ARX: ARX model. TFD: discrete transfer function.
TFC: continuous transfer function. SUB: state-space model (subspace method). IMP:

impulse response model.

FIGURE 6.10: Identification accuracy of a): fitting Fp2,j and b): validating Vp2,j for j =
1, 2, ..., 7. SS: state-space model. ARX: ARX model. TFD: discrete transfer function.
TFC: continuous transfer function. SUB: state-space model (subspace method). IMP:

impulse response model.
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FIGURE 6.11: Identification accuracy of a): fitting Fp3,j and b): validating Vp3,j for j =
1, 2, ..., 7. SS: state-space model. ARX: ARX model. TFD: discrete transfer function.
TFC: continuous transfer function. SUB: state-space model (subspace method). IMP:

impulse response model.

6.3.2 Candidate Plant Set

The previous identification generated 21 plant models, pi,j, with the variation in each
parameter shown Figure 6.12. The next step is to finely sample each parameter across
its range of variation. Then every combination of parameters is taken and inserted into
the form (6.7) to create the plant model set H. This set will be used as the input to
Algorithm 1, which produces a minimal candidate plant set P that will be used in the
EMMILC design procedure.

FIGURE 6.12: The variation of parameters in wrist model (6.7) for data set ZN
i,j .

According to Figure 6.12, the parameters Ks, Bs and ωn vary most in physiological
changes. The other two parameters Is and hIRC remain almost unchanged across all
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trials. As was done in Section 5.1, a minimum set will be formed by only sampling
from the range of parameters Ks, Bs and ωn that vary most, and fixing the parameters
Is and hIRC at their average values. Following this approach, Table 6.1 gives the sample
values of each wrist parameter. Among these parameters, the stiffness Ks demonstrates
a considerably higher value compared to the one given in Table 5.1. The reason for this
is that the wrist data was solely collected from a young subject with a robust forearm,
typically exhibiting enhanced muscle power. The study conducted by Ikezoe et al.
[2012] analysed the Pearson correlation coefficient and found that enhanced muscle
power often results in a larger variation in muscle stiffness when transitioning from
rest to contraction, particularly in young individuals.

TABLE 6.1: Values of wrist parameters.

Parameter Symbol Sample Values Unit
IRC constant hIRC 0.206 N/A

Natural frequency ωn
6.597, 7.278, 7.959, 8.639,

9.320, 10.001, 10.681
rads/s

Stiffness Ks
2.886, 4.565, 6.244, 7.923,

9.602, 11.281, 12.960
Nm/rad

Damping Bs
0.064, 0.189, 0.315, 0.440,

0.566, 0.691, 0.817
Nms/rad

Inertia Is 0.033 Nms2/rad

As shown in Table 6.1, seven samples were uniformly taken across each uncertain
range. Then each combination of samples is used to build an underlying plant us-
ing (6.7). These plants give the initial plant set H = {p1, p2, p3, ..., pNm} with Nm = 343
underlying plant models. This set H is used as the input to Algorithm 1, in which the
tuning parameter is set to γ = 1. This is chosen to establish whether a minimum plant
model set can provide satisfactory performance. The inverse ILC update (5.4) is still
employed as the design procedure ĉ = K(p) due to its fast convergence. A 10th order
zero phase low-pass filter Q2 was designed with cut-off frequency 3Hz to better reject
high frequency noise and disturbances. The effectiveness of this filter Q2 applied with
ILC system was proved by [Elci et al., 2002], where the tracking error was reduced by a
factor of 100 over 6 ILC trials in the presence of high-frequency vibration disturbances.
Hence the ILC update used in this experiment is given by

u2(k + 1) = Q2[u2(k)− P−1
p̂ y2(k)], ∀Pp̂ ∈ H. (6.15)

The output of Algorithm 1 is the minimal candidate plant set P = {Pp̂1
, Pp̂2

, · · · , Pp̂Np
}

comprising Np = 95 plants (248 having been removed). The corresponding candidate
controller set C = {Cĉ1 , Cĉ2 , Cĉ3 , · · · , CĉNp

} also contains 95 ILC controllers. This con-
troller C set will then be used to examine the capability of EMMILC in the next section.
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6.4 Evaluation of Tracking Performance

To evaluate the performance of EMMILC, it will be compared to standard ILC. The
latter is designed using (6.15) with the nominal plant p̂52 (corresponding to p52 ∈ P),
which is very similar to model p1,1 identified using ZN

1,1. This choice of plant model
replicates how standard ILC would normally be designed, since it uses a model that
has no muscle fatigue.

To ensure fair comparison, EMMILC is implemented with the same choice of initial
model. This yields the initial ILC update ĉ52 = K(p52). The section 6.3.1 illustrated
that about 280 seconds of continuous FES stimulation was adequate to cause fatigue in
the wrist flexor and extensor muscles. This has been evidenced by the output ampli-
tude dropping to 61% of its initial level. To induce fatigue, both EMMILC and standard
ILC are implemented over 50 trials lasting 400 seconds in total according to a stan-
dardised protocol, thereby comprehensively covering the 280 seconds duration of the
identification test, which demonstrated the onset of fatigue. The subject is allowed to
rest sufficiently (longer than one hour) before each experiment to prevent initial fatigue
before stimulation.

To illustrate the capability of EMMILC, its tracking performance is now compared with
the results of standard ILC at trial 10 for initial convergence, and trial 50 for long-
term convergence. The tracking plots are shown in Figure 6.13 for standard ILC and
Figure 6.14 for EMMILC. The findings indicate that EMMILC is capable of maintaining
robust performance even after achieving initial convergence. In contrast, the tracking
performance of standard ILC significantly degraded as a result of model mismatch
caused by physiological variations.

FIGURE 6.13: The tracking plots in time domain for standard ILC at a): trial 10 and b):
trial 50.

To measure the variation of tracking performance along the trials, the error ratio ER(k)
is computed for each ILC trial k. A smaller value of ER(k) indicates higher accuracy
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FIGURE 6.14: The tracking plots in time domain for EMMILC at a): trial 10 and b):
trial 50.

over trial k. This is defined by

ER(k) :=
∥y2(k)∥
∥yre f ∥

. (6.16)

The results are illustrated by Figure 6.15, and the corresponding EMMILC switching
signal is shown by Figure 6.16.

FIGURE 6.15: Comparison of tracking performance between standard ILC and EM-
MILC.

The results showed that the standard ILC approach reduced tracking error by 70% of its
initial value within 5 trials by using the update ĉ52 = K(p52). However, there was a fast
occurrence of fatigue after trial 8 that significantly degraded the tracking performance
of standard ILC to the end of experiment. This motivated EMMILC to provide a better
robust performance.
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FIGURE 6.16: EMMILC switching signal.

As a comparison, EMMILC kept its tracking error at a low level (20% of initial error)
with the existence of fatigue by switching to ILC update ĉ69 = K(p69) at the end of trial
8 (shown by Figure 6.16). Across 50 stimulation trials lasting over 400 seconds, EM-
MILC maintained lower tracking errors compared to standard ILC, despite the onset of
muscle fatigue during the 280 seconds of the identification test, as illustrated by Figure
6.7. This provides strong evidence that EMMILC can appropriately cope with physio-
logical changes (e.g. fatigue) by updating the candidate plant models generated from
Algorithm 1, and hence yields a better robust performance that outperforms existing
standard ILC.

6.5 Initial Evaluation of Misalignment

The earlier results showed feasibility with a single test participant. The effect of fatigue
and other physiological variation was evaluated, however perfect electrode positioning
was assumed. However, in practice the electrodes will never be positioned exactly as
they were during previous sessions or when the model identification was performed.

To mimic real conditions over a programme of rehabilitation, the previous tests are now
repeated on four further subjects using both aligned electrode (AE) and misaligned
electrode (ME) positions as shown in Figure 6.17. The electrode initially positioned on
the distal side of the extensor is shifted towards the proximal side of the extensor by
approximately 2.5 cm, corresponding to half the width of the electrode pad. This aims
to replicate the variation in electrode placement that would naturally occur in clinical
practice.
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FIGURE 6.17: Electrode placements: a) AE and b) ME positions.

To address misalignment, it is first necessary to include its effect in the model (6.7). It is
observed from multiple tests that the closer the two electrodes in a pair are positioned
to one another, the smaller the resulting muscle torque becomes. This is illustrated
by Figure 6.17 b), where the electrodes positioned on the wrist extensor are closer to
one another, yielding smaller wrist extension in contrast to the wrist flexion move-
ment. This can be modelled by multiplying the stimulation applied to each muscle by
a different scalar value, where a smaller scalar value corresponds to greater electrode
misalignment. These are implemented in the previous model (6.7) by exchanging the
gain hIRC for the piecewise linear function

w = hIRC(u1) :=

{︄
αu1, u1 ≥ 0

βu1, u1 < 0
, (6.17)

where w is the internal muscle torque, and α, β are the misalignment parameters for
FCR and ECR muscles respectively. Then system model (6.7) is replaced by

Y1(s) =
1

Iss2 + Bss + Ks⏞ ⏟⏟ ⏞
HRBD

ω2
n

s2 + 2ωns + ω2
n⏞ ⏟⏟ ⏞

HLAD

W(s), (6.18)

where X(s) denotes the Laplace transformed signal x(t) in the time domain. This new
model form can be applied directly to the identification and candidate model design
procedures described in Section 6.3 and 4.2, simply exchanging parameter hIRC with
parameters α, β.

To conduct misalignment tests, four unimpaired subjects were recruited, as a prerequi-
site for later clinical tests with stroke patients. The identification procedure described
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in Section 6.3 was applied to only one subject to identify an uncertainty set. This aims to
evaluate whether a candidate model set generated using one subject’s data could yield
satisfactory performance with all subjects. If successful, this would effectively remove
the need for model identification and hence constitute a major step towards achieving
model-free, home-based FES rehabilitation. Having collected data sets, the identified
models had a fitting accuracy range of 61% − 71% and a validation accuracy range of
59%− 68%. The parameters of these identified models varied in the ranges summarised
in Table 6.2. This test involved an elder subject with reduced muscle power, which led
to significantly smaller values of muscle stiffness compared with the values identified
in Table 5.1 and 6.1. Nonetheless, this uncertainty space given in Table 6.2 remained
valid for all subjects, as the stiffness values that exceeded the uncertainty range were
absorbed by other amplitude parameters (e.g., α and β). Applying the design procedure

TABLE 6.2: Values of wrist parameters.

Parameter Symbol Uncertainty range Unit
Natural frequency ωn 5 ∼ 15 rads/s

Stiffness Ks 0.01 ∼ 0.08 Nm/rad
Damping Bs 0.001 ∼ 0.01 Nms/rad

Inertia Is 0.00001 ∼ 0.0001 Nms2/rad
Coefficient α α 0.6 ∼ 1.2 N/A
Coefficient β β 0.9 ∼ 1.1 N/A

Algorithm 1 then produced a minimal candidate set P = {Pp1 , Pp2 , ..., PpNp
} comprising

Np = 116 plants (4 having been removed).

The first tests compared standard ILC with EMMILC for all subjects using AE position-
ing. Standard ILC required a new model to be identified. Therefore the identification
procedure described in Section 6.3 was applied with each subject. The resulting iden-
tified model was then lifted to give Pp̂ which was applied with standard ILC update
(6.15) to track yre f over 50 trials, in order to fully induce muscle fatigue during intensive
stimulation.

After a 20-minute rest, EMMILC was then performed over 50 trials using the same
candidate set defined above for each subject. The tracking performance was measured
by introducing the new, more informative, performance index

PINk =
Nk

∑
k=1

∥y2(k)∥
∥yre f ∥

, (6.19)

where Nk denotes a total trial number of interest. This index accumulates the error
ratio over the first Nk trials and captures both convergence speed and final tracking
accuracy [Ratcliffe et al., 2006b]. The smaller the value of PINk , the better the tracking
performance over the Nk trials. By computing this index, the tracking performance for
each subject is shown in Table 6.3 for standard ILC, and Table 6.4 for EMMILC.
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TABLE 6.3: Quantified performance PI50 and PI10 values for each subject using stan-
dard ILC with AE and ME electrode positions.

Subject
Standard ILC

AE(PI50) AE(PI10) ME(PI50) ME(PI10)
a 14.94 4.75 23.17 7.67
b 16.33 5.98 23.44 7.55
c 16.42 4.93 21.94 5.45
d 30.94 7.69 105.11 (diverging) 9.35

TABLE 6.4: Quantified performance PI50 and PI10 values for each subject using EM-
MILC with AE and ME electrode positions.

Subject
EMMILC

AE(PI50) AE(PI10) ME(PI50) ME(PI10)
a 13.95 5.81 15.11 5.77
b 12.32 3.68 12.09 4.06
c 16.39 4.91 14.88 4.67
d 26.76 7.96 32.54 8.89

This shows that all subjects performed better using EMMILC, as the PI50 values are
smaller than those of standard ILC. Specifically, Figure 6.20 shows the results with sub-
ject a, where EMMILC has approximately 25% better performance. In terms of the
convergence over the initial 10 trials, measured using PI10, EMMILC provides similar
performance compared with standard ILC.

Figure 6.22 a) shows the control effort ∥u2(k)∥ applied to subject b over trial k =

1, 2, . . . , 50 using standard ILC and EMMILC. In both cases the FES energy increases
over time due to muscle fatigue. However, this continuous increase of stimulation in-
creases patient discomfort, especially in the case of standard ILC. In comparison, EM-
MILC has reduced the stimulation required by using the most accurate plant model on
every trial, thereby minimising energy. In contrast, standard ILC employs an inaccu-
rate plant model which wastes effort by exciting modes/frequencies not required by
the task.

In a home-use or wearable scenarios there is limited processing power, meaning that
fewer candidate plant models can be supported. To investigate the effect of limited
computational resources, EMMILC was next redesigned to have fewer candidate plants.
This was achieved by designing Qĉ in Algorithm 1 to reduce robustness when min-
imising (3.59) and hence cover the uncertainty space with fewer candidate plants. As
a compromise, the convergence rate of each plant model is reduced. To examine this,
four candidate sets were produced with a descending number of plants. Each of them
was applied on one subject with AE positioning over 50 trials. The results are then
presented in Table 6.5.

The results show that the tracking performance of EMMILC reduces as the number of
candidate plants (and hence computational load) reduces. Comparison between Table
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TABLE 6.5: Quantified performance for four different plant sets.

Plant set No. plants PI50 value
P1 Np = 116 12.32
P2 Np = 97 13.81
P3 Np = 71 14.03
P4 Np = 30 14.66

6.5 and Table 6.3 shows that, even with only 30 models, the performance of EMMILC is
still superior to that of standard ILC. This supports the efficacy of EMMILC to be used
for home-based FES rehabilitation. However, the subject reported a larger oscillation
of wrist movements as the number of candidate models decreased, slightly reducing
comfort during testing.

The test procedure was then repeated with the ME position. Results show that EM-
MILC significantly outperformed standard ILC, which could not stabilise the system
with subject d. This is manifested in both short-term (PI10) and long-term (PI50) con-
vergence in Table 6.4. The tracking plots of standard ILC with electrode pads in AE
and ME positions were shown in Figure 6.18. This demonstrated that even a minor
misplacement of one electrode pad can substantially degrade the performance of stan-
dard ILC. As a comparison, EMMILC maintained good performance with electrode
misaligned, as shown in Figure 6.19. This not only illustrated that EMMILC outper-
formed standard ILC in handling model uncertainty, but also produced remarkable
outcomes that the candidate plant set employed for all subjects was built only for sub-
ject b. This confirms the possibility that no further identification is required for different
subjects.

FIGURE 6.18: The tracking plots in time domain for standard ILC with electrode pad
at a): AE position and b): ME position.

To illustrate the switching process, the tracking results of subject a are shown for AE
(Figure 6.20) and ME (Figure 6.21), positioning. As in Figure 6.20 a), standard ILC
decreased its tracking error to 26% of its initial value within 10 trials. In comparison,
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FIGURE 6.19: The tracking plots in time domain for EMMILC with electrode pad at a):
AE position and b): ME position.

EMMILC required 10 trials to reach 14% of its initial value. The switching process is
shown Figure 6.20 b), where the change in wrist dynamics started to increase after trial
29. EMMILC adapted to this by switching to other candidate plants. As shown in
Figure 6.21 a), EMMILC decreased to 19% of its initial error after 10 trials, but standard
ILC decreased to only 47% of its initial error. Similarly, EMMILC also adapted to the
increased physiological variation following trial 29, as shown in Figure 6.21 b).

Figure 6.22 b) shows the control effort used by each ILC type. EMMILC clearly applied
much smaller stimulation inputs to subject b compared to standard ILC with ME posi-
tioning, illustrating that it can deal with fatigue much more effectively. EMMILC also
achieved far better performance with ME positioning, as shown in Table 6.4.

6.6 Summary

This chapter introduced an experimental set-up and associated hardware that corre-
sponded to a realistic FES rehabilitation scenario. Co-activation and muscle force equal-
isation were applied to reduce the effect of the muscle recruitment dead-zone. Then,
a comprehensive identification procedure was conducted to capture parametric varia-
tions that include fatigue and electrode positioning. As a result, the initial plant set was
constructed by sampling the variation in all the wrist model parameters. The minimum
candidate plant set provided by Algorithm 1 was then tested by implementing EM-
MILC on a healthy subject. The results experimentally confirmed the proof of concept
and showed that EMMILC outperforms standard ILC. Further experiments involved
conducting additional misalignment tests. The EMMILC framework was experimen-
tally tested with four healthy test subjects and automatically adapted to their levels of
fatigue and electrode misalignment. As a result, EMMILC has improved performance
by 28% compared to standard ILC.
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FIGURE 6.20: The tracking performance with electrodes in standard position shown
by a) [Red line] Tracking error ratio of EMMILC in each trial with standard electrode
positioning. [Blue line] Tracking error ratio of Standard ILC in each trial with standard

electrode positioning. b) Switched plant for EMMILC in each trial.
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FIGURE 6.21: The tracking performance with electrodes in misaligned position shown
by a) [Red line] Tracking error ratio of EMMILC in each trial with misaligned elec-
trode positioning. [Blue line] Tracking error ratio of Standard ILC in each trial with

misaligned electrode positioning. b) Switched plant for EMMILC in each trial.
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FIGURE 6.22: Control energy ∥u2(k)∥ plots of a) [Red line] EMMILC in trial k with AE
positioning. [Blue line] standard ILC in trial k with AE positioning. b) As above but

with ME positioning.
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Chapter 7

Numerical Evaluation of Misalignment

While the previous chapters have validated EMMILC’s capability in handling model
uncertainty, they have ignored the issue of misalignment, which often results in de-
creased accuracy in practical applications. Positioning of electrodes often takes 10 − 15
minutes and will inevitably vary between sessions. The assessment provided in Chap-
ter 2 also indicates that spatial inaccuracies in the application of FES could result in
discomfort [Micera et al., 2010] when stimulated, as well as lead to inadequate move-
ment outcomes [Crema et al., 2018]. This source of uncertainty has not been investi-
gated in FES control, either experimentally or numerically. The purpose of this chapter
is to investigate the misalignment effect by building on the simulation from Chapter
5. It first evaluates how differing degrees of misalignment influence the effectiveness
of standard ILC, and then goes on to assess the effectiveness of the previous EMMILC
design in handling them.

7.1 Misaligned Model

To capture the effect of electrode misalignment, it is essential to model the effect of vary-
ing the point at which FES is applied via an electrode positioned on the skin surface.
Early studies [Livshitz et al., 2001; Kenney et al., 2016; Chu et al., 2023] primarily used
the finite element method to compute the current distribution within nerves and op-
timise electrodes positioning. However, these models were computationally intensive
and incompatible with model-based control applications. To address these limitations,
[Freeman et al., 2016; Kutlu et al., 2016a] treated the stimulation effect as a linearly com-
bined activation of all muscles. This reduced computational burden and was applica-
ble for model-based control design. However, they ignored the effects of misalignment,
limiting its applicability for adaptive FES control in a home-use scenario. An alterna-
tive model was proposed in [Gauthier et al., 2017], where an analytical model based on
Fourier series was used to calculate the electric field distribution, which offered more
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physical meaning than a weighted sum. Unfortunately, it still did not consider spatial
misalignment, and was not validated for FES-based upper-limb rehabilitation. Obien
et al. [2015] presented a rigorous analysis by applying Coulomb’s law to determine
the electric distribution across the electrode array, a method grounded in underlying
physics. Therefore, this approach will now be adapted to determine the effect of elec-
trode position change.

Consider an electrode positioned within a fixed coordinate system (x1, x2), such that
FES is applied to the muscle activation point located at (x′1, x′2). According to Coulomb’s
law, the electric field F generated by a charge of magnitude q at a distance r can be de-
scribed by the formula κq

r2 , where κ is the Coulomb’s constant. As a result, we model
our electrode pad as an area of S which has uniform charge, and is situated around the
muscle activation point (x′1, x′2), as illustrated in Figure 7.1 a). Consequently, this yields
the electric field at the muscle activation point of

F(t) =
(︃‹

S

κ

∥(x1, x2)− (x′1, x′2)∥2 dx1dx2

)︃
⏞ ⏟⏟ ⏞

A

u(t). (7.1)

FIGURE 7.1: Geometry coordinates (x1, x2) with muscle activation points defined by
a): standard position (x′1, x′2). b): a shift in electrode position given by (∆x1 , ∆x2).

Specifically. the result F(t) can be interpreted as the electric field contribution at the
muscle activation point (x′1, x′2) from a unit charge located at (x1, x2) in the fixed coor-
dinate system. The integral in (7.1) is performed over the surface area S of the electrode
pad, excluding a unit charge located at (x1, x2) that perfectly aligns with the muscle
activation site (x′1, x′2) to avoid singularity ((x1, x2) ̸= (x′1, x′2)).

Here stimulation signal u(t) is assumed to equal charge q(t). If this is not the case, its
constant of proportionality can be absorbed into κ. In Chapter 5, the input to the hIRC
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block was u(t), as shown in Figure 5.1. Based on the field (7.1), this input u(t) therefore
corresponds to F(t)

A .

Now consider a shift in electrode position given by (∆x1 , ∆x2), as illustrated in Figure
7.1 b). The field is decreased to

F(t) =
(︃‹

S

κ

∥(x1, x2)− (x′1 + ∆x1 , x′2 + ∆x2)∥2 dx1dx2

)︃
u(t), (7.2)

and the hIRC block’s input reduces from u(t) to a new value given by

v(t) =
F(t)

A
=

(︃‹
S

∥(x1, x2)− (x′1, x′2)∥2

∥(x1, x2)− (x′1 + ∆x1 , x′2 + ∆x2)∥2 dx1dx2

)︃
⏞ ⏟⏟ ⏞

A(∆x1 ,∆x2 )

u(t). (7.3)

If there is no misalignment, then A(∆x1 , ∆x2) = A(0, 0) = 1, and v(t) = u(t) is restored.

To modify the hand model (5.1) detailed in Chapter 5, to incorporate the impact of
misalignment, Figure 5.1 becomes

FIGURE 7.2: Modified model structure that includes the effect of misalignment
A(∆x1 , ∆x2), where the FES is reduced.

Model (5.1) is modified to the general form

Pp = hIRC
ω2

n
s2 + 2ωns + ω2

n

1
Iss2 + Bss + Ks

A(∆x1 , ∆x2), (7.4)

where A(∆x1 , ∆x2) is defined in (7.3).

Recall from Section 5.1 that the lifted plant Pp̂ is derived from the unlifted plant Pp,
which is characterised by the state-space representation p = (Ap, Bp, Cp, Dp). To fit the
misaligned plant (7.4) into the ILC framework, the matrix Bp and Dp are simply mod-
ified to Bp A(∆x1 , ∆x2) and Dp A(∆x1 , ∆x2), respectively. Inserting these into the matrix
(5.2), this yields the misaligned lifted plant

Pp̂ =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Dp A(∆x1 , ∆x2 ) 0 · · · 0 0
CpBp A(∆x1 , ∆x2 ) Dp A(∆x1 , ∆x2 ) · · · 0 0

Cp ApBp A(∆x1 , ∆x2 ) CpBp A(∆x1 , ∆x2 ) · · · 0 0
...

...
. . .

...
...

Cp AN−2
p Bp A(∆x1 , ∆x2 ) Cp AN−3

p Bp A(∆x1 , ∆x2 ) · · · Dp A(∆x1 , ∆x2 ) 0
Cp AN−1

p Bp A(∆x1 , ∆x2 ) Cp AN−2
p Bp A(∆x1 , ∆x2 ) · · · CpBp A(∆x1 , ∆x2 ) Dp A(∆x1 , ∆x2 )

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (7.5)
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In Chapter 5, the true lifted plant Pp̂∗ was considered to be an aligned plant. This is
equivalent to the misaligned structure (7.5) with A(∆x1 , ∆x2) = A(0, 0) = 1. If there
is misalignment (∆x1 , ∆x2), the true lifted plant Pp̂∗ will be computed using (7.5) with
A(∆x1 , ∆x2) ̸= 1. The ILC plant dynamics are

y1(k) = Pp̂∗u1(k), (7.6)

which fits into the structure of Figure 3.2, and makes Theorem 3.1 applicable for de-
signing a robust ILC controller.

7.2 Numerical Evaluation of Standard ILC

Having defined the misaligned model, the numerical evaluation performed in Chapter
5 using standard ILC is now repeated with the misaligned plant Pp∗ . Aiming to focus
exclusively on misalignment, the ILC controller is designed by applying the aligned
model Pp̂ to design procedure Cĉ = K(Pp̂) with (5.4). The control parameters are iden-
tical to the settings in Chapter 5. As a comparison, the shifts (∆x1 , ∆x2) in electrode
position are set to (0, 0)cm, (0.4, 0.4)cm, (0.8, 0.8)cm, (1.2, 1.2)cm, and (1.6, 1.6)cm, cor-
responding to increasing levels of misalignment in both the x1 and x2 directions. The
error norm convergence over 20 ILC trials are shown by Figure 7.3.
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FIGURE 7.3: Convergence of error norm (Standard ILC) for each trial k with respect to
increasing levels of misalignment.
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Utilising the performance index (5.5), the performance of standard ILC can be com-
pared effectively across varying levels of misalignment. Table 7.1 displays the results,
illustrating an 860.17% increase in the accumulated error of standard ILC when the elec-
trode is displaced by a distance of 2.26cm from the muscle activation site. The effect of
misalignment has been to dramatically reduce the convergence rate of ILC.

TABLE 7.1: Comparison of standard ILC performance for increasing levels of mis-
alignment (∆x1 , ∆x2).

(∆x1 , ∆x2) A(∆x1 , ∆x2) Distance to muscle (cm) Performance index E
(0, 0) 1 0 610.31

(0.4, 0.4) 0.7788 0.57 688.68
(0.8, 0.8) 0.3679 1.13 1.12 × 103

(1.2, 1.2) 0.1054 1.70 2.97 × 103

(1.6, 1.6) 0.0183 2.26 5.86 × 103

7.3 Numerical Evaluation of EMMILC

In contrast to the application of standard ILC, EMMILC is now applied using the can-
didate set defined in Chapter 5. Essentially, the same EMMILC is used, but it is now
implemented on a misaligned true plant rather than the aligned one. The error norm
convergence over 20 ILC trials is shown in Figure 7.4. Similarly, Table 7.2 compares
the performance of EMMILC with respect to increasing levels of misalignment. It il-
lustrates an 853.02% reduction in the effectiveness of EMMILC when the electrode is
displaced by a distance of 2.26cm from the muscle activation site.

Surprisingly, EMMILC fails to outperform the standard ILC results presented in Table
7.1. The reason lies in the selection of the candidate plant set. In Chapter 5, the plant
set was designed to cover fatigue. The step response of each candidate plant is shown
in Figure 7.5 a), illustrating that the lowest steady-state amplitude is 3.61 × 10−3. This
corresponds to the most fatigued model in the plant set built in Chapter 5, and serves as
a starting point of misalignment. As misalignment increases, the misaligned true plants
result in even smaller steady-state gains compared to the starting point, as illustrated
in Figure 7.5 b). As a result, all candidate plants utilised in Chapter 5 are not available
for capturing the effect of misalignment. This results in the degraded performance of
EMMILC, which is similar to standard ILC.

The obvious question is how to improve the performance of EMMILC by choosing a
better candidate plant set. While no single parameter within model (5.1) can directly al-
ter the response amplitude, several parameters do influence the steady-state gain. The
stiffness Ks dominates in these parameters, and has the greatest impact on modifying
the steady-state gain [Charles and Hogan, 2011]. In this case, the effectiveness of EM-
MILC can therefore be improved by broadening the range of stiffness Ks as indicated by
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FIGURE 7.4: Convergence of error norm (EMMILC) for each trial k with respect to
increasing levels of misalignment.

TABLE 7.2: Comparison of EMMILC performance for increasing levels of misalign-
ment (∆x1 , ∆x2).

(∆x1 , ∆x2) Distance to muscle (cm) Performance index E
(0, 0) 0 613.71

(0.4, 0.4) 0.57 689.63
(0.8, 0.8) 1.13 1.12 × 103

(1.2, 1.2) 1.70 2.96 × 103

(1.6, 1.6) 2.26 5.85 × 103

FIGURE 7.5: Step response of a): each candidate plant (including the true plant Pp∗ ),
and b): the misaligned true plant with increasing levels of misalignment (∆x1 , ∆x2)

shown in Table 7.2.

the values in Table 5.1, which includes more candidate plant models that have smaller
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steady-state gains. To verify this, the uncertain range of Ks in Table 5.1 is expanded to
0.62 ∼ 12.96. The previous EMMILC evaluation is re-conducted using the new candi-
date plant set, comprising more candidate plants that have smaller steady-state gains.
This yields the EMMILC error convergence results depicted in Figure 7.6, and the corre-
sponding EMMILC performance quantified in Table 7.3. Compared with Table 7.2, this
only illustrates a 355.25% reduction in the effectiveness of EMMILC when the electrode
is displaced by a distance of 2.26cm from the muscle activation site. These results indi-
cate that it is possible to address the misalignment by expanding the candidate plant
set.
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FIGURE 7.6: Convergence of error norm (EMMILC) results from the expanded candi-
date plant set.

TABLE 7.3: Comparison of EMMILC performance using the expanded candidate plant
set.

(∆x1 , ∆x2) Distance to muscle (cm) Performance index E
(0, 0) 0 869.85

(0.4, 0.4) 0.57 987.04
(0.8, 0.8) 1.13 923.41
(1.2, 1.2) 1.70 1.31 × 103

(1.6, 1.6) 2.26 3.96 × 103

7.4 Stimulation of unintended muscles

The Previous evaluation shows that numerical improvement of performance can be
achieved by EMMILC. However, the practical application may experience additional
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performance degradation or even system instability. This is because, as the electrode
misalignment with the target activation site increases, it inevitably stimulates unin-
tended muscles, thereby producing extra torques that disrupt the intended movements.
To assess this, assume that the previous model used an extensor muscle positioned at
the point (0, 0) as the target activation site for modulating finger extension movement.
An antagonistic flexor muscle located at (1.6, 1.6) is now added in the same coordinates
to induce finger flexion movement, as illustrated by Figure 7.7. The combined action of
the two muscle torques results in the overall muscle torque that activates the joint, as
depicted in Figure 7.8.

FIGURE 7.7: Defined muscle locations for finger extensor (0, 0), and flexor (1.6, 1.6).

FIGURE 7.8: Modified model structure where the extensor torque φ(t) is canceled by
the counteracting torque φ′(t), resulting from the unintended stimulation applied on

the flexor muscle.

Having extended the previous model to include this new muscle, parameters are re-
quired for the flexor dynamics. Godfrey et al. [2013] demonstrated that actuating finger
extensors requires more stimulation compared to finger flexors for hand impairment.
This will be modeled by reducing the stiffness of the flexor muscle to 2.24Nm/rad,
while keeping the other parameters the same as in Chapter 5. The effect is to reduce
steady-state gain of the flexor, which effectively means it requires more stimulation.

A simulation will now be conducted to mimic the impact of an electrode pad that be-
comes gradually misaligned. To achieve this, the stimulation electrode starts at (0, 0),
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aligned with the extensor muscle. It then moves slowly to (1.6, 1.6) as depicted in Table
7.3. As a result, the flexor muscle is increasingly activated, producing flexion torque
that opposes the desired extension, as shown in Figure 7.8. The EMMILC evaluation
is conducted again employing the expanded candidate plant set utilised in the previ-
ous section. Figure 7.9 illustrates the convergence outcomes, indicating that system’s
performance notably deteriorates as misalignment increases. This results from the in-
creased opposing torque produced by unintentional activation of the finger flexor, cre-
ating a positive error feedback loop that degrades performance. In other words, as
the stimulation site moves towards the flexor, the overall model shown in Figure 7.8 is
dominated by the flexor dynamics. Consequently, the overall torque becomes negative,
however, it is impossible to apply negative stimulation to remove the error feedback.
Therefore, in this situation, the EMMILC cannot provide stability. Since standard ILC
is a special case of EMMILC, it will also fail. This clearly reduces the practicality of
deploying FES devices in home-use scenarios, as the electrode misalignment often oc-
curs. To overcome this limitation, a more comprehensive framework is needed to en-
hance muscle selectivity, enabling the automatic delivery of FES to the target muscle’s
intended activation site.
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FIGURE 7.9: Convergence of error norm (EMMILC) results from the stimulation on
two muscles.
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7.5 Summary

This chapter illustrated how misalignment of electrodes affects system dynamics. A
novel misalignment model based on underlying physics was introduced to quantita-
tively represent the decrease in FES caused by positional displacement. The simulation
findings initially revealed that increasing misalignment drastically reduces standard
ILC performance by nearly 860.17%. In comparison, while EMMILC displayed more
resilience to dynamic changes as discussed in Chapter 5, it still faced a performance
reduction (approximately 355.25%) as that of standard ILC when misalignment was
elevated. In practice, performance degrades further due to potential stimulation of
unintended muscles. This was shown in the stimulation of both finger flexor and ex-
tensor muscles. Because the stimulation point does not change, no controller can ad-
equately compensate for extreme misalignment. For instance, if the stimulation point
is associated with the flexor model, a stabilising controller would have to apply nega-
tive stimulation, which is impossible to achieve. To address this, an effective solution
is to physically modify the stimulation point to minimise the activation of unintended
muscles when misalignment occurs. This motivates a comprehensive approach that
merges the previous EMMILC framework to compensate for electrode misalignment
using electrode arrays. This will be developed in the next chapter.
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Chapter 8

Application of EMMILC to Electrode
Arrays

In the preceding chapter, the consequences of electrode misalignment were analysed
for both standard ILC and EMMILC, showing a significant degradation in tracking ac-
curacy with increased misalignment. This occurs due to a substantial reduction in FES,
along with the possibility of inadvertently stimulating unintended muscles. As dis-
cussed in Chapter 2, single-pad FES devices struggle with spatial uncertainties and are
often utilised for generating basic and slow movements involving one or two muscles.
An electrode array system can potentially address this by automatically modifying the
stimulation location. This chapter first develops a MIMO model and control structure
for electrode arrays. To address misalignment, the analysis from Chapter 7 is then ex-
panded to place this within the EMMILC framework of Chapter 5.

8.1 Definition of Array Geometry

Electrode arrays enable distinct muscle sites to be individually activated by separate
FES channels, facilitating the tracking of more complex movements across various mus-
cles and electrode positions. However, this also increases system complexity, trans-
forming it from a SISO to a MIMO structure. To tackle these challenges, this section
begins with introducing a mathematical model for an electrode array, expanding the
single-electrode formulation (7.3) into a more comprehensive framework designed for
use with an electrode array.

Consider an electrode array consisting of n pads, positioned over underlying muscles
indexed as j = 1, 2, ..., l. Each muscle is associated with an activation site Sj defined
within the same coordinate system, as depicted in Figure 8.1. At time t, the stimulation
signal ui(t) is applied to the ith electrode pad located at (xi

1, xi
2) where i = 1, 2, ..., n.
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Based on the Coulomb’s law model (7.1), the electric field delivered to the activation

FIGURE 8.1: Coordinate system where electrode pad i stimulates muscle j defined on
the surface Sj.

site of the jth muscle by the stimulation ui(t), is

vj(t) =

(︄‹
Sj

κ

∥(x1, x2)− (xi
1, xi

2)∥2
dx1dx2

)︄
⏞ ⏟⏟ ⏞

Aj,i

ui(t). (8.1)

The overall electric field delivered to the muscle activation site j is then the summation

vj(t) =
n

∑
i=1

Aj,iui(t), (8.2)

which gives rise to the overall mapping

v(t) = Au(t). (8.3)

The next step involves modeling the resultant activation of muscle j by stimulation
vj(t), and computing the response of the rigid body dynamics to the cumulative effect
of all l muscles. These will be introduced in the next section.
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8.2 Aligned Array Dynamics

The prior model configuration shown in Figure 7.2 has been modified to fit into the
nonlinear MIMO framework, facilitating its application with electrode arrays. The elec-
tric field applied to the jth muscle activation point then feeds into the static function
hIRC,j(vj(t)), which is then combined with the linear activation dynamics hLAD,j(s) in
a cascaded manner. Each hLAD,j(s) block produces an active force f j(t), which is sub-
sequently connected to a tendon network as established in [Valero-Cuevas et al., 2007].
The muscle torques are combined by the tendon network to activate each joint. Sup-
pose the tendons are connected to m joints, then the torque produced around joint q is
formulated as

τq(t) =
l

∑
j=1

Rq,j(yq(t)) f j(t), q = 1, 2, ..., m, (8.4)

where Rq,j(y(t)) is the moment arm of muscle j about joint q. This moment arm is
produced by the geometry of the tendon network, and is a function of the joint angle
y(t). It is computed by

Rq,j(y(t)) =
∂Ej(yq)

∂yq
, (8.5)

where Ej(y) represents the tendon excursion of muscle j associated with muscle j, and
anatomical parameters defined in [Soska et al., 2012]. The torque (8.4) can then be
expressed as a vector

τ(t) = R(y(t)) f (t), (8.6)

where R(y(t)) is the tendon network matrix, which is generally nonlinear with respect
to the joint angles [Soska et al., 2012]. The torque vector τ(t) then actuates the rigid
body dynamics hRBD, which are represented by the standard form

M(y(t))ÿ(t) + C(y(t), ẏ(t)) + G(y(t)) + D(y(t), ẏ(t)) = τ(t). (8.7)

Here matrix M(y(t)) represents the joint inertia, C(y(t), ẏ(t)) captures Coriolis and cen-
trifugal effects, G(y(t)) is gravitational torque, and D(y(t), ẏ(t)) models joint damping
and friction. The overall muscle dynamics are hence illustrated by the general form
shown in Figure 8.2. Note that this model structure represents a nonlinear perspective
of the model forms illustrated in Figure 6.5 and Figure 7.2. Additionally, it incorporates
the physiological tendon network for linking muscles to joints. Having established this
general model, the next step involves developing controllers suitable for this structure.
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FIGURE 8.2: A general form of the MIMO dynamics of the aligned array.

8.3 Control Design for Aligned Arrays

The nonlinearities in components of the general model structure shown in Figure 8.2
makes subsequent control design challenging. However, the system is often approxi-
mated as linear in control design for the following reasons:

Assumption 1. For finger movements, the elements within the tendon network R(y(t)) are
predominately static scalar values [Soska et al., 2012] due to the structure of the hand and
restricted range of functional movements in rehabilitation. Thus, the tendon network simplifies
to a fixed matrix [Theodorou et al., 2011], denoted by R.

Furthermore, the rigid body dynamics hRBD also can be approximated as linear over
restricted ranges, as shown next

Assumption 2. The rigid body dynamics (8.7) can be regarded as linear during planar move-
ments when G(y(t)) is fixed and the angular velocity remains sufficiently low, resulting in
linear inertia M(y(t)) and Coriolis C(y(t), ẏ(t)) matrices. Under the same condition, the
friction and damping term D(y(t), ẏ(t)) can be assumed to be piecewise linear, as supported
by experimental modeling results from stroke participants identified under constrained planar
motion [Freeman et al., 2009a]. These justify a linear formulation of the overall rigid body
dynamics hRBD.

Building on these two assumptions, Figure 8.2 is modified to

FIGURE 8.3: The simplified form of the aligned array dynamics with fixed matrix R
and linear hRBD(s).

This is one possible way to interpret the model structure (see Figure 7.2) for practical
control design. The MIMO system illustrated in structure (8.3) can therefore be simpli-
fied to

Pp : u → y : y = hRBDRhLADhIRC Au, (8.8)
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with the same structure of hIRC, hLAD dynamics as used in Chapter 5, the components
can be chosen to take the following forms

y = [y1(t), y2(t), ..., ym(t)]⊤, u = [u1(t), u2(t), ..., un(t)]⊤,

hRBD(s) =

⎡⎢⎢⎣
1

Is,1,1s2+Bs,1,1s+Ks,1,1
. . . 1

Is,1,ms2+Bs,1,ms+Ks,1,m
...

. . .
...

1
Is,m,1s2+Bs,m,1s+Ks,m,1

. . . 1
Is,m,ms2+Bs,m,ms+Ks,m,m

⎤⎥⎥⎦ , R =

⎡⎢⎢⎢⎢⎣
R1,1 R1,2 . . . R1,l

R2,1 R2,2 . . . R2,l
...

...
. . .

...
Rm,1 Rm,2 . . . Rm,l

⎤⎥⎥⎥⎥⎦ ,

hLAD(s) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

ω2
n,1

s2+2ωn,1s+ω2
n,1

0 . . . 0

0
ω2

n,2
s2+2ωn,2s+ω2

n,2
. . . 0

...
...

. . .
...

0 0 . . .
ω2

n,l
s2+2ωn,ls+ω2

n,l

⎤⎥⎥⎥⎥⎥⎥⎥⎦
,

hIRC =

⎡⎢⎢⎢⎢⎣
hIRC,1 0 . . . 0

0 hIRC,2 . . . 0
...

...
. . .

...
0 0 . . . hIRC,l

⎤⎥⎥⎥⎥⎦ , A =

⎡⎢⎢⎢⎢⎣
A1,1 A1,2 . . . A1,n

A2,1 A2,2 . . . A2,l
...

...
. . .

...
Al,1 Al,2 . . . Al,n

⎤⎥⎥⎥⎥⎦ ,

where hIRC,j are approximated as constants as detailed in Chapter 5. The array matrix
A has elements Aj,i which are defined in (8.1).

Since the model (8.8) is linear, the design of MIMO ILC can be conducted directly. Nev-
ertheless, as shown in Section 7.4, the input u(t) must remain positive. Therefore, it is
strategical to activate electrode pads that align with the target muscles, thereby facili-
tating the intended motion. This can be achieved by the following design

Remark 1. Suppose each of the m joint angles is primarily actuated by a single muscle, and the
activated electrode pads are chosen to stimulate each of these muscles independently. Then the
matrix R contains only a single non-zero element in each row and column. Similarly, matrix A
only has a single non-zero element in each row, and a single non-zero element in each column
corresponding to each activate electrode pad. The system dynamics are hence decoupled, and an
independent controller can be designed for each stimulation channel.

Without being decoupled, this MIMO system (8.8) can still be controlled, but controller
design poses an extra challenge to achieve precise task movements. Since it has four
states, it can be expressed in state-space form, p = (Ap, Bp, Cp, Dp), with elements
Ap ∈ R4m×4m, Bp ∈ R4m×n, Cp ∈ Rm×4m, and Dp ∈ Rm×n. These elements can be
inserted into (5.2) over a time period t = 1, 2, ..., N to yield the lifted plant Pp̂. In this
case, any MIMO ILC methods [Kutlu et al., 2016a; Soska et al., 2012] can be employed
to determine the update. The EMMILC approach used in Chapter 5 can also be ap-
plied by designing a candidate plant set that covers the uncertain parameters in model



92 Chapter 8. Application of EMMILC to Electrode Arrays

(8.8). However, a key component of uncertainty is misalignment, and Chapter 7 has
illustrated that electrode misalignment significantly decreases the convergence rate, a
consequence that also occurs for arrays. To tackle this, the next section begins by defin-
ing the dynamics of a misaligned array, which are essential for the subsequent control
design.

8.4 Misaligned Array Dynamics

The misalignment in the array structure results from both translational z = (∆x1 , ∆x2)

and rotational θ deviations, as defined in Figure 8.4 a). Following the framework of the

FIGURE 8.4: Electrode array misalignment illustrated by a): rotation θ and translation
z. b): misaligned array geometry.

misaligned model (7.2), the field delivered to muscle j, from electrode pad i, is reduced
to

Fj(t) =

(︄‹
Sj

κ

∥(x1, x2)− (Rθ(xi
1, xi

2) + z)∥2
dx1dx2

)︄
⏞ ⏟⏟ ⏞

Aj,i(θ,z)

ui(t), (8.9)

where Rθ =

[︄
cos θ − sin θ

sin θ cos θ

]︄
is a 2D rotation matrix, and κ is Coulomb’s constant. The

misaligned array geometry is illustrated by Figure 8.4 b). The contribution to the jth
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muscle’s hIRC block from electrode pad i hence reduces from ui(t) to

vj(t) =
Fj(t)
Aj,i

=

(︄‹
Sj

∥(x1, x2)− (xi
1, xi

2)∥2

∥(x1, x2)− (Rθ(xi
1, xi

2) + z)∥2
dx1dx2

)︄
⏞ ⏟⏟ ⏞

Aj,i(θ,z)

ui(t). (8.10)

If there is no misalignment (e.g., θ = 0, z = (0, 0)), then Aj,i(θ, z) = 1.

The total input delivered to muscle activation location j, therefore is

vj(t) =
n

∑
i=1

Aj,i(θ, z)ui(t), (8.11)

which therefore yields the overall array mapping

v(t) = A(θ, z)u(t), (8.12)

where the fixed matrix A(θ, z) ∈ Rl×n has elements Aj,i(θ, z) defined in (8.10).

Consequently, the misaligned true model is

Pp∗ : u → y : y = hRBDRhLADhIRC A(θ, z)u, (8.13)

with components defined in Section 8.2. These can be approximated by linear forms as
was done in Section 8.3. This model will be used in the next section to formulate an
ILC scheme capable of automatically addressing the misalignment (θ, z).

8.5 Control Design for Misaligned Arrays

To address misalignment, the stimulation sites must be adjusted to ”realign” with the
target muscles if the misalignment (θ, z) is known. To do this, suppose an ILC update
Cc is designed for the aligned plant Pp with form (8.8). Suppose this true plant is now
misaligned by (θ, z), but a mapping T(θ, z) is now added in the controller to realign the
system (8.13). At ILC trial k, the ILC update applied with the misaligned system (8.13)
then becomes

Cc :y ↦→ u : u2(k) = T(θ, z)v(k),

v(k + 1) = v(k)− Ly2(k),
(8.14)

where the observed signals (u2, y2) are defined by the closed-loop system shown in
Figure 3.2. This update (8.14) is identical to (5.4), but does not include the realignment
mapping T(θ, z). This mapping T(θ, z) aims to cancel the misaligned effect caused by
A(θ, z). To achieve this, T(θ, z) is chosen to minimise the difference between the aligned
system (8.8) and the realigned true plant. This can be expressed by the optimisation
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problem

min
T(θ,z)

∥hRBDRhLADhIRC A − hRBDRhLADhIRC A(z, θ)T(θ, z)∥

≤ ∥hRBDRhLADhIRC∥ min
T(θ,z)

∥A − A(z, θ)T(θ, z)∥ .
(8.15)

By solving minT(θ,z) ∥A − A(z, θ)T(θ, z)∥, the realignment mapping T(θ, z) then has the
form

T(θ, z) = A(θ, z)† A, (8.16)

where the term A(θ, z)† has the effect of physically realigning the stimulation sites if
(θ, z) are known. The overall closed-loop structure of the ILC update (8.14) is illustrated
by Figure 8.5, where Pp̂∗ is the misaligned true plant (8.13) in the lifted form.

FIGURE 8.5: The structure of the realigned ILC controller applied with the misaligned
true plant.

This realignment mapping (8.16) can also be applied to the single-pad system (7.6)
with misalignment term A(∆x1 , ∆x2). This can be achieved by modifying T(θ, z) to
T(∆x1 , ∆x2) = A(∆x1 , ∆x2)

−1. The ILC update (8.14) then realigns the system (7.6) by
yielding A(∆x1 , ∆x2)

−1A(∆x1 , ∆x2) = A(0, 0) = 1.

Having defined this realignment approach, the next step is to show how the term
A(θ, z)† can physically modify the stimulation site to eliminate the effect of misalign-
ment in the true plant. This realignment action will be demonstrated by performing a
simple case study using standard ILC in the next section.

8.6 Simulation of Standard ILC with Realignment

Consider an 8 × 8 array (n = 64), with each electrode pad indexed by i = 1, 2, ..., 64.
Suppose this array is placed over m = 2 underlying muscles, indexed by j = 1, 2. These
muscles include the wrist extensor muscle positioned at (2.2, 2.2) and finger extensor
muscle at (7, 7), as illustrated by Figure 8.6 a). Following the design approach in Re-
mark 1, each target muscle primarily actuates a single joint angle, indexed by q = 1, 2,
as shown in Figure 8.7 a). Two active electrode pads positioned at (7.5, 7.5) and (2, 2)
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FIGURE 8.6: The 8 × 8 array geometry [black dots] with a): two underlying muscles
[yellow cross]. b): the most aligned electrode pad [red dot] chosen to stimulate each

muscle independently.

that mostly closely align with these two muscles are chosen to stimulate each muscle
independently, as illustrated by Figure 8.6 b). The desired hand motion, is defined by
the two joint angle references depicted in Figure 8.7 b).

FIGURE 8.7: The joint angles yq characterised by a): wrist extension when q = 1 and
finger extension when q = 2, which are independently actuated. b): the reference

signal described by these two joint angles.

Having defined an aligned array, the next step is to generate an aligned model for it.
Using the positions shown by Figure 8.7 b), the stimulation vj(t) delivered to muscle j,
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given by electrode pad i, is computed using (8.1). This then yields the overall mapping
v(t) = Au(t), where the mapping A defines the stimulation given by each of the 64
pads. Because only the two electrode pads shown in Figure 8.7 b) are activated, the
aligned model A is then computed as

A =
0 0 · · · 0 0.71 0 · · · 0 0 0 · · · 0 0

0 0 · · · 0 0 0 · · · 0 0.99 0 · · · 0 0

⎡⎢⎣
⎤⎥⎦

10th electrode pad

47th electrode pad

, (8.17)

which is also decoupled because each active electrode pad was selected to actuate each
muscle independently, as defined in Figure 8.7 b). The input v(t) then feeds into the
hIRC block of the aligned system Pp in the form (8.8), where the parameters in hRBD,
hLAD and hIRC are equal to the values used in Section 7.4. To simplify the implementa-

tion, the decoupled tendon matrix R is defined as R =

[︄
1 0
0 1

]︄
.

Following the establishment of the aligned system, the next step is to mimic the array
misalignment. Suppose this array is now misaligned by θ = −30◦ and z = (−1.6, 1.6)cm,
as illustrated by Figure 8.8. The misaligned array model A(θ, z) can be computed using

FIGURE 8.8: The coloured map (larger colour number indicates larger A(θ, z)) in coor-
dinates system (x1, x2)cm with a): aligned array where the stimulation [coloured area]
is delivered to each target muscle [red cross]. b): misaligned array with new stimula-

tion sites.
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(8.10)-(8.12)

A(θ, z) =
0 0 · · · 0 0.57 0 · · · 0 0 0 · · · 0 0

0 0 · · · 0 0 0 · · · 0 0.23 0 · · · 0 0

⎡⎢⎣
⎤⎥⎦

7th electrode pad

52th electrode pad

,

(8.18)
which then yields the misaligned true plant Pp∗ with form (8.13), where the components
hRBD, hLAD, R, and hIRC remain the same as those of the aligned model.

Prior to testing the realignment controller, standard ILC is applied without realignment
to demonstrate the impact of misalignment on the tracking performance when using
an electrode array. To achieve this, the previously defined aligned plant Pp is now lifted
and used to design a standard ILC controller, employing the identical update method
as it used in Chapter 7 without realignment. This yields the tracking result over 20
trials illustrated by Figure 8.9, demonstrating an extremely slow convergence rate for
each joint angle. The tracking error merely decreases to 99.4% of its initial value for
wrist extension, and 51.4% of its initial value for finger extension. Figure 8.10 presents
the tracking plots updated over 20 trials, illustrating that the error has not reached its
lowest feasible value by the end of all trials. This results from the misaligned map-
ping A(θ, z) with elements shown in (8.18), which significantly reduces the stimulation
received by the target muscles.

FIGURE 8.9: Illustration of a): misaligned stimulation sites and target muscles in coor-
dinates system (x1, x2)cm. b): ILC error convergence for tracking each joint angle.

This can be addressed by applying the realignment mapping T(θ, z) = A(θ, z)† A,
where the term A(θ, z)† is intended to mitigate the misaligned effect A(θ, z) of the true
dynamics (8.13) by ensuring A(θ, z)† A(θ, z) ≈ I. This aims to significantly reduce the
difference between the misaligned and aligned dynamics, and yield Pp∗ ≈ Pp. Using
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FIGURE 8.10: Tracking plots of the standard ILC update over 20 trials without realign-
ment part.

the same ILC settings, the tracking result over 20 trials is shown in Figure 8.11, illustrat-
ing that the tracking error decreases to 8.4% of the initial error for both the wrist and
finger joints. This performance considerably outperforms the previous case by apply-
ing the mapping T(θ, z), which physically realigns the stimulation sites, as illustrated
by Table 8.1. With realignment term T(θ, z) applied, the spatial error is decreased by
78.1% for the wrist extensor muscle, and 76.4% for the finger extensor muscle. The
misaligned effect was not completely canceled. Because there is no electrode pad in
the misaligned array whose position exactly matches the active electrode pads in the
aligned array, as shown by comparing Figure 8.8 a) and b). As a result, the mapping
T(θ, z) can physically realign the stimulation site by only selecting the electrode pad
that is spatially closest to the intended stimulation site. Although this does not fully
resolve the misalignment issue, it minimises its impact.

TABLE 8.1: The true stimulation sites with or without realignment action T(θ, z).

Aligned stim sites Realignment? True stim sites Distance (cm)

(1.5, 1.5) and (7.5, 7.5)
Without T(θ, z) (0.45, 2.15) and (8.65, 4.35) 1.23 and 3.35

With T(θ, z) (1.75, 1.40) and (6.80, 7.14) 0.27 and 0.79

Although realigned stimulation accelerates convergence, the standard ILC update (8.14)
may still fail due to physiological variations in the misaligned true plant (8.13). For
instance, if the muscle becomes more and more fatigued, which can be captured by
the increasing the value of Ks in the hRBD block. To model this effect, the Ks value
of the unknown misaligned plant Pp∗ implemented before is doubled. The previous
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FIGURE 8.11: Illustration of a): realigned stimulation sites and target muscles in coor-
dinates system (x1, x2)cm. b): ILC error convergence for tracking each joint angle.

standard ILC is now repeated on this misaligned and fatigued true plant, produc-
ing the error convergence results across 20 trials shown in Figure 8.13. Figure 8.12
presents the tracking plots over 20 trials for both joints utilising the standard ILC up-
date (8.14). In this case, Figure 8.12 a) demonstrates that the implementation of the
realignment ILC (8.14) has effectively modified the stimulation points, ensuring initial
convergence.Nevertheless, Figure 8.12 b) indicates that physiological changes, such as
fatigue, can significantly degrade tracking performance after initial convergence. This
necessitates the integration of a realignment controller with the EMMILC method to
concurrently address various model uncertainties.

FIGURE 8.12: Tracking plots of the standard ILC update (8.14) over a): 10 trials for
initial convergence and b): 20 trials for long-term convergence.

The results indicate that despite realigning the stimulation sites, the tracking error still
diverges. This results from the mismatch between the unknown true plant and the
plant model used in ILC design. This limitation can be effectively addressed by em-
ploying EMMILC with a comprehensive candidate plant set, which captures the true
dynamics. Therefore, the next step involves broadening the previous candidate plant
set to include different misaligned models, thereby allowing compensation for both
physiological variations and spatial uncertainties.
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FIGURE 8.13: Illustration of a): realigned stimulation sites and target muscles in co-
ordinates system (x1, x2)cm. b): ILC error convergence with the misaligned and also

fatigued true plant.

8.7 Simulation of EMMILC with Realignment

Using realignment mapping T(θ, z) requires the misalignment (θ, z) to be known. How-
ever, the misaligned true plant is unknown in practice. This can be addressed by ex-
panding the previous candidate plant set, adding more candidate plant models (8.13)
corresponding to possible values of misalignment (θ, z), where z = (∆x1 , ∆x2). To es-
tablish these additional plants, the varying range of the misalignment (θ, z) is required.
Taking the identical set of physiological parameters as used in Chapter 5, the range of
misalignment parameters (θ, z) shown in Table 8.2 is added. Following the same EM-
MILC design procedure as detailed in Chapter 4, this then produces a new set of can-
didate plants. Then, a simulation is performed to demonstrate the effectiveness of this
expanded candidate set. Using the same true plant from the previous section, which
is misaligned and also fatigued, the tracking results using realignment EMMILC over
20 trials are shown in Figure 8.15. The tracking error for each muscle was decreased to
3.7% of its initial value after 3 iterations. The tracking plots of realignment EMMILC
over 20 trials for both joints are shown in Figure 8.14.

These results demonstrated that EMMILC outperformed the standard ILC for electrode
arrays. Additionally, it verified that EMMILC did not assume any limited uncertainty
in design procedure. The misaligned stimulation site was immediately realigned af-
ter the first trial. The results in Figure 8.13 demonstrate that, in comparison to tradi-
tional ILC outcomes, EMMILC has been validated in effectively addressing physiologi-
cal changes and spatial uncertainties. This raises the potential for employing EMMILC
and electrode arrays to tackle practical issues in the upper-limb rehabilitation.
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FIGURE 8.14: Tracking plots of the realignment EMMILC for wrist and finger joints
over 20.

TABLE 8.2: Values of hand parameters for the uncertain true plant.

Parameter Symbol Uncertainty range Unit
IRC constant hIRC 0.0117 N/A

Natural frequency ωn 9.4248 rads/s
Stiffness Ks 0.62 ∼ 3.24 Nm/rad
Damping Bs 0.128 Nms/rad

Inertia Is 0.0007 ∼ 0.00612 Nms2/rad
Rotation θ 0 ∼ 30 degree(◦)

Horizontal shift ∆x1 0 ∼ 1.6 cm
Vertical shift ∆x2 0 ∼ 1.6 cm

FIGURE 8.15: Illustration of a): realigned stimulation sites and target muscles in co-
ordinates system (x1, x2)cm. b): EMMILC error convergence with the misaligned and

also fatigued true plant.
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8.8 Summary

This chapter systematically investigated the application of ILC to electrode array sys-
tems. Starting from the single pad aligned model, it generalised an aligned model
for arrays and corresponding control design. Subsequently, the misaligned array sys-
tem was modeled to capture the spatial errors. To address misalignment, a mapping
strategy was derived to physically realign the stimulation sites with the target mus-
cles. Then, simulations were performed to compare standard ILC against EMMILC
with array misalignment and physiological variations. The outcomes indicated that
the performance of standard ILC deteriorated significantly in the presence of misalign-
ment and muscle fatigue. In contrast, EMMILC leveraged a set of candidate models
representing uncertain dynamics, reducing the tracking error to less than 3.7% within
3 trials. These results showed that EMMILC consistently outperformed standard ILC
in the control of an array system with uncertainties. This offers EMMILC the potential
to tackle practical challenges in upper-limb FES rehabilitation.
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Chapter 9

Conclusions and Future Work

Surveys of people with stroke show that existing FES commercial devices cannot achieve
the intensive and goal-oriented task training that is needed for effective stroke rehabil-
itation. Users report that their devices take a long time to set up and are often incon-
venient for home use. FES electrode arrays can potentially address this problem by
providing better muscle selectivity and enabling suitable stimulation sites to be located
and appropriately controlled in an automatic, rapid fashion. However, the currently
available control methods for FES arrays are relatively crude: they take a long time
to set-up, are predominantly open-loop, and none are capable of adapting to varying
physiological dynamics or variation in alignment.

The aim of this programme of research was to develop a control framework for FES
electrode arrays that enables complex gestures to be accurately achieved without ex-
cessive set-up procedure. This novel approach developed in this thesis combines two
ingredients:

• a multiple-model adaptive architecture that has previously been shown to be ef-
fective using a single electrode pad and an isometric task, and

• an update procedure that learns from previous attempts at the task, that has been
successful in clinical trials, again using single pad electrodes.

The major contribution has been to develop and evaluate a comprehensive design ap-
proach for multiple model ILC. This was evaluated on a key problem in stroke reha-
bilitation. Multiple models were fitted by capturing underlying wrist dynamics which
linked FES and induced movements together. These models allowed ILC updates to
learn from previous experience to perform fast and precise tracking tasks. To achieve
an adaptive architecture, Algorithm 1 minimised the number of required models to es-
tablish a candidate plant set, and a switching algorithm automatically selected the ILC
controller corresponding to one of the models that best explained the measured input
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and output data. Experiments were performed on healthy subjects, and initial results
using single-pad electrodes showed that the tracking error was reduced to 20% of its
initial value within 5 trials, and maintained the same level of error in the presence of
pronounced muscle fatigue. However, tracking accuracy in practical applications could
be decreased by the issue of electrode misalignment, which had not been resolved by
other multiple-model approaches.

In response to this issue, a model of single-pad electrode misalignment was then de-
veloped, focusing on the distribution of the electric field. Rigorous simulations on a
simplified linear model demonstrated that even slight misalignment could cause stim-
ulation of unintended muscles, which significantly destabilised both conventional ILC
and EMMILC. These results then highlighted the critical need for electrode array, which
aimed to adaptively activate the selected muscles.

To apply selective stimulation, the EMMILC approach was extended to electrode ar-
rays for the first time. It began by establishing an aligned MIMO model that gener-
alised single-electrode dynamics to electrode array systems, clearly defining the spatial
relationships between electrodes and activated muscles. Array misalignment was then
investigated by deriving explicit MIMO dynamics for rotational and translational mis-
alignment. To address misalignment, this research introduced a physical realignment
strategy, dynamically correcting stimulation sites via solving an optimization problem.
Numerical evaluation was implemented on fatigued and misaligned array system. Re-
sults showed that, compared to standard ILC, EMMILC applied with array realign-
ment term reduced tracking errors to less than 3.7% of initial levels within three trials,
and the spatial errors was decreased by 78%. These results effectively conformed EM-
MILC’s capability of handling misalignment and physiological uncertainties.

Current research has established the EMMILC framework’s capability to reduce track-
ing error under muscle fatigue and electrode misalignment, yet its evidence remains
insufficient: experimental validation to date involves healthy participants with single-
pad stimulation, whereas array misalignment and MIMO control have only been exam-
ined numerically under simplified single-DOF tasks. The modeling and control design
rely heavily on low-dimensional linear approximations. An electrode array hardware is
designed in Appendix B. However, this hardware platform is still at the laboratory pro-
totype stage, being wired, unminiaturised, lacking long-term evaluations for reliability
and fault tolerance. Consequently, it has not yet demonstrated practical effectiveness
and safety. Virtual electrode identification still follows a sequential activating proce-
dure, increasing unnecessary set-up time and offering no optimisation-based selection
strategy. The compatibility of both EMMILC approach and array hardware with in-
dividuals, across different days, and in the face of extensive physiological variations
(e.g., skin-electrode impedance) has not been established. This results in conservative
design of candidate plant sets that lack satisfactory robustness to cover a wider uncer-
tainty space. Furthermore, the application of EMMILC approach can in principle be
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extended to diverse populations and broader biomedical fields, allowing for identifica-
tion tests to be completely removed for any healthy subjects or stroke patients in clinical
trials. Experimental validation has so far been limited to upper-limb scenarios; exten-
sion to lower-limb or gait contexts with faster, coupled dynamics is untested. These
constraints restrict the current evidence base and show the gap between the current
research prototype and clinical, home-based upper-limb FES array systems.

9.1 Future Work

To achieve broader applications, future research will aim to enhance the existing EM-
MILC approach, which will facilitate the intensive and goal-oriented upper-limb FES
training tasks using array systems. The effectiveness of EMMILC framework will then
be confirmed by performing extensive clinical evaluations with both healthy partici-
pants and stroke patients. This can be divided into several steps:

1. This research has demonstrated the effectiveness of the EMMILC approach in ad-
dressing fatigue and array misalignment. The next stage is to design a home-use
electrode array FES system to further verify the clinical feasibility and reliability
of EMMILC in practical applications. As the first step, a hardware platform pro-
totype has been preliminarily designed and initially validated (see Appendix B),
comprising an 8 × 8 electrode array, a high-voltage analogue multiplexer switch-
ing board, and a Leap Motion depth camera for joint angle measurement. Ex-
perimental results show that the platform can achieve high spatial selectivity and
reliably identify target muscles under repositioning. Future work will focus on
translating this array system prototype into a clinically viable home-based FES
platform by further miniaturising the hardware and reducing power consump-
tion, ultimately facilitating wireless operation. In the mean time, investigate the
long-term safety and reliability, focusing on automatic fault detection with fail-
safe shutdown. To overcome the inefficiency of sequential virtual electrode ac-
tivation, an optimisation or learning based active search methods will be devel-
oped to select optimal electrodes and identify target muscles in a more efficient
way. Subsequent user-centered research will quantify workflow and usability by
measuring setup identification time and automated realignment following array
repositioning. Comparative hardware trials against standard ILC and EMMILC
will finally characterise convergence speed and robustness to physiological vari-
ations, thereby guiding subsequent research towards effective home-based FES
system. Progress in this point means turning the laboratory prototype system into
a clinical (ultimately wireless) platform that non-expert users can set up quickly at
their home. These aims to confirm that it is possible to remove the need for iden-
tification tests, and therefore is a solid foundation for future clinical translation.
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This is an intermediate-duration project aimed at comprehensively improving the
hardware system.

2. Using this hardware platform, the clinical feasibility of implementing EMMILC
will be completed by performing a series of comprehensive experiments with
electrode array for both healthy participants and upper-limb stroke patients. These
tests involve activating each virtual electrode to identify the physiological dy-
namics of every underlying muscles. Each underlying muscle model will also be
expanded to a model set based on the possible range of misalignment variables
(θ, z). The combined candidate plant set will then be experimentally tested using
the designed hardware platform to confirm EMMILC’s clinical capability of han-
dling both physiological variation and array misalignment. The progress means
to deliver rapid, stable error convergence when moved from healthy subjects to
a stroke patients, confirming the feasibility of the EMMILC framework in practi-
cal FES training. this should be achievable in the medium term to organise more
experiments.

3. An important research direction is to investigate whether a single candidate model
set is feasible for all participating subjects. This involves identifying the un-
derlying hand models across different days for individuals with varying ages,
genders, and degrees of upper-limb impairments. If the identified models ex-
hibit notable differences among subjects, they will be incorporated to expand
the candidate plant set. The ultimate progress is to eliminate the necessity of
model identification for any subject, thereby enabling comprehensive automa-
tion of FES-based upper-limb rehabilitation suitable for clinical and home envi-
ronments. This should be an intermediate-duration project to perform multiple
tests.

4. To support functional movements involving a variety of muscles and joints, EM-
MILC approach will be expanded for controlling multi-degree-of-freedom move-
ments. This can be achieved by experimentally identifying MIMO models that
characterise interactions among multiple joints and muscles. Data collection pro-
tocols must systematically excite the dynamics to capture full coupling effects
and muscle synergies accurately. Then, update candidate models to incorporate
higher dimension parameters describing joint coupling and muscle synergies.
The updated candidate plant set will then be used to conduct EMMILC exper-
iments involving multi-finger grasping and combined wrist-finger movements,
and explicitly compare their performance with conventional ILC method. This
will naturally take longer and is a medium-to-long-term project.

5. To control complex movements, the system’s dimension must be reduced in MIMO
control design to ensure the time required by hardware to compute control signals
is acceptable for home users. One possible solution has been investigated in [Free-
man, 2014], which suggests finding a restricted input subspace W ∈ RmN×qN , 0 <
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q < m. This maps a lower dimensional input vk ∈ RqN (to be controlled) to a
higher dimensional input uk ∈ RmN , i.e. m = 24, which yields uk = Wvk and
hence enables the control of a higher dimensional array system (yk = Guk) using
a lower dimensional control input vk. The subset W can be identified using input
and output data from previous experiments. Specifically, select those input and
output data pairs (uk,n, yk,n) with n = 1, 2, ..., a from previous experimental data
with outputs yk,n that are sufficiently close to the reference signal. Then, the input
subset can be directly identified as W = [uk,1, uk,2, ..., uk,a] such that qN = a. The
ultimate progress is to perform tasks of greater dimensionality without substan-
tially increasing computational loads, thereby preventing hardware deceleration
when handling extensive plant sets. This should be a short-term project.

6. The limited experimental data can also be used to produced multiple input sub-
sets (W1,W2, ...,Wb) that include more physiological information such as skin
impedance. These will then generate more candidate models (GW1, GW2, ..., GWb)

that enrich the candidate plant set and hence provide greater robustness. Progress
in this area enable non-expert users to have satisfactory rehabilitation outcome
without excessive controller calibration. This should be achievable in the medium
term.

7. In Section 8.3, the true system is approximated as linear in control design by
satisfying Assumptions 1 and 2. These assumptions restrict the range and ve-
locity of functional movements, which limits the feasibility of the EMMILC ap-
proach in practice. To address this limitation, the whole approach will be ex-
tended to the nonlinear case. This starts from collecting input and output data,
with the input uk = Wvk to the nonlinear system and the response yk. Secondly,
linearise the system around an operating point va, which can be unpacked to
[va(0)⊤, va(1)⊤, ..., va(N − 1)⊤]⊤. This can be repeated in multiple tests to produce
multiple linearised underlying plants, which can be combined with above points
to enrich the candidate plant set. This enables a rigorous EMMILC framework to
not only be used with FES-based stroke rehabilitation, but also with other sophis-
ticated applications that lack robustness. This should also be an intermediate-
duration project to perform multiple tests.

8. This thesis focused exclusively on upper-limb rehabilitation, but the underlying
EMMILC framework also has potential applications in other related biomedical
areas such as lower-limb rehabilitation (e.g., gait rehabilitation). Initial work will
include identifying lower-limb muscle models, building candidate plant set for
lower-limb by following the steps 2-4, and validating the EMMILC approach
through preliminary experiments with both healthy subjects and stroke patients.
These extensions would illustrate the expanded clinical feasibility of EMMILC
beyond its initial framework in this research, offering additional benefit to other
researchers and therapists. This should be achievable in the long term.
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Appendix A

An extended version of Theorem 3.1 is given below, including a proof of the 2-norm
bound on ||ΠPp̂∗//Cĉ || given by (3.59).

Theorem A.1. Let Pp, Pp∗ be systems of form (3.3) and Cĉ be an ILC design for Pp such that
condition (3.61) holds. Then this ILC design also stabilises the true plant Pp∗ provided

δ(p, p∗) < ∥ΠPp̂//Cĉ∥
−1, (A.1)

where the mapping

∥ΠPp̂//Cĉ∥ =

⃦⃦⃦⃦
⃦
(︄

(I − CĉPp̂)
−1 −(I − CĉPp̂)

−1Cĉ

Pp̂(I − CĉPp̂)
−1 −Pp̂(I − CĉPp̂)

−1Cĉ

)︄⃦⃦⃦⃦
⃦

≤ ∥(Pp̂, I)∥
(︃ ||(I, Pp̂)

⊤∥∥QĉLĉ∥
1 − σ

+ 1
)︃

. (A.2)

The internal signals are bounded from their ideal values as

||ΠPp̂∗//Cĉ || ≤ ||ΠPp̂//Cĉ ||
1 + δ(p, p∗)

1 − ||ΠPp̂//Cĉ ||δ(p, p∗)
. (A.3)

Proof. This can be proved by extending the 1-norm and ∞-norm cases shown in [Bradley,
2010], to the 2-norm case. First set w = (u0, y0 + yre f )

⊤ in (3.53) and apply (3.57), (3.58)
to give

[︂
ΠPp̂//Cĉ w

]︂
(k)=

(︂ I
Pp̂

)︂(︂ k

∑
i=1

{︂[︁
Qĉ(I − LĉPp̂ )

i−1(QĉLĉyre f

− QĉLĉ(Pp̂,−I)w0(k − i))
}︂
+ u0(k)

)︂
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and it follows that an upper bound on ∥ΠPp̂//Cĉ∥ is

sup
w0(k) ∈ RmN×nN

∥w0∥ ̸= 0

(︂
∑∞

k=0

⃦⃦⃦(︂ I
Pp̂

)︂
∑k

i=1
[︁
Qĉ(I − LĉPp̂)

]︁i−1QĉLĉ(−Pp̂, I)× w0(k − i) + u0(k)
⃦⃦⃦2)︂ 1

2

(︂
∑∞

k=0 ∥w0(k)∥2
)︂ 1

2

Setting u0 = 0 and y0 = 0 separately and applying relationship

∥ΠPp̂//Cĉ w0∥
∥w0∥

=

⃦⃦⃦
ΠPp̂//Cĉ

(︂ u0

0

)︂⃦⃦⃦
+
⃦⃦⃦

ΠPp̂//Cĉ

(︂ 0
y0

)︂⃦⃦⃦
⃦⃦⃦(︂ u0

y0

)︂⃦⃦⃦ ≤
⃦⃦⃦

ΠPp̂//Cĉ

⃓⃓⃓
y0=0

⃦⃦⃦
+
⃦⃦⃦

ΠPp̂//Cĉ

⃓⃓⃓
u0=0

⃦⃦⃦

yields (A.2) after significant further manipulation.
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Appendix B

This study has shown the efficacy of the EMMILC method in addressing fatigue and
array misalignment. To facilitate the application of EMMILC in practical FES train-
ing, this appendix outlines the development of a potential home-based FES hardware
platform using an electrode array. The array platform includes a high-voltage analog
multiplexer switching board alongside a Leap Motion depth camera for assessing joint
angles.

B.1 Hardware Design of Electrode Array

A variety of array layouts have been employed in stroke rehabilitation. The Chapter 2
reviewed different arrays but mainly focused on the tracking accuracy. However, the
revision highlighted that the choice of array layouts balanced muscle selectivity, spa-
tial coverage, and hardware integration feasibility. Grid arrays with fewer electrode
pads offer simplicity for identification and control, but often lack the muscle selectiv-
ity required by adaptive stimulation. For instance, the 4 × 4 arrays used in [Malešević
et al., 2012; Crema et al., 2021] exhibited simple configuration. However, the restricted
number of activation sites resulted in limited virtual electrode combinations, proving
insufficient to correct spatial error. Similarly, Wang et al. [2021] employed a 4 × 5 array
to minimise fatigue by performing sequential stimulation. Unfortunately, the limited
coverage of the array presented difficulties in controlling complex movements involv-
ing various muscles. Larger layouts like a 4× 6 array [Kutlu et al., 2015, 2016b] or 5× 8
array [Freeman, 2014] improved muscle coverage and have been successfully applied
with ILC. However, there was no control strategy or clinical evidence that confirmed
their capability of coping with array misalignment. In [Keller et al., 2006b,a], a higher-
dimensional array arranged in a 6 × 10 format was utilised to improve the selectivity
of stimulation sites. However, it was mainly designed to mitigate fatigue or facilitate
simple feedback control, rather than implement adaptive stimulation to correct spatial
errors.
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In contrast, the 8 × 8 electrode array used in the ShefStim system [Kenney et al., 2016]
provided an optimal balance across these dimensions. Using finite element modeling,
it was verified that this array configuration achieved greater spatial selectivity and re-
duced current spread by optimising electrode size, spacing, and surface resistivity. The
experimental findings demonstrated that even untrained subjects could configure this
array within 5 minutes without precisely placing it above the target muscles, as its ef-
fective integration with the control algorithm could compensate for any misalignment
within 9 minutes. This was done by simply cycling through each pad element and
choosing the one that produced the best movement. Therefore, an 8 × 8 array configu-
ration is employed in this research to test EMMILC. Each electrode pad has dimensions
of 12 mm× 12 mm, with a spacing of 1 mm between neighboring pads. This size design
was chosen to reduce the unintended stimulation in adjacent muscle groups as justified
in [Du et al., 2021]. The design will be printed on 0.1mm thick polycarbonate with two
conductive layers: one side containing the pads, and the other side containing the con-
nective tracks. These tracks link each electrode pad to a 0.5 mm-pitch terminal that
operates as a flat cable. The array board was designed using EAGLE (version 9.6.2),
and manufactured as a flexible printed circuit in order to adhere closely to the skin sur-
face. The result is shown in Figure B.1. Having designed the electrode array, the next
step is to investigate how to dynamically deliver the stimulation input to any specified
electrode pad. This requires an an effective multiplexer device, which will be designed
in the next section.

FIGURE B.1: (left) 8 × 8 surface electrode array and its manufactured item (right).
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B.2 Hardware Design of Analog Multiplexer

The implementation of the designed array required a suitable high-voltage analog switch
to dynamically activate or deactivate each electrode pad. Two channels of stimulation
were chosen, to correspond with the use-case considered in Chapter 8. Each pad must
be capable of being switched to either channel or to neither. To achieve this, an effi-
cient multiplexer device was designed, integrating four 16-channel, high-voltage ana-
log switches. The analog switch HV2607 microchip technology was chosen because

• The HV2607 can be operated with low-voltage supplies, and requires a positive
voltage supply between 4.5V to 6.3V, and a negative voltage supply between
−6.3V to −4.5V. These two supply voltages can be simply generated using an
isolated dual-output DC-DC power converter (e.g. IAB0105D05 manufactured
by XP Power), which converts a +5V input to ±5V outputs.

• Each analog switch in the HV2607 can be controlled separately through SPI com-
munication integrated on the Raspberry Pi 4B board used in Chapter 6, which
generates a sequence of 3.3V logic input signals that fall within the required volt-
age range of 2.7V to 5.5V.

• The HV2607 analog switches are capable of switching analog input signals within
a voltage range from −110V to 110V. This range encompasses the 100V voltage
delivered by the commercial Odstock stimulator (Odstock Medical Limited, UK),
as also used in Chapter 6.

Subsequently, all 64 switches were wired to a 0.5 mm-pitch, 64 pin connector that is
compatible with flexible printed circuits or flat cables. The 64 pin terminal of the elec-
trode array was inserted into this connector, where each pin was then directed to an
electrode pad. The components of this multiplexer board are shown in Figure B.2. The
circuit for the multiplexer is shown in Figure B.3. The Raspberry Pi 4B’s SPI module
was employed to dynamically control each analog switch, with the input ports of this
multiplexer board being connected according to the specifications in Table B.1. Each
HV2607 is controlled via a 16-bit binary code, where an analog switch is triggered when
the corresponding bit is set to binary ‘1’. This FES device was tested and will next be
used with human participants.

B.3 Hardware for Hand Tracking

To perform controller tests, it is essential for the hardware system to have real-time
joint angle data measurements. In Chapter 6, the wrist angle was recorded using an
instrumented wrist rig functioning as an electro-goniometer. However, this method is
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TABLE B.1: The input ports of the integrated multiplexer board. SR: Shift Register.

Input port Symbol Operating Power Connect to Supplied Power
Positive Supply

Voltage
VDD +4.5 ∼ +6.3V

IAB0105D05
Positive Output

+5V

Negative Supply
Voltage

VSS −6.3 ∼ −4.5V
IAB0105D05

Negative Output
−5V

Logic Supply
Voltage

VLL +3 ∼ +5.5V
Raspi 4B

3.3V DC Power
+3.3V

Data In
Logic Input

DIN +2.7 ∼ +5.5V
Raspi 4B SPI module

GPIO10(MOSI)
+3.3V

SPI Clock
Logic Input

CLK +2.7 ∼ +5.5V
Raspi 4B SPI module

GPIO11 (SCLK)
+3.3V

Latch Enable
Logic Input

(Low Active)
LE 0 ∼ +0.3V

+2.7 ∼ +5.5V
Raspi 4B
GPIO25

≤ +0.3V
(Trigger SR)

Digital Ground GND N/A
Raspi 4B

GPIO6 (GND)
N/A

Stimulation input
Channel 1

CH1 −110 ∼ +110V
Odstock stimulator

Channel 1
+100V

(Loaded)
Stimulation input

Channel 2
CH2 −110 ∼ +110V

Odstock stimulator
Channel 2

+100V
(Loaded)

FIGURE B.2: Block diagram of the multiplexer board with 2 channels, 64 switches.

limited to measure only the planar wrist joint angle, which does not meet the require-
ment for the array system to record multiple hand joint angles. To accurately measure
hand positions, a depth camera (Leap Motion Controller 2, Ultraleap) was selected to
capture the depth information of each joint position in the environment (i.e., the dis-
tance between the joints detected and the camera itself). This can be used to produce
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FIGURE B.3: The EAGLE circuit of the multiplexer integrating four HV2607 mi-
crochips.

the 3D coordinates for each joint, yielding a joint skeleton structure for the hand, as il-
lustrated by Figure B.4 a). The variations of joint coordinates are then used to compute

FIGURE B.4: Skeleton structure of a): joints indexed by 1, 2, ..., 20. b): joint angles of
the index finger and wrist.

the joint angles. The joint skeleton is defined in Figure B.4 a), where the joints indexed
by 21, 0, 5, and 6 have Cartesian coordinates represented by J21, J0, J5, and J6, respec-
tively. As illustrated by Figure B.4 b), the index finger joint angle θ f , characterised by
the coordinates of joints 0, 5, and 6, is computed in degrees as

θ f = 180 − 180
π

arccos
(︃
(J6 − J5) · (J0 − J5)

∥J6 − J5∥∥J0 − J5∥

)︃
. (B.1)
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Similarly, the wrist joint angle θw, characterised by the coordinates of joints 21, 0, and
5, is computed in degrees as

θw = 180 − 180
π

arccos
(︃
(J5 − J0) · (J21 − J0)

∥J5 − J0∥∥J21 − J0∥

)︃
. (B.2)

Using this method, any joint angle within this skeleton system can be computed in real-
time, and subsequently relayed to the ILC update algorithm operating on the Rasp-
berry Pi 4B board. This is achieved using a custom-made application written in C
using Visual Studio, which utilises a WiFi server to interface with a client running on
the Raspberry Pi’s real-time Simulink programme. Figure B.5 illustrates the interaction
among hardware components, which will experimentally tested in the next section.

FIGURE B.5: The closed-loop interaction between hardware components.

B.4 Experimental Validation of Hardware Platform

After developing this hardware platform incorporating a novel array system, this sec-
tion involves experimentally verifying its ability to adjust stimulation sites, which is
crucial for the practical implementation of realignment ILC. The key point is to show
that the activation of each stimulation site in the array corresponds to a joint move-
ment. To achieve this, an experimental protocol is designed to sequentially activate
each of 49 predefined 2 × 2 virtual electrodes (VE) in the array. This VE strategy is
employed due to its capability of generating a stronger and uniform electric field, in
order to activate deeper muscles or motor nerves [Kenney et al., 2016] and reduce dis-
comfort [RaviChandran et al., 2023]. During the test, a stimulation pulsewidth of 300µs
was applied to each VE sequentially through the port CH1 detailed in Table B.1, and
the amplitude was gradually increased to a maximum tolerable limit. The wrist and
finger joint angles defined in Figure 8.7 were measured as primary output data to de-
scribe the intended hand gesture when the stimulation amplitude reached its maximal
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value. An unimpaired subject participated in the test once per day for three consec-
utive days, and was required to place the array device on the forearm each day by
themselves, as shown in the Figure B.6 a). The ethics approval was granted by Uni-
versity of Southampton Ethics and Research Governance Online (ERGO), ID 102462.

FIGURE B.6: Hardware system illustrated by a): array device on the forearm placed
by the subject. b): sequential activation of each VE, indexed by 1, 2, ..., 49.

By sequentially activating each of the 49 VEs, as illustrated in Figure B.6 b), the mea-
sured wrist angles θw, and finger angles θ f for each day, were collected as the sets

θw = {θw(1), θw(2), ..., θw(49)}

θ f = {θ f (1), θ f (2), ..., θ f (49)},
(B.3)

where θ(a) denotes the joint angle measured when activating the ath VE. To show the
stimulation sites, the measured joint angles in each data set are illustrated in Figure B.7
for the test on day 1, Figure B.8 for day 2, and Figure B.9 for day 3.

By comparing the maps of the two joint angles recorded over three separate days, it can
be visually summarised that the wrist movement is stronger when the VEs on the left
side of the array are activated. Similarly, the index finger movement is stronger when
the VEs in the middle of array are activated. This indicates that the array platform
can effectively achieve spatial selectivity by associating each joint movement with the
stimulation of a specific site.

Moreover, this test is also used to identify the target muscle stimulated by a VE which
primarily actuates the main joint of the intended movement. This approximately satis-
fies the condition of the design approach outlined in Remark 1, thereby simplifying the
control design, as detailed in Section 8.3. Among these Figures B.7, B.8, and B.9, a target
muscle is identified by activating a VE that predominantly excites the main joint while
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FIGURE B.7: The joint angles in the data sets θw [left] and θ f [right] produced by
activating each VE on day 1. Units in degrees.

FIGURE B.8: The joint angles in the data sets θw [left] and θ f [right] produced by
activating each VE on day 2. Units in degrees.

FIGURE B.9: The joint angles in the data sets θw [left] and θ f [right] produced by
activating each VE on day 3. Units in degrees.

minimally actuating another joint. This can be expressed by the optimisation problem

aw = arg max
a∈{1,2,...,49}

⃓⃓
θw(a)− θ f (a)

⃓⃓
,

a f = arg max
a∈{1,2,...,49}

⃓⃓
θ f (a)− θw(a)

⃓⃓
, θw(a) ∈ θw, θ f (a) ∈ θ f ,

(B.4)
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where the solution, ath
w , VE stimulates the target wrist muscle that primarily actuates

the wrist joint. Similarly, the solution ath
f VE stimulates the target finger muscle that

primarily actuates the finger joint. By solving (B.4), the target stimulation sites of the
wrist and finger muscles for each day are shown in Table B.2.

TABLE B.2: Target muscles identified for each day by solving (B.4).

Target VE for wrist Target VE for finger
Day 1 aw = 29 a f = 14
Day 2 aw = 28 a f = 14
Day 3 aw = 22 a f = 21

Having identified the target stimulation sites, they can be used by the controllers de-
fined in early chapters. As described in Chapter 8, they might be misaligned when
the array is repositioned. To address this, the realignment EMMILC approach can be
applied with a set of candidate models (8.13), as implemented in Chapter 8. These
results confirm the spatial selectivity achieved by this hardware platform, which can
effectively choose stimulation sites in order to activate specified joint movements.
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S. Gunnarsson and M. Norrlöf. On the design of ilc algorithms using optimization.
Automatica, 37(12):2011–2016, 2001.

Y. Handa, N. Hoshimiya, Y. Iguchi, and et.al. Development of percutaneous intra-
muscular electrode for multichannel fes system. in IEEE Transactions on Biomedical
Engineering, 36(7):705–710, 1989.

T. J. Harte, J. Hätönen, and D. H. Owens. Discrete-time inverse model-based iterative
learning control: stability, monotonicity and robustness. International Journal of Con-
trol, 78(8):577–586, 2005.

K. S. Hayward, S. F. Kramer, V. Thijs, and et.al. A systematic review protocol of timing,
efficacy and cost effectiveness of upper limb therapy for motor recovery post-stroke.
Systematic reviews, 8(1):187, 2019.

L. Hladowski, K. Galkowski, Z. Cai, and et.al. Experimentally supported 2d systems
based iterative learning control law design for error convergence and performance.
Control Engineering Practice, 18(4):339–348, 2010.

A. Hochstenbach-Waelen and H. A. Seelen. Embracing change: practical and theoreti-
cal considerations for successful implementation of technology assisting upper limb
training in stroke. Journal of neuroengineering and rehabilitation, 9:1–12, 2012.

E. F. Hodkin, Y. Lei, J. Humby, I. S. Glover, S. Choudhury, H. Kumar, M. A. Perez,
H. Rodgers, and A. Jackson. Automated FES for upper limb rehabilitation following
stroke and spinal cord injury. IEEE Transactions on Neural Systems and Rehabilitation
Engineering, 26(5):1067–1074, 2018.

O. A. Howlett, N. A. Lannin, L. Ada, and et.al. Functional electrical stimulation im-
proves activity after stroke: A systematic review with meta-analysis. Archives of
Physical Medicine and Rehabilitation, 96(5):934–943, 2015.

D. Huang, J.-X. Xu, V. Venkataramanan, and T. C. T. Huynh. High-performance track-
ing of piezoelectric positioning stage using current-cycle iterative learning control
with gain scheduling. IEEE Transactions on Industrial Electronics, 61(2):1085–1098,
2014.

A. Hughes, C. Freeman, J. Burridge, P. Chappell, P. Lewin, and E. Rogers. Feasibility of
iterative learning control mediated by functional electrical stimulation for reaching
after stroke. Neurorehabilitation and neural repair, 23(6):559–568, 2009.



REFERENCES 127

A. Hughes, J. Burridge, S. Demain, and et.al. Translation of evidence-based assistive
technologies into stroke rehabilitation: Users’ perceptions of the barriers and oppor-
tunities. BMC health services research, 14:124, 2014.

B. Huo, Y. Liu, Y. Qin, and et.al. Disturbance observer based iterative learning control
for upper limb rehabilitation. In IECON 2020 The 46th Annual Conference of the IEEE
Industrial Electronics Society, pages 2774–2779, 2020.

J. Hätönen, C. Freeman, D. Owens, and et.al. A gradient-based repetitive control algo-
rithm combining ilc and pole placement. European Journal of Control, 12(3):278–292,
2006.

T. Ikezoe, Y. Asakawa, Y. Fukumoto, R. Tsukagoshi, and N. Ichihashi. Associations
of muscle stiffness and thickness with muscle strength and muscle power in elderly
women. Geriatrics & Gerontology International, 12(1):86–92, 2012.

E. Imatz-Ojanguren, E. Irigoyen, D. Valencia-Blanco, and et.al. Neuro-fuzzy models
for hand movements induced by functional electrical stimulation in able-bodied and
hemiplegic subjects. Medical Engineering & Physics, 38(11):1214–1222, 2016.

S. V. Johansen, M. R. Jensen, B. Chu, J. D. Bendtsen, J. Mogensen, and E. Rogers. Broiler
fcr optimization using norm optimal terminal iterative learning control. IEEE Trans-
actions on Control Systems Technology, 29(2):580–592, 2019.

M. W. Keith, P. H. Peckham, G. B. Thrope, and et.al. Implantable functional neuromus-
cular stimulation in the tetraplegic hand. The Journal of Hand Surgery, 14(3):524–530,
1989.

T. Keller and A. Kuhn. Electrodes for transcutaneous (surface) electrical stimulation.
Journal of Automatic Control, 18(2):35–45, 2008.

T. Keller, B. Hackl, M. Lawrence, and et.al. Identification and control of hand grasp
using multi-channel tes. In in Proceedings Annual Conference of the International FES
Society (IFESS), (Zao, Japan), page 29–31, 2006a.

T. Keller, M. Lawrence, A. Kuhn, and M. Morari. New multi-channel transcutaneous
electrical stimulation technology for rehabilitation. In 2006 International Conference of
the IEEE Engineering in Medicine and Biology Society, pages 194–197, 2006b.

L. P. Kenney, B. W. Heller, A. T. Barker, M. L. Reeves, J. Healey, T. R. Good, G. Cooper,
N. Sha, S. Prenton, A. Liu, and D. Howard. A review of the design and clinical eval-
uation of the shefstim array-based functional electrical stimulation system. Medical
Engineering Physics, 38(11):1159–1165, 2016.

M. Ketelhut, S. Stemmler, J. Gesenhues, M. Hein, and D. Abel. Iterative learning con-
trol of ventricular assist devices with variable cycle durations. Control Engineering
Practice, 83:33–44, 2019.



128 REFERENCES

C. Klauer, E. Ambrosini, S. Ferrante, and et.al. Co-activation and eemg-feedback for
restoring hand-functions. In 2019 18th European Control Conference (ECC), pages 191–
196, 2019.

M. G. H. Kristensen, H. Busk, and T. Wienecke. Neuromuscular electrical stimula-
tion improves activities of daily living post stroke: A systematic review and meta-
analysis. Journal of Electromyography and Kinesiology, 4(1):100167, 2022.

M. Kutlu, C. T. Freeman, E. Hallewell, A.-M. Hughes, and D. S. Laila. Fes-based upper-
limb stroke rehabilitation with advanced sensing and control. In 2015 IEEE Interna-
tional Conference on Rehabilitation Robotics (ICORR), pages 253–258, 2015.

M. Kutlu, C. Freeman, E. Hallewell, A.-M. Hughes, and D. Laila. Upper-limb stroke
rehabilitation using electrode-array based functional electrical stimulation with sens-
ing and control innovations. Medical Engineering Physics, 38(4):366–379, 2016a.

M. Kutlu, C. T. Freeman, E. Hallewell, and et.al. Upper-limb stroke rehabilitation us-
ing electrode-array based functional electrical stimulation with sensing and control
innovations. Medical Engineering & Physics, 38(4):366–379, 2016b.

G. Kwakkel. Impact of intensity of practice after stroke: no.s for consideration. Disabil-
ity and Rehabilitation, 28(13-14):823–830, 2006.

D. G. Lainiotis. Partitioning: A unifying framework for adaptive systems, i: Estimation.
In Proceedings of the IEEE, volume 64, pages 1126–1143, 1976a.

D. G. Lainiotis. Partitioning: A unifying framework for adaptive systems, ii: Control.
In Proceedings of the IEEE, volume 64, pages 1182–1198, 1976b.

P. Langhorne, F. Coupar, and A. Pollock. Motor recovery after stroke: a systematic
review. The Lancet Neurology, 8(8):741–754, 2009.

F. Le, I. Markovsky, C. T. Freeman, and et.al. Identification of electrically stimulated
muscle models of stroke patients. Control Engineering Practice, 18(4):396–407, 2010.

J. H. Lee, K. S. Lee, and W. C. Kim. Model-based iterative learning control with a
quadratic criterion for time-varying linear systems. Automatica, 36(5):641–657, 2000.

M. K. leung Chan, R. K. yu Tong, and K. Y. kwan Chung. Bilateral upper limb training
with functional electric stimulation in patients with chronic stroke. Neurorehabilitation
and Neural Repair, 23(4):357–365, 2009.

X. Li and W. Zhang. Multiple model iterative learning control. Neurocomputing, 73(13):
2439–2445, 2010.

X. Li, K. Wang, and D. Liu. An improved result of multiple model iterative learning
control. in IEEE/CAA Journal of Automatica Sinica, 1(3):315–322, 2014.



REFERENCES 129

W. T. Liberson, H. J. Holmquest, D. Scot, and et.al. Functional electrotherapy: stimu-
lation of the peroneal nerve synchronized with the swing phase of the gait of hemi-
plegic patients. Archives of Physical Medicine and Rehabilitation, 42:101–105, 1961.

T. Lin, D. H. Owens, and J. Hätönen. Newton method based iterative learning control
for discrete non-linear systems. International Journal of Control, pages 1263–1276, 2006.

Y. Liu, Y. Qin, B. Huo, and Z. Wu. Functional electrical stimulation based bicep force
control via active disturbance rejection control. In 2020 5th International Conference on
Advanced Robotics and Mechatronics (ICARM), pages 306–311, 2020.

L. Livshitz, J. Mizrahi, and P. Einziger. Interaction of array of finite electrodes with
layered biological tissue: effect of electrode size and configuration. IEEE Transactions
on Neural Systems and Rehabilitation Engineering, 9(4):355–361, 2001.

London: Intercollegiate Stroke Working Party. National clinical guideline for stroke for
the uk and ireland. Available at www.strokeguideline.org, 2023.

R. Longman, Y. Peng, T. Kwon, and et.al. Adaptive inverse iterative learning control.
Journal of the Chinese Society of Mechanical Engineers, Transactions of the Chinese Institute
of Engineers - Series C, 32(6):493–506, 2011.

P. S. Lum, C. G. Burgar, P. C. Shor, and et.al. Robot-assisted movement training com-
pared with conventional therapy techniques for the rehabilitation of upper-limb mo-
tor function after stroke. Archives of Physical Medicine and Rehabilitation, 83(7):952–959,
2002.

L. Ma, X. Liu, X. Kong, and K. Y. Lee. Iterative learning model predictive control based
on iterative data-driven modeling. IEEE Transactions on Neural Networks and Learning
Systems, 32(8):3377–3390, 2021.

P. Maciejasz, J. Eschweiler, K. Gerlach-Hahn, A. Jansen-Troy, and S. Leonhardt. A sur-
vey on robotic devices for upper limb rehabilitation. Journal of neuroengineering and
rehabilitation, 11:1–29, 2014.
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F. Resquı́n, A. Cuesta Gómez, J. Gonzalez-Vargas, F. Brunetti, D. Torricelli, F. Molina
Rueda, R. Cano de la Cuerda, J. C. Miangolarra, and J. L. Pons. Hybrid robotic
systems for upper limb rehabilitation after stroke: A review. Medical Engineering
& Physics, 38(11):1279–1288, 2016a.
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