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A B S T R A C T

We show that simple nonlinear transformations of financial ratios, within a multivariate fractional polynomial 
approach, yield substantial improvements in bankruptcy prediction. The approach selects optimal power func
tions balancing parsimony and complexity. Focusing on a dataset comprising of non-financial firms, we develop a 
parsimonious nonlinear logit model with minimal parameter specification and clear interpretability, out
performing linear logit models. The model improves the in-sample fit, while out-of-sample it significantly reduces 
costly misclassification errors and improves discriminatory power. Similar insights are obtained when applying 
fractional polynomials on a secondary dataset consisting of banking firms. Interestingly, the fractional poly
nomial model compares favourably with other nonlinear models. By simulating a competitive loan market, we 
demonstrate that the bank using the fractional polynomial model builds a higher-quality loan portfolio, resulting 
in superior risk-adjusted profitability compared to banks employing alternative models.

1. Introduction

The vast majority of academic studies employ logit models that as
sume a linear relationship between financial predictors and the risk of 
bankruptcy (see, for instance, Shumway, 2001; Chava & Jarrow, 2004; 
Altman & Sabato, 2007; Campbell et al., 2008; Tinoco & Wilson, 2013; 
Tian et al., 2015; Traczynski, 2017; Gupta & Chaudhry, 2019, among 
many others). However, linear logit models have several shortcomings 
when applied to bankruptcy prediction. First, in a stepwise logit 
framework used to select the optimal set of bankruptcy predictors, the 
exclusion of predictors may occur not because the predictors are truly 
insignificant, but because their relationship with bankruptcy is 
nonlinear, which is not captured within a linear stepwise selection 
process. This means potentially important variables might be missing in 
the final model, leading to an incomplete understanding of the true 
economic factors driving bankruptcy. As we show later, a nonlinear logit 
model constructed using the fractional polynomial approach does not 
include identical variables as those of a stepwise logit model. Second, 
linear logit models oversimplify the complexities inherent in financial 
data, where relationships between variables and outcomes are often 
nonlinear. Third, linear logit models can be poorly fitted to the data, 
resulting in lower predictive power. Finally, other techniques commonly 
used to model nonlinearities, such as splines or neural networks, are 
subject to well-known shortcomings, including difficulty in 

interpretability, prone to overfitting, complexity in their configuration 
and computation etc.

To overcome the limitations discussed above, we construct a 
nonlinear logit model using fractional polynomials—a family of integer 
and non-integer power functions, including quadradic, square root, 
logarithmic, cubic terms and other fractional functions, among others, 
that allow to transform predictors sequentially to model nonlinear re
lationships between inputs and outputs within a variable selection 
process (e.g., Royston & Altman, 1994; Sauerbrei & Royston, 1999). 
There are reasons to expect that financial ratios have a nonlinear asso
ciation with the risk of bankruptcy. For instance, the impact of liquidity 
on bankruptcy risk may vary significantly at different levels, an effect 
that linear logit models cannot adequately capture. It is reasonable to 
expect that a reduction in liquidity would have different impact on 
bankruptcy risk depending on the initial liquidity position. A decrease in 
liquidity from an already high level is likely to have a minor effect on 
bankruptcy risk, as the firm may still have sufficient reserves to manage 
its obligations. Conversely, a similar-sized reduction from an already 
low liquidity position could significantly increase the risk of bankruptcy, 
as the firm may be left with limited resources to cover short-term lia
bilities. Indeed, as we show in subsequent univariate analysis, the 
bankruptcy frequency is significantly higher when liquidity is reduced 
from low to even lower levels, compared to higher levels, suggesting that 
a nonlinear relationship exists.
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Unlike traditional stepwise logit regression, which assumes linear 
relationships, fractional polynomials adapt to the curvature of the data 
by selecting optimal power transformations for each predictor. In a 
multivariate fractional polynomial regression, all predictors start as 
linear functions in the logit model. The model then sequentially iden
tifies the best transformation for each predictor, considering interactions 
with others. This process continues over multiple cycles, with each cycle 
refining the transformations based on the current best fit (i.e., while 
selecting the optimal transformation for each predictor, the logit 
regression includes other predictors with their optimal transformations 
determined up to that point). The selection process concludes when 
transformations stabilize across two consecutive cycles. The approach 
evaluates each predictor based on three criteria, using standard statis
tical tests in the following order:

Inclusion: Assessing whether the predictor adds predictive power to 
the model,

Linearity: Assessing whether a nonlinear transformation for the 
predictor is better than linearity,

Complexity: Assessing whether a higher-degree polynomial trans
formation for the predictor adds more predictive power than a lower- 
degree polynomial.

By applying this selection process iteratively across all predictors 
over multiple cycles, we obtain a model that not only includes the most 
important predictors but also embeds optimal nonlinear trans
formations. This iterative approach ensures that the final logistic model 
achieves the minimum deviance or, in other words, the best possible fit 
to the data which is the ultimate purpose. Effectively fractional poly
nomials generalize the stepwise logit regression because the linear 
relationship is just one of many possible transformations that can be 
applied to each predictor. Fractional polynomials explore a variety of 
power transformations, including both linear and nonlinear forms, to 
find the most appropriate functional relationship. As the model evalu
ates each predictor, it simultaneously tests for both its inclusion in the 
model and the optimal transformation that best fits the data, thus the 
approach is suitable for variable selection as well, allowing the con
struction of a parsimonious nonlinear logit model for bankruptcy 
prediction.

Earlier studies have considered splines (Giordani et al., 2014), or 
generalized additive models (GAMs) with splines (Djeundje and Crook, 
2019b; Lohmann et al., 2023) or machine learning techniques such as 
artificial neural networks (Kumar & Ravi, 2007; Jones, 2017; Jones 
et al., 2017; Mai et al., 2019; Manthoulis et al., 2020; Petropoulos et al., 
2020) to account for nonlinear effects in bankruptcy prediction. How
ever, the proposed fractional polynomial approach has several impor
tant advantages. One of the key advantages of fractional polynomials is 
their interpretability. When a predictor is included in the final model, its 
optimal transformation is usually a one- or two-degree polynomial that 
is straightforward to understand. Additionally, each transformed vari
able is associated with a coefficient in the logit regression, making the 
relationship between the predictor and bankruptcy easy to interpret and 
communicate. In contrast, splines become difficult to interpret as the 
number of knots increases or when higher-order polynomials are used in 
each segment. The resulting piecewise functions can be complex and 
challenging to communicate, while segmentation in a fractional poly
nomial approach is not required. Neural networks, especially deep 
learning models, are often considered "black boxes" due to their 
complexity and the difficulty in interpreting the weights and in
teractions between variables. Another advantage of fractional poly
nomials is their simplicity and flexibility. Unlike splines and neural 
networks, which depend on critical parameters, fractional polynomials 
require minimal parameter specification. For splines, choosing the 
number and location of knots is crucial, while for neural networks, key 
parameters include the type of activation functions and the number of 
neurons in the hidden layers. As we demonstrate later, the performance 
of neural networks can vary significantly based on the number of neu
rons used. Moreover, splines and neural networks are prone to 

overfitting, particularly when using a large number of knots or neurons. 
Fractional polynomials, however, are less susceptible to overfitting due 
to their simpler structure. Finally, fractional polynomials offer the 
ability to account for interactions among predictors during the model
ling process, which is particularly useful in a variable selection context. 
This is difficult to achieve with splines due to the complexity of speci
fying multiple knots. Similarly, the complex structure and black box 
nature of neural networks makes them less suitable for variable selec
tion. In contrast, the fractional polynomial approach includes a step that 
tests the inclusion of each variable while the model includes the optimal 
transformations of the other predictors chosen up to that point. This 
approach effectively accounts for interactions without adding signifi
cant computational complexity or reducing efficiency.

To the best of our knowledge, our study is the first to introduce 
nonlinear logit models based on the multivariate fractional polynomial 
approach in the context of bankruptcy prediction, addressing the limi
tations of other nonlinear models discussed above. To demonstrate the 
advantages of this methodology, we conduct a large-scale and system
atic empirical analysis using two extensive datasets consisting of 
financial and non-financial firms.

Overall, we document substantial improvements, in-sample and out- 
of-sample, when we apply multivariate fractional polynomials in 
bankruptcy prediction. We begin our analysis using a large dataset with 
quarterly non-financial firm observations, in the period December 1979 
– September 2023, from which >2000 failed in the subsequent quarter. 
Applying fractional polynomials on a pool of financial ratios, we 
construct a parsimonious logit model with few predictors that is com
parable to a stepwise logit model, however, all variables exhibit a 
nonlinear association with the risk of bankruptcy, as indicated by the 
optimal power functions selected by the fractional polynomial 
approach. Even more important is that the nonlinear logit model we 
construct, improves the in-sample fit and discriminatory power, 
measured by the Pseudo R2 and the Area Under Curve (AUC), respec
tively, by approximately 60 % and 8 %, respectively. The improvement 
is striking considering that the stepwise and the nonlinear fractional 
polynomial models are comparable in terms of the variables they have.

Next, by considering a comprehensive out-of-sample analysis, we 
find that the nonlinear fractional polynomial logit model continues to 
outperform linear logit models substantially. Specifically, we find that 
the model concentrates 74 % of the failed firms in the highest risk deciles 
(compared to approximately 50 % achieved by the linear logit models), 
improves the AUC by >10 %, while reducing Type II errors (mis
classifying failed firms) by nearly 50 % compared to linear logit models, 
highlighting the economic value of the nonlinear model in reducing 
costly misclassification errors.

We extend the above insights by applying the fractional polynomial 
approach on a large quarterly dataset consisting of FDIC-insured bank 
observations in the period June 1976 – September 2023, from which 
>2000 banks failed in the subsequent quarter. We document that stan
dard CAMELS-based variables measuring capital adequacy, asset qual
ity, earnings, and liquidity, exhibit a nonlinear relationship with bank 
risk. Importantly, depending on the forecasting horizon, the in-sample 
R2 improves by up to 19 % while the in-sample AUC improves moder
ately. However, the out-of-sample AUC improves by up to 9 %.

Finally, we evaluate the performance of the fractional polynomial 
model, developed for both non-financial and financial firms, against 
other nonlinear benchmarks, specifically to a feedforward artificial 
neural network, a recurrent neural network, splines, and a generalized 
partially linear single index model. Our results indicate that the frac
tional polynomial logit models perform better than the benchmarks with 
the results being substantially more pronounced using the non-financial 
firms sample. In addition, unlike neural networks which show volatile 
performance depending on neuron configuration, the fractional poly
nomial model offers stable and reliable predictions. By simulating a 
competitive loan market, we show that the bank using the fractional 
polynomial model in its decision-making has economic gains as the bank 
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manages a higher-quality loan portfolio with higher risk-adjusted prof
itability compared to banks using alternative models. The results, 
overall, are consistent when considering longer-term horizons.

The rest of the paper is organized as follows. Section 2 discusses the 
data, Section 3 describes the fractional polynomial methodology, Sec
tion 4 discusses the results and Section 5 concludes the paper.

2. Data

2.1. Sample

Quarterly financial data for non-financial firms are downloaded from 
Compustat in the period December 1979 – September 2023 (accounting 
also for a three-month reporting delay) and they are matched with a 
failure indicator that we construct, that takes values of 1 for firms that 
failed in the subsequent quarter and 0 otherwise.

Failure information, such as the name, date, and failure reason, are 
downloaded from BankruptcyData of New Generation Research Inc, 
which is a database that contains detailed information for distressed 
companies in the U.S.1 Failed firms are defined as firms that filed for 
Chapter 7 (liquidation) or Chapter 11 (administration). On the other 
hand, non-failed firms are those that have survived until the end of the 
sample period or exited the sample for other reasons, such as merger, 
acquisition etc.

Overall, we have a sample with 1,262,355 firm-quarter observations 
in the period December 1979 – September 2023 and failure information 
for the next quarter. In the dataset, we have identified 2298 failed firms. 
In Table IA.1 of the Internet Appendix, we report information for the 
number of observations in the sample period.

To get a full understanding of the failure sample and its variation 
over time, in Fig. 1 below, we plot the number of failed firms in each 
quarter over the sample period.

As can be seen, the number of failed firms spike around the 1990 – 
1991 U.S. recession period, in the early 2000 – 2001 period during the 
dot.com bubble, in the 2008 – 2009 period during the global financial 
crisis and in the 2020 due the arrival COVID-19 pandemic. Overall, our 
sample with failed firms is representative of the prevailing market 
conditions. Additionally, in Table IA.2 of the Internet Appendix we show 

the distribution of failed firms per industry.
For profitability, we construct the ratio of net income to total assets 

(NI/TA). For liquidity, we construct three financial ratios: cash and 
short-term equivalents to current liabilities (CH/CL), current assets to 
current liabilities (CA/CL) and working capital to total assets (WC/TA). 
For leverage, we construct the ratios of total liabilities to total assets 
(TL/TA) and short-term debt to total assets (STD/TA). For coverage, we 
construct the ratio of net income to interest expense (NI/IE), for capital 
we construct the ratio of equity to total assets (EQ/TA) and finally, the 
natural logarithm of total assets is used for size (SIZE). The set of 
financial predictors that we construct are commonly used in the litera
ture and are expected to capture the risk of failure quite accurately (e.g., 
Shumway, 2001; Chava & Jarrow, 2004; Altman & Sabato, 2007; Tian 
et al., 2015, and many others). Finally, the short list of candidate 
financial predictors that we maintain allows us to build a parsimonious 
model for prediction that focuses on the most critical variables. This 
approach enhances the model’s robustness and reliability, minimizes the 
risk of overfitting, and simplifies practical application as these variables 
are available for almost all firms.

The summary statistics reported in Table IA.3 of the Internet Ap
pendix, reveal distinct differences between failed and non-failed firms. 
Failed firms exhibit lower capital levels, as indicated by a lower EQ/TA 
ratio, lower liquidity, evidenced by lower CA/CL, CH/CL, and WC/TA 
ratios. Additionally, failed firms are less profitable, with a lower NI/TA 
ratio, and have higher leverage, shown by higher TL/TA and STD/TA 
ratios.

3. Methodology

3.1. Variable transformations

The logit function (i.e. log-odds), G(β, x), used in standard logistic 
regression, is a linear function of the predictor variables and has the 
following form: 

ln
(

p
1 − p

)

= G(β, x) = β0 +
∑k

i=1
βixk (1) 

where p is the probability of failure, x is the vector of predictors and β 
the vector of coefficients. A more general and flexible approach is when 
allowing the relationship between the logit function and the predictors 
to be nonlinear, without of course excluding the possibility of linearity. 
Fractional polynomials fit, for the i th predictor variable, polynomial 
functions, F, up to a certain degree, J, to transform the predictor variable 
nonlinearly; F1(xi), F2(xi), …, FJ(xi), leading to the following form of the 
logit function (with other predictors included but for the simplicity of 
exposition, we do not include them in the following equation): 

G(β, x) = β0 +
∑J

j=1
βi,jFj(xi) + … (2) 

In this context, we consider fitting one-degree polynomial functions 
(J = 1) and two-degree polynomial functions (J = 2). When J = 1, the 
function F is a power function from the set p = {− 2, − 1, − 0.5, 0, 0.5, 1, 
2, 3}, where 0 denotes the natural logarithm of the variable. The 
nonlinear transformation is then defined as: 

F1(xi) = xp1
i (3) 

When J = 2, two polynomial functions are fitted: F1(xi) as in Eq. (3)
and F2(xi) is defined as follows: 

F2(xi)

{
xi

p2 p2 ∕= p1
F1(xi)ln(xi) p2 = p1

(4) 

For example, when p1 = − 1 and p2 = 2, F1(xi) = 1
xi

and F2(xi) =

x2
i thus the logit function that includes the i th transformed predictor is: 

Fig. 1. This figure shows the fluctuation of the number of bankruptcies each 
quarter in the years 1980 – 2023.

1 https://newgenerationresearch.com/.
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G(β, x) = β0 + βi,1
1
xi
+ βi,2x2

i + … (5) 

In another example, suppose that p1= p2 = 3. In this case, F1(xi) =

x3
i and F2(xi) = x3

i ln(xi). Hence, the logit function is: 

G(β, x) = β0 + βi,1x3
i + βi,2x3

i ln(xi) + … (6) 

These transformations allow the logistic regression model to capture 
nonlinear relationships between predictor variables and the logit func
tion, thus providing a more flexible and more accurate representation of 
the data, potentially yielding a better-fitted model.

Finally, we do not consider more than two-degree polynomials. The 
multivariate fractional polynomial approach is designed to balance 
model flexibility with parsimony. Higher-degree polynomials introduce 
excessive complexity, increasing the risk of overfitting while making the 
resulting model difficult to interpret. The principles of inclusion, line
arity, and complexity (discussed in Section 3.2 subsequently) guide the 
selection process, ensuring that the chosen functional forms provide an 
optimal trade-off between goodness-of-fit and interpretability. In addi
tion, considering up to two-degree polynomial functions is reasonable 
because we capture non-linearities while offering some degree of 
generalization that is important in out-of-sample predictions, which turn 
out to be true in our empirical analysis.

3.2. Optimal polynomial function selection

Optimality is defined as minimizing the deviance (D) of the final 
logistic model (− 2*Log-Likelihood), by selecting for each predictor the 
best nonlinear transformation function as discussed in Section 3.1, 
aiming to include the most important predictors (e.g. parsimonious 
model) and maintaining the complexity of the model at low levels. To 
achieve optimality, we establish an iteration process for each predictor 
on a given cycle to identify the transformation that significantly reduces 
the Deviance of the model, following the principles of Inclusion, Line
arity and Complexity as shown in Fig. 2.

More specifically, the following process is applied to each predictor 
during a given cycle:

Initial Step: The best one-degree polynomial function corresponds to 
the model with the lowest deviance, D(J = 1). The best two-degree 
polynomial function corresponds to the model with the lowest devi
ance, D(J = 2). Then, the optimal polynomial function for each predictor 
is chosen as follows:

Inclusion: We first assess whether including a given predictor im
proves the model fit. This is determined by comparing the null model 
(without the predictor) to the best two-degree polynomial model. The 
gain statistic, G(null, J = 2) = D(null) – D(J = 2), follows a Chi-square 
distribution with 4 degrees of freedom. If statistically significant at the 
5 % level, the predictor is retained; excluded otherwise.

Linearity: If included, we test whether the predictor exhibits a 
nonlinear relationship with the logit function. This is done by comparing 
the linear model with the best two-degree polynomial model. The gain 
statistic, G(1, J = 2) = D(1) – D(J = 2), follows a Chi-square distribution 
with 3 degrees of freedom. If significant at the 5 % level, we conclude 
that a nonlinear transformation is necessary; otherwise, the linear 
transformation is retained.

Complexity: If nonlinearity is confirmed, we determine whether a 
two-degree polynomial is necessary by comparing it to the best one- 
degree polynomial transformation. The gain statistic, G(J = 1, J = 2) 
= D(J = 1) – D(J = 2), follows a Chi-square distribution with 2 degrees of 
freedom. If significant at the 5 % level, we retain the two-degree poly
nomial; otherwise, we use the simpler one-degree polynomial.

A cycle ends when the above process is applied on all predictors. 
Hence, performing the above process across all predictors over multiple 
cycles, yields a globally optimized structure with minimum Deviance, 
while controlling for parsimony and complexity.

It is important to note here that, the process of selecting the optimal 

polynomial function for each predictor in a multivariate fractional 
polynomial approach is designed to account for interactions between the 
predictors. The approach selects the best polynomial function for each 
predictor one at a time. During this process, all other predictors are 
included in the regression using the best polynomial functions identified 
so far. Hence, the choice of the polynomial function for any given pre
dictor is conditional on the polynomial functions already chosen for the 
other predictors. In the first cycle, each predictor is transformed 
sequentially, beginning with the predictor that has the lowest p-value 
when all predictors are treated as linear. We determine the optimal 
polynomial function for each predictor in turn, while the others are 
included in the model with their best functions identified up to that 
point. In the second cycle we re-fit the polynomial functions for all 
predictors one at a time, considering the updated optimal functions for 
all variables, ensuring that the selection of functions for each predictor is 
adjusted based on the most current choices for the other predictors. The 
process continues, with each cycle refining the polynomial functions 
according to the principles of inclusion, linearity and complexity as 
explained above, until two consecutive cycles result in the same set of 
functions for all predictors. At this point, the fractional polynomial se
lection process is completed, minimizing the overall deviance of the 
model (e.g., maximizing the fit). That is, optimality is achieved in terms 
of minimum deviance when, over multiple cycles, the approach selects 
the optimal transformation for each predictor. Typically, it only takes 
two to three cycles to reach this point.

Another point is that, within the multivariate fractional polynomial 
framework, the core statistical properties of logistic regression are 
retained, including consistency, asymptotic normality, and likelihood- 
based inference (based on deviance), ensuring that the fundamental 
assumptions of generalized linear models remain intact. This is because 
MFP essentially estimates logit regressions at each step, thus the models 
in all steps share the robust properties of logistic regression. Moreover, 
MFP mitigates potential biases through a structured and systematic 
model selection process. The approach relies on deviance tests (in the 
same spirit to likelihood ratio tests) at each step to determine whether 
higher-order polynomials significantly improve model fit. Additionally, 
the stepwise procedure ensures that selected transformations are itera
tively re-evaluated in the presence of other variables, reducing the risk 
of overfitting.

Outliers could influence the estimation and performance results, 
thus, in the subsequent analysis, we winsorize both the in-sample and 
out-of-sample data at the 5 % level.2 Moreover, as the functions include 
the logarithm (p = 0) and square root (p=− 0.5 or p = 0.5), the pre
dictors, x, must be greater than zero. Before implementing the fractional 
polynomial process, we use the min-max linear transformation method 
such that each predictor takes values between 0.1 and 1. The min-max 
transformation does not alter the properties of the predictor neither 
changes the fundamental nonlinear relationship with the logit function. 
For consistency, we use the min-max predictors in the other models as 
well.

4. Results

4.1. Univariate

First, we explore the optimal nonlinear relationships of the pre
dictors with the logit function univariately, using the full sample period 
(December 1979 – September 2023) with 2298 failed firms and 
1,260,057 healthy firm-quarter observations. Each row in Table 1 shows 
the results of a univariate regression.

2 Hence, where we refer to full sample results, we merge the winsorized in- 
sample and out-of-sample datasets. The winsorization does not affect the re
sults but rather it is made to ensure that the results and the nonlinear rela
tionship are both not affected by outliers.
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In particular, columns 3 and 4 show the optimal functions selected by 
the fractional polynomial process when the regression includes only one 
predictor at a time. As can be seen, the optimal relationship in all cases is 
nonlinear. Taking as an example the liquidity variable CH/CL, the 
optimal transformation chosen is a two-degree polynomial with powers 
(− 2, 3), yielding the two functional forms F1(x) = 1/x2 and F2(x) = x3. 
That is, the predictor passed the inclusion test (e.g., this two-degree 
polynomial transformation is better than the null), the linearity test 
(e.g., this two-degree polynomial transformation is better than the 
linear), and the complexity test (e.g., this two-degree polynomial 
transformation is better than the best one-degree transformation). As 
can be seen in the last two columns, the transformation improves the fit. 
The pseudo-R2 increases from 2.67 % to 3.61 % (relative percentage 
change is 35 %). Similar is the case of other predictors, experiencing 
substantial improvements in many cases.

Fig. 3 illustrates the nonlinear relationship between selected pre
dictors (NI/TA, CH/CL, TL/TA, SIZE) and the logit function using frac
tional polynomial functions. To create each plot in the figure, we sorted 
each predictor in ascending order and divided its values into 100 equal- 
sized groups. For each group, we calculated the mean value and the 
failure rate, defined as the number of failures in the group divided by the 

Fig. 2. This figure shows the three steps that the fractional polynomial approach follows for predictor x in the current cycle.

Table 1 
Univariate results.

x Power(s) F1(x) F2(x) R2 (Nonlinear) R2 (Linear)

EQ/TA (− 0.5, 0.5) 1/
̅̅̅
x

√ ̅̅̅
x

√ 0.0594 0.0526
CA/CL (− 2, − 2) 1/x2 1/x2 ln (x) 0.0523 0.0444
NI/TA (3, 3) x3 x3 ln (x) 0.0438 0.0245
CH/CL (− 2, 3) 1/x2 x3 0.0361 0.0267
TL/TA (2, 3) x2 x3 0.0590 0.0513
STD/TA (− 2, 1) 1/x2 x 0.0573 0.0564
NI/IE (3, 3) x3 x3 ln (x) 0.0029 0.0004
WC/TA (− 1, 0) 1/x ln (x) 0.0443 0.0439
SIZE (2, 3) x2 x3 0.0080 0.0000

This table shows univariate fractional polynomial estimation results in the full 
sample period. Each row is a univariate logit regression applying the fractional 
polynomial approach, described in Section 3, on the financial ratio shown in the 
first column. The second column reports the optimal power functions and the 
corresponding transformation, F, is shown in the third and fourth columns. The 
last two columns report the pseudo R2 for the fractional polynomial (e.g., 
nonlinear) model and the linear model. In each regression, we use observations 
in the period December 1979 – September 2023 matched with a failure indicator 
in the subsequent quarter.
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total number of observations in the group. We then computed the logit 

function (log-odds) for each group as ln
(

failure rate
1− failure rate

)

and plotted these 

values, represented by the blue circles. The scatter plot clearly shows 
that the relationship between the predictors and the logit function is 
nonlinear. The green line represents fitted values (estimated at the mean 
predictor values) from a linear logistic regression while the red curve 
represents fitted values (estimated at the mean predictor values) using 
the fractional polynomial functions shown in Table 1. According to the 
plots, fractional polynomial transformation of the predictors fits the data 
smoothly and more accurately, demonstrating the ability of fractional 
polynomials to capture the nonlinear relationship between predictors 
and the logit function much better than the linear approach.

An interesting case is that of the SIZE variable. While many studies 
report a negative association between firm size and distress (e.g., 
Bharath & Shumway, 2008; Campbell et al., 2008; Hadlock & Pierce, 
2010, among others) our results suggest that this is the case for relatively 
very large firms.

In particular, as smaller firms grow to a certain point, they can face 
higher distress as they mainly finance their growth through leverage. 
However, above that point, firms that grow even more enjoy larger 
economies of scale and easier access to capital, eventually facing less 
distress.

Another case showing indeed that financial ratios have a nonlinear 
relationship with the likelihood of failure is that of the liquidity variable 
(CH/CL). As can be seen, even a small increase in liquidity reduces 

substantially the likelihood of failure, however, at very high levels the 
effect is marginal.

4.2. A multivariate fractional polynomial model

4.2.1. In-sample results
In this section, we provide multivariate fractional polynomial results 

where the best function(s) for each predictor is estimated in conjunction 
with other predictors in the regression. While selecting the optimal 
functional form for each predictor, the logit regression includes other 
predictors as well but transformed with the best function(s) chosen up to 
that point, thus accounting for interactions between the predictors.

Table 2 reports multivariate results for a full linear logit model that 
includes all predictors (FULL), for a stepwise linear logit model that 
includes predictors selected from a stepwise logit regression at the 5 % 
significance level (STEPWISE) and finally, for a nonlinear logit model 
which incorporates the optimal functions of those predictors chosen 
using multivariate fractional polynomials (MFP). The results are based 
on the in-sample period December 1979 – December 2008, with 1619 
failed firms and 849,499 non-failed firm observations, which accounts 
for approximately 70 % of the full sample.

Interestingly, the fractional polynomial logit model selects the vari
ables also selected by the stepwise logit model but also accounting for 
nonlinearities, showing its flexibility to accommodate nonlinear func
tions while maintaining a parsimonious set of predictors. The WC/TA 
variable is selected by fractional polynomials but not by the stepwise 

Fig. 3. This figure plots univariate relationships for selected financial ratios with the logit function in the full sample period. Financial ratios are sorted and divided 
in percentiles, and we compute the predictor mean value for each percentile. For each percentile, the failure rate is the number of failures in the percentile divided by 
the number of observations in the percentile. The logit is the log-odds = ln [failure rate / (1-failure rate)]. Then we plot the mean predictor value (x) and the logit (y), 
represented by the blue circles. The green line represents fitted values (at the predictor mean value) from a univariate linear logit regression. The red line represents 
fitted values (at the mean predictor value) from a univariate nonlinear logit regression, using the fractional polynomial approach described in Section 3. J is the 
polynomial degree, and p is the selected power function. The corresponding transformation, F, is shown for each predictor in Table 1. The financial ratios are 
constructed in the period December 1979 – September 2023 matched with the failure indicator in the subsequent quarter.
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logit model, highlighting the underlying limitation of linear logit 
models; Linear logit models may exclude variables not because they are 
insignificant but because they have nonlinear relationships and thus 
poorly fitted by linear models. In some cases, the transformations differ 
from those chosen in the univariate analysis (Table 1) since the optimal 
functions are chosen conditional on the presence of other predictors, 
plus the results are based on a different time period (e.g., the in-sample 
period). Hence, slight differences are expected. For example, with 
powers (2, 3), the optimal transformations for WC/TA conditional on 
other predictors are F1(x) = x2 and F2(x) = x3 while in univariate 
regressions the optimal functions, with powers (− 1, 0) are F1(x) = 1 
/x and F2(x) = ln(x), however, the transformation in other cases is 
similar (NI/TA, CH/CL). Moreover, the coefficient for each function F is 
highly statistically significant at the 1 % level.

To examine whether the fractional polynomial model is economi
cally intuitive as the stepwise logit model, we estimate marginal effects 
(dp / dx) for each predictor, reported in Table 2. According to the re
sults, the sign of the marginal effects is consistent with the coefficient 
signs of the stepwise logit model, suggesting that higher profitability and 
liquidity reduces the likelihood of failure while higher leverage in
creases the likelihood of failure. Overall, the fractional polynomial 
model is consistent with economic intuition.

The last rows of Table 2 report fitness (Pseudo R2 and Deviance) and 
discriminatory power (AUC) statistics for the three logit models. The 
nonlinear logit model, with fractional polynomial transformations of the 
predictors, substantially improves the fit and discriminatory power as 
the relative percentage change in Pseudo-R2 and AUC is approximately 
60 % and 8 % respectively compared to linear logit models. In addition, 
significant reduction in Deviance is achieved when going from a linear 
model to a multivariate fractional polynomial model. The full model, 
which includes all predictors in linear form, can be seen as the initial 
state with a Deviance equal to 20,762.40. In contrast, our proposed MFP 
model iteratively selects the best transformations, reducing the Devi
ance to 19,147.37, demonstrating a substantial improvement in model 
fit. The findings confirm the notion that simple nonlinear trans
formations of the predictors improve the model performance. The 
improvement is substantial, considering that the models include similar 
set of variables.

4.2.2. Out-of-sample results
To truly understand the benefits of using the nonlinear MFP logit 

model, we conduct an out-of-sample analysis employing an array of 
tests. For the tests, we use the out-of-sample observations spanning the 
period March 2009 – September 2023.

First, using the models in Table 2, we compute the failure probability 
for the out-of-sample observations and rank these observations in dec
iles, where the first decile includes the observations with the lowest 
probabilities and the tenth decile includes the observations with the 
highest probabilities. In each row of Table 3, we report the percentage of 
failed firms in each decile, defined as the number of failures in the decile 
divided by the total number of failures (in the out-of-sample period).

A good model would concentrate more failures towards the last 
deciles. According to the results, the MFP model concentrates 74 % of 
failed firms in the ninth and tenth decile, while the stepwise and the full 
logit models concentrate approximately half of the failures in those 
deciles. In the last row, the AUC statistics suggest that the relative per
centage increase in discriminatory power achieved by the nonlinear 

Table 2 
Estimation results.

Variables Power 
(s)

F 
(x)

MFP (β) dp / dx STEPWISE 
(β)

FULL (β)

EQ/TA ​ ​ ​ ​ ​ 0.40 
(0.75)

CA/CL ​ ​ ​ ​ ​ 0.38 
(0.72)

NI/TA (3, 3) x 3 − 3.82*** 
(− 24.63)

− 0.011 − 1.97*** 
(− 14.79)

− 1.94*** 
(− 13.93)

​ ​ x 3 

ln 
(x)

− 6.70*** 
(− 8.17)

​ ​ ​

CH/CL (− 2, 
3)

x − 2 0.01*** 
(6.62)

− 0.022 − 1.69*** 
(− 4.38)

− 1.75*** 
(− 3.40)

​ ​ x 3 − 1.91*** 
(− 3.73)

​ ​ ​

TL/TA (3, 3) x 3 1.81*** 
(16.00)

0.003 2.36*** 
(13.70)

2.63*** 
(4.91)

​ ​ x 3 

ln 
(x)

− 9.05*** 
(− 12.47)

​ ​ ​

STD/TA (1, -) x 1.03*** 
(10.14)

0.002 1.95*** 
(16.92)

1.88*** 
(16.11)

NI/IE ​ ​ ​ ​ ​ 0.12 
(0.54)

WC/TA (2, 3) x 2 − 4.58*** 
(− 6.12)

− 0.002 ​ − 0.44* 
(− 1.65)

​ ​ x 3 4.25*** 
(5.20)

​ ​ ​

SIZE (1, 2) x 15.24*** 
(27.50)

0.006 2.94*** 
(25.11)

2.94*** 
(24.59)

​ ​ x 2 − 10.95*** 
(− 22.47)

​ ​ ​

Constant ​ ​ − 10.80*** 
(− 50.85)

​ − 8.24*** 
(− 38.43)

− 8.55*** 
(− 13.73)

Y = 1 ​ ​ 1619 ​ 1619 1619
Y = 0 ​ ​ 849,499 ​ 849,499 849,499
Deviance ​ ​ 19,147.37 ​ 20,766.17 20,762.40
Pseudo 

R2
​ ​ 0.1859 ​ 0.1171 0.1173

AUC ​ ​ 0.8805 ​ 0.8194 0.8189

This table shows logit regression estimation results, using in-sample observa
tions, for three models. FULL is a linear logit model that includes all predictors. 
STEPWISE is a linear logit model constructed from backward elimination of the 
insignificant predictors at the 5 % level. MFP is a nonlinear logit model con
structed using the multivariate fractional polynomial approach described in 
Section 3. The “Power(s)” column reports the optimal set of powers selected for 
each predictor while the corresponding transformation, F, is also shown along 
with the corresponding coefficient in the next columns. The column “dp/dx” 
reports marginal effects, computed as the partial derivative of the probability of 
failure with respect to a financial predictor.
The financial predictors are constructed for the in-sample period December 1979 
– December 2008 matched with a failure indicator in the subsequent quarter.
The last rows present fitness (Deviance and Pseudo-R2) and discriminatory 
power (AUC) statistics for the models. The standard errors are adjusted for 
clusters at the firm level. *, **,*** denote statistical significance at the 10 %, 5 % 
and 1 % levels.

Table 3 
Out-of-sample results: decile rankings.

Decile MFP STEPWISE FULL

1 0.007 0.009 0.007
2 0.012 0.019 0.021
3 0.022 0.027 0.025
4 0.013 0.040 0.043
5 0.021 0.069 0.072
6 0.028 0.066 0.071
7 0.055 0.115 0.111
8 0.099 0.140 0.137
9 0.296 0.113 0.116
10 0.448 0.402 0.398
AUC 0.8299 0.7508 0.7483

This table reports the out-of-sample decile rankings for the models estimated in 
Table 2. Using out-of-sample observations in the period March 2009 – 
September 2023, we compute the probability of failure using each model and 
sort the probabilities in ascending order. We form deciles, where the first decile 
includes observations with the lowest risk and the tenth decile includes obser
vations with the highest risk. For each decile, the concentration of failures is 
defined as the number of failures in the decile divided by the total number of 
failures. This number is reported in each cell. The last row reports the 
discriminatory power measured by the AUC.
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logit model is >10 %.
From an economic perspective, misclassifying a failed firm (Type II 

error) is going to have far more damaging effects than misclassifying a 
healthy firm (Type I error). In the first case, the bank may possibly lose 
up to the total value of the loan outstanding whereas in the second case, 
it is just a lost opportunity to gain the interest from the loan. In Table 4
we report Type I and Type II errors when classifying firms into failed or 
healthy using various cut-off percentiles.

The results show that the nonlinear (e.g., MFP) model produces 
substantially lower Type II errors. For instance, the median cut-off point 
where firms higher than the median probability are classified as failed 
and non-failed otherwise, produces a Type II error equal to 7.5 % for the 
nonlinear MFP logit model, whereas for the stepwise and full logit 
models the errors are 16.3 % and 16.8 %, respectively. In many other 
cases the difference in Type II errors between the models is quite sub
stantial as well.

Next, we assess the predictive ability of the various logit models in 
longer horizons. We run logit regressions equivalent to Table 2 but 
lagging the predictors by four, eight and twelve quarters.3 Table 5 re
ports in-sample and out-of-sample results.

Overall, we continue to document substantial improvements, in- 
sample and out-of-sample, when using fractional polynomials to trans
form the predictors. The in-sample R2 more than doubles in the four, 
eight and twelve quarter horizons while the in-sample AUC improves by 
up to 12 %. Moreover, the out-of-sample AUC improves by up to 15 %. 
Finally, in Table IA.4 of the Internet Appendix, we report results per 
industry, and we continue to document substantial improvements when 
applying the fractional polynomial approach, consistent with our main 
results.

4.3. Fractional polynomials for banks

In this section, we assess the effectiveness of fractional polynomials 
in predicting bank failures. Our analysis is based on a large dataset of 
FDIC bank-quarter observations from Call Reports sourced from the 
Federal Reserve Bank of Chicago, spanning from June 1976 to 
September 2023 (accounting for a three-month reporting delay). The 
dataset comprises 1,934,396 bank-quarter observations matched with a 
failure indicator for the subsequent quarter. This indicator takes values 
of 1 for the quarter in which a bank either terminated its operations or 
received an assistance transaction, and 0 otherwise. Within this dataset, 
2217 banks were identified as having failed, according to the Federal 
Deposit Insurance Corporation (FDIC) database of failed banks.

To maintain a sufficiently large number of failures, we construct 
financial ratios that are consistently reported throughout the sample 
period following the CAMELS framework widely used in the literature 
(see for instance Cole & White, 2012; Betz et al., 2014; Cleary & Hebb, 
2016; Audrino et al., 2019, among others). We construct capital ade
quacy as the ratio of Equity to Total Assets (EQ/TA), asset quality as the 
ratio of Loan Loss Provision to Total Assets (LLP/TA), earnings quality as 
the ratio of Net Income to Total Assets (NI/TA), liquidity as the ratio of 
Cash to Total Assets (CH/TA) and SIZE as the natural logarithm of total 
assets.

Table 6 shows the estimation results for the in-sample period span
ning the period June 1976 – December 2002 (approximately 70 % of the 
dataset). Applying the stepwise logit regression, all predictors are highly 
statistically significant, with the expected sign, confirming that mea
sures of capital, asset quality, liquidity, and profitability, are key vari
ables in predicting bank failures. Bank size has a negative coefficient 
consistent with the “too big to fail” feature of large banks. However, 
fractional polynomial transformation results, reported under the MFP 
column, confirm that there exists a nonlinear relationship between the 
predictors and the probability of bank failure that improves both the 
model fit (R2 improves by 10 %) and the model discriminatory power 
improves slightly as the discriminatory power is already high.

Table 7 reports in-sample and out-of-sample results for various 
forecasting horizons. In all cases, the optimal nonlinear transformation 

Table 4 
Out-of-sample results: misclassification errors.

MFP STEPWISE FULL

Cut-off (c) Type I Type II Type I Type II Type I Type II

5 0.950 0.006 0.950 0.004 0.950 0.004
10 0.900 0.007 0.900 0.009 0.900 0.007
15 0.850 0.010 0.850 0.018 0.850 0.019
20 0.800 0.019 0.800 0.028 0.800 0.028
25 0.750 0.034 0.750 0.037 0.750 0.037
30 0.700 0.041 0.700 0.054 0.700 0.053
35 0.649 0.043 0.650 0.074 0.650 0.075
40 0.599 0.054 0.599 0.094 0.599 0.096
45 0.549 0.063 0.549 0.110 0.549 0.122
50 0.499 0.075 0.499 0.163 0.499 0.168
55 0.449 0.090 0.449 0.197 0.449 0.202
60 0.399 0.103 0.399 0.230 0.399 0.239
65 0.349 0.125 0.349 0.281 0.349 0.283
70 0.299 0.158 0.299 0.345 0.299 0.349
75 0.249 0.193 0.249 0.423 0.249 0.426

This table reports the out-of-sample misclassification errors for the models 
estimated in Table 2. Using out-of-sample observations from March 2009 to 
September 2023, we calculate the probability of failure for each model. For 
classification, we use a threshold probability c, defined as the c-th percentile of 
the estimated failure probabilities. Observations are classified as "failed" if their 
estimated probability of failure exceeds the threshold; otherwise, they are 
classified as "non-failed." For each threshold shown in the first column, we assess 
two types of errors: Type I error, which is the percentage of non-failed firms 
incorrectly classified as failed, and Type II error, which is the percentage of 
failed firms incorrectly classified as non-failed.

Table 5 
Out-of-sample results: predictions in longer-term horizons.

MFP STEPWISE FULL

Panel A: t + 1 ​

In-Sample R2 0.1859 0.1171 0.1173
In-Sample AUC 0.8805 0.8194 0.8189
Out-of-Sample AUC 0.8299 0.7508 0.7483

Panel B: t + 4 ​

In-Sample R2 0.1061 0.0493 0.0495
In-Sample AUC 0.8191 0.7373 0.7379
Out-of-Sample AUC 0.7527 0.6571 0.6575

Panel C: t + 8 ​

In-Sample R2 0.0620 0.0264 0.0265
In-Sample AUC 0.7584 0.6792 0.6797
Out-of-Sample AUC 0.6881 0.6123 0.6146

Panel D: t + 12 ​

In-Sample R2 0.0402 0.0157 0.0159
In-Sample AUC 0.7104 0.6465 0.6470
Out-of-Sample AUC 0.6238 0.6190 0.6133

This table reports the in-sample and out-of-sample performance for the multi
variate fractional polynomial logit model (MFP), the stepwise logit model 
(STEPWISE), and the full logit model (FULL) in one, four, eight and twelve 
quarter forecasting horizons. Panel A reports the results also reported in the last 
rows of Tables 2 and 3. For the results reported in Panels B – D we re-run the 
analysis but lagging the financial predictors accordingly, to derive in-sample 
statistics (pseudo R2 and AUC) and the out-of-sample AUC for the various 
forecasting horizons.

3 Regressions are not reported for brevity, but they are available upon 
request.
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of the predictors, selected by the fractional polynomial process, im
proves the model performance. Specifically, the in-sample R2 improves 
by up to 19 % while the in-sample AUC improves moderately. However, 
the out-of-sample AUC improves by up to 9 %.

Overall, the results suggest that fractional polynomials improve the 
prediction of bank failures compared to a linear logit model.

4.4. Comparison with alternative nonlinear approaches

A natural question that arises is how the nonlinear logit model, 
constructed using fractional polynomial transformations, compares to 
other approaches that also account for nonlinearities in their structure. 
We consider four nonlinear models. The first one, is a spline model 
(SPLINES) in the spirit of Giordani et al. (2014) using B-splines for basis 
function and a penalty parameter for overfitting the data4 (see also Luo 
et al., 2016; Djeundje & Crook, 2019a). The second one, is a Generalized 
Partially Linear Single Index Model (GPLSIM) which provides the option 
to treat some predictors linearly and the rest nonlinearly via a single 
index and an unknown smooth function.5 A potential advantage of this 
approach is that, instead of modelling a high-dimensional nonlinear 
relationship directly, it reduces dimensionality by creating a single 

index, making it computationally efficient (Carroll et al., 1997; Li et al., 
2023). Next, a widely used alternative that we consider in our study as a 
nonlinear benchmark is a feedforward Artificial Neural Network (ANN). 
To this end, many studies indeed showed that ANN outperform linear 
logit models as ANN can capture complex relationships in the data (see 
for instance Kumar & Ravi, 2007; Tinoco & Wilson, 2013; Jones et al., 
2017; Mai et al., 2019). In the hidden layer we use the tan-sigmoid 
transfer function, while in the output layer we use the soft-max func
tion, suitable for binary or multiclass classification. We run four 
different ANN configurations,6 varying the number of neurons in the 
hidden layer to 3, 5, 10, and 15. Finally, we run a recurrent neural 
network (RNN) with a long short-term memory layer with 50 hidden 
units which allows to learn the long-term dependencies of the data.7

Table 8 reports the out-of-sample performance of the various models 
when predicting firm and bank failures in various forecasting horizons. 
We focus on the AUC performance as it is a key statistic of discriminatory 
power widely used in the literature (Fitzpatrick & Mues, 2016; Jabeur 
et al., 2020, Ma et al., 2025, among others).

Overall, we conclude that the MFP approach has higher discrimi
natory power compared to other nonlinear approaches, with the results 
being substantially more pronounced in the case of predicting firm 
failures. These results are not surprising as many of the alternative ap
proaches, for example splines, neural networks etc., have critical pa
rameters to configure or more complex structure which may 
compromise performance as opposed to fractional polynomials, consis
tent with our conjectures discussed earlier. For instance, in Table IA.5 of 
the Internet Appendix, we document that the performance of ANN is 
very volatile for the various number of neurons used, which hinders a 
serious limitation for ANN. This volatility introduces model risk, as 
selecting the optimal ANN configuration becomes challenging and can 
lead to unstable predictive performance.

Next, we re-run the analysis but changing the out-of-sample period. 

Table 6 
Estimation results: bank dataset.

Variables Power(s) F(x) MFP (β) dp / dx STEPWISE (β)

EQ/TA (− 2, 2) x − 2 0.04*** 
(31.90)

− 0.078 − 16.01*** 
(− 19.07)

​ ​ x 2 − 2.36*** 
(− 4.83)

​ ​

LLP/TA (− 2, 0) x − 2 0.01*** 
(6.30)

− 0.002 1.04*** 
(9.39)

​ ​ ln(x) 0.82*** 
(9.05)

​ ​

NI/TA (2, 3) x 2 − 17.74*** 
(− 23.24)

− 0.004 − 5.13*** 
(− 21.90)

​ ​ x 3 16.15 
(20.54)

​ ​

CH/TA (0, -) ln(x) − 0.37*** 
(− 9.02)

− 0.002 − 0.82*** 
(− 7.60)

SIZE (0, -) ln(x) − 0.50*** 
(− 12.18)

− 0.002 − 1.16*** 
(− 10.37)

Constant ​ ​ − 7.10*** 
(− 47.59)

​ − 0.77*** 
(− 4.33)

Y = 1 ​ ​ 1656 ​ 1656
Y = 0 ​ ​ 1,352,174 ​ 1,352,174
Deviance ​ ​ 15,813.91 ​ 16,622.35
Pseudo R2 ​ ​ 0.3804 ​ 0.3487
AUC ​ ​ 0.9656 ​ 0.9562

This table shows logit regression estimation results on the bank dataset con
sisting of FDIC-insured banks, using in-sample observations, for two models. 
MFP is a nonlinear logit model constructed using the multivariate fractional 
polynomial approach described in Section 3. STEPWISE is a linear logit model 
constructed from backward elimination of the insignificant predictors at the 5 % 
level. The “Power(s)” column reports the optimal set of powers selected for each 
predictor while the corresponding transformation, F, is also shown along with 
the corresponding coefficient in the next columns. dp / dx are marginal effects, 
calculated as the partial derivative of the probability of failure with respect to a 
financial predictor.
The financial predictors are constructed for the in-sample period June 1976 – 
December 2002 matched with a failure indicator in the subsequent quarter.
The last rows present fitness (Deviance and Pseudo-R2) and discriminatory 
power (AUC) statistics for the models. The standard errors are adjusted for 
clusters at the bank level. *, **,*** denote statistical significance at the 10 %, 5 
% and 1 % levels.

Table 7 
Performance in longer-term forecasting horizons: bank dataset.

MFP STEPWISE

Panel A: t + 1

In-Sample R2 0.3804 0.3487
In-Sample AUC 0.9656 0.9562
Out-of-Sample AUC 0.9686 0.9119

Panel B: t + 4

In-Sample R2 0.2399 0.2132
In-Sample AUC 0.9127 0.8940
Out-of-Sample AUC 0.9163 0.8683

Panel C: t + 8

In-Sample R2 0.1148 0.0998
In-Sample AUC 0.8225 0.7958
Out-of-Sample AUC 0.7598 0.7166

Panel D: t + 12

In-Sample R2 0.0545 0.0457
In-Sample AUC 0.7484 0.7201
Out-of-Sample AUC 0.6533 0.5971

This table reports the in-sample and out-of-sample performance on the bank 
dataset consisting of FDIC-insured banks, for the multivariate fractional poly
nomial logit model (MFP) and the linear stepwise logit model (STEPWISE) in 
one, four, eight and twelve quarter forecasting horizons. The estimation of the 
models is shown in Table 6. Panel A reports the results also reported in the last 
rows of Tables 6 (plus the out-of-sample AUC). For the results reported in Panels 
B – D we re-run the analysis but lagging the financial predictors accordingly, to 
derive in-sample statistics (pseudo R2 and AUC) and the out-of-sample AUC for 
the various forecasting horizons.

4 We use the ‘gam’ function from the ‘mgcv’ package in R. We use 10 knots.
5 We estimate the model using the ‘gplsim’ package in R. We consider all 

predictors to be nonlinear, thus all predictors enter in the single index. The 
smooth function is a spline with 10 knots.

6 We train ANN using MATLAB’s fitcnet command.
7 We use the ‘lstmLayer’ command in MATLAB to configure the RNN.

Z. Taoushianis                                                                                                                                                                                                                                   European Journal of Operational Research xxx (xxxx) xxx 

9 



In particular, we measure the AUC performance in the period 2000 – 
2023 and 2012 – 2023 (while the models are trained accordingly in the 
previous periods).

Overall, results reported in Table 9 confirm that MFP has higher 
discriminating ability compared to the alternative approaches, sug
gesting that changing the out-of-sample period does not alter the main 
findings.

Finally, we conduct a simulation analysis by generating artificial 
firms with financial predictors that exhibit the same statistical proper
ties as the original dataset by maintaining the covariance structure of the 
original financial variables. This allows us to assess how well the models 
generalize when trained on synthetic data that mimics real-world sta
tistical properties. First, we create a simulated training dataset by 
generating synthetic firms whose financial predictors follow a multi
variate normal distribution. The mean and covariance matrix of this 
distribution are derived from the original training dataset to ensure 
statistical similarity. The size of this simulated training dataset is set to 
10 % of the original training sample to enhance computational effi
ciency. Once the simulated training sample is generated, we use it to 
train the models, just as we would with real data. Next, we generate 500 
separate simulated testing samples, each constructed in the same way as 
the training sample. Specifically, we draw random numbers from a 
multivariate normal distribution whose covariance matrix matches that 
of the original testing dataset. Each of these 500 simulated test sets has a 
size equal to 10 % of the original testing sample to ensure computational 
feasibility. Once the 500 simulated test samples are created, we apply 
the models (trained on the simulated training data) to each of these test 
sets. For every simulation run, we compute the AUC and average the 
AUC values across all 500 test samples to obtain a robust estimate of the 
models’ performance.

Results reported in Table 10 demonstrate that the MFP model pos
sesses superior discriminatory power compared to alternatives, consis
tent with previous findings. The results are more pronounced for firm (e. 
g., non-financial firms).

4.5. Economic performance

In this section, we assess whether greater discriminatory power of 
bankruptcy models translates into higher economic benefits for banks. 
Following the approach of Agarwal and Taffler (2008) and Bauer and 
Agarwal (2014), we consider a scenario where banks operate within a 
competitive credit market valued at $100 billion. Each bank applies a 
distinct bankruptcy prediction model to assess the creditworthiness of 
potential borrowers, and a credit spread is charged.

To estimate credit spreads, we use the training data (December 1979 
– December 2008). Firm-year observations of the training data are 
ranked based on bankruptcy risk and divided into ten deciles of equal 
size. The first decile (lowest risk) is assigned a fixed credit spread 
denoted by k. For the remaining deciles (2 through 10), credit spreads 
(CSᵢ) are calculated based on the methodology of Blochlinger and 
Leippold (2006), using the formula: 

CSi =
p(Y = 1|S = i)
p(Y = 0|S = i)

LGD + k (7) 

In this expression, p(Y = 1∣S = i) is the bankruptcy probability and p 
(Y = 0∣S = i) is the survival probability within the i th decile. LGD refers 
to the loss given default, and its value is set at 45 %. The constant spread 
k is set at 0.3 %. The bankruptcy probability for each group is computed 
as the actual bankruptcy rate defined as the number of bankrupt firms 
divided by the total number of firms in that group (thus survival prob
ability is one minus the bankruptcy probability).

Table 8 
Out-of-sample AUC of various models: main results.

Non-Financial Firms Financial (FDIC) Institutions

AUC (t + 1) AUC (t + 4) AUC (t + 8) AUC (t + 12) AUC (t + 1) AUC (t + 4) AUC (t + 8) AUC (t + 12)

MFP 0.8299 0.7527 0.6881 0.6238 0.9686 0.9163 0.7598 0.6533
SPLINES 0.7851 0.6939 0.6478 0.6005 0.9673 0.9136 0.7566 0.6673
GPLSIM 0.7867 0.7203 0.6098 0.5833 0.9318 0.8702 0.7294 0.6008
ANN 0.7833 0.7237 0.6322 0.6165 0.9556 0.9111 0.7462 0.6441
RNN 0.7652 0.6796 0.6337 0.6223 0.8765 0.8662 0.7290 0.5921
STEPWISE 0.7508 0.6571 0.6123 0.6190 0.9119 0.8683 0.7166 0.5971
FULL 0.7483 0.6575 0.6146 0.6133 0.9119 0.8683 0.7166 0.5971

This table reports the out-of-sample AUC performance of the various models when predicting firm (e.g. non-financial) and bank failures. Performance for the firm 
dataset is based on observations in the period March 2009 – September 2023 whereas for the bank dataset performance is based on observations in the period March 
2003 – September 2023. Firm and bank observations are matched with a failure indicator in the subsequent quarter. For the ANN, we report average performance when 
considering 3, 5, 10, 15 neurons in the hidden layer. Full results for the ANN are reported in Table IA.5 of the Internet Appendix.

Table 9 
Out-of-sample AUC of various models: alternative testing samples.

Non-Financial Firms Financial (FDIC) Institutions

2000 - 2023 2012 - 2023 2000 - 2023 2012 - 2023
AUC AUC AUC AUC

MFP 0.8476 0.8351 0.9632 0.9785
SPLINES 0.8143 0.7809 0.9621 0.9778
GPLSIM 0.7935 0.7803 0.9243 0.9649
ANN 0.8014 0.8216 0.9496 0.9707
RNN 0.7873 0.7593 0.8680 0.8880
STEPWISE 0.7668 0.7514 0.9065 0.9419
FULL 0.7653 0.7476 0.9065 0.9425

This table reports the out-of-sample AUC performance of the various models 
when predicting firm (e.g. non-financial) and bank failures in different testing 
samples. Performance for both datasets is based on observations in the period 
March 2000 – September 2023 and March 2012 – September 2023. Firm and 
bank observations are matched with a failure indicator in the subsequent 
quarter. For the ANN, we report average performance when considering 3, 5, 10, 
15 neurons in the hidden layer.

Table 10 
Out-of-sample AUC of various models: simulation.

Non-Financial Firms Financial (FDIC) Institutions
AUC AUC

MFP 0.8718 0.9391
SPLINES 0.8628 0.9383
GPLSIM 0.6925 0.8942
ANN 0.8387 0.9222
RNN 0.5857 0.5450
STEPWISE 0.7070 0.8839
FULL 0.6874 0.8839

This table reports the out-of-sample AUC performance of various predictive 
models in forecasting firm (non-financial) and bank failures. The AUC values 
reported are the average across 500 simulated testing samples, each drawn from 
a multivariate normal distribution with a covariance matrix matching that of the 
original testing dataset. The models are trained on a simulated training sample, 
also generated from a multivariate normal distribution with a covariance matrix 
matching that of the original training dataset. Each simulated sample (both 
training and testing) is 10 % of the size of the original dataset.
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We use observations from the testing dataset (March 2009 – 
September 2023) e.g. customers, to simulate a competitive loan market 
to evaluate the economic performance of each bankruptcy model. Banks 
compete to issue loans to firms (represented by firm-quarter data points 
of the testing dataset). Each institution uses its own bankruptcy model to 
rank firms by risk and excludes the riskiest 5 % from receiving loans. The 
remaining borrowers are sorted into ten deciles, and each is assigned a 
credit spread based on the estimates derived from the training sample. 
Customers are assumed to be fully rational and price-driven: they always 
select the bank offering them the lowest credit spread. This assumption 
removes any influence of factors such as bank relationships, service 
quality, or marketing, and ensures that observed allocation depends 
entirely on the model’s ability to rank customers by risk. That is, a more 
accurate model would assign “good” customers to low-risk deciles where 
they are offered competitive, lower credit spreads to attract them, and 
“bad” customers to high-risk deciles where they are charged higher 
spreads or potentially denied credit altogether. Eventually, an accurate 
model would have a loan portfolio with better quality thus higher risk- 
adjusted profitability. In contrast, banks using less accurate models may 
misclassify riskier customers and offer them lower spreads, leading to 
poorer loan portfolio quality and lower profitability. This setup isolates 
the impact of predictive accuracy by removing other potential influences 
on customer choice, ensuring that observed differences in performance 
are attributable purely to the power of the model.

Bank profitability is evaluated using two performance metrics. The 
first is Return on Assets (ROA), which is defined as total profits divided 
by the value of assets lent. The second is Return on Risk-Weighted 
Assets (RRWA), which adjusts for credit risk by dividing profits by 
risk-weighted assets. Risk weights are computed following the regula
tory guidelines established in the Basel Committee on Banking Super
vision (Basel Committee, 2011).

It is important to note that, to capture the economic value generated 
by using a particular bankruptcy model, it is crucial that banks differ 
only in the model they adopt. Accordingly, we assume that all banks are 
identical in terms of size, lending capacity, and other characteristics. 
This simplification is necessary for the simulation: if banks varied in 
other ways such as having greater market power or a stronger ability to 
attract customers, it would be difficult to disentangle whether superior 
economic performance was due to the predictive model or to those 
competitive advantages. By keeping all other factors constant, we ensure 
that any differences in outcomes can be directly attributed to the 
effectiveness of the bankruptcy model itself.

Table 11 shows the economic results of seven banks, each one using a 
distinct bankruptcy model in their decision making (indicated in the 
second row). As can be seen, Bank 1 that uses the MFP model achieves 
superior economic performance from its competitors.8 First, and most 
important, Bank 1 manages a higher quality loan portfolio, as only 0.04 
% of firms eventually failed to repay the loan, while for Banks 2 - 7 the 
bankruptcy rate ranges from 0.10 % to 0.37 %. Second, Bank 1 is more 
profitable than the competitors. Based on the simple return on assets 
(profit divided by market value of loans outstanding), ROA is 0.30 % for 
Bank 1 compared to a range from 0.19 % to 0.28 % for the competing 
banks. The simple ROA does not account for the inherent risk in the loan 
portfolio. To account for that, we use the risk-adjusted ROA (profit 
divided by risk-weighted assets) using standard formulas provided by 
the Basel Accord. Adjusting for risk, Bank 1 delivers an ROA equal to 
3.03 % while the competing banks deliver an ROA ranging from 0.84 % 
to 2.88 %.

Overall, the results suggest there are economic benefits by using the 
MFP model in credit decisions since the bank employing the MFP model 
manages a better loan portfolio translating to better economic 

performance in terms of return on risk-adjusted assets.

4.6. Discriminatory power, goodness of fit, and statistical significance

To fully assess whether the higher performing ability of the MFP 
model is truly meaningful for banks, we analyze the extent to which 
there are statistically significant differences in the performance of the 
MFP model against the other competing models.

The first columns in Table 12 report the AUC values of the various 
models in predicting firm failures in the out-of-sample period (March 
2009 – September 2023) and z-statistics, following DeLong et al. (1988)
to test whether the difference between the AUC of the MFP model and 
the AUC of competing models are statistically significant.9 As can be 
seen from the table below, the discriminatory power of the MFP is sta
tistically significant at the 1 % level.

Next, we measure the out-of-sample goodness of fit of the various 
models based on McFadden’s pseudo R2, reported on the following 
columns in Table 12. As can be seen, the R2 of the MFP, although not 
particularly high, is substantially higher compared to other models. 
Finally, we assess whether the goodness of fit of the MFP model is 
significantly better than the competing models. Specifically, the last two 
columns report the log-likelihoods and z-statistics following Vuong 
(1989) to test whether the differences between the log-likelihood of the 
MFP model and the log-likelihoods of the competing models are statis
tically significant. As can be seen, the results indicate that the MFP 
model fits the data significantly better than the majority of the 
competing models.

5. Conclusion

A common problem arising when using linear logit models in 
bankruptcy prediction is that financial ratios exhibit nonlinear re
lationships with the risk of bankruptcy. Splines and machine learning 
techniques, on the other hand, are subject to well-known shortcomings. 
We overcome those limitations by constructing a parsimonious 
nonlinear logit model using a multivariate fractional polynomial 
approach with minimal parameter specification and clear interpret
ability. The approach evaluates, for each predictor, whether it should be 
included in the model, whether the relationship is indeed nonlinear and 
what the optimal function is from all possible one-degree and two- 
degree polynomial functions. Importantly, the method accounts for in
teractions among predictors, effectively generalizing the stepwise lo
gistic regression used for variable selection.

Using a large dataset consisting of non-financial firms, we show that 
the fractional polynomial logit model improves the out-of-sample 
discriminatory power, reduces significantly costly misclassification er
rors but also enhances the economic performance for banks. Specifically, 
banks adopting the model are better positioned to manage portfolios 
with higher credit quality, leading to increased risk-adjusted profit
ability. This highlights the practical value of incorporating nonlinear 
dynamics into bankruptcy prediction models within a multivariate 
fractional polynomial approach.

The robustness of our findings is further validated by applying the 
fractional polynomial approach on financial ratios of FDIC banks. Spe
cifically, the fractional polynomial model has higher predictive power, 
in-sample and out-of-sample, in various horizons, highlighting the 
generalizability and effectiveness of the fractional polynomial method
ology across different types of entities.

Perhaps more important is that the fractional polynomial model, 
overall, performs comparably or even better against other nonlinear 
approaches in a variety of out-of-sample tests, including tests in different 

8 For Bank 4 that uses ANN, we average the bankruptcy probabilities of four 
neural networks estimated using 3, 5, 10 and 15 neurons. Their performance is 
shown in Table IA.5 in the Internet Appendix.

9 For the neural network, we average the bankruptcy probabilities predicted 
by four distinct neural networks using 3, 5, 10 and 15 neurons. The averaged 
bankruptcy probabilities are used as inputs for the DeLong and Vuong tests.
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periods and considering a simulation analysis by generating artificial 
firms and banks that mimic the structure of the original data. For 
example, while ANN can offer high predictive accuracy, their perfor
mance tends to be volatile and highly dependent on the configuration of 
neurons and layers. In contrast, the fractional polynomial models pro
vide more stable and reliable predictions as they require minimal 
parameter specification, making them a practical and efficient tool for 
bankruptcy prediction.

To sum up, our study highlights the advantages of using a multi
variate fractional polynomial approach in bankruptcy prediction. The 
method is easy to implement but also significantly improves model 
performance. Moreover, it delivers practical economic benefits, making 
it a valuable tool for both researchers and practitioners in accounting 
and finance.

Future work may consider the application of fractional polynomials 
on various distress phenomena such as predicting credit ratings, or 
financial distress. These two are states that precede bankruptcy which 
we consider in this study. Next, this study focuses on transforming 
financial ratios, which can be constructed for nearly all companies, 

ensuring broad applicability. Future research could explore nonlinear 
transformations of other predictors, such as stock market variables (e.g., 
equity returns, volatility) or macroeconomic indicators based on frac
tional polynomials, to further enhance predictive modelling. Another 
promising avenue for future research, is the integration of multivariate 
fractional polynomials with machine learning models. For instance, one 
could employ such polynomials as a pre-processing step to transform 
financial predictors and then use them as inputs to machine learning 
models to improve predictive performance. Another machine learning- 
related application would be to combine the outcomes of the various 
distinct models to develop an ensemble model to enhance predictive 
accuracy, or, to develop a weighting scheme that aggregates their pre
dictions into a single, potentially more robust, outcome. Finally, while 
our study applies the multivariate fractional polynomial approach 
within a logistic regression framework, future research could explore its 
application in asset pricing models by incorporating nonlinear trans
formations of risk factors into traditional pricing frameworks, such as 
the Fama-French models or the Intertemporal Capital Asset Pricing 
Model (ICAPM). This could provide deeper insights into the relationship 
between systematic risk factors and asset returns, particularly in the 
presence of nonlinearities that standard linear models may fail to 
capture.
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