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This thesis studies the pointed loop space of spaces known as polyhedral products
and gives loop space decompositions in various cases as a product of well-studied

spaces. It is a research paper thesis which contains the following papers:

[1] L. Stanton, Loop space decompositions of moment-angle complexes associated to flag
complexes, Q. J. Math. 75 (2024), no. 2, 457-477

[2] L. Stanton, Loop space decompositions of moment-angle complexes associated to two
dimensional simplicial complexes, (2024), to appear in Proceedings of the
Edinburgh Mathematical Society, https://arxiv.org/abs/2407.10781

[3] L. Stanton and S. Theriault., Polyhedral products associated to pseudomanifolds, Int.
Math. Res. Not. 2025 (2025), rnaf164

In [1], we show that the loop space of a moment-angle complex associated to the
k-skeleton of a flag complex decomposes as a product of spheres and loops on spheres
up to homotopy.

In [2], we show that the loop space of a moment-angle complex associated to a
2-dimensional simplicial complex decomposes as a product of spheres, loops on

spheres and well-studied torsion spaces up to homotopy.

In [3], we study the homotopy theory of polyhedral products associated to a
combinatorial generalisation of manifolds known as a pseudomanifold. We use this to
show that the loop space of a moment-angle manifold associated to a connected,
orientable surface, or a triangulation of S* decomposes as a product of spheres and
loops on spheres up to homotopy.
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Chapter 1

Introduction

The main goal of algebraic topology is to classify topological spaces up to continuous
deformation. One of the main algebraic tools used to do this is the sequence of
homotopy groups 7. (X) of a topological space X. These groups are notoriously
difficult to calculate, even in the case of spheres (Tod16). However, there are some
global properties of the homotopy groups of spheres which are known. In particular,
the torsion free parts of the homotopy groups were calculated by Serre (Ser51), and
information about the odd primary torsion was obtained in celebrated work of Cohen,
Moore and Neisendorfer (CMN79b; CMN79a; Nei81).

One approach to determining the homotopy groups of a space X is to find a
homotopy equivalence of the form X ~ A x B, where A and B are spaces which are
not contractible. This implies there is an isomorphism 7, (X) = 7. (A) X 7.(B), and
so we may write the homotopy groups of X in terms of those of A and B. This may be
difficult in general, and many spaces do not admit a product decomposition of this

form.

One remedy to this is to consider the pointed loop space of X, QX := Map, (S}, X),
the space of pointed maps from the circle S! to X. There is an isomorphism

(X)) = m,-1(QX), and so the problem of determining the homotopy groups of X is
equivalent to determining the homotopy groups of (3X. The benefit of studying (21X is
that it has a multiplication up to homotopy given by concatenation of loops, and this
makes it easier to find product decompositions of (2X. This approach has been used to
great effect in the context of Poincaré duality complexes (BT14; BB18; BT22? ).

This thesis is a research paper thesis and the main aim of the papers contained within
is to use this approach in the context of spaces known as polyhedral products. These
papers greatly extend our understanding of the homotopy groups of these spaces, and
verify major conjectures in homotopy theory for certain classes of polyhedral
products. Other work completed by the author during the course of the PhD are
(AHS24; ST25a).
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Polyhedral products

Polyhedral products are a generalisation of spaces known as moment-angle
complexes, which first were first constructed by Davis and Januszkiewicz (D]91) in
the context of toric topology. The definition was reformulated and generalised by
Buchstaber and Panov (BP02) (and independently in unpublished notes of Strickland).

The definition of a polyhedral product is as follows. Let K be a simplicial complex on
[m] :={1,---,m},and let (X, A) = {(Xj, A;) }I", be a tuple of CW-pairs. For each
o € K, define

m X ieco
(X,A)” =] ]YiwhereY; = l
i=1 Ai i % g.

The polyhedral product determined by (X, A) and K is the space

(X, A% = (X 47 X
cek i=1

The moment-angle complex and its closely associated Davis-Januszkiewicz space,
denoted Zx and D]k respectively, correspond to the cases where (X;, A;) = (D?,S1),
and (X,’, Ai) = (CPOO,*).

The first focused study of the homotopy theory of polyhedral products was conducted
by Bahri, Bendersky, Cohen, and Gitler (BBCG10). They showed that the homotopy
type of the suspension of any polyhedral product can be written in terms of a
construction known as the polyhedral smash product. If either each X; is contractible
or each A; is the basepoint of X;, the polyhedral smash product has a homotopy
decomposition as a wedge of spaces which can be written in terms of the
combinatorics of K. This completely determines the homology groups of these
polyhedral products in terms of the homology of the ingredient spaces and K.
Focusing our attention on the case that each X; is contractible, it was shown for
various families of simplicial complexes that the decomposition proved by Bahri,
Bendersky, Cohen and Gitler holds without suspension (GT13; IK13; GPTW16; IK19)
and this has important consequences in combinatorics. Work is ongoing to further

expand the families for which such a decomposition is known.

Conjectures in unstable homotopy theory

We now shift our focus onto the homotopy groups of polyhedral products. Before
proceeding, we place the study of these in a broader context. To do this, we require
some definitions. A CW-complex X is called rationally elliptic if it has finitely many
rational homotopy groups, and X is called rationally hyperbolic otherwise. The



homotopy exponent of X at a prime p is the least power of p which annihilates the
p-torsion of the homotopy groups of X. A major driving force of research in
homotopy theory is Moore’s conjecture which asserts a deep connection between the
rational and torsion parts of the homotopy groups.

Conjecture 1.1 (Moore’s Conjecture). Let X be a finite, simply-connected CW-complex.
The following are equivalent:

1. X is rationally elliptic,
2. X has a finite homotopy exponent at every prime p,

3. X has a finite homotopy exponent at some prime p.

This conjecture has been verified for various families of spaces, including spheres
(Jam56; Tod56), odd primary Moore spaces (INei87), certain highly connected Poincaré
duality complexes (BT14; BB18; BT22; ST25a) and moment-angle complexes (HST19).
In the case of moment-angle complexes, this was proved by giving an explicit
decomposition of its loop space in the case that it is rationally elliptic, and showing
that a space with no homotopy exponent retracts off it in the rationally hyperbolic
case. However, in the rationally hyperbolic case, this approach does not allow us to
explicitly enumerate the homotopy groups that appear. The papers in this thesis will
remedy this in certain cases, and expand the results to more general polyhedral

products.

There are two related conjectures which can be seen as approximations to Moore’s
conjecture. Let X be a simply-connected CW-complex, and let p be a prime.
Localisation at the prime p is a functor which outputs a space X, such that the
homotopy groups of X, encode the p-torsion information of the homotopy groups of
X. More precisely, there is an isomorphism 7. (X(,)) & 71.(X) ® Z(,,), where Z ;) is
the subring of Q consisting of fractions whose denominators are coprime to p.

Localised at a prime p, Huang and Wu (HW19) showed that if X is an H-space of
tinite type, then X decomposes uniquely (up to order and homotopy equivalence) as a
product of indecomposable factors. In particular, if X is a simply-connected

CW-complex, localised at a prime p, there is a homotopy equivalence
QX ~ H Y;,
i€l

where 7 is some indexing set and each Y; is an indecomposable H-space. Therefore to
decompose (2X, we first require candidates for indecomposable H-spaces which
could appear in a decomposition for ()X.

Localise at an odd prime p. The spaces S?"~! and Q5?**! for n > 1 are examples of

indecomposable H-spaces. For integers m > 1 and r > 1, Cohen, Moore and
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Neisendorfer (CMN79b; CMN79a; Nei87) defined spaces S?"*1{p"} and T?"+1{p’},
whose homology consists purely of p” summands. These are indecomposable
H-spaces with the single exception of T?{p}, for which there is a homotopy
equivalence T3{p} ~ T?*™1{p} x U!, where U' is an indecomposable H-space. Let P
be the collection of H-spaces which are homotopy equivalent to a finite type product
of spheres 52"~1, where n > 1, loops on simply connected spheres (052" ! and the
indecomposable torsion spaces defined by Cohen, Moore and Neisendorfer. Anick
conjectured that localised at all but finitely many primes, these spaces are enough to
describe Q)X up to homotopy (Ani92).

Conjecture 1.2 (Anick’s conjecture). Let X be a finite, simply-connected CW-complex.
Localised at all but finitely many primes, QX € P.

Anick’s conjecture has been verified for rationally elliptic spaces (MW86) and certain
two-cones (Ani89a). Decompositions of this form without localisation have been
proven for certain highly connected Poincaré duality complexes

(BT14; BB18; BT22; ST25a). It was shown by Panov and Theriault (PT19) that if K is a
flag complex, then () Zk is homotopy equivalent to a product of spheres and loops on
spheres without localisation. The papers in this thesis recover and greatly expand this
result in various contexts.

Finally, let X be a space and p be a prime. The Steenrod algebra A, consists of
homomorphisms between the cohomology groups of X with coefficients in Z/pZ
which satisfy certain axioms (Hat02). McGibbon and Wilkerson conjectured the
following (MW86).

Conjecture 1.3. If X is a finite, simply-connected CW-complex, then for all but finitely many

primes

1. p'" powers vanish in H(QX; Z/ pZ.);

2. the Steenrod algebra acts trivially on H*(QX; Z/ pZ.).

The first assertion was proved by Anick (Ani89b); however, the second assertion
remains open. The Steenrod algebra acts trivially on spheres and loops on spheres,
and so knowing a space is homotopy equivalent to a product of spheres and loops on
spheres localised at an odd prime verifies the McGibbon and Wilkerson conjecture. In
this thesis, we give loop space decompositions for various families of polyhedral

products which verify all three of these conjectures for these spaces.

Summary of papers

The three papers (Sta24a; Sta24b; ST25b) contained in this thesis give loop space
decompositions of various families of polyhedral products. The first two papers are



single author papers, and the final paper is a joint paper with Stephen Theriault (my
supervisor). In the joint paper, Stephen came up with the idea of introducing an
auxillary simplicial complex and using this under certain conditions to show that a
map induced by an inclusion of simplicial complexes has a right homotopy inverse.
The application of this to pseudomanifolds and low dimensional triangulations of
spheres was proved by myself. To describe the main results, we establish some
notation. For a collection of spaces X, let \/ X’ (resp. [ ] &) be the collection of spaces
which are homotopy equivalent to a finite type wedge (resp. product) of spaces in X.
Let P := {S!,S%,57,Q05" |n > 2,n ¢ {2,4,8}}. Recall by (HW19) that localised at a
prime p, any finite type H-space decomposes into a product of indecomposable spaces
which are unique up to order and homotopy equivalence. Let 7 be the collection of
indecomposable spaces which appear in the decomposition of the loop space of a
wedge of Moore spaces of the form \//_; P"i(p}'), where m > 2, n; > 3, p; is a prime
and r; > 1. The collection 7 includes the spaces T?"*1{p"}, S?"*+1{p"} and U' defined
by Cohen, Moore and Neisondorfer, and these are sufficient for odd primes. At the
prime 2, for r > 1, Cohen (Coh89) defined an analogous space T2m+1 {2"}. Whenr =1,

there is not an analogue of the Cohen, Moore and Neisendorfer space.

Let W be the collection of simply connected spheres, and M be the collection of
Moore spaces of the form P"(p"), where n > 3, p is a prime, and r > 1, and the
indecomposable factors which appear as wedge summands in the unique 2-local
wedge decomposition of spaces of the form X((P"(2) A--- A (P™"(2)), wherel > 2,
and each n; > 3 (which exist by (HW19)). The collection M contains Moore spaces of
the form P"(p"), and these spaces are sufficient when p” # 2. Some progress on

identifying the indecomposable spaces when p" = 2 has been made by Wu (Wu03).

The first paper focuses on the case where K is the k-skeleton of a flag complex,
generalising a result of Panov and Theriault (PT19). These simplicial complexes are
obtained by starting with a graph, and gluing in all possible simplices of dimension

2 <[] < k. The main result is as follows.

Theorem 1.1. Let K be the k-skeleton of a flag complex on [m], and let As, - - -, A be
CW-complexes such that ZA; € \/ W. Then Q(CA, A)X e [T P.

A key technical result proved in the first paper is closure of the collection [T P under
retracts. This was a folklore result, but a proof did not appear in the literature.

The second paper extends the techniques of the first paper in order to include torsion
spaces. Any graph G can be considered as the 1-skeleton of a flag complex, and so the
previous result implies that Q(CA, A)® € [P, when each £A; € \/ W. The second
paper extends decompositions of this kind to the case of a 2-dimensional simplicial
complex. One step in doing this is showing that [T(P U T) is closed under retracts.
The main result of this paper is as follows.
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Theorem 1.2. Let K be a 2-dimensional simplicial complex, and let Ay, - - - , Ay be
CW-complexes such that ZA; € \/(W U M). Then Q(CA, A)X e TI(PUT).

The third paper focuses on the case where K is a triangulation of a sphere. When K is a
triangulation of a sphere, the moment-angle complex Zx has the structure of a
manifold (BP15). When K is a triangulation of $?**! for n > 0 such that every simplex
of dimension 7 is in K, and K is the dual of the boundary of a simple polytope, it was
shown by Gitler and Lépez de Medrano (GdM13) that Zx is diffeomorphic to a
connected sum of products of two spheres. Outside of this case, not much is known
about the homotopy type of moment-angle manifolds. The third paper starts the
study of the homotopy type of the loop space of moment-angle manifolds. The

following result is proved.

Theorem 1.3. Let K be a triangulation of a connected, orientable closed surface or a
triangulation of S°. Then QZk € [ P.

Moment-angle manifolds are closely related to another family of manifolds known as
quasitoric manifolds. A quasitoric manifold is a manifold of dimension 2n which has
an action of a torus of dimension n with certain hypotheses. Quasitoric manifolds can
be viewed as a quotient of a moment-angle complex under the action of a torus which
acts freely on the moment-angle complex. The loop space of a quasitoric manifold can
be related to that of the corresponding moment-angle complex. The second main

result of the paper is the following.

Theorem 1.4. Let M be a quasitoric manifold of dimension 4, 6 or 8. Then QM € [T P.

Future work

The papers contained in this thesis greatly expand the families of polyhedral products
for which Moore’s conjecture, Anick’s conjecture and the McGibbon-Wilkerson
conjecture are verified. Previously, loop space decompositions which verified these
conjectures were only known when K is a flag complex (PT19), with the proof relying
on a folklore result which was proved in Paper 1 (Sta24a). Many of the
decompositions are coarse, in the sense that the terms appearing in the decomposition
are not explicitly enumerated. In principle, the techniques of the paper could be used
to enumerate the terms, but it would be impractical to do so. In the case of a flag
complex, following the release of Paper 1 (Sta24a), Vylegzhanin (Vyl24) enumerated
the spheres and loops on spheres which appear in the decomposition of the associated

moment-angle complex. This motivates the following problem.

Problem 1.5. If K is a simplicial complex such that Q(CA, A)X e TI(PUT),
enumerate the factors which appear in the decomposition.



If X is a simply connected CW-complex and F is a field, then H,(QX;F) has the
structure of an algebra. The decompositions of the loop spaces of polyhedral products
contained in this thesis are not splitting as H-spaces, and so these splittings only give
you information about H. (Q)(CA, A)X;F) as a module. If K is a simplicial complex, let
Ck be the set of full subcomplexes of K such that the 1-skeleton of K has no missing
edges. A result in Paper 2 (Sta24b) shows that Q(CA, A)X € T[(P U T) if and only if
Q(CA, A)Xi e TI(P U T) for all K; € Ck. This raises the question as to whether these
decompositions give you information about the algebra structure of the loop
homology.

Problem 1.6. Describe H,(Q(CA, A)X) as an algebra in terms of H.(Q(CA, A)Kr)
where K; € Ck.

Finally, the Hilton-Milnor theorem (Hil55) implies that Q) (\/;Z; S") € [T P, where
each n; > 2. Moreover, the terms appearing in the product are explicitly identified in
terms of a basis of the free Lie algebra, with the homotopy equivalence being given by
a product of looped Whitehead products. This proof used the fact that

H. () (ViL; S™)) is the universal enveloping algebra of the free Lie algebra.
Polyhedral products of the form (X, x)X give a natural interpolation between \//"; X;
(when K is m disjoint points) and [T/"; X; (When K is the (m — 1)-simplex). If K is flag,
it was shown in Paper 1 (Sta24a) that if each X; = S" with n; > 2, then

Q(X, %)X € [TP. In this case, Cai (Cai24) gave a presentation of H,(Q(X, x)X) which
recovers the presentation of H,(Q(\V//; 5")) when K is a set of disjoint points. If each
X; = S" where n; > 2, then H,(Q(X, x)X) is a universal enveloping algebra of a Lie
algebra. One may hope to use Cai’s presentation in order to give an explicit homotopy
equivalence for Q(X, x)K in terms of a basis of the underlying Lie algebra.

Problem 1.7. Let K be a flag complex and let X; = 5" where n; > 2. Give an explicit
homotopy equivalence for Q(X, *)X as a product of looped spheres in terms of looped
Whitehead products.
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Chapter 2

Paper 1 - Loop space decompositions
of moment-angle complexes

associated to flag complexes

1 Introduction

Polyhedral products have attracted vast attention due to their many applications
across mathematics (see (BBC)). A polyhedral product is a natural subspace of [T" ; X;
defined as follows. Let K be a simplicial complex on the vertex set [m] = {1,2,--- ,m}.
For1 <i < m,let (X;, A;) be a pair of pointed CW-complexes, where A; is a pointed
CW-subcomplex of X;. Let (X, A) = {(Xj, A;) }".; be the sequence of pairs. For each
simplex ¢ € K, let (X, A)? be defined by

X; i€ec

(X, A) = HYZ- where Y; =
i=1 A ié¢o.

1

The polyhedral product determined by (X, A) and K is
(X, A =J(X A C]]x.
cek i=1

An important special case is when (X;, A;) = (D?,S!) for all i. These polyhedral
products are called moment-angle complexes, and are denoted Zx. More generally,
when (X;, A;) = (D", S"1) for n > 2 and all i, the polyhedral products are called
generalised moment-angle complexes. In this paper, we identify the homotopy type of the
loop space of certain polyhedral products. One particular case is when K is a flag
complex. When K is flag, certain polyhedral products give models for the classifying
space of graph products of groups, implying that the loop space of these polyhedral
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products are graph products of groups. This geometric group theoretic framework has
been generalised by Cai (Ca) to consider loops on a wider class of polyhedral products
associated to flag complexes. For general simplicial complexes K, the loop space of the
corresponding moment-angle complex is related to a certain diagonal subspace
arrangement (D).

Let \/ W be the full subcategory of topological spaces which are homotopy equivalent
to a finite type wedge of simply connected spheres, and let [ P be the full
subcategory of H-spaces which are homotopy equivalent to a finite type product of
spheres and loops on simply connected spheres. Note that if X € []P, by the Hopf
invariant one problem (Ad), the only spheres that can appear in a product
decomposition for X are S" for n € {1,3,7}, and it will be assumed that the loops on
spheres ()S" which appear are of dimensionn > 2, n ¢ {2,4,8}, as whenn € {2,4,8},
there is a homotopy equivalence Q)S" ~ §"~! x (15?"~!. Relations between spaces in
V W and spaces in [ P will be used frequently throughout the paper. In particular,
the Hilton-Milnor theorem (H; M) implies that looping sends spaces in \/ W to spaces
in [T P, and decomposing the suspension of a product as a wedge and the James

construction (J) implies that suspension sends spaces in [] P to spaces in \/ W.

Determining the homotopy type of polyhedral products in general is difficult, but in
the special case of a moment-angle complex, progress has been made in showing that
certain moment-angle complexes are in \/ V. For example, moment-angle complexes
associated with shifted complexes (GT2, Theorem 1.2), flag complexes with chordal
1-skeleton (GPTW, Theorem 4.6), or more generally, totally fillable simplicial
complexes (IK2, Corollary 7.3) are in \/ WW. There is a wider range of moment-angle
complexes (including the aforementioned ones) for which its loop space is in []P. For
example, moment-angle complexes associated to any flag complex are in [T P (PT,
Corollary 7.3). It is known that many moment-angle complexes are not in \/ ¥ due to
the existence of non-trivial cup products in cohomology. For example, when K is the
boundary of a square, Zx ~ S3 x §3, and it follows that for any simplicial complex L
containing K as a full subcomplex, Z; contains non-trivial cup products in
cohomology, and so Z; ¢ V W.

In this paper, we specialise to the case where K is the k-skeleton of a flag complex. In

particular, we prove the following result.

Theorem 1.1. Let k > 0, and let K be the k-skeleton of a flag complex on the vertex set [m]
and Ay, - -+, A be path connected CW-complexes such that ©A; € \/ W for all i. Then
Q(CA A)X eTTP.

There are two cases of Theorem 1.1 which should be highlighted. The first important
case is when k is the dimension of the flag complex. While not stated in this generality,
the following result recovers (PT, Corollary 7.3) via a different method.
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Corollary 1.2. Let K be a flag complex on the vertex set [m| and A1, - - - , Ay, be path
connected CW-complexes such that ZA; € \ W for all i. Then Q(CA, A)X € TTP. O

The second important case of Theorem 1.1 is when k = 1.

Corollary 1.3. Let K be a graph on the vertex set [m] and A, - - - , Ay be path connected
CW-complexes such that ©A; € \/ W for all i. Then Q(CA, AK eTIP. O

Loop spaces of moment-angle complexes associated to graphs in certain cases have
been studied. In particular, explicit decompositions of the loops of moment-angle
complexes associated to wheel graphs and certain generalisations of wheel graphs
(T2), and certain classes of generalised book graph (St) have been given. This paper
establishes that decompositions of this form exist for all graphs. While in principle an
explicit decomposition could be obtained, in practice it would be difficult to do so.

Letting A; = S"~! with n > 2 for all i in Theorem 1.1 has consequences for generalised

moment-angle complexes and moment-angle complexes.

Corollary 1.4. Let k > 0, and let K be the k-skeleton of a flag complex. Then
Q(D", "X e [1P wheren > 2. O

Corollary 1.5. Let k > 0, and let K be the k-skeleton of a flag complex. Then QZx € T]P. 1

It is interesting to note when the decomposition in Corollary 1.5 arises from the fact
that Zx € \/ W. In the case of K, it is shown in (IK2, Theorem 11.8) that K! has

Za € VW if and only if K! is chordal. In particular, if K! is not chordal, then Zj1 is
not in \/ W. However, Corollary 1.5 implies that nevertheless, Q) Zy1 is stillin []P. In
the case of K itself, a similar result is true (PT, Theorem 6.4), namely that Zx € \/ W iff
K! is chordal.

To prove Theorem 1.1, we will show that [P is closed under retracts. This result was
stated in (PT, p. 224) without proof, so a proof is provided here. The main tool that is
used in the proof of this is the atomicity of loops on spheres when localised at certain
primes (see Theorem 2.4). Let K be a simplicial complex with a decomposition as

K = Kj UL, K; where L is a full subcomplex of both K; and K;. Closedness of [T P
under retractions is applied to show that if Q(CA, A)Xt € [TP and

Q(CA, A)X2 € TTP, then Q(CA, A)X € T]P. This then allows us to prove the main

result by an inductive argument.

The decomposition in Theorem 1.1 fits into a wider story related to loop space
decompositions of spaces. Localise at a prime p. Given a space X, one may wish to
find a decomposition of ()X into a product of spaces, where each space in the product
is indecomposable. Spheres S" where n € {1,3,7} and loops on simply connected

spheres QS?" 1, where m > 1 are examples of indecomposable H-spaces. In a series
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of papers (CMN1; CMN2; CMNB3), Cohen, Moore and Neisendorfer defined spaces
S2mt1pr} and T?"+H1{p"} for r > 1 and m > 1, for which the loop space of a Moore
space decomposes as a finite type product of these spaces. The spaces S*"*1{p"} are
indecomposable, and the spaces T?"*1{p"} are indecomposable except for T*{p}, in
which case there is a homotopy equivalence T*{p} ~ T?’*1{p} x U!, where U' is
some indecomposable space. Anick (An) conjectured that if X is a finite, connected
CW-complex, then localised at almost all primes p, QX decomposes as a finite type
product of indecomposable spaces consisting of spheres, loops on simply connected
spheres, S?"T1{p"}, T2"+1{p"} and U'. Theorem 1.1 verifies Anick’s conjecture for
polyhedral products (CA, A)X where £A; € \/ W and K is the k-skeleton of a flag
complex, and does so without the need to localise.

In Section 2, some preliminary results in linear algebra and homotopy theory that will
be required are introduced. In Section 3, we prove that the retract of a space in [P is
in [T P. In Section 4, this is applied to polyhedral products to prove Theorem 1.1.

Acknowledgements

The author would like to thank Stephen Theriault for the many helpful discussions
during the preparation of this work. The author would also like to thank the referee
for many valuable comments which have improved the paper, and also for spotting a

gap in the original submission.

2 Preliminary Material

2.1 Idempotent Matrices

In this section, we state and prove the basic properties of idempotent matrices that
will be required in Section 3. Denote by M,,(Z) the set of n x n matrices with integer
entries. A matrix A € M, (Z) is idempotent if A2 = A. Let N(A) and C(A) denote the
null space and column space of A respectively. Recall that the null space and column
space of a matrix is the kernel and image of the corresponding linear map. The
following result gives a decomposition of Z" in terms of the null space and column
space of an idempotent matrix. This lemma is given as an exercise in (L, p. 163), so we

provide a proof here.

Lemma 2.1. Let A € M, (Z) be an idempotent matrix. Then Z" = N(A) @ C(A).

Proof. If A is the zero matrix, then C(A) = {0} and Z" = N(A), and so the result

holds in this case. Now suppose A is non-trivial. First, we show that
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Z" = N(A) + C(A). Clearly, N(A) and C(A) are subspaces of Z", and so
N(A)+ C(A) C Z". For the opposite inclusion, let x € Z". Write x as
x = Ax — (Ax — x). Applying A to Ax — x and using the fact that A is idempotent, we
obtain
A(Ax —x) = A%x — Ax = Ax — Ax = 0.

Therefore, since Ax € C(A) and Ax —x € N(A), Z" C N(A) + C(A). Hence,
Z"=N(A)+C(A).

Now we show that N(A) N C(A) = {0}. The zero vector is contained in N(A) and
C(A).Letx € N(A)NC(A). Since x € C(A), there exists x’ € Z" such that Ax’ = x.
Applying A to x and using the fact that x € N(A), we obtain

0= Ax = A% = Ax' = x.

Therefore, N(A) NC(A) = {0} and so Z" = N(A) & C(A). O

The next result describes how an idempotent matrix acts on an element of the column

space. The proof is immediate from the definition of an idempotent matrix.

Lemma 2.2. Let A € M, (Z) be an idempotent matrix and let x € C(A). Then Ax = x. O

The final result describes the properties of the components of a vector v € Z" which
extends to a basis of Z". The result is clear from the contrapositive.

Lemma 2.3. Let v = (vy,--- ,v,)! € Z" be a vector which extends to a basis of Z". Then
the greatest common divisor of the non-zero components vy, - - - , vy is 1. Moreover, one of
U1, , 0y 1S 0dd. O

2.2 Atomicity of loops on spheres

In this section, we recall the notion of atomic spaces. A simply connected topological
space X is atomic (CMN3, Section 4) if any self map f : X — X inducing an
isomorphism in the lowest non-vanishing degree in homology is a homotopy
equivalence. A space X is decomposable if it is homotopy equivalent to a product A x B
where A and B are not contractible. A space is indecomposable if it is not decomposable.
The study of atomic spaces is useful since atomic spaces are indecomposable. In
Section 3, we will be interested in the atomicity properties of (3S". In particular, the
following result is from (CPS, Corollary 5.2).

Theorem 2.4. Let p be a prime, and let f be a self-map of QXS™*1, k < m, which induces an

isomorphism on the (least non-vanishing) homology group H,, 1 _(QFS"+1, 2 /pZ). If

p > 2, we suppose that m is even, and if p = 2, we suppose m ¢ {1,3,7}. Then f is a p-local
homotopy equivalence. U
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Theorem 2.4 implies that localised at any prime p, (5" is atomic for n odd, and when
nisevenandn ¢ {1,3,7}, QS" is only atomic when localised at 2. The following
result of Serre (Se) shows that, localised at an odd prime, the loop space of an even
dimensional sphere is decomposable.

Theorem 2.5. Let p be an odd prime. There is a p-local homotopy equivalence

QS# ~ §2n=1 » g4n—1, O

2.3 James-Hopf maps and Hopf invariants

In this section, we introduce the James-Hopf maps and prove basic properties of their
induced map on homology that will be required in Section 3. All homology groups
will be assumed to have integer coefficients unless otherwise stated.

Let X be a path-connected CW-complex such that H,(X) is torsion free. Let

E : X — XX be the suspension map. The Bott-Samelson theorem implies that
H,(QXX) = T(H.(X)) where T is the tensor algebra functor. Moreover, E, induces
the inclusion of H.(X) into T(H,(X)). Lete : ZOEXX < /i1 ZX/¥ be the James
decomposition (J), where X K is the k-fold smash product of X with itself. The
James-Hopf map iy : QXX — Q(ZX"F) is the adjoint of the composite

I ZOEX S \/ ZXM — mXM
k>1

where the righthand map is the pinch map. The case that is applicable to Section 3 is
X = §"1land k = 2. In this case, /1, is a map from (OS" to 05?1 and we can describe
the induced map (h2). on homology in degree 2n — 2. Note that

Hay2(QS™) & Hy,»(QS* 1) > Z.

Lemma 2.6. The map
(l’lz)* : HZH,Z(QS”) — HZn,z(QSZ”_l)

is an isomorphism. In particular, the generator 6 € Hp,_(QS") maps to
T € Hy, 2(QS?"1), where T is a generator.

Proof. Consider the composite

K, TOS" 22y g1 @, g2l
where ev is the evaluation map. The map K is homotopic to h; since it is the adjoint of
hy. By definition of h; as the composite of a homotopy equivalence followed by the
pinch map, (h). sends a generator 06 € Hy, 1(XQS") to a generator
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7' € Hy,1(S*1). Therefore, (1), also sends 6 to T'. Since Ha,_1(ZQS"),
Hy,—1(2QS?"~1) and Hp,_1(S*' 1) are isomorphic to Z, the only possibility is that
(Xhy). and ev, are isomorphisms in degree 2n — 1. Therefore, (Xhy).(0d) = 0T where
T is a generator of Hy,—»(QS?"~1). From the homology suspension isomorphism, we
obtain that (hy).(6) = 7. O

Now consider the case where X = $?"~1. For m,k > 1 and maps f : S" — Z and

g : Sk — Z, denote the Whitehead product of f and g by [f, g] : S"* 1 — Z, and
denote its adjoint, the Samelson product, by (f, §) : S"** — QZ, where f and ¢ are the
adjoints of f and g respectively. In particular, let id : $>" — S be the identity map.

Lemma 2.7. The map
(Qlid, id))« : Hyp2(QS*™ 1) — Hy, »(QS*)

sends a generator T € Hy, »(QS* 1) to 26 € Hy,_»(QS*") where § is a generator of
Hyy2(QS?).

Proof. Consider the diagram

S4n—2
e
054}171 Qlid,id] QSZ”

where E : $?"~1 — ()5%" is the suspension map. The diagram homotopy commutes
since (E, E) is the adjoint of [id, id]. Since E induces the inclusion of the generator

T € Hyy2(QS* 1), its image under (Q)[id, id]). is determined by its image under

(E, E). The Samelson product commutes with homology in the sense that

(E,E), = (E,, E,) where the bracket on the right is the commutator in

H.(QS%") 2 T(v). The map E induces the inclusion of the generator

v € Hy,1(QS?"), and so by definition of the commutator, (E.(y), E«(7y)) = 26, where
J is a generator of Hy, »(QS?"). O

2.4 Hurewicz images

Let X be a space. An element x € H,(X) is said to be in the Hurewicz image if it is in
the image of the Hurewicz homomorphism. We will require the following result about

the Hurewicz image of even dimensional spheres in a certain degree.

Lemma 2.8. The Hurewicz image 7ty 2(QS**) — Hyy, 2(QS?") whenn ¢ {1,2,4} is 27Z.
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Proof. Suppose that f : $*~2 — ()S?" is a map with odd Hurewicz image. By the
universal property of the James construction, there exists an H-map
f:Q8*~1 - QS such that

S4n72

b
Qg1 i> Qs2"

homotopy commutes, where E is the suspension map. Let T be a generator of

Hyy 2(QS*"~1) and & be a generator of Hy, »(QS*"). By commutativity of the

diagram and the fact that f has odd Hurewicz image, f sends T to (2k + 1)J for some

k. Consider the composite

Qlid,id) xid 0521’1 % 05271 A Qszn,

g 051 5 gin-1 agin1 I, i1, g
where p_j is the —k’th power map. By Lemma 2.7 and definition of ¢, ¢..(7) = 4.
Now consider the composite

p st 4 g Iy qgin-1)

By Lemma 2.6 and definition of ¢, ¢.(7) = 7, and so ¢ induces an isomorphism on
Hyy2(QS*"~1). By Theorem 2.4, QS is 2-locally atomic. Therefore, we obtain that
i is a 2-local homotopy equivalence, implying that QS*'~! retracts off AS*" when
localised at 2. However, by Theorem 2.4, Q5" is 2-locally atomic, and therefore

indecomposable. Hence, 2S?" has no non-trivial retracts localised at the prime 2. [

2.5 Preliminary loop space decompositions

In this section, we state and prove some initial loop space decompositions which will
be applied in Section 4. Let K be a simplicial complex on [m] and let L be a full
subcomplex of K on [n]. It is well known (see for example (DS, Lemma 2.2.3)) that the

m n
projection map [ X; — [] X; restricts to a map (X, A)¥ — (X, A)¥, which is a right
i=1 j=1

inverse for the map (X, A)F — (X, A)X. Note that a full subcomplex L’ of L is also a
full subcomplex of K, and this fact will often be used without comment.

There are two main results which will be used in Section 4. The first result was proved
in (GT1, Theorem 7.2). If X and Y have basepoints xg and yg respectively, the right
half-smash is defined by X x Y = X x Y/ (* x Y) and the left half-smash is defined by
XxY =XxY/(X x x). The reduced join is defined by X *Y = (X x I X Y)/ ~,
where [ is the unit interval, (x,0,y) ~ (x,0,¥'), (x,1,y) ~ (x',1,y) and

(x0,t,y0) ~ (x0,0,y0) forall x,x" € X, y,y/ € Yand t € L.
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Proposition 2.9. Let K; be a simplicial complex on the vertex set {1, ---m}, Ky a simplicial
complex on the vertex set {{ +1,--- ,n}, and T be a common face of Ky and Ky on the vertex
set {{+1,---,m}, where { < m < n. Then there is a homotopy equivalence

(CA, A)19752 o (A A') V ((CA, A) 0 ATV (A (CA A)®2)

where A = [10_q Ajand A = [T 111 A O

The next main result is from (T1, Theorem 1.1).

Proposition 2.10. Let Ky be a simplicial complex on the vertex set {1,--- ,m}, Ky a
simplicial complex on the vertex set {¢ +1,--- ,n}, and L a full subcomplex of both Ky and
Ky on the vertex set {¢ +1,--- ,m}, where { < m < n. Then there is a homotopy fibration

(Ax AYV(GxA)V (Ax H) — (CA Ak 5 (CA A

where A =T, A;, A = [T 1 Ai, and G and H are the homotopy fibres of the
retractions (CA, A)Xt — (CA, A)L and (CA, A)X> — (CA, A)L respectively. Further, this
fibration splits after looping to give a homotopy equivalence

Q(CA, AV ~ O(CA, A x Q((Ax A) Vv (G x AV (Ax H)). O

Remark 2.11. The loop of the decomposition in Proposition 2.9 can be obtained from
Proposition 2.10. However, the proof of Proposition 2.10 requires that M is non-empty,

whereas in Proposition 2.9, T can be the empty set.

The aim of Section 4 is to use the decompositions in Proposition 2.9 and Proposition
2.10 to show that the property of loop spaces of polyhedral products being in [T P is
closed under taking pushouts of simplicial complexes over a common full
subcomplex. First, we give a decomposition of Q(X x Y) for spaces X and Y. Observe
there is a projection map X x Y — Y given by projecting onto Y.

Lemma 2.12. Let X and Y be path-connected, CW-complexes. Then there exists a homotopy
fibration
XxQY - XxY =Y.

Furthermore, this splits after looping to give a homotopy equivalence

QX x Y) >~ Q(X % QY) x QY.
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Proof. Consider the commutative diagram

Qy & xxy ™ . x

e

—

% X X L XxY
| [ [
Y Y Y

where the columns are homotopy fibrations, ix is the inclusion and 7y, 7y and mqy
are the projections onto X, Y and QY respectively. Observe that the homotopy
pushout of the top row is X * ()Y, the homotopy pushout of the middle row is X x Y
and the induced map from X x Y to Y is the projection map. Therefore by (F, p.180),
there is a homotopy fibration

X+xQY - XxY—=Y.

Moreover, the projection X x Y — Y has a right homotopy inverse given by the

inclusion map Y — X x Y, which implies that there is a homotopy equivalence

QX xY) ~ Q(X%QY) x QY. 0

Before determining conditions on X and Y for Q(X x Y) to be in [T P, we prove some
relations between spaces in \/ V¥V and spaces in [] P.

Lemma 2.13. Let X be a space such that X € \/ W and let Ay, - -, Ay be spaces in TP,
then
S(XANALA---NAy) €\ W.

Proof. We proceed by induction. First consider the case m = 1. Since A; € [P,
LA, € VW. There is a homeomorphism (X A A;) = X A X A;. Therefore,
distributing the wedge sum over the smash product implies Z(X A A1) € V W.

Now suppose the result is true for 1 < m < k — 1 and consider the case m = k. There

are homeomorphisms
S(XAAIAN - ANAR) ZL(AIAXNAGA - ANAR) ZATANS(XANAZA - A Ap).

The inductive hypothesis implies (X A Ay A -+ - A Ayy) € \V W. Therefore,
L(XANAA---NAy) ~ LW where W is a wedge of spheres. Hence, there is a
homotopy equivalence

S(XAAIA---ANAp) =~ XAZW.
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Since XX € \/ W by assumption, shifting the suspension coordinate and distributing
the smash product over the wedge sum implies X A XW € \/ W. O

Lemma 2.14. Let X and Y be path-connected CW-complexes such that £X € \/ W and
QY € [1P. Then
QXxY)e[]P.

Proof. By Lemma 2.12, Q(X X Y) ~ Q(X * QY) x QY. Since X * QY ~ (X A QY),
XX € VW and QY €[] P, Lemma 2.13 implies (X A QY) € \/ W. Therefore the
Hilton-Milnor theorem (M) implies Q(X(X A QY)) € [T P, and so

QX xY)eIlP. O

Now we state a result of Porter (P, Theorem 1) which gives a loop space
decomposition of a wedge of spaces. Let X be a pointed space. Denote by X"* the
k-fold wedge sum of X with itself.

Lemma 2.15. Let Xy, - - - Xy, be path-connected CW-complexes. Then there exists a homotopy
fibration

m m m
\V \V/  EOX, A AQX)VED 5\ X [T X
k=21<i1<--<ip<m i=1 i=1
Moreover, this splits after looping. 0

Lemma 2.15 can be applied to show that if there are spaces X; such that OX; € [[P,
then the loop space of the wedge of the X;’sisin [T P.

Corollary 2.16. Let X; - - - , X,, be spaces such that QX; € [TP. Then Q (Vi X;i) € T1P.

Proof. By Lemma 2.15, there is a homotopy equivalence

o) (\n} Xi) HQX x Q) (\/ \V  (EOX, A /\QXik)V(kl)> :
i=1

k=21<i;<---<ix<m

The product [TiZ; QX; is in [P since [T P is closed under products, so consider the
complimentary factor. Since Q0 X; , 2QX; € \V W. Lemma 2.13 then implies

TOX; A AQX, €\ W,

and so

VoV (EX, A A0X,) Y ED e\,

k=21<i1<---<ix<m

Therefore, by the Hilton-Milnor Theorem

Q(\m/ Vo (EQX, A AQX) )eHP.

k=21<i1<---<ip<m
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O

3 Closure of [ [P under retracts

3.1 Setup

In this section, homology will be assumed to have integer coefficients unless
otherwise stated. Let X € [] P, and suppose there is a space A which retracts off X,
that is, there exist maps f : A — X and g : X — A such that the diagram

AL>X

N

homotopy commutes. In this section, we will show that A is homotopy equivalent to a
subproduct of X.

The product decomposition of X implies there is a coalgebra isomorphism of H, (X)
as a tensor product of exterior algebras corresponding to the spheres, and

single-variable polynomial rings corresponding to the loops on spheres. Consider the

composite ¢ : X 8 A L, X. Observe that fogo fog~ fogwhichimplies that the

induced map ¢, is an idempotent. To show that A is homotopy equivalent to a
subproduct of X, we will proceed in three stages. First, we consider the case where
H.(A) contains a primitive generator in degree m form € {1,2,3,6,7,14,4m | m > 1},
then we will consider the case where H,(A) contains a primitive generator in the
Hurewicz image in degree 4m + 2, where m > 2, m # 3, and we will conclude by
considering the case where H,(A) contains a primitive generator in degree m where m
isodd and m ¢ {1,3,7}.

Each case requires an adaptation of the same core idea, and the notation defined in
each subsection will be reused to reflect where the argument is the same. There is
some notation that will be universal which we now define. Let Y = S" forn € {1,3,7}
orY = QS™ for m ¢ {2,4,8}. Let my be the number of instances of Y in the product
decomposition of X. In particular, write X as

m
X ~ I—YIYi x [T Zw
i=1 W eT
where each Y; is an instance of Y in the product decomposition of X, and each Z, are
the spheres and loops on spheres that are not equal to Y. Denote by H the lowest
non-vanishing homology group of Y, and H; the lowest non-vanishing homology
group of Y;. Note that H = H; = Z for all i. Let -y, be the primitive generator of H,(X)
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which is the image of a generator v/ € H; under the map induced by the inclusion
Y; — X. We will define maps p, : Y — X and p), : X — Y such that the composite

Y& x5 x5 visa homotopy equivalence. Since ¢ factors through A and A is a
H-space, this will imply that we obtain a homotopy equivalence A ~ Y x A’ for some
space A’. An iterative approach will then be used to conclude that A € [T P.

3.2 Casel

In this subsection, we implicitly fix Y to be either Y = S" forn € {1,3,7}, Y = QS*"+1
form >2,0or Y = QS8*"*3 for m € {0,1,3}. We show that if the homology of A
contains a primitive generator in the same degree as H, then Y retracts off A.

Observe that in this case, the set {71, - -, ym, } forms a basis of primitives in H,(X) if
Y = 8", Hyy(X) if Y = QS¥F1 or Hyyy2(X) if Y = QS¥"+3. Since ¢, is a graded
coalgebra map, it maps primitive elements to primitive elements of the same degree,
and so ¢.(7:) = L} zi7j, where z;; € Z for all j. Let By € My, (Z) be the matrix

with entries z; ;. Since ¢, is an idempotent map, By is an idempotent matrix.

Suppose By is not the zero matrix. Since By is idempotent, Lemma 2.1 implies that
there exists an element v = (y1,- -+ ,ym, )’ € C(By) which extends to a basis of Z".
Therefore, by Lemma 2.3, the greatest common divisor of the non-zero components
Y1,- ,Ymy is 1. By Bézout’s Lemma, for 1 < i < my, there exists ¢; € Z such that
Y. ciyi = 1. Since v € C(By), Lemma 2.2 implies Byv = v. Let the vector v
correspond to the element Y] y;; in H.(X).

Let di : S" — S" be the degree k map, and let p; : QS™ — QS" be the k' power map.
Note that d and pj both induce multiplication by k in H (in this case of py, this
follows from the Hurewicz theorem). Let ¢ be dj if Y is a sphere or py if Y is the loops
on a sphere. Define a map p, : Y — X as the composite

where A is the diagonal map, and the right map is the inclusion. Now define a map
0, : X — Y as the composite

I’IlY

my Hllfc my
o XS] =— HY Ly

i=1

where 7t is the projection, y is some choice of my-fold H-space multiplicationon Y,

and the ¢;’s have the property that }_/; c;y; = 1.
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Lemma 3.1. Suppose that By is not the zero matrix. Then, the composite

induces an isomorphism on H.

Proof. By definition, (o)« sends the generator v € H to the element v in H,(X). Since
v is in the column space of By, Lemma 2.2 implies that v is fixed by ¢.. By definition of
04, (04)« sends v to the generator v € H. Therefore, e, is an isomorphism on H. O

Lemma 3.1 allows us to conclude that e is a homotopy equivalence.

Lemma 3.2. Let Y be a sphere S™ for m € {1,3,7}, loops on a sphere of the form QS*"+1 for
m > 1, or QS**3 for m € {0,1,3}. Suppose that H,(A) contains a primitive generator in
degree m if Y is a sphere, in degree 4m if Y = QS*"*1 or in degree 4m + 2 if QS*"+3. Then
Y retracts off A.

Proof. Since H,(A) contains a primitive generator, by definition of ¢, the matrix By is
non-zero. If Y is a sphere, then H is the only non-vanishing homology group of Y. As
e, is an isomorphism on H by Lemma 3.1 and Y is an H-space, ¢ is a homotopy
equivalence. The map ¢ factors through A, and so Y retracts off A.

If Y = QS§*"+1 or OS54 +3 then e induces an isomorphism on Hy(Y), where k = 4m if
Y = QS*"*+1 and k = 4m + 2 if Y = QS*"*3. This implies that ¢ induces an
isomorphism on Hy(Y;Z/pZ) for all primes p and rationally. Therefore when
localised at p or rationally, Theorem 2.4 implies e is a homotopy equivalence. Since e is
a homotopy equivalence localised at every prime and rationally, e is an integral
homotopy equivalence. Hence, Y retracts off A. O

From the previous lemma, we obtain the following result.

Proposition 3.3. Let X € []P and A be a space which retracts off X. Suppose that H,(A)
contains a primitive generator in degree m where m € {1,2,3,6,7,14,4m |m > 1}. Then
there is a homotopy equivalence

A~Yx A

whereY = S™ifm € {1,3,7},0rY = QS+ otherwise. Moreover, A’ retracts off X, and

H,,(A’) contains one fewer primitive generator than Hy,(A).

Proof. Since there is a primitive generator of degree m, the matrix By is non-zero, and

so Lemma 3.2 implies that Y retracts off A. This implies thereisamapr: A =Y
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which has a right homotopy inverse. Let F be the homotopy fibre of ¢ and consider
the homotopy fibration diagram

e
=

F

F

>

r

< M —
.<;

8
gor

;.<

where A’ and X' are the homotopy fibres of ¥ and g o r respectively. Since A retracts
off X, it is an H-space. The right homotopy inverse for r implies there is a homotopy
equivalence A ~ Y x A’. Observe that A’ has the same homology as A except with
one less primitive generator in degree m. Moreover, since g has a right homotopy
inverse and X is an H-space, there are homotopy equivalences
X~AxF~YxA"xF.Hence, A’ retracts off X. O

3.3 Case?2

In this subsection, fix Y to be QS*"*3 for n > 2, n # 3. We show that if the homology
of A contains a primitive generator in Hy,1»(A) which is in the Hurewicz image, then
Q5*11+3 retracts off A. In this case, the set {71, -+, Ymy } does not form a basis of
primitives in Hyy12(X), since there may be Q05*'*2 terms in the product
decomposition for X. Let Y = QS?"2. Write X as

my my
X~JTasy <x[Tasi*? x [T Zu
i=1 j=1

i a'eT’

where each Z, are the spheres and loops on spheres that are not equal to QS*"*3 or
QS?"+2, Let 7, be the primitive generator of H.(X) which is the image of a generator
7} € Huny2(QS*+2) under the map induced by the inclusion QS?**2 — X. The set
{7, s Ymys Y10 ,7,,17} forms a basis of primitives in Hyy,12(X).

Consider a primitive generator a € Hy,+»(A) such that a is in the Hurewicz image.
Observe that f.(a) is primitive, in the Hurewicz image, and since f. is injective, f,(a)
is non-zero. By Lemma 2.8, f.(a) = ¥./2] ;i + Z;-n:?l 2y;7;- Let

v= (1, Ymy, 2y, ,Zymy) correspond to the element f,(a). By definition of ¢,
im(¢,) =im(f,), and f.(a) is a generator of im(¢, ). Therefore, by Lemma 2.3, the
greatest common divisor of the components of v is 1. By Bézout’s Lemma, for

1 <i<myand1 < j < my, there exists ¢;, ¢; € Z such that 2?31 ciyi + 2}11:71 ZE]'y]- =1.
Since v € im(¢), Lemma 2.2 implies ¢.(f.(a)) = fi(a).
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Let A; be the composite

Ak . Qs4n+3 Qlid,id] 052n+2 Pk 052n+2

By Lemma 2.7, Ay maps 7y to 2k?. Define a map p, : QS***3 — X as the composite

HP XH/\
00 Qs4n+3 o HQS4n+3 % HQS4n+3 = E ﬁﬂs4n+3 % H052n+2 oy X

where A is the diagonal map, and the right map is the inclusion. Now define a map
Pl + X — QS*13 as the composite

HldXth
p ¢ _> Hgs4n+3 % H082n+2 = =1 ﬁﬂs4n+3 % H054n+3
i=1 j=1 i=1 j=1

)PI/ Pe; % ﬁ L Pej
i=1 H Qs4n+3 % H Qs4n+3 Qs4n+3
i=1 j=1
where 71 is the projection, y is some choice of my-fold H-space multiplication on
Q5*"+3, and the ¢;’s and ¢;’s have the property that Y/} c;y; + Z;nfl 2cjy; = 1. By
definition, (py)« sends the generator v € H to the element v in H,(X), and by
definition of p}, (p,,)« sends v to the generator v € H. Therefore, arguing as in Lemma

3.1, Lemma 3.2 and Proposition 3.3, we obtain the following.

Proposition 3.4. Let X € []P and A be a space which retracts off X. Suppose Hay12(A),
n > 2, n # 3, contains a primitive generator in the Hurewicz image. Then there is a homotopy

equivalence
A~ QS x A

where A’ retracts off X, and Hay2(A") contains one fewer primitive generator in the
Hurewicz image than Hay 2 (A). O

3.4 Case3

In this subsection, fix Y to be QS5?" for n ¢ {1,2,4}. We show that if the homology of
A contains a primitive generator in Hp,_1(A), then Q5% retracts off A. Observe that
in this case, the set {71, -+, Ym, } forms a basis of primitives in Hy,_1(X). Therefore,

if Hy,—1(A) contains a primitive generator, arguing as in Subsection 3.2, we obtain

1. a generator of im(¢.), Y1 yivi € Hon-1(X),

2. avector v = (Y1, - ,Ym,) corresponding to the generator in (1) such that the

greatest common divisor of the non-zero components is 1;
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3. a composite

L5 A T[as ™ [as? < x
Po i i
i=1 i=1

such that a generator v € Hp,_1(QS?") maps to v;

4. a composite

- my ﬁlpci my u
o, X S T[asi == TJ[as" = as*
i=1 i=1

where 77 is the projection, y is some choice of my-fold H-space multiplication on
Q15%", the ¢;’s have the property that Y/ c;y; = 1, and the map (p},). maps v to
v

5. the composite ¢ : (0},)« © ¢« 0 (0y)« is an isomorphism on Hy, 1(QS%").

In Subsection 3.2, this was enough to conclude that the corresponding loop on sphere
retracted off of A. In this case, e may not be a homotopy equivalence since (5" is not
atomic at odd primes. However, we can adjust the maps p, and pl, to define a map ¢
which is a homotopy equivalence. In particular, these maps will agree with p, and p/,
respectively in degree 2n — 1, but may differ in degree 4n — 2 so that ¢ is an
isomorphism on both Hy,,_1(Q5*") and Hy,_»(QS>").

Since the generators of H, (Q5?") in degree 2n — 1 and 4n — 2 are divisors of elements
in the Hurewicz image, the map induced by the k" power map sends a generator

v € Hyy—1(QS?") to kv, and a generator 6§ € Hy, 2(QS*") to kd. Recall that

v=(y1," * ,Ym )", and (p,). maps a generator v € Ha,_1(QS*") to v in H.(X). Let J;
be the primitive generator of Hy,_»(X) which is the image of a generator

RIS H4n_2(QSi2”) under the map induced by the inclusion QS%” — X. By definition
of p,, for a suitable choice of generator § € Hy, »(Q5*"), (0y)« maps 6 to the element
Y yidi.

LetY = QS*~1 Write X as

my my
X=J[asi" x[Tas" ' x [T Zw
i=1 j=1

o' €L’

where each Z, are the spheres and loops on spheres that are not equal to QS or
QS*1~1 Let 6; be the primitive generator of Hy, »(X) which is the image of a
generator 3; € Hyn_» (QS{"™1) under the map induced by the inclusion QS ! < X.
Observe that the set {31, , 0y, 61, - - ,3m7} forms a basis of the primitives in

Hyy 2(X). Letw = (y1,-** ,Ymy,0,- -+ ,0)T be the vector defined by taking the
coefficients of Y] y;6;. Since w is primitive, ¢, maps w to an element of the form

/

Y Y6+ 271:71 Y05 Letw' = (i, , Yo Uy, - ,me)T be the vector containing the
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coefficients of Y y!d; + 271:71 ¥;6;. The components of w’ can be related to the

components of v.

Lemma 3.5. The components y; are equal to y§ modulo 2. Moreover, there exists 1 < j < my
such that y; is odd.

Proof. Since the vector v extends to a basis of Z™, by Lemma 2.3, at least one of
Y1, - ,Yym must be odd. Consider a component y; of v which is odd, and consider the
composite

g0 & x b x T s

where 71; is the projection map. By definition, ¢, sends the generator

v € Hay—1(QS?") to y;y, and the generator § € Hy, 2(QS?") to 4. Since y; is odd, 9.
is an isomorphism in degree 2n — 1, and so by Theorem 2.4, 1 is a 2-local homotopy
equivalence. This implies that integrally, y; must be odd and so y; = y; + 2k; for some
ki € Z, and this holds for all i for which y; is odd.

Now fix a component y; of v which is odd, and consider a component y; which is
even. Consider the composite

g5 2 x ox T st x st by s
where 77; ; is the projection onto Q57" x QSJZ»” and p is the loop space multiplication.
By definition, (¢). sends the generator ¢ € Ha,—1(Q25*") to (y; + y;)y and the
generator § € Hy,_»(QS*") to (v + y;)d. Since y; is odd and y; is even, y; + y; is odd.
Therefore, (¢'). on Hy, 1(QS?*; Z./2Z) is an isomorphism, and so by Theorem 2.4, ¢/
is a 2-local homotopy equivalence. Therefore, y; + y; must be odd. As y; is odd by
assumption, y’ is odd by the previous paragraph, which implies that y} must be even.
This implies that y;- = y; + 2k; for some k; € Z, and this holds for all j for which y; is
even. ]

Lemma 3.5 implies that w’ = (y1 + 2k1, - - -, Yy + 2k, Y1, - - - ,ymy) for
ki,- -+ ,km, € Z. The next result shows that there exists a vector @ € Hy,_(X) with
similar properties to v. For two vectors u = (x1, -+ ,x,)T and v/ = (x{,-- -, x,)T, we

say that u and " are equal modulo 2 if x; = x/ mod 2 for all i.

Lemma 3.6. There exists a vector W which is equal to w' modulo 2, and whose non-zero
components have greatest common divisor 1. Moreover, ¢.(w) = w.

Proof. Recall that y; + 2k; = y.. Let d be the greatest common divisor of the non-zero
components of y1 + 2k, - -, Yy + 2kimy, Yy, - - - ,ymy. Then w' = dw for some vector .

Lemma 2.3 implies that one of y1, - - - , ¥, is odd, and so it follows that d is odd. By
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definition of w, the greatest common divisor of the non-zero components of w is 1.

Since ¢, is an idempotent map,

40 = o = ¢.(') = dp. (),

which implies that ¢. (@) = @w. Moreover, since d is odd, it follows that @ is equal to w’

modulo 2. O

Lemma 3.6 implies there exists a vector
W= (y1+2ky, Ymy + Zk,rny/yl +2ky, - - ’ymy + ZEmy) for
k/1, R

o ki, - ,Em? € Z such that the greatest common divisor of

yl + 2k/1/ e /me + Zk;n\//y1 + ZE:[/ Tt /me +2Em7

is 1. For an integer k, let Ay : QS*"~1 — Q5" be p; o Q[id, id], where py is the k"
power map and id : $>" — S?" is the identity map. By Lemma 2.7, (Q)[id, id]). sends a
generator T € Hy, »(QS*"~1) to the element 26 € Hy, »(QS?") where J is a generator
of Hy, »(QS?"). Therefore by definition of Ay, (Ax). sends T to 2ké. Let

hy : QS* — Q541 be the 2" James-Hopf invariant. By Lemma 2.6, (h;). sends J to

7. For an integer k, let 7, be the composite
e QS 12 gl Xy yg2n,

The map (7).~ is trivial on Hp,_1(QS?") and sends 6 to 2ks. We adjust the map p, by
defining the map p, as the composite

I’Il

rih[;AX 1_[1]12 my my
p,: Qs¥ 5 ]’[052" x HQSZ” — J](Qs* x Qs*) x [Jas* !
i=1 j=1 i=1 j=1
my m? my my
It [ Pyt il L my
[T(Qs* xQs*) x [[as* ! ———— [[Qs* x HQS4” T X
i=1 j=1 i=1 j=1

By definition, p, sends the generator v € Ha,_1(Q5%*") to v, and the generator
o€ H4n_2(052n) tow.

Lemma 3.7. Suppose that Hy,_1(A), n ¢ {1,2,4} contains a primitive generator. Then the
composite

e s Py x 8y x Py g

induces an isomorphism on Hp,_1(QS*"). Moreover, (). maps the generator
8 € Hyn_n(QS?) to an element of the form (2K + 1) for some k € Z.
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Proof. The map (1)« is trivial on H, and so (p,,)« maps the generator v € H to v. The
element v is fixed by ¢.. The map (p,). sends v to v € H. Therefore, € induces an
isomorphism on Hy,,_1 (QSzn) By Theorem 2.4, the map e is a 2-local homotopy
equivalence. Hence, (). maps § € Hy, »(QS?") to an element of the form (2k + 1)J
for some k € Z. O

Now we adjust p/, to obtain an isomorphism on the bottom two non-vanishing
degrees in homology. Recall w = (y1 + 2k}, -, Ym, + ZkZﬂWyl +2ky, - - - ,ym? + 2km7),
and the greatest common divisor of the non-zero components of w is 1. Therefore, by
Bézout’s Lemma, for 1 <i < my,and 1 < j < my there exist cﬁ,Ej € Z such that

Y ci(yi + 2k;) + 2] 1Cj(; + 2k;) = 1. Let A" be the composite

my myy

]_[hzx]_[zd my

HQSanHQS4n 1 ’l H054n 1XH054)’Z 1

=1t =l H054n 1 XHQS4n 1 _>Qs4n 1 Qszn
i=1 j=1

By definition, A’ sends the element @ in Hyy,_» (Hl 1 QSZ” X HmY 054” 1) to —2ké,
and is trivial in degree 2n — 1. Now adjust the map p), by deflmng a map p. as the
composite

T T 2 o 4n—-1 A i 2 o 4n—1 = 2 o 4n—1

— . — — n _

0, X = | |QSi” X | 1| QS].” — (l 1| QSZ.” X | 1| QS].” ) X <| 1| Qs x | 1| QS].” )
]: 1= ]: 1= ]:

i=1

(IIQSM>><QSM 2 21 5 g2 Ly 52,
i=1

Using p, and p,, we can now conclude that (05*" retracts off A when Y.

Lemma 3.8. Suppose that Hyp,_1(A) contains a primitive generator where n ¢ {1,2,4}.
Then QS*" retracts off A.

Proof. By definition of p,, the induced map (p,), sends the generator

v € Hp,—1(QS?") to v, and the generator § € Hy, »(Q5?") to the element w. By
construction, the induced map p), maps the element v to the generator

v € Hp,—1(QS?"), and maps the element  to the generator § € Hy,_»(QS?").

Therefore since v and w are fixed by ¢., the composite

o Qs oy x Oy x P ygn
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induces an isomorphism on Hy,,_1(Q5%") and Hy, 2(QS*"). By Theorem 2.4 at the
prime 2, the map ¢’ is a 2-local homotopy equivalence. Therefore, ¢’ is also a rational
homotopy equivalence. The splitting of 25?" in Theorem 2.5 and atomicity of loops
on odd spheres localised at an odd prime in Theorem 2.4 implies that €’ is a homotopy
equivalence when localised at any odd prime. Since ¢’ is a homotopy equivalence
localised at every prime and rationally, ¢ is an integral homotopy equivalence.
Therefore, since ¢ factors through A, Q5% retracts off A. O

Now arguing as in Proposition 3.3, we obtain the following result.

Proposition 3.9. Let X € [P and A be a space which retracts off X. Suppose that
Ha,,—1(A) contains a primitive generator where n & {1,2,4}. Then there is a homotopy

equivalence
A~QS™ x A

where A’ retracts off X and Hy,—1(A’) contains one fewer primitive generator than
Hy,—1(A). O

3.5 Conclusion of proof

We can combine the work of the previous sections to conclude that [T P is closed
under retracts.

Theorem 3.10. Let X € [P, and let A be a space which retracts off X. Then A € [TP.

Proof. Let ng be the degree of the lowest non-trivial homology group of A, and let k
be the rank of Hy,(A). Observe that since 1y is the lowest non-trivial degree, each of
the primitive generators of H,,(A) are in the Hurewicz image. Let Y = 5" if

ko

no € {1,3,7} or Y = QS" ! otherwise. We claim that A ~ [] Y x Zy where Zj has no
i=1

primitive generators in degree ng, Z retracts off X.

We proceed by induction. Suppose kg = 1. Then by Proposition 3.3, Proposition 3.4 or

Proposition 3.9 (depending on the parity of ng), there is a homotopy equivalence
A>~Y x ZO

where Z retracts off X, and H,,(Z,) contains one fewer primitive generator than

Hy, (Zo). Since kg = 1, Zy contains no primitive generators in degree 1y.

Now suppose the result is true for m — 1 and suppose ko = m. Then by Proposition
3.3, Proposition 3.4 or Proposition 3.9, there is a homotopy equivalence

A~Y x A
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where A’ retracts off X, and H,,(A’) contains one fewer primitive generator than
Hy, (A’). Therefore, the inductive hypothesis implies that there is a homotopy
equivalence A’ ~ H;-”:_ll Y x Zy, where Z retracts off X and has no primitive
generators in degree ng. Hence A ~ [, Y x Z; as claimed.

Observe that Zj is more highly connected than A. Let 11 be the degree of the lowest
non-trivial homology group of Z, and let k; be the rank of Hy, (Zj). We can repeat this
argument to obtain a homotopy equivalence Zy ~ P x Z; where P is a product of
spheres or loops on spheres whose lowest non-trivial homology group is 11, Z;
retracts off X, and Z; is more highly connected than Z. Since A is of finite type, we
can iteratively repeat this argument for each degree of H,(A) containing a primitive
generator. Therefore, we obtain that A € [T P. O

4 Loop space decompositions of pushouts of polyhedral

products as a product of spheres and loops on spheres

Recall from the introduction that \/ WV is the collection of topological spaces which are
homotopy equivalent to a finite type wedge of simply connected spheres, and [[ P is
the collection of H-spaces which are homotopy equivalent to a finite type product of
spheres and loops on simply connected spheres. The purpose of this section is to
apply Theorem 3.10 to prove that under mild hypotheses, if a simplicial complex K
can be decomposed as a pushout of simplicial complexes for which the loop space of
the associated polyhedral product is in [T P, then Q(CA, A)K € TTP.

Theorem 4.1. Let K be a simplicial complex defined as the pushout

L*>K1

L

K2*>K

where either L = @ or L is a proper full subcomplex of Ky and K. If 2. A; € \/ W for all i,
Q(CA, A)X e TTP and Q(CA, A)%2 € TT P, then Q(CA, A)X e TTP.

Proof. If L is the empty set, since K = K; Uy, Ky, by Proposition 2.9, we obtain a
homotopy equivalence

Q(CA A  ~ O((Ax A)V ((CA A x AV (Ax (CAA)) @)

where A and A’ are a product of A;’s. If L is a full subcomplex of K; and K3, since
K = Kj UL, Ky, the simplicial complex K satisfies the hypothesis of Proposition 2.10, so
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there is a homotopy equivalence
Q(CA A ~ Q(CA A x QO ((Ax A)V (GxA)V (Ax H)) (4.2)

where A and A’ are a product of A;’s, and G and H are the homotopy fibres of the
retractions f1 : (CA, A)X1 — (CA,A)Fand f,: (CA, A)X2 — (CA, A)" respectively.
Since O(CA, A)! retracts off O(CA, A)X1, Theorem 3.10 implies that

Q(CA AL eTTP. By Corollary 2.16, to show that the decompositions in (4.1) and
(4.2) are in [ P, it suffices to show that each of (A x A’), Q((CA, A)X1 x A'),

Q(Ax (CA, A)%2) are in [P for (4.1), and additionally Q(G x A’) and Q(A x H) are
in [P for (4.2).

Since A and A’ are products of A’s and XA € \/ W by assumption, it follows that
Ae VW, 2A € VWand A x A" € \/ W. Therefore, the Hilton-Milnor theorem
implies that Q(A * A’) € T]P. Since Q(CA, A)X1 € [TP and Q(CA, A)*2 e [TP by
hypothesis, and .4, Z.A" € \V W, by Lemma 2.14, Q((CA, A)K1 x A") € TP and
Q(A x (CA, A)X2) € TTP. Therefore, if L is the empty set, then Q(CA, A)X e [T P.

Now consider G x A’. By Lemma 2.14, to show Q(G x A") € ] P, it suffices to show
that QG € []P. Themap f; : (CA, A)Kt — (CA, A)F has a right homotopy inverse,
which implies that there is a homotopy equivalence Q(CA, A)Xt ~ O(CA, A)L x QG.
Therefore QG retracts off Q(CA, A)K1. Since Q(CA, A)X1 € TP by hypothesis,
Theorem 3.10 implies QG € []TP. A similar argument shows that Q(A x H) € [T P.
Hence Q(CA, A)X e TTP. O

The next result will be used to show that if K is the k-skeleton of a simplex, then the
loop space of certain polyhedral products is in [ P. The following result was first
proved by Porter (P, Theorem 1) in the (CQA, M)K case, and was generalised
independently by (GT1, Theorem 1.1) and (IK1, Theorem 1.7) for general polyhedral
products of the form (CA, A)X.

Proposition 4.2. Let K be the k-skeleton of A" 1. Then there is a homotopy equivalence

j=k+2 \1<ij<-<ij<m

This proposition can be used to prove the following lemma.

Lemma 4.3. Let K be the k-skeleton of A" Y and Aq,- - -, Ay be spaces such that
YA; € VW foralli, then (CA, A)X € VW.

Proof. Since XA; € \V W for all i, by shifting the suspension coordinate it follows that
Zk+1AilA---/\Ai/€VW. O
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For a general simplicial complex K, a general decomposition of K will be required in
order to apply Theorem 4.1. Let V(K) be the vertex set of K and for a subset S C V(K),
let Ks be the full subcomplex of K on the vertices of S. For a vertex v € V(K), denote
by N(v) the set of vertices adjacent to v in the 1-skeleton of K.

Lemma 4.4. Let K be a simplicial complex and v € V(K). Then K can be written as the
pushout
Knw)y — Kuunio)

l |

Kypfoy — K

Moreover, Ky (,) is a full subcomplex of both K, N (o) and Ky gy (o}-

Proof. Since Ky (k)\ (o) contains every simplex which does not contain the vertex v and

KyuUN(v) contains every simplex containing v, Ky n (o) U Ky (k) (o} = K.

Clearly, KN(U) - KUUN(U) N KV(K)\{U}I soleto € KvUN(v) N KV(K)\{T)} Since o € KvUN(v)/
o must have vertices in v U N(v). However since o € Ky (k)\ {0}, none of the vertices

can be v. Hence KvUN(v) N KV(K)\{'{)} Q KN(U)/ and so K’UUN(U) N KV(K)\{U} = KN(v)'

By definition, the subcomplex Ky, contains every simplex in K on the vertex set
N(v). Therefore, it is a full subcomplex of both K () and Ky (g {o}- O

We now prove Theorem 1.1. Recall that k > 0, and let K be the k-skeleton of a flag
complex on the vertex set [m]. Let Ay, - - -, A, be path connected CW-complexes such
that ZA; € \/ W for all i. Then we wish to prove that Q(CA, A)X € T]P. A dominating
vertex of K is a vertex v such that N(v) = V(K) \ {v}. In other words, v is adjacent to
every other vertex in the 1-skeleton of K.

Proof of Theorem 1.1. We proceed by strong induction. If K has one vertex, then
(CX, X)X is contractible, and so Q(CX, X)X € T]P.

Now suppose K has m vertices, and the result is true for all n < m. Since K is the
k-skeleton of a flag complex, if every vertex of K is a dominating vertex, then K is the
k-skeleton of a simplex. In this case, Lemma 4.3 implies that Q(CA, AX eTIP.
Therefore, suppose there exists a vertex v € V(K) such that v is not a dominating
vertex of K. By Lemma 5.4, K can be written as the pushout

Knw) — Koun(o)

| |

Kypfoy — K
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where Ky ) is a full subcomplex of both K, n () and Ky k), ). Since v is not a
dominating vertex, K, o) is not the whole of K, and so K,y () and Ky k) (o} are
simplicial complexes with strictly fewer vertices than K. Therefore, by the inductive
hypothesis, Q(CA4, A)KWN@) € [1P and Q(CA, A)KV(’QW} € [1P. Hence, Theorem 4.1
implies that Q(CA, A)XK e TTP. O

Remark 4.5. In principle, one could iteratively use Proposition 2.9, Proposition 2.10
and Lemma 5.4 to obtain an explicit decomposition for (CX, X )K. However, in

practice, this process would be unwieldy.

Theorem 1.1 also has consequences for other polyhedral products associated to the
k-skeleton of flag complexes.

Lemma 4.6. Let K be a simplicial complex on the vertex set [m] and let (X, A) be any
sequence of pointed, path-connected CW-pairs. Denote by Y; the homotopy fibre of the
inclusion A; — X;. Suppose Q(CY,Y)K € [TP and for 1 <i <m, QX; € [P foralli.
Then Q(X, A)X € [TP.

Proof. By (HST, Theorem 2.1), there is a homotopy fibration

m
CY, V)" = (X, A= T]Xi
i=1

which splits after looping. Therefore, there is a homotopy equivalence

m
QX A ~TTax; x Q(Cy, )X
i=1
By assumption, QX; € []P for alli and Q(CY,Y)X € T]P, and so
Q(X, A)F e [TP. O

When K is the k-skeleton of a flag complex, Theorem 1.1 and Lemma 4.6 implies the
following result.

Corollary 4.7. Let K be the k-skeleton of a flag complex on the vertex set [m]. Let (X, A) be
any sequence of pointed, path-connected CW-pairs, and denote by Y; the homotopy fibre of the
inclusion A; — X;. Suppose QOX; € [1P forall i and £Y; € \/ W for all i. Then

Q(X, A e TTP.

Proof. Since L.Y; € \/ W for all i, Theorem 1.1 implies that Q(CY, Y)X € T P. By
assumption QX; € [P for all i, so Lemma 4.6 implies that Q(X, A)K € TTP. O

Corollary 4.7 applies to more examples, as follows.
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Corollary 4.8. Let K be the k-skeleton of a flag complex on the vertex set [m], and for
1<i<m,letn; € NU{oo}and m; € N with m; < n;. Let (X;, A;) = (CP",CP") or
(X;, A;) = (CP™, %) forall i. Then Q(X, A)X € [TP.

Proof. There are homotopy equivalences QCP* ~ S! x Q§%*+1 and QCP* ~ S'.
Therefore, QCP" € [P for all i. First consider a pair of the form (CP", x). The
homotopy fibre Y; of the inclusion of the basepoint into CP" is QCP"i, and so
Y; € [IP. Hence, ZY; € V W.

Now consider a pair of the form (CP",CP™:). Suppose n; = 0. In this case, there is a
standard homotopy fibration

§¥+1 — cpPk — CP™,
and 5%+ € \/ W. Now suppose 1; # oo. Consider the homotopy fibration diagram

52m+1 % Qs2n+1 52m+1 * 52n+1

| | |

Y, — CP™ — CP™

| |

where the maps in the bottom square are all inclusions, and the top map in the top
right square is null homotopic since m < n. The top right square is a homotopy
pullback, implying that Y; ~ S?"*+1 x (AS$*'*1. Therefore, Y; € []P, and so ZY; € \/ W.
Hence, X.Y; € \/ W for all i, and Lemma 4.7 implies that Q(X, A)K € T]P. O
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Chapter 3

Paper 2 - Loop space decompositions
of moment-angle complexes
associated to two dimensional

simplicial complexes

1 Introduction

Polyhedral products are a natural subspace of the Cartesian product which are
indexed by the face poset of a simplicial complex. They have generated much interest
due to their far reaching applications across mathematics (see (BBC)). Let K be a
simplicial complex on the vertex set [m], and for 1 < i < m, let (X;, A;) be a pair of
pointed CW-complexes, where A; is a pointed CW-subcomplex of X;. The polyhedral
product associated to K is

(x4 =U ( Yf>,

cek \i=1

where Y/ = X;ifi € 0,and Y] = A; ifi € 0. An important special case, which
appears in toric topology, is when (X;, A;) = (D?,S!) for all i. These polyhedral

products are called moment-angle complexes, and are denoted Z.

One particular problem associated to moment-angle complexes is understanding their
loop spaces. In the case that K is a flag complex, the loop homology of moment-angle
complexes models commutator subalgebras of algebraic analogues of right angled
Coxeter groups (GPTW). More generally, for any simplicial complex K, the loop space
of the corresponding moment-angle complex is related to a certain diagonal subspace
arrangement (D). When K is flag, most homotopical and homological information

about () Zk is known. In particular, a coarse description of (2 Zx was given in (S),
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which was upgraded to an explicit decomposition in (V). This allowed for a complete
description of H,(Q)Zk; R) as an algebra, where R is any commutative ring with unit
(V). Another interesting case is when K is a 1-dimensional simplicial complex (a
graph). In this case, it was shown in (S) that () Zx decomposes as a finite type product
of spheres and loops on spheres. In particular, this implies that the homology of ().Zx
is torsion free. In this paper, we study the case of a 2-dimensional simplicial complex,
and give a coarse description of () Zk in this case. The homology of () Zx in this case
can contain torsion, and this will require the introduction of certain indecomposable
torsion spaces which have been considered in (CMN1; CMN2; C). We also give a
coarse description of () Zx as a product of spheres and loops on spheres after
localising away from a finite set of primes, under conditions on the rational

cohomology of certain full subcomplexes of K.

It is useful to identify two families of H-spaces. For a collection of topological spaces
X, let [T X be the collection of spaces homotopy equivalent to a finite type product of
spaces in X. Let P := {S!,5°%,57,Q05" |n > 2,n ¢ {2,4,8}}. In (S), it was shown that
[1P is closed under retracts, and this was the key ingredient in proving coarse
descriptions of () Zk, in the case that K is the k-skeleton of a flag complex. In this
paper, we extend this to include torsion spaces. Denote the mod p” Moore space by
P*(p"), which is the mapping cone of the degree p” map on S"~!. By (HW, Theorem
1.1), for a finite type H-space X localised at a prime p, there is a unique decomposition
of X, up to homotopy, as a finite type product of indecomposable spaces. Let T be the
collection of indecomposable spaces which appear in the decomposition of the loop
space of a wedge of Moore spaces of the form \//_; P"(p}'), where m > 2, n; > 3, p; is
a prime and r; > 1. Through an adaptation of the argument in (S), we will show in
Section 4 that [T(P U T') is also closed under retracts. This is the key technical result
which is required to prove the main result of this paper.

Theorem 1.1 (Theorem 6.4 in the text). Let K be a 2-dimensional simplicial complex. Then
QZx e [I(PUT).

In Section 3, a collection of co-H spaces, \/(WW U M), related to [T(P U T) will be
defined, and it will be shown that this collection is also closed under retracts. An
important ingredient of the proof of Theorem 1.1 is a generalisation of (S, Theorem
1.1). For a simplicial complex K, let Ck be the collection of full subcomplexes of K
whose 1-skeleton has no missing edges. The generalisation states (2Zk being in
[1(P U T) depends only on Q) Zx, being in [T(P U T) for each full subcomplex

K € Ck (see Theorem 5.5). This result can also be used to prove a localised result,
which gives conditions on the rational cohomology of each K; € Ck in K, for which
after localising away from a finite set of primes (controlled by these full
subcomplexes), VZg € []P. A simplicial complex K is called k-neighbourly if any
I C [m] with |I| < k + 1 spans a simplex.
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Theorem 1.2 (Theorem 7.1 in the text). Let K be a simplicial complex such that all cup
products and higher Massey products in H*(|K;|; Q) are trivial, for all K; € Ck. For

Kj € Ck, suppose that Kj is kj-neighbourly, and let a = maxy,ec, {|I| + dim(K;) — 2k;}.
Localise away from primes p < 1a and primes p appearing as p-torsion in H,(|K,|; Z) for
any Ky € Cg. Then QZg € [TP.

Theorem 1.2 has consequences for a question posed by McGibbon and Wilkerson. A
space X is called rationally elliptic if it has finitely many rational homotopy groups.
Otherwise, it is called rationally hyperbolic. It was shown by McGibbon and Wilkerson
(MW) that if X is rationally elliptic then at almost all primes p, the Steenrod algebra
acts trivially on H*(Q)X; Z/pZ). They asked to what extent this holds for rationally
hyperbolic spaces. We will show in Section 7 that Theorem 1.2 gives infinitely many

examples for which this question has an affirmative answer.

Theorem 1.1 and Theorem 1.2 also verifies a conjecture of Anick (A). Anick
conjectured that if X is a finite, simply connected CW-complex, then at all but finitely
many primes, QX € [J(P U T). Theorem 1.1 and Theorem 1.2 shows that such a
decomposition holds for a family of moment-angle complexes.

We remark that the proofs in this paper hold more generally for polyhedral products
of the form (CX, X)X, where each £X; is homotopy equivalent to a finite type wedge
of spheres and Moore spaces, however, we work only with moment-angle complexes

to ease notation.

The author would like to thank Stephen Theriault for reading a draft of this work and
providing many useful comments which helped to improve the paper. The author
would also like to thank the anonymous referee for numerous helpful comments

which improved the exposition of the paper.

2 Preliminary results

2.1 Unique decomposition of H-spaces and co-H spaces

In this subsection, we show a cancellation result after localisation that will be required
to show that [T(P U T') is closed under retracts. We will also require analogous results
for wedges of spaces. We first state a result of (HW, Theorem 1.1) showing that after
localising at a prime p, there is a unique decomposition of H-spaces and co-H spaces

into indecomposable spaces.

Proposition 2.1. The following hold:

1. Let X be a connected, finite type, p-local H-space. Then X can be uniquely decomposed
into a weak product of indecomposable factors up to order and homotopy equivalence.
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2. Let X be a connected, finite type, p-local co-H-space. Then X can be uniquely
decomposed into a finite type wedge of indecomposable factors up to order and homotopy
equivalence. O

We now apply Proposition 2.1 to show a cancellation result after localising at a prime
p- Let X and Y be spaces. We say that X retracts off Y if there exist maps f : X — Y and
g :Y — X such that g o f is homotopic to the identity on X.

Proposition 2.2. The following hold:

1. Let X be a connected, finite type H-space, which is p-locally homotopy equivalent to a

X ~ HXi’

i€l

product

where each X; is indecomposable. If A is a space which retracts off X, then there is a

jeJ

p-local homotopy equivalence

where J C 1.

2. Let X be a connected, finite type co-H-space, which is p-locally homotopy equivalent to a
wedge
X ~ \/ Xi,
i€T
where each X; is indecomposable. If A is a space which retracts off X, then there is a
p-local homotopy equivalence
A~ \/ X;
jeJ
where J C 1T

Proof. We prove part (1), and part (2) follows by arguing dually. Localise at a prime p.
Since A retracts off X, there exists a map g : X — A which has a right homotopy
inverse. Proposition 2.1 implies that there is a unique p-local decomposition

Ai > Tlkex Ax, where each Ay is indecomposable. Since g has a right homotopy
inverse and X is an H-space, there is a p-local homotopy equivalence X ~ A x F,
where F is the homotopy fibre of ¢. The space F retracts off X, and so F is an H-space,
implying by Proposition 2.1 that there is a p-local homotopy equivalence

F ~ [Twexr F, where each Fy is indecomposable. Hence,

HXi':XzAszHAkx HPk’-

i€ kel KeK!

Since the product decomposition of X is unique, there exists an indexing set 7 C 7

such that A ~ [T X;. O
jeJ
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2.2 Rational and p-local decompositions of moment-angle complexes

In this subsection, we state some preliminary localised decompositions of spaces. The
tirst states conditions under which a finite CW-complex decomposes as a wedge of
spheres after localising away from sufficiently many primes. This result is a mild
generalisation of a result proved in (HT, Lemma 5.1), however, the proof goes through
unchanged.

Lemma 2.3. Let X be a simply-connected, finite CW-complex of dimension d and
connectivity s. Suppose that X is rationally homotopy equivalent to a wedge of spheres. Let p
be a prime such that p > %(d — s+ 1), and H.(X; Z) is p-torsion free. Then X is p-locally
homotopy equivalent to a wedge of spheres. i

The next result relates to a rational decomposition for certain moment-angle
complexes. Let K be a simplicial complex. The simplicial complex K is said to be Golod
over a ring R if all products and higher Massey products in H*(Zg; R) are trivial. In
this case, there is a relation between the rational Golodness of K and Z being a
suspension. The following result is attributed to Berglund, however, the reference

now appears to be unavaliable. Therefore, we provide an alternative proof.

Proposition 2.4. Let K be a simplicial complex. Then K is rationally Golod if and only if Zx

is rationally a co-H space.

Proof. Rationally, any co-H space is homotopy equivalent to a wedge of spheres.
Therefore, if Zx is rationally a co-H space then K is rationally Golod. Suppose K is
rationally Golod. Then by (K, Proposition 3.6), K is Golod over Z/pZ, when p is a
sufficiently large prime. Moreover, by (BG, Theorem 3.1), localised at a sufficiently
large prime p, Zx is a co-H space if and only if Zx is Golod over Z/pZ. Therefore, Zx
is rationally a co-H space. O

A counterexample to the integral analogue of Proposition 2.4 was constructed in (IY).
Since any co-H space is rationally homotopy equivalent to a wedge of spheres, a
rational decomposition of Zk in this case can be recovered from its homology. For any

moment-angle complex, a suspension splitting was proved in (BBCG1, Theorem 2.21).

Proposition 2.5. Let K be a simplicial complex. There is a homotopy equivalence

22k ~ \/ =K. O
I¢K

Finally, we require a result which relates the rational homotopy type and the p-local
homotopy type of an H-space. This result is known as the Sullivan arithmetic square
(see (MP, Theorem 8.1.3) for a modern presentation). For a prime p, denote by X, the
localisation of X at p, and let Xg denote the rationalisation of X.
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Theorem 2.6. Let X be an H-space. Then there is a homotopy pullback

X —— I;IX(p)
|

XQ E— HXQ
p

In particular, if X is rationally trivial, there is a homotopy equivalence

3 Closure of \/(W U M) under retracts

To prove Theorem 1.1, we will need to consider wedge decompositions of certain
spaces. For a collection of topological spaces X, let \/ X denote the collection of spaces
homotopy equivalent to a finite type wedge of spaces in X'. Let WV be the collection of
simply connected spheres. By Proposition 2.1, when localised at a prime, there is a
unique decomposition of any co-H space, up to homotopy, as a finite type wedge of
indecomposable spaces. Let M be the collection of Moore spaces of the form P"(p"),
where n > 3, pis a prime, and r > 1, and the indecomposable factors which appear as
wedge summands in the unique 2-local wedge decomposition of spaces of the form
Z((PM(2) A--- AN (P™(2)), where ] > 2, and each n; > 3. Note that we do not require
smash products of Moore spaces of the form P"(p") when p" # 2, since in this case by

(N3, Corollary 6.6), there is a homotopy equivalence
pn (prl ) A P (prz) ~ pntm (pmin{rl,rz}) V. Pn+m71 (pmin{rl,rz})

when p'1, p"2 # 2. In general, the indecomposable wedge summands that appear in
the decomposition of spaces of the form X((P™(2) A--- A (P"(2))) are unknown, but
some progress has been made in (W). In this section, we will show that \/(W U M) is
closed under retracts. This is well known for spaces in \/ W, and it was shown for a
wedge of Moore spaces of a fixed odd prime power in (N2, Lemma 4.2). The
introduction of the 2-torsion spaces necessitates a more technical argument which we

complete here.

Let X € V(W U M), and let A be a space which retracts off X. The strategy to show
that A € \/(W U M) is to retract a sphere off A for every Z summand which appears
in the homology of A. This will give us a homotopy equivalence A ~ W Vv A’, where
W € VW, and the homology of A’ is torsion. We can then use Theorem 2.6 and
Proposition 2.2 to show that A’ € \/ M.
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To retract spheres off A, we argue similarly to (S, Section 3). Since A retracts off X,
there exists maps f : A — Xand g: X — Asuchthatgo f ~idy. Define¢: X — X

as the composite

f

p: x5 aLx

Note that ¢ is an idempotent. Let W be the wedge of spheres that appear in the wedge
decomposition of X. Define ¢’ to be the composite

o WXL xLw,

where the lefthand map is the inclusion, and p is the pinch map. While ¢’ may not be
an idempotent, the following shows that the induced map (¢’). is an idempotent on
homology, which suffices for our purposes. This follows from the following technical

lemma.

Lemma 3.1. Let G be a finitely generated abelian group, Gy, be the free part of G, and Gioy
be the torsion part of G. Let ¢ : G — G be an idempotent. Then the composite

¢ Ciree 5 G5 G D Ghree,

where i is the inclusion and 7t is the projection, is an idempotent. Moreover, if
P(g,t) = (g, t') where g,8" € Gpree and t,t' € Gyoy, then g' € Im(¢').

Proof. Consider ¢’ ® Q. Since G free 18 free, the maps i ® Q and 7t ® Q are both the
identity map. By assumption, ¢ is idempotent implying that ¢ ® Q is idempotent and
so ¢’ ® Q is idempotent. Hence, ¢’ is idempotent. A similar argument shows that the
second part is true. O

The inclusion W — X and the pinch map X 2, W induce the inclusion and projection
respectively of the free part of H,(X), and so by Lemma 3.1, (¢’) is an idempotent on
homology. Leta € H,(A) be a generator of a Z summand. We aim to show that 5"
retracts off A. First, we show that (¢,), : H,(W) — H, (W) is non-zero.

Lemma 3.2. Let a € H,(A) be a generator of a Z summand. Then the induced map (¢, ), in

homology is non-zero.

Proof. Recall that f : A = X and ¢ : X — A are maps such that go f ~ id4, and ¢ is
the composite

o:x5alx
Since f, is injective, f,(a) is non-zero and not torsion. Moreover, the composite g, o f,
is the identity, and so g, o f,(a) is non-zero. Hence,
On(fu(a)) = (fuogno fu)(a) = fu(a) is non-zero, and so Lemma 3.1 implies that (¢),

1S non-zero. OJ
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Let x be a generator of Im((¢,),). Let H,(W) = @}~ Z, and write x as

x = (x1,--,%m). Since (¢, ), is an idempotent of free abelian groups, x must extend
to a basis of Z™, and so the greatest common divisor of x1, - - - , x, is 1 (see (S, Lemma
2.3) for example). Bézout’s Lemma implies that there exists y1, - - -,y € Z such that
Y iyixi =1. Let p : S* — W be the composite

m q/l Px;, m
p:S" L\ S == \/S" =W,
i=1 i=1
where ¢ is a choice of m-fold suspension comultiplication, and py, is the x!" degree
map. Let 7y be a generator of H,(S"). By definition of p and the fact that p,, induces
multiplication by x; in homology, p, sends -y to x € H,(W). Now let p’ be the
composite

where p is the pinch map, and V is the fold map. By definition of p’, since the degree
map py, induces multiplication by y; in homology, o, sends x to 7. Since (¢ ) is
idempotent, it fixes its image, and so the composite

e s Bw I w g

is an isomorphism in homology. This implies that e is a homotopy equivalence. Since
¢’ factors through A, S" retracts off A. Arguing dually to (S, Proposition 3.3, Theorem
3.10) for each generator of a Z summand in H,(A), we obtain the following.

Proposition 3.3. Let X € \/(W U M), and let A be a space which retracts off X. Then there
is a homotopy equivalence
A~SVA,

where S € \/ W, and the homology of A’ is torsion. O

It now suffices to show that A’ in Proposition 3.3 is in M.

Proposition 3.4. Let X € \/(W U M), and let A’ be a space which retracts off X, such that
the homology of A’ is torsion. Then A" € \| M.

Proof. By assumption, H,(A’) is torsion, and so A’ is rationally trivial. By Theorem

2.6, there is a homotopy equivalence

For each prime p, A’(p) retracts off X(,,). Proposition 2.2(2) therefore implies that each
A’(p) is homotopy equivalent to a wedge of p-torsion spaces in M.
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Leti:V, A’( ) I, A/( ») be the inclusion. Localised at a prime p, the map i is the
identity map A’(p) — A/(p) and so i is a homotopy equivalence localised at any prime
p. Rationally each A’( ) is contractible, and so i is a homotopy equivalence rationally.
Hence, i is a homotopy equivalence integrally. Putting this all together, we obtain a

homotopy equivalence A" >~ V/,, A’(p), where each A’( » €EVM. O

Combining Proposition 3.3 and Proposition 3.4, we obtain the following.

Theorem 3.5. Let X € \/(W U M), and let A be a space which retracts off X. Then
AeVOWUM). 0

4 Closure of [[(P U T) under retracts

4.1 Special cases

Recall that for a collection of topological spaces X, [T X is the collection of spaces
homotopy equivalent to a finite type product of spaces in X'. Moreover, recall the
collections P := {S!,53,57,Q08" |n > 2,n ¢ {2,4,8}},and T, which is the collection
of indecomposable spaces which appear in the decomposition of the loop space of a
wedge of Moore spaces of the form \//_; P"i(p}'), where m > 2, n; > 3, p; is a prime
and r; > 1. In this section, we show that [T(P U T') is closed under retracts.

We start with some special cases. First, we have the following result from (S, Theorem
3.10).

Theorem 4.1. Let X € [[P, and A be a space which retracts off X. Then A € []P. O
We can also prove a similar result in the case of a space A retracting off

X € TI(P UT), where the homology of A is torsion.

Theorem 4.2. Let X € [[(PUT), and A be a space which retracts off X, such that the

homology of A is torsion. Then A € T]T.

Proof. Since the homology of A is torsion, A is rationally trivial. Therefore by

Theorem 2.6, there is a homotopy equivalence

For each prime p, A ) retracts off X,). Proposition 2.2 implies that each A,y € [IT,
andso A e€J]T. O



50 Chapter 3. Paper 2 - Loops on MACs associated to two dim. simplicial complexes

4.2 Review of the proof of Theorem 4.1

First, we recall the strategy from (S, Section 3) which was used to prove Theorem 4.1.
The strategy is similar to the one used in Section 3. Let X € [P, and let A be a space
which retracts off X. This implies there are maps f : A — X, and g : X — A such that
g o f is homotopic to the identity on A. The first ingredient of the proof is the
idempotent ¢ : X 8 ALy X. The key property that is used here is that ¢, is an
idempotent on homology, and so ¢, fixes its image. Let n be an integer such that
H,(A) contains a primitive generator. The proof is split into three cases, the first is
where n € {1,2,3,6,7,14,4m | m > 1}, the second is where n = 4m +2,m > 2, m # 3,
and the third is where n = 2m — 1, where m ¢ {1,2,4}.

Consider the first and third case (see (S, Subsections 3.2 and 3.4)), where
ne{1,2,36714,4m2 —1|m1>1,1¢ {1,2,4}}.

Fix such an n and write X as

m
X ~ ﬁ Yix [] Zw,

i=1 W' eT’
where each Y; is an instance of " if n € {1,3,7},0r Y; = 05"+ otherwise, and each
Z, are the spheres and loops on spheres not equal to Y;. Let Y = " if n € {1,3,7}, or
Y = QS"*1! otherwise. In this case, the bottom non-vanishing degree of each Y; gives a
basis of primitives {71, -, Ym, } of H,(X). It was shown that there exists a non-zero
element x = Y™, y;7yi € Im(¢.) such that the greatest common divisor of y1, - - -, Yy
is 1. Let 7y be a generator of the lowest non-vanishing degree in the homology of Y.
Twomapsp:Y — X, and p’ : X — Y were defined such that p. () = x, and
. (x) = 7. Since ¢, fixes its image, the composite

is an isomorphism on the lowest non-vanishing degree in homology. If Y is a sphere,
then e is a homotopy equivalence by Whitehead’s theorem. If Y is the loops on a
sphere, localisation and atomicity properties of the loops on spheres (with a slight
adjustment to the maps p and p’ in the case that n = 2] — 1) are used to show that e is a

homotopy equivalence, implying that Y retracts off X.

Now consider the second case (see (S, Subsection 3.3)), where Hy;,12(A) contains a

primitive generator, n > 2, n # 3. In this case, write X as

my My
X=JTasi x[Tsi* x [ Ze
. L

i=1 j '€’
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where each Z, are the spheres and loops on spheres that are not equal to Q5*'*3 or
QS?"+2, A basis of primitives {Y1, -+, Ymy, V1, - - ,me} was obtained of Hy, 2 (X),
where 7; is a generator of H4n+2(QS?”+3), and %, is a generator of H4n+2(QSi2”+2). It
was shown that there exists a non-zero element ¥\, y;7y; + szjl 2y,7y; € Im(¢,) such
that the greatest common divisor of y1,- - - , Yy, 2Y1, - - -, zymv is 1, and as in the

previous case, this element was used to define maps p: Y — X, and p’ : X — Y such

that the composite
¢

yH xS x5hy
is a homotopy equivalence, implying that Y retracts off X. Therefore, for each
primitive generator in H,(A), we can retract a sphere or the loops on a sphere off A.
Iterating this, we obtain a product decomposition for A as a product of spheres and
loops on spheres (see (S, Theorem 3.10)).

To generalise to the case where X € [](P U T), we first retract off all the spheres and
loops on spheres that we expect to obtain in a decomposition for A, by analysing the
coalgebra structure of H,(A; Q). This will give us a homotopy equivalence

A~ P x A’, where P € []P, and the homology of A’ is torsion. We can then use
Theorem 2.6 to obtain that A’ € [T .

4.3 Defining ¢’

From now on, homology will be assumed to be taken to be taken with integral
coefficients unless otherwise stated. The coalgebra structure on the homology of a
space is defined whenever the Kiinneth isomorphism holds. In this case however, the
homology of X and A may contain torsion, and so we can not appeal to the coalgebra
structure in order to repeat the argument for Theorem 4.1. However, we will adjust
the map ¢ to obtain a self map ¢’ of the spheres and loops on spheres that appear in
the product decomposition of X which is idempotent in homology. This will allow us
to find the required elements in the image of ¢’ in order to appeal to the argument in
(S). Let X e TTI(PUT), and let A be a space which retracts off X, such that H.(A; Q) is
non-trivial. In particular there exists maps f : A — Xand g : X — A suchthatgo f is
homotopic to the identity on A. Observe that the map ¢ = f o g is an idempotent.
Write X as X ~ S x M, where S € [[P and M € [] 7. Define the map ¢/ : S — S as
the composite

g :sS>Xxhx5hs,
where the left map is the inclusion of S into X, and 7 is the projection. We would like
¢’ to also be an idempotent in order to emulate the map ¢ in the case where X € [T P.
This may not be true for the map itself, however, the inclusion S — X induces the
inclusion of the free part of H,(X) and the projection X — S induces the projection
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onto the free part of H,(X). Therefore, Lemma 3.1 implies that (¢’), is an idempotent
on homology.

To appeal to the argument in (S, Section 3), we require a primitive element x € Im(¢’)
with the properties as described in Subsection 4.2. First, we need to show that in
certain degrees, (¢)« is non-zero when restricted to the submodule of primitives in
H,(S). In the case that X € [P, this was done by showing that ¢, is non-zero when
restricted to the submodule of primitives whenever there is a primitive generator in
H,(A). However, in this case, we can not appeal to the coalgebra structure in integral
homology as H.(A) may contain torsion. However, rational homology H,(A; Q) does
have a coalgebra structure. We can use this to show thatif a € H,(A) is an element
which reduces to a primitive generator in rational homology, then (¢ ), is non-zero

when restricted to the submodule of primitives in H,(S).

Lemma 4.3. Suppose that a € H,(A) is a generator of a Z summand in degree n, which
reduces to a primitive generator in rational homology. Then f.(a) maps to an element in
H, (X) whose free part reduces to an element in the submodule of primitives in rational
homology, and (¢, ), is non-zero when restricted to the submodule of primitives in H,(S).

Proof. Leta € H,(A;Q) be the primitive generator which is the reduction of a. Recall
that ¢’ is the composite

¢p:S>xLhx5s,

where S is the product of spheres and loops on spheres that appear in X, ¢ is the
composite f o ¢ which is an idempotent, the left map is the inclusion of S into X, and
7t is the projection. By the naturality of the universal coefficient theorem with respect

to coefficients, there is a commutative diagram
H,(A) —> H,(X)

f®Q

H,(A)®Q ——— H,(X)® Q.

In particular, since H,(A) ® Q is a coalgebra, and 7 is a primitive generator, f,(a)
must map to an element x € H, (X) such that the free part of x, which we will denote
by x/, reduces to a primitive element in H,(X) ® Q. This proves the first part of the
lemma. Since f,(a) is injective, x is non-zero and has infinite order, and so x’ is also
non-zero. By definition of ¢, the image of ¢ is equal to the image of f, and so

x € Im(¢). Lemma 3.1 implies that x’ is in the image of (¢,),. Since S € []P and x’
reduces to a primitive element in rational homology, (¢.).(x’) is contained in the
submodule of primitives of H,(S) integrally. Hence (¢ ), is non-zero when restricted
to the submodule of primitives in H.(S). O
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44 Casel

In this subsection, fix n € {1,2,3,6,7,14,4m,2] —1|m,1 > 1,1 ¢ {1,2,4}} such that A
contains a generator a € H,(A) which reduces to a primitive generator in rational
homology. Write S as

m

S~ I—Y[Yi X H Ly,

i=1 W' el
where each Y; is an instance of " if n € {1,3,7},0r Y; = 05"t otherwise, and the
factors Z, are the spheres, and loops on spheres that are not equal to Y;. In this case,
the bottom non-vanishing degree of each Y; gives a basis of primitives {y1,- -+, Ym, }
of H,(S). As in Subsection 4.2, we require an element Y y;7; € Im(¢') such that the
greatest common divisor of y1, - - - , Ym, is 1. By Lemma 4.3, (¢,), is a non-zero
idempotent map in this degree. Let A = Y] z;Y; be a generator of Im(¢). Since (¢, )
is an idempotent, the greatest common divisor of zy, - - - , z, is 1 (see for example (S,
Section 2)). Hence A has the desired properties. Therefore, we can argue as in (S,
Subsection 3.2) in the case where n € {1,2,3,6,7,14,4m | m > 1}, and (S, Subsection
3.4) in the case where n = 21 — 1,1 ¢ {1,2,4} to retract the following spheres and
loops on spheres off A: for each generator of a Z summand in H,(A) which reduces
to a primitive generator in rational homology, an S" or QS"*! retracts off A. We obtain
the following.

Lemma 4.4. Let X € [[(PUT), and A be a space which retracts off X. There is a homotopy
equivalence
A~PxA,

where P is a product of spheres of the form S", where n € {1,3,7}, and loops on spheres of the
form QS™ 1 wherem € {2,6,14,4m,2] —1|m > 1,1 ¢ {1,2,4}}. Moreover, the only

generators in H,(A") which reduce to primitive generators in rational homology are in degrees
of the form 4k 4 2, where k > 2, k # 3. O

4.5 Case?2

By Lemma 4.4, it suffices to consider a space A which retracts off X € [[(P U T), such
that the only generators of H,(A) which reduce to primitive generators in rational
homology are in degrees of the form 4n 4 2, where n > 2, and n # 3. Fixing n, write X
as

my My

X~JTasf < [TQsi"*? x [] Zw

i=1 i=1 W' €T’
where the factors Z, are the spheres, loops on spheres and indecomposable torsion
spaces that are not equal to QS5*1+3 or 05?"*2, For 1 < i < my, let 7; be the generator
S{Ln+3)

1

of Hyy12(X) corresponding to a generator of Hyy,1(Q) ,and for 1 < j < my, let

i be the generator of Hy,12(X) corresponding to a generator of H4n+2(QS]2”+2).
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Observe that by definition of X, the generators ; and 7 form a basis for the
submodule of primitives of rational homology in degree 41 + 2. Leta € Hy,12(A) bea
generator of a Z summand which reduces to a primitive generator in rational
homology. By Lemma 3.1, f,(a) = 2 yivi + Z;nzl Y;7; + t, where t has finite order.
Recall ¢’ is the composite

g :s>Xxhx5hs,
where the left map is the inclusion of S into X, ¢ = f o g and 7 is the projection. Since
f+ is injective, the image of ¢, is equal to the image of f.. Therefore, by Lemma 4.3,
Z?;Yl vivi + Z;’Z v is in the image of (¢’)a,12. As described in Subsection 4.2, to
retract QS*" 2 off A, it suffices to show that the greatest common divisor of
Y Yme Yo Y 181 and that each y; is even.

Lemma 4.5. The greatest common divisor of y1,- -+ , Yy, Y1, " - Yy is 1.

Proof. Lety = (y1,- - s Ymy, Yy, - - ,ym?), and suppose y = dy’ for some d > 1. In this
proof, we work with homology with rational coefficients and use the same notation

for each element and map to mean its reduction in rational homology.

By definition of y, f.(a) = y. Since g« o fx = id., g«(y) = a. Let g.(y') = a’ for some

a' € Hyyui2(A; Q). By definition of ', da’ = dg.(y') = g«(y) = a. However, integrally,
a is a generator of a Z summand, and so d = 1 and a' = a, whichisa

contradiction. ]

Now we must show that each i/, - - - ,ym? is even. To do this, we first determine the
rational homotopy type of A.

Lemma 4.6. Let A be a space which retracts off X € TT(P U T ). Suppose that the only
generators in H,(A) which reduce to primitive generators in rational homology are in degrees
of the form 4n + 2, where n > 2, n # 3. Then A is rationally homotopy equivalent to a finite
type product of loops on spheres of the form QS*" 3, where n > 2, n # 3.

Proof. Since A retracts off X, A is an H-space. Rationally, every H-space is homotopy
equivalent to a product of spheres and loops on odd dimensional spheres. Since A
only contains primitive generators in degrees of the form 4n + 2, n > 2, n # 3, there is
a rational homotopy equivalence as claimed. O

Using this lemma, we can now show that each i; must be even.

Lemma 4.7. For1 < j < my, y]. is even.

. . . 4n;+3
Proof. By Lemma 4.6, there is a rational homotopy equivalence Aq ~ [];c7 QSQ" 2 for
some indexing set Z. Now localise at the prime 2, by Proposition 2.2, there is a 2-local
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homotopy equivalence

Ap) =~ lljas‘g")” xS xT,
where | > 1, §' is a product of 2-local loops on spheres of the form (25", where
m #4n+3,and T € T is a product of indecomposable, 2-torsion spaces. Recall that
a € Hyy42(A) is a generator reducing to a primitive generator in rational homology,
and fi(a) = 2 yivi + 2;”:71 v+t where t has finite order. The Hurewicz theorem
implies that there is a map v : $*"*2 — A ,) such that in homology, v sends a
generator A of Hay12(S*2) to a. By the universal property of the James construction
(J), this extends to a map v’ : QS 3 — A(2), which sends a generator A of
Hyy42(QS*3) to a. Finally, by the universal property of localisation, there exists a

map 7' : QS?S)H — A(2) which sends A’ to a.

Consider the composite

prasae Boag 10 x, Bas

2n/+2

)

where 77; is the projection onto the loops on a sphere corresponding to 7y, and n = n;.
Suppose that ¥/; is odd. By definition, §. sends the generator A to ;7. Let

] : Q822 — Q643 be the 2™ James-Hopf invariant. Consider the composite

Y =Jpop: QS?;)” — QS?S)”. As recounted in (S, Lemma 2.6) for example, in
homology, J. induces an isomorphism in degree 41 + 2, and so ¢, sends A’ to j:yj)t’ .
Since ; is odd, !, is an isomorphism localised at 2. By (CPS, Corollary 5.2), Q5*"*? is
atomic localised at the prime 2, meaning that any self-map which is an isomorphism
in the bottom non-trivial degree in homology localised at the prime 2 is a 2-local

homotopy equivalence. The map ¢’ factors through QSZ{H, implying that QS?;‘)J“?’

2n,+2

retracts off QS 2) . However, since 7; ¢ {0,1,3}, (CPS, Corollary 5.2) implies that

2 . . . _
QS(n)’ is also atomic, and atomic spaces are indecomposable. Hence, j; must be
even. 0

Combining Lemma 4.5 and Lemma 4.7, Y™, yi7yi + 2;11:71 ;7 is an element in the
image of (¢')4,+2 as described in Subsection 4.2. Therefore, we can use the argument

in (S, Subsection 3.3) to show the following.

Lemma 4.8. Let X € [[(PUT), and A be a space which retracts off X. Suppose that the
only generators in H, (A) which reduce to primitive generators in rational homology are in
degrees 4n + 2, n > 2, n # 3. There is a homotopy equivalence

A~PxT,

where P is a product of loops on spheres of the forms QS*"+3, where n > 2, n # 3, and the
homology of T is torsion. U
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4.6 Conclusion of proof

Returning to the general case, let X € [[(P U T), and A be a space which retracts off
X. By Lemma 4.4, there is a homotopy equivalence A ~ P x A’, where P is a product
of spheres and loops on spheres of the forms S", where n € {1,3,7}, and QS" !,
where m € {2,6,14,4m,2] —1|m > 1,1 ¢ {1,2,4}}. Moreover, the only generators in
H,(A”) which reduce to primitive generators in rational homology are in degrees of
the form 4k + 3, where k > 2 and k # 3. Lemma 4.8 then implies there is a homotopy
equivalence A’ ~ P’ x T where P’ is a product of loops on spheres of the forms
QsS4 3 wheren > 2, n # 3, and the homology of T is torsion. Combining these, we
obtain a homotopy equivalence

A~PxP xT,

where P, P’ € []P, and the homology of T is torsion. Since A retracts off X, T retracts
off X, and Theorem 4.2 implies that T € []7 . Summarising, we have obtained the
following result.

Theorem 4.9. Let X € [[(P U T) and A be a space which retracts off X. Then
AcTI(PUT). O

5 Preliminary decompositions of Moment-angle complexes

In this section, we prove some relations between spaces in \/(W U M) and [[(PUT).
These will be generalisations of the relations between spaces in \/ VW and [ P shown
in (S, Subsection 2.5). Before proving these relations, we require a result of (N3,
Corollary 6.6), which gives a wedge decomposition for certain smash products of
Moore spaces.

Lemma 5.1. Let p and g be primes, and r,s > 1 such that max{p",q°} > 2. If p # q, then
P"(p") A P™(q°) is contractible. If p = q, there is a homotopy equivalence

Pn(pr) A Pm(ps) ~ Pn+m(pmin{r,s}) \/ Pn—o—m—l(pmin{r,s}).

Lemma 5.2. The following hold:

1. let Abeaspacein [T, then LA € \| M;
2. let Ae VW UM), then QA € TI(PUT);

3. let AcTI(PUT), then LA € V(WU M);
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4. let X be a space such that £X € /(W U M), and let Ay, - -+ , Ay be spaces in
[TI(PUT), then Z(XANALA -+ Ap) € VW UM);

5. let X and Y are spaces such that 2X € /(WU M), and QY € T[(PUT), then we
obtain Q(X x Y) e [[(PUT);

6. let Xq,- -+, Xy be spaces such that QX; € [[(PUT), then Q(V!'1 X;) e [I(PUT).

Proof. For part (1), since A € []T, there is a homotopy equivalence A >~ [T;c7 T},
where each T; is an indecomposable space in the loop space decomposition of
Q(Vjey P"(p}')). In particular, 2.T; retracts off 2Q(V;c 7 P"(p;')). Since each P"i(p")

is a suspension, the James splitting implies that there is a homotopy equivalence

zQ(\ PU(pi) =V (V PH(pi)™. (5.1)

jEJ ji>1 jeJ

Distributing the wedge sum over the smash, we obtain a wedge of spaces which are
smashes of Moore spaces, where by Lemma 5.1, each wedge summand consists of
Moore spaces of a fixed prime. By Lemma 5.1, if p” # 2, then the smash products
decompose further as a wedge of Moore spaces. If p” = 2, then by Proposition 2.1, this
decomposes as a finite type wedge of indecomposable spaces which appear in the
unique decomposition of smashes of mod 2 Moore spaces. Therefore, by Theorem 3.5
and by definition of M, XT; € \/(W U M). Hence, iterating the homotopy
equivalence (X x Y) ~ XX VXY V (X A Y), and shifting the suspension
coordinate, we obtain that XA € \/ M.

For part (2), write A as
. . T
A \/§"v\ Pri(pl).
icl jeJ

The Hilton Milnor theorem implies there is a homotopy equivalence

QA= J[OZ(AL A A Ay),
kel

where K is some indexing set, and each A; is either a sphere or a Moore space.

Consider the term A, = Q¥X.(A1 A --- A Ay). If each A is a sphere, then Aj is
homeomorphic to the loops on a sphere. If there exists an A; which is a Moore space,
then by Lemma 5.1, A; is either contractible, the loops on a wedge of Moore spaces of
the form P"i(p") for nj>3,pa fixed prime, and r > 1 fixed, or the smash product of
mod 2 Moore spaces. In the first two cases, it is clear by definition of 7 that A;( celIT.
For the latter case, consider QX (P™(2) A --- A P"(2)), wherel > 2, and n; > 2. The
Hilton-Milnor thoerem implies there is a homotopy equivalence

ax (\Z/ pm(z)) ~ HQZ(pm (2)/\17(1) A ... APl (2)/\17(1)),

i=1 i€B
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where B is a Hall basis of the free ungraded Lie algebraon {1, - - ,1} over Z, and b(i)
is the number of times i appears in the bracket b. By construction of a Hall basis (see
(N1, p.120) for example), the smash product QX (P™(2) A --- A P"(2)) appears as a
product term, and so QX(P"(2) A - - - A P™(2)) retracts off QX(\/!_; P"(2)).
Therefore, Theorem 4.2 implies QX (P"(2) A --- A P™(2)) € T] T. Hence, each

A} € TIT, and so we obtain that QA € [T[(PUT).

For part (3), write A as

AxJIs " xJ]Qs™ <[] T,
i€l jeJg kek
where T; € T. Iterating the homotopy equivalence Z(X x Y) ~ XX VEY VE(X VYY),

we obtain a homotopy equivalence

SA~\/ (AL A NA)), (5.2)
lel

where each A; is either a sphere, the loops on a sphere, or some T;. Consider

A} =X(A1 A--- A Aj). By the James construction, 205" € \/ W, and by part (a), each
LTy € \/ M. By shifting the suspension coordinate, we can decompose Aj as a wedge
of spaces Wj,, where each Wj, is the suspension of a smash product of spheres and
Moore spaces. If each space is a sphere, then W] is a sphere. If there is a Moore space,
then by Lemma 5.1, Wy can be decomposed further as a wedge of spaces, each of
which is either a Moore space, or a smash of mod 2 Moore spaces. In either case, by
definition of M, Wy € \/ M, and so A} € /(W U M). Therefore, by (5.2),
AeVWUM).

The remaining parts follow by arguing as in (S, Lemma 2.13, Lemma 2.14, Corollary
2.16) respectively. O
The next result shows the property of QZx € [T(P U T) is closed under pushouts of

simplicial complexes over full subcomplexes.

Theorem 5.3. Let K be a simplicial complex defined as the pushout

L*>K1

L

K2*>K

where either L = @ or L is a proper full subcomplex of Ky and Ky. If £A; € /(W U M) for
alli, Q(CA, A)K e TI(PUT) and Q(CA, A)X2 e TI(PUT), then
Q(CA AR eTI(PUT).
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Proof. The case where X A; € \/ W, and each loop space is in [ P was proved in (S,
Theorem 4.1). The proof depended on two results: closure of [ P under retracts and
the \/ W analogue of Lemma 5.2. The same argument holds for [T(P U 7") using
Theorem 4.9, and Lemma 5.2. O

Using Theorem 2.9, we can obtain a generalisation of (S, Theorem 1.1). To do this, we
require the following pushout decomposition for a simplicial complex K from (S,
Lemma 4.4).

Lemma 5.4. Let K be a simplicial complex and v € V(K). Then K can be written as the

pushout
Knw)y — Kuunio)
Kvapey — K
Moreover, Ky ) is a full subcomplex of both Ky n (o) and Ky (k) {o}- O

For a simplicial complex K, let Ck be the collection of full subcomplexes of K whose
1-skeleton has no missing edges. For a vertex v € V(K), denote by N(v) the set of
vertices adjacent to v in the 1-skeleton of K. A dominating vertex of K is a vertex v such
that N(v) = V(K) \ {v}. In other words, v is adjacent to every other vertex in the

1-skeleton of K. The following result is a generalisation of (S, Theorem 1.1)

Theorem 5.5. If K is a simplicial complex, then QZg € [1(P U T) if and only if
QZx, e [1(PUT) forall K; € Cx. Moreover, OZg € 1P if and only if QZk, € TP for
all K; € Ck.

Proof. Suppose QZk € [T(P U T ) but there exists K; € Ck such that
QZk, ¢ TI(PUT). By (DS), 2k, retracts off Zx, and so )2k, retracts off Q2.
Theorem 4.9 then implies that Q.Zk, € [T(P U T) which is a contradiction.

Now suppose that QZx, € [T(P U T) for all K; € Ck. We proceed by strong
induction. If K has one vertex, then Zg is contractible, and so QZx € [[(PUT).

Now suppose K has m vertices, and the result is true for all n < m. If every vertex of K
is a dominating vertex, then every vertex in K is adjacent to every other vertex in K.
Hence, K € Ck so by assumption, QZx € [1(P U T). Therefore, suppose there exists a
vertex v € V(K) such that v is not a dominating vertex of K. By Lemma 5.4, K can be
written as the pushout

Knw)y — Koun(o)

| |

Kypfoy — K
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where Ky ) is a full subcomplex of both K, jn () and Ky k), ). Since v is not a
dominating vertex, v U N(v) is not the whole vertex set of K, s0 K, n(v) and Ky k) (0}
are simplicial complexes with strictly fewer vertices than K. Therefore, by the
inductive hypothesis, O Zx ., € [I(PUT) and QZk, ., € [1(PUT). Hence,
Theorem 2.9 implies that QZx € [[(PUT).

In the special case where () Zg € [] P, the same proof follows through. O

6 Loop spaces of moment-angle complexes associated to

2-dimensional simplicial complexes

In this section, we consider moment-angle complexes associated to 2-dimensional
simplicial complexes. We start with a more general statement. To prove this, we
require the following from (IK, Theorem 1.6). Recall that a simplicial complex K is
called k-neighbourly if any I C [m] with |I| < k 4 1 spans a simplex. For x € R, define
[x] to be the smallest integer z such that z > x.

Lemma 6.1. Let K be a simplicial complex on [m]. If K is [dlm?(K)} -neighbourly, then there is

a homotopy equivalence

Zx ~ \/ =K. O
I¢K

We also require a wedge decomposition of (n — 1) connected, (n + 1)-dimensional
CW-complexes, where n > 2. This is proved in (H, Example 4C.2) for example.

Lemma 6.2. Let X be an (n — 1) connected, (n + 1)-dimensional CW-complex, where n > 2.
Then X is homotopy equivalent to a wedge of spheres and Moore spaces. If H,(X) is torsion
free, then X € \/ W. O

Theorem 6.3. If K is a simplicial complex on [m] such that each K; € Ck is
dim(Kj) — 1-neighbourly, then QZx € TI(P UT). If H.(|K1|; Z) is torsion free for all
K; € Ck, then QO Zx € TTP.

Proof. By Theorem 5.5, it suffices to show that QOZg, € [T(P U T ), where K; € Ck. If
dim(K;) = 1, then K] is the 1-skeleton of a simplex, and so by (GT, Theorem 9.1), Zx,
is homotopy equivalent to a wedge of simply connected spheres. The Hilton-Milnor
theorem then implies that O Zk, € [TP. If dim(K;) > 1, then dim(K;) — 1 > (dimT(K’)L
and so Lemma 6.1 implies that there is a homotopy equivalence

Zx, =~ \/ =K.
J&K;

Since K; is dim(K;) — 1-neighbourly, each K is dim(K;) — 1-neighbourly. Moreover,
each K is a full subcomplex of Kj, and so dim(K;) < dim(Kj). Hence, each Kj is at
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least dim(Kj) — 1 neighbourly. By (IK, Lemma 10.8) for example, this implies that each
K; is at least (dim(K;) — 2)-connected. Since Z!*V/I|K;| is simply connected, by Lemma
6.2, each T1+1I|K 7| is homotopy equivalent to a wedge of spheres and Moore spaces.
Hence part (2) of Lemma 5.2 implies that QX'*//|K;| € [T(P U T), and therefore part
(6) of Lemma 5.2 implies that QZg, € [[(PUT). Hence, QZx € [[(PUT).

If H.(|K;|;Z) is torsion free for all K; € Ck, then by Lemma 6.2, each Z'*//I|K;| is
homotopy equivalent to a wedge of spheres. The Hilton-Milnor theorem implies that
QxI|K;| € TTP, and so Theorem 5.5 implies that QZy € [TP. O

Theorem 5.5 and Theorem 6.3 can be applied to give a coarse decomposition of the
loops on a moment-angle complex associated to any 2-dimensional simplicial

complex.

Theorem 6.4. Let K be a 2-dimensional simplicial complex. Then QZx € [[(PUT).

Proof. If K1 € Ck is 1-dimensional, then by (GT, Theorem 9.1), Zx, is homotopy
equivalent to a wedge of simply connected spheres. The Hilton-Milnor theorem
implies that QZg, € []P, which is contained in [[(PUT). If K; € Ck is
2-dimensional, then it is 1-neighbourly and Theorem 6.3 implies that

QZg, € [I(PUT). Since each K; € Cg is 1-dimensional or 2-dimensional, Theorem
5.5 implies that QZx € [[(PUT). O

As an example of Theorem 6.4 which contains torsion, let K be the 6-vertex
triangulation of RP2. In this case, K is a 1-neighbourly simplicial complex whose
homology contains 2-torsion, and so the decomposition in Theorem 6.4 will contain
indecomposable 2-torsion spaces. In (LMR), 1-neighbourly, 2-dimensional simplicial
complexes which have arbitrarily large torsion in homology are constructed.
Therefore, the loop space of a moment-angle complex associated to a 2 dimensional
simplicial complex can contain arbitrarily large torsion in homology. In the case that
each |K;| has torsion free homology, where K; € Ck, we obtain the following.

Corollary 6.5. Let K be a 2-dimensional simplicial complex. Suppose that H,(|K;|; Z) is
torsion free for all K; € Ck. Then QZx € [TP. O

7 Loop space decompositions of certain moment-angle

complexes after localisation

In this section, we use the argument in Theorem 6.3 to show that for a simplicial
complex K under certain conditions on the full subcomplexes K; € Ck, there is a finite
set of primes P for which (0 Zx € [P localised away from P. This set of primes is
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controlled purely by the underlying simplicial complex. Recall that a simplicial
complex K is rationally Golod if all products and higher Massey products in
H*(Z2g; Q) are trivial.

Theorem 7.1. Let K be a simplicial complex such that K; is rationally Golod for all K; € Ck.
For K € Ck, let K be ki-neighbourly, and let M = maxg,ec,{|1| + dim(K;) — 2k;}.
Localise away from primes p < 3M and primes p appearing as p-torsion in H.(|K;|; Z) for
any K; € Cg. Then QZg € TTP.

Proof. First, note that Theorem 5.5 holds p-locally for any prime p. By Theorem 5.5, it
suffices to show Q) Z, € []P for each K; € Ck, after localisation away from primes

p < 3M and primes p appearing as p-torsion in H, (|K;|; Z) for any K; € Cx. Consider
Zk,, where K; € Ck. By assumption, K is rationally Golod. Therefore, by Proposition
2.4 and Proposition 2.5, there is a rational homotopy equivalence

Zy, ~ \/ =K.
JCI

Since each wedge summand is a suspension, Zk, is rationally a wedge of spheres. It
can be shown using Proposition 2.5 that Z, is (2k; + 2)-connected, and has
dimension 1 + |I| 4 dim(Kp). Therefore, by Lemma 2.3, localised away from

p=

, 1 ,
(1 1]+ dim(Kr) = (2k; +2) +1) = (/1] +dim(K;) = 2k1) < 5M

N[ —
N —

and those primes p appearing as p-torsion in H.(|K;|; Z), 2k, is homotopy equivalent
to a wedge of spheres. The Hilton-Milnor theorem then implies that QZx, € [T P.
Repeating this argument for each K; € Ck, by Lemma 5.5, O Zk, € [TP when
localised away from primes p < ;M and any primes appearing as p-torsion in
H.(|K;|; Z) for each K € Ck. O

Theorem 7.1 has interesting connections to a problem posed by McGibbon and
Wilkerson. Recall from the Introduction that a space X is called rationally elliptic if it
has finitely many rational homotopy groups. Otherwise, it is called rationally
hyperbolic. McGibbon and Wilkerson (MW) showed that any finite, simply connected,
rationally elliptic space X has (X € [P, after localising at a sufficiently large prime.
A consequence of a decomposition of this form pointed out is that the Steenrod
algebra acts trivially on H,(QX;Z/pZ) at almost all primes p. They asked the extent
to which this holds for rationally hyperbolic spaces. Theorem 7.1 gives an analogous
result for the moment-angle complexes in Theorem 7.1.

Corollary 7.2. Let K be a simplicial complex such that Ky is rationally Golod for all K; € Ck.
Then at all but finitely many p, the Steenrod algebra acts trivially on H*(QZx; Z/ pZ). O
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One particular family of examples is when K is a 2-dimensional simplicial complex,
Lemma 6.1 implies that every K; € Ck is rationally Golod, and so we obtain the
following.

Corollary 7.3. Let K be a 2-dimensional simplicial complex. Then at all but finitely many
primes p, the Steenrod algebra acts trivially on H*(Q.Zx; Z./ pZ). O

It was shown in (BBCG2) that the moment-angle complex associated to K is rationally
elliptic if and only if the minimal missing faces of K are mutually disjoint. In
particular, if K is a simplicial complex such that there is a vertex which is not adjacent
to two other vertices, then Zx is rationally hyperbolic. Corollary 7.3 can be used to
generate infinitely many rationally hyperbolic examples for which the answer to the
question of McGibbon and Wilkerson is affirmative. One other point to note is that the
set of primes for which the decomposition of rationally elliptic spaces given by
McGibbon and Wilkerson holds is not explicit. The conditions on K in Theorem 7.1
give an explicit set of primes for which such a decomposition holds for () Zx. Also,
this set of primes can certainly be enlarged depending on the combinatorics of K. For
example, if K is a 2-dimensional simplicial complex such that H,(|K;|; Z) is torsion
free for all K; € Ck, Corollary 6.5 implies that such a decomposition holds integrally.






65

References

[A] D.J. Anick, Single loop space decompositions. Trans. Amer. Math. Soc. 334
(1992), 929-940.

[BG] P. Beben, and J. Grbi¢, Configuration spaces and polyhedral products, Adv.
Math, 314 (2017), 378-425.

[BBC] A. Bahri, M. Bendersky and ER. Cohen, Polyhedral Products and features of
their homotopy theory, Handbook of Homotopy Theory 103-144, CRC Press,
Boca Raton, FL, (2020).

[BBCG1] A. Bahri, M. Bendersky, F. R. Cohen and S. Gitler, The polyhedral product
functor: a method of decomposition for moment-angle complexes,
arrangements and related spaces, Adv. Math. 225 (2010), 1634-1668.

[BBCG2] A. Bahri, M. Bendersky, F. R. Cohen and S. Gitler, On the rational type of
moment-angle complexes, Proc. Steklov Inst. Math. 286 (2014), no. 1, 219-223.

[C] ER. Cohen, Applications of loop spaces to some problems in topology,
London Math. Soc. Lecture Note Ser. 139, Cambrudge Univ. Press, Cambridge,
(1989).

[CPS] H.E.A. Campbell, EP. Peterson, and P.S Selick, Self-maps of loop spaces. I.,
Trans. Amer. Math. Soc, 293 (1986), no.1, 41-51.

[CMN1] ER Cohen, ].C. Moore, and J.A Neisendorfer, Torsion in homotopy groups.
Ann. of Math. (2) 109 (1979), 121-168.

[CMN2] ER Cohen, ].C. Moore, and J.A Neisendorfer, Exponents in homotopy
theory. Algebraic topology and algebraic K theory, W. Browder, ed., Ann. of
Math. Study 113, Princeton University Press, 1987, 3-34.

[D] N. Dobrinskaya, Loops on polyhedral products and diagonal arrangements,
arXiv:0901.2871.

[DS] G. Denham and A.IL Suciu, Moment-angle Complexes, Monomial Ideals and
Massey Products, Pure Appl. Math. Q. 3 (2007), 25-60.



66 REFERENCES

[GT] J. Grbi¢, and S. Theriault, The homotopy type of the complement of a
coordinate subspace arrangement, Topology 46 (2007), no. 4, 357-396.

[GPTW] ]. Grbi¢, T. Panov, S. Theriault, and ]J. Wu, The homotopy types of
moment-angle complexes for flag complexes, Trans. Amer. Math. Soc 368
(2016), no. 9, 6663-6682.

[H] A. Hatcher, Algebraic Topology, Cambridge University Press, (2002).

[HT] R. Huang, and S. Theriault, Exponential growth in the rational homology of
free loop spaces and in torsion homotopy groups, to appear in Ann. Inst.
Fourier (Grenoble), arXiv:2105.04426.

[HW] R. Huang, and J. Wu, Cancellation and homotopy rigidity of classical
functors, . Lond. Math. Soc., 99 (2019), no. 1, 225-248.

[IK] K. Iriye, and D. Kishimoto, Fat-wedge filtrations and decomposition of
polyhedral products, Kyoto J. Math. 59 (2019), no. 1, 1-51.

[IY] K. Iriye, and T. Yano, A Golod complex with non-suspension moment-angle
complex, Topology Appl. 225 (2017), 145-163.

[J]1 LM James, Reduced product spaces, Ann. of Math. 62 (1955), 170-197.

[K] L. Katthdn, The Golod property for Stanley-Reisner rings in varying
characteristic, J. Pure. Appl. Algebra, 220 (2016), no. 6, 2265-2276.

[LMR] N. Linial, R. Meshulam, and M. Rosenthal, Sum complexes - a new family of
hypertrees, Discrete Comput. Geom., 44 (2010), 622-636.

[MP] J.P. May, and K. Ponto, More Concise Algebraic Topology: Localization,
completion and model categories, Chicago Lectures in Math. University of
Chicago Press, Chicago, IL, (2012).

[MW] C.A McGibbon, and C.W. Wilkerson, Loop spaces of finite complexes at
large primes, Proc. Amer. Math. Soc. 96 (1986), no. 4, 698-702.

[N1] J.A Neisendorfer, Algebraic methods in unstable homotopy theory, New
Mathematical Monographs 12, Cambridge University Press, Cambridge,
2010.

[N2] J.A Neisendorfer, The exponent of a Moore space, Algebraic topology and
algebraic K-theory (Princeton, N.J., 1983, 35-71, Ann. of Math. Stud. 113,
Princeton Univ. Press, Princetonm NJ, 1987.

[N3] J.A Neisendorfer, Primary homotopy theory, Mem. Amer. Math. Soc 25 (1980),
no. 232, iv+67.



REFERENCES 67

[S] L. Stanton, Loop space decompositions of moment-angle complexes
associated to flag complexes, Q. . Math., 75 (2024), no. 2, 457-477.

[V] E Vylegzhanin, Loop homology of moment-angle complexes in the flag
case, to appear in Algebr. Geom. Topol., arXiv:2403.18450.

[W] J. Wu, Homotopy theory of the suspensions of the projective plane, Mem.
Amer. Math. Soc. 162 (2003), no. 769 x+130 pp.






69

Chapter 4

Paper 3 - Polyhedral products
associated to pseudomanifolds

1 Introduction

Polyhedral products are subspaces of the Cartesian product, the properties of which
are governed by an underlying simplicial complex. They unify various constructions
across mathematics, such as complements of complex coordinate subspace
arrangements in combinatorics, intersections of quadrics in complex geometry and
classifying spaces of graph products of groups in geometric group theory.
Understanding their homotopy theory has implications in all these areas. In this
paper, we study the homotopy theory of polyhedral products associated to a family of

simplicial complexes known as pseudomanifolds.

Let K be a simplicial complex on the vertex set [m| = {1,2,--- ,m}. For 1 <i < m, let
(Xi, A;) be a pair of pointed CW-complexes, where A; is a pointed CW-subcomplex of
Xi. Let (X, A) = {(X;, A;) }I| be the sequence of pairs. For each simplex ¢ € K, let
(X, A)? be defined by

X, i€0

(X, A) Y; where Y; =
111 Ai 1%0’

The polyhedral product determined by (X, A) and K is

= Jx A4)7 ﬁxi~
ceK

i=1

A particularly important special case is when (X;, A;) = (D?,S!) for all i. These
polyhedral products are called moment-angle complexes, and are denoted Z.
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One aspect of the homotopy theory of polyhedral products that has been the subject of
intense study recently is the homotopy type of their based loop spaces. Let [T P be the
collection of H-spaces homotopy equivalent to a finite type product of spheres and
loops on spheres. If X is a simply-connected space, there are advantages to knowing
that QX € []P: it means the homology of ()X is torsion-free, the Steenrod algebra
acts trivially on the mod-p cohomology of ()X for any prime p, and if the factors in
the decomposition of (2X are explicit, then the homotopy groups of X are known to
the same extent as the homotopy groups of spheres. Various families of polyhedral
products have been shown to have their loop space in [] P, including flag complexes
(PT; V), graphs (St1), 2-dimensional simplicial complexes with torsion free homology
(S5t2) and certain polyhedral join products (E). In this paper, we focus on the case

when K is the triangulation of a sphere.

If K is the triangulation of a sphere, then Zx has the structure of a manifold, and is
known as a moment-angle-manifold. The diffeomorphism type of Zk is known for an
important family of triangulations. If P is a simple polytope obtained from a simplex
by iterated vertex cuts and K is the dual of the boundary of P, then Zk is
diffeomorphic to a connected sum of products of two spheres. This statement
originated in work of MacGavran (M) pre-dating polyhedral products, took a
spectacular leap forward in work of Bosio and Meersseman (BM) and Gitler and
Lopez de Medrano (GLdM) on intersections of quadrics, and culminated in the
solution of a conjecture in (GLdM) by Chen, Fan and Wang (CFW). However, very
little is known about even the homotopy type of moment-angle manifolds for

triangulations of spheres outside this family.

In this paper we develop new methods to study the homotopy type of () Zx for a
combinatorial generalisation of triangulations of spheres known as pseudomanifolds.
The collection of pseudomanifolds include triangulations of manifolds. We establish
criteria for when a polyhedral product of the form (CA, A)X with K a pseudomanifold
has Q(CA, A)X € T]P. In particular, we prove the following.

Theorem 1.1. If K is the triangulation of a connected, orientable, closed surface on [m], then
OZg e [1P.

This includes the case when K is a triangulation of S2. We also obtain an analogous

result when K is a triangulation of S°.

Theorem 1.2. Let K be a triangulation of S* on [m]. Then QZx € T]P.

The argument proving Theorem 1.2 breaks into two cases, one of which can be
generalised to certain triangulations of any odd dimensional sphere. A simplicial
complex is k-neighbourly if every set of k + 1 vertices spans a simplex. A triangulation
K of S?"*1 is neighbourly if K is n-neighbourly.
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Theorem 1.3. If K is a neighbourly triangulation of S*" 1 on [m] with n > 1, then
OZg e [TP.

The methods used to prove Theorems 1.1, 1.2 and 1.3 involve a new approach to
studying how the homotopy type of a polyhedral product is affected by the removal
of a maximal face. This is likely to be of wider use. It is inspired by how certain
simply-connected manifolds (not necessarily moment-angle manifolds) have their
loop spaces retracting off the loops of the associated punctured manifold (T), and
makes use of key properties proved in (St1; St2) that generate retractions of looped

polyhedral products with respect to [T P.

The authors would like to thank the referees for numerous helpful comments which
helped to improve the paper. In particular, it was pointed out that some of our results
hold for more general neighbourly triangulations of spheres.

2 Preliminary material

This section collects some preliminary combinatorial and homotopy theoretic

information.

Pseudomanifolds. A simplicial complex K of dimension 7 is called pure if every
simplex is contained in at least one n-simplex. To any pure simplicial complex K of
dimension 7, there is an associated graph D(K) called the dual graph of K. The vertices
of D(K) are given by the n-simplices of K, and two vertices in D(K) are adjacent if and

only if their respective faces in K intersect over a face of codimension one.

A simplicial complex K of dimension # is called a weak pseudomanifold with boundary if
every face of codimension one is contained in either one or two maximal faces. The
boundary of a weak pseudomanifold K is the simplicial complex whose maximal faces
are given by the codimension one faces of K which are contained in exactly one

maximal face. If the boundary is empty then K is a weak pseudomanifold.

A simplicial complex K is a pseudomanifold of dimension n if: (i) it is a pure simplicial
complex of dimension #, (ii) it is a weak pseudomanifold, and (iii) D(K) is a
connected graph. The definition of a pseudomanifold with boundary is analogous.
Triangulations of manifolds are examples of pseudomanifolds.

Two combinatorial statements. We first describe a general graph theoretic result. For
a graph G, let V(G) be the vertex set of G. For a vertex v in a graph G, the degree of v,
denoted deg(v), is the number of edges incident to v.
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Lemma 2.1. Let G be a connected simple graph on m vertices, and let n € IN. Suppose
deg.(v) < nforallv € V(G) and there exists a vertex w € V(G) such that deg,(w) < n.
Then there exists an ordering of the vertices vy, - - - , vy, such that deg (v1) < n and
degc\{v1,~-~,vi,1}(vi) <nfor2<i<m.

Proof. The proof is by induction on the number of vertices. Suppose |V(G)| < n. The
maximum degree of a vertex in such a graph is n — 1, and so any ordering of the

vertices suffices in this case.

Suppose that |V(G)| = k > n and the result is true for all connected graphs H with
|V(H)| < k. Let v1 be a vertex of G such that deg(v1) < n. Since G is connected,
deg(v1) > 1. Consider G \ v;. By hypothesis, deg(v) < n for each vertex v € G \ vy,
so degg,,, (v) < n. Moreover, since deg;(v1) > 1, there exists a vertex v € G\ v
which is adjacent to o1 in G. It follows that deg, ,, (v) < n. There are two cases to
consider. If G \ v; is connected, then the inductive hypothesis implies there is an
ordering of the vertices vy, - - - , v, of G \ v1 such that the statement holds. Therefore,
the ordering vy, - - - , v, implies the result is true for G.

If G \ v; is disconnected, denote by Cy, - - - , C; the connected components of G \ vy,
and let C; have d; vertices. Let x € C; and y € Cj, where i # j. Since G is connected
and G \ v; is disconnected, any path between x and y must pass through v;. It follows
thatin G, for each 1 < i </, the vertex v; must be adjacent to some vertex c¢; € C;,
implying that deg, ,, (¢i) < n. Therefore, each C; is a connected graph with strictly
less vertices than G which satisfies the hypotheses in the statement of the lemma. The

inductive hypothesis implies that there is an ordering of the vertices c; ,- - - ,¢;, of C;

d
such that the result holds for C;. The ordering of the vertices

V1€l S Cly e S Clt e S Cly therefore implies the result is true for G. O

Next, we describe a pushout decomposition for certain simplicial complexes K. Let
o € K be a maximal face and let do be the boundary of ¢. Let K\ o be the simplicial

complex K with the interior of the face ¢ removed.

Lemma 2.2. Let K be a simplicial complex and let o be a maximal face of K. There exists a
subcomplex L of K such that there is a pushout

JoNL — do

! |

L— K\o

with do N L # 00 if and only if there exists a face T € do with |t| = |o| — 1 which is
maximal in K\ o. Moreover, L can be chosen to be K \ {o, T} when it exists.
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Proof. Suppose that L exists but all maximal faces T with respect to do are not
maximal in K \ ¢. This implies there is a face yr € K\ o such that T C 7. Since 7 is
maximal with respect to do, the pushout implies that y; must be contained in L,
which in turn implies that T € L. This is true for all maximal faces T € do, so

do N L = do, which is a contradiction.

Conversely, let T be a maximal face with respect to do which is also maximal with
respect to K \ 0. Define L = K\ {c, T}. By definition, dc N L = do \ T # do. Now let

v € K\ 0 be such that y ¢ do. Since T is maximal in K \ o, we have T ¢ 7, implying
that y € L. O

Remark 2.3. It is worth noting for what comes in the next section that if ¢ has
dimension d > 1 then K \ ¢ has the same vertex set as K. If ¢ has dimension d > 2

then L = K\ {0, T} also has the same vertex set as K.

Spaces in || P. Recall that [] P is the collection of H-spaces that are homotopy
equivalent to a finite type product of spheres and loops on spheres. We state some
properties of the collection [T P that will be needed. In (St1, Theorem 3.10) it was
shown that the property of being in [] P is preserved by retractions.

Theorem 2.4. Let X € [P and A be a space which retracts off X. Then A € T[]P. O

One source of retractions in the context of polyhedral products come from the
following result from (DS). If K is a simplicial complex on the vertex set [m] and

I C [m] then the full subcomplex K; of K on I is the subcomplex of K consisting of the
faces of K whose vertices are all in 1.

Lemma 2.5. If K is a simplicial complex, and K| is a full subcomplex of K, then (X, A)X
retracts off (X, A)K. O

We next describe two collections of polyhedral products that are in [TP. Let WV be the
collection of topological spaces that are homotopy equivalent to a finite type wedge of
spheres. The first result was proved in (St1, Theorem 1.1) and the second in (5t2,
Corollary 6.5).

Theorem 2.6. Let K be a 1-dimensional simplicial complex on [m)]. Let Aq,- - -, Ay be spaces
such that ZA; € W. Then Q(CA, A)X e TTP. O

Theorem 2.7. Let K be a 2-dimensional simplicial complex on [m]. Let Ay, - - - , Ay be spaces
such that ©A; € W. If H.(|L|) is torsion free for all full subcomplexes L of K with complete
1-skeleton, then Q(CA, A)X € [T P. O

If a space X € W, then the Hilton-Milnor theorem implies QX € []TP. A result we
will use to show that a space is in WV is the following from (H, Example 4C.2).
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Lemma 2.8. If X is a simply connected space with cells in two consecutive dimensions and
H.(X) is torsion free, then X € W . O

Finally, in (St1, Theorem 4.1) it was shown that [ ] P is closed under pushouts over full

subcomplexes.

Theorem 2.9. Let K be a simplicial complex defined as the pushout

L*>K1

Lo

K2*>K

where either L = @ or L is a proper full subcomplex of K1 and Ky. If X.A; € W for all i,
Q(CA, AKX € TTP and Q(CA, A)*2 € TTP, then Q(CA, A)X € TTP. O

A homotopy pushout. It will be important to identify the homotopy type of a certain
homotopy pushout. For spaces X and Y, the right half-smash of X and Y, denoted
X 1Y, is the quotient (X X Y)/(x x Y).

Lemma 2.10. Suppose that there is a homotopy pushout

*x1

AxB —— DxB

I |

C——0

where the restriction of f to B is null homotopic. Let f': A x B — C be the quotient map
and let E be its homotopy cofibre. Then there is a homotopy equivalence Q ~ (D x B) V E.

Proof. Since the restriction of f to B is null homotopic, and the map * x 1 is the
identity on B, the space B can be collapsed out of the diagram to give a homotopy
pushout

*x1

AxXxB — DxB

I |

cC — Q.

The map * x 1 is null homotopic. Thus the previous homotopy pushout can be

expanded to a diagram of iterated homotopy pushouts

AXB —— x —— DxB

I o

E Q.

Here, in the left square the homotopy pushout of f” and the constant map is the
homotopy cofibre of f/, which is E, and in the right square, the homotopy pushout can
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be identified as Q since the outer rectangle is also a homotopy pushout. The right
square itself now identifies Q as (D x B) V E. O

3 The effect on polyhedral products of removing certain

maximal faces

Let K be a simplicial complex on the vertex set [m] and let ¢ € K be a maximal face.
Let K\¢ be K with the interior of the face ¢ removed. Observe that do C K\ and
there is a pushout of simplicial complexes

0o —— 0

l l (3.1)

K\oc —— K.

The inclusion K \ ¢ — K induces a map of polyhedral products

(CA A )K\‘T — (CA, A)X. In this section, conditions are given for when this map has
a right homotopy inverse. Moreover, (CA, A)X is shown to be a wedge summand of
(CA A )K\‘T and the complementary wedge summand is identified.

Suppose that ¢ has dimension d > 2 and there exists a face T € do with || = |o| — 1
which is maximal in K \ 0. Let L = K\ {¢, 7} and note that doc N L # do. Combining
Lemma 2.2 and (3.1), there is an iterated pushout of simplicial complexes

JoNL oo

l l ; (3.2)

L—— K\o —

As the dimension of ¢ is at least 2, by Remark 2.3, L, K\ ¢ and K all have the same
vertex set. If o # K then ¢ has a smaller vertex set than K, and we regard both ¢ and
do as simplicial complexes on the vertex set [m], giving ghost vertices which we
denote by 1 <i < m withi ¢ ¢. By (GT, Proposition 3.1), the iterated pushout of
simplicial complexes in (3.2) implies that there is an iterated pushout of polyhedral

products

(CA, AL 5 T A; 05 (CA, A x TT A; 215 (CA, A x TT A
i¢o i¢o i¢o

! l | e

(CAA)F ——————— (CA,A)FY ————— (CA A)X
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where i is induced by the inclusion do N L — 9o, i is induced by the inclusion
do0 — o and f is induced by the inclusion do N L — do. We first show that i’ is null
homotopic.

Lemma 3.1. Let o be a maximal face of K of dimension d > 2. Suppose there exists a face

T € do with |t| = |o| — 1 which is maximal in K\ o and let L = K\ {c, T}. Then the map
of polyhedral products (CA, A)%"t N (CA, A)% induced by the inclusion 9o N L — 90 is
null homotopic.

Proof. By definition of L, 00 N L = do \ 7. Therefore, we show that the map of
polyhedral products
(CA, A)™\T = (CA A)Y

induced by do \ T — 9o is null homotopic.

Let v be the vertex of do not contained in 7. Then do \ T = v * 97. By definition of the
polyhedral product, there are homotopy equivalences,

(CA,A)?\" =2 (CA, A)”™ x CA, ~ (CA, A)T,

and the map (CA, A)%\T — (CA, A)%, up to these homotopy equivalences, becomes
the map induced by the inclusion 0T — do. However, T € dr, and so this map factors
as 0T — T — do. By definition, (CA, A)T is contractible, and so the map induced by
0T — do is null homotopic. O

This allows us to give a decomposition of (CA, A)K\7 in terms of (CA, A)X.

Theorem 3.2. Let K be a simplicial complex and o be a maximal face of K. Suppose there
exists a face T € do with |t| = |o| — 1 which is maximal in K \ . Then the map
(CA, A)K\Y — (CA, A)X has a right homotopy inverse and there is a homotopy equivalence

(€A, a7 = ((Ca A #T]4:) v (CA A
i¢o

Proof. From the left square of (3.3), there is a pushout of polyhedral products

(CA, AL x [T A; 2L (CA, A) x [T A
i¢o i¢o

I |

(CA A)F ————— (CA A)X\.

Since do N L # do, Lemma 3.1 implies that i’ is null homotopic. Since L and K \ ¢ have
the same vertex set, L has no ghost vertices. Therefore, by (GT, Proposition 3.4), the
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restriction of f to [];¢, A; is null homotopic. Thus Lemma 2.10 implies that there is a
homotopy equivalence

(a0 = ((Ca A u[]4)) VE 4
jéo

where E is the homotopy cofibre of f': (CA, A)%™ x [Tiz, Ai — (CA, A)L.

The next step is to identify E. By (3.3), there is an iterated diagram of pushouts of

polyhedral products
(CA, AL x TT A; =1 (CA, AP x [T A; 21 (CA, A)7 x [T A
i¢o i¢o ido

5 ! J

(CA AL ————— (CA AT ——— (CA A

Since (CA, A)Y is contractible, this diagram of iterated pushouts is equivalent up to

homotopy to the iterated diagram of homotopy pushouts

(CA, AP x [T A; 25 (CA, A x TT A; —2— T1 A
i¢do i¢o i¢o

I ! J

(CAA)F ————— (CA A ——— (CA A

where 715 is the projection. As noted above, the restriction of f to [];¢#, A; is null
homotopic, so all the vertical maps restrict trivially to [ ];4, A;, implying that this
factor may be collapsed out to give an iterated diagram of homotopy pushouts

(CA, AP x [T A; L (CA, AP % [T A —— «

it¢o i¢o
b l | e

(CA AL ——————— (CA AR ——— (CA A

In particular, all three vertical maps have the same homotopy cofibre. By definition,
the homotopy cofibre of f’ is E, while the right vertical map clearly has (CA, A)X as its
homotopy cofibre. Thus E ~ (CA, A)K and therefore from (3.4) there is a homotopy
equivalence

(CA, A)KV ~ ((% A) % HA]) Vv (CA A)X.

j¢o

Further, the right homotopy inverse for (CA, A)X\* — E, together with the bottom
row of (3.5), gives a composite E — (CA, A)K\* — (CA, A)X that is a homotopy
equivalence. Thus the map (CA, A)X\" — (CA, A)X has a right homotopy

inverse. O
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4 Polyhedral products associated to pseudomanifolds with
boundary

In order to study polyhedral products associated to pseudomanifolds, we first
consider the case with non-trivial boundary. The results will be used frequently in
subsequent sections when the boundary is empty. For a simplicial complex K, and an
integer t > 0, let K! be the t-skeleton of K. If K has dimension 7, we apply the results
from the previous section in order to show that (CA, A)X retracts off (CA, AK

under certain hypotheses.

Theorem 4.1. Let K be an n-dimensional, pure, weak pseudomanifold with boundary having
¢ maximal faces o1, - - -, 0y. Suppose that each connected component of D(K) contains a
vertex of degree strictly less than n + 1. Then there is a homotopy equivalence

(CA A" ~ </< a"zﬂ‘[A) (CA, A)K

i=1 jéo;

and the map of polyhedral products (CA, A)X"" — (CA, A)X induced by the inclusion
K"=1 — K has a right homotopy inverse.

Proof. Applying Lemma 2.1 to each connected component of D(K) and relabelling the
maximal faces if necessary, we can assume ¢y has degree strictly less than n + 1 in
D(K), and for 2 < i < /, 0; has degree strictly less than n + 1in D(K) \ {01, -- ,0i_1}.
Define Ky = K, and for 1 < i < ¢, define K; = K\ {07, - - ,0;}. Observe that by
definition, K, = K"~1. There is a sequence of inclusions

which factors the inclusion of K"~ ! into K.

We show that for each i, the map of polyhedral products (CA, A)X — (CA, A)Ki1
induced by the inclusion K; — K;_1 has a right homotopy inverse. Since ¢; has degree
strictly less than n +1in D(K) \ {01, - - - ,0;_1}, there exists a face T € do; with
|T| = |o;| — 1 which is contained in only one maximal face, namely ;. In particular, T
is maximal in K; = K;_1 \ 0;. Hence, Theorem 3.2 implies there is a homotopy
equivalence

(%A)Kf:< awl‘px) (CA, A)K-

jtoi

and the map of polyhedral products (CA, A)Xi — (CA, A)Ki-1 induced by the
inclusion K; — K;_; has a right homotopy inverse. The homotopy equivalence
asserted by the theorem then follows by induction. O
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Theorem 4.1 has a homological consequence that will be important in Section 6.

Proposition 4.2. Let K be an n-dimensional, pure, weak pseudomanifold with boundary.
Suppose that each connected component of D(K) contains a vertex of degree strictly less than
n+1. Let Ay, - - -, Ay be spaces such that H,(A;) is torsion free for all i. Then

H.((CA, A)X) is torsion free if and only if H.((CA, AR s torsion free.

Proof. 1f H,((CA, A)X"") is torsion free then, by Theorem 4.1, (CA, A)X retracts off
(CA, A)X", implying that H, ((CA, A)X) is torsion free.

Now suppose that H, ((CA, A)X) is torsion free. By Theorem 4.1, there is a homotopy
equivalence
¢
(CA AN =\ ((%A)a”f x HA]) V(€A ),
i=1 jéoi
where 1, . .., 0y are maximal faces of K. By assumption, H,((CA, A)X) is torsion free,
s0 to show that H, ((CA, A)X" ") is torsion free it suffices to show that
H.((CA, A)%i x [Ti¢c, A;) is torsion free for 1 <i < £. Leto; = {ji, -+, jn}. By (IK3,
Theorem 1.7) or (GT, Theorem 1.1), there is a homotopy equivalence
(CA, A X" 1A A NA,.

In particular, (CA, A )a‘Tf is a suspension. In general, if A is a suspension then there is a
homotopy equivalence A x B ~ AV (A A B), so in our case there is a homotopy

equivalence

(CA A x [T A;~ (CA AV ((CA A ATTA).
j¢oi jéoi

By hypothesis, each H.(A;) is torsion free, so the reduced Kiinneth theorem implies

that both H, ((CA, A)%) and H,((CA, A)% A g A;) are torsion free, and hence
J#0i
H.((CA, A)* x [] A;)is torsion free. O
jio;

Theorem 4.1 can also be used to give coarse decompositions of the loop spaces of
polyhedral products associated to pseudomanifolds with boundary in low

dimensions.

Theorem 4.3. Let K be a pure, weak pseudomanifold with boundary of dimension n on [m],
and let Ay, - - -, Ay, be spaces such that . A; € VW for all i. Suppose that each connected
component of D(K) contains a vertex of degree strictly less thann + 1. If n =1, n = 2, or
n = 3 and H.(|L|) is torsion free for all subcomplexes L of K with complete 1-skeleton, then
Q(CA AF e TP.
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Proof. If n = 1, then Theorem 2.6 implies Q(CA, A)X € [T P, so assume n > 2. By
Theorem 4.1, (CA, A)X retracts off (CA, A)X"", and so Q(CA, A)K retracts off

Q(CA, A)KH. By Theorem 2.4, to show Q)(CA, A)X € [T P it suffices to show that
Q(CA, A)K}H € [IP. But Theorem 2.6 when n = 2 and Theorem 2.7 when n = 3
imply that Q(CA, A)X'™ e T P. O

5 Polyhedral products associated to pseudomanifolds

The results from the previous section are applied to certain classes of
pseudomanifolds. In particular, we show that loop spaces of certain polyhedral
products associated to surfaces are in [ P. We start with a general statement giving

conditions for when a polyhedral product has its loop space in [T P.

Theorem 5.1. Let K be a simplicial complex on [m] that does not have a complete 1-skeleton.
Let Aq,- -, Ay be spaces such that ©A; € W forall i € [m]. IfQ(%,A)K\i € [1P forall
i € [m] then QU(CA, A)X € [TP.

Proof. For a vertex v € K, let N(v) be the set of vertices adjacent to v in the 1-skeleton
of K. Since K does not have a complete 1-skeleton, there exists a vertex v such that
vUN(V) # KO By (St1, Lemma 4.4), there is a pushout of simplicial complexes

Knw)y — Koun)

| |

K\v — K.

If Q(CA, AKX\ € TP and Q(CA, A)Sune) € TTP then Theorem 2.9 implies that
O(CA AX eTP.

By assumption, Q(CA, A)X\? € [TP. For Q(CA, A)Xenw, since v U N(v) # KO, there
exists a vertex w such that v U N(v) is a full subcomplex of K \ w. By Lemma 2.5,

(CA, A)?YN@) retracts off (CA, A)X\%, and so Q(CA, A)?"N(©) retracts off

Q(CA, A)K\w. By assumption, ()(CA, A)K\w € [1P, and so Theorem 2.4 implies that
Q(CA, A)"NE e TTP. O

Theorem 5.1 will be used to show that low dimensional pseudomanifolds which do
not have a complete 1-skeleton have their associated polyhedral products in [ P. To
do this, we first show that if K is a pseudomanifold, then K \ i satisfies the hypotheses
of Theorem 4.1.

Lemma 5.2. Let K be a pseudomanifold of dimension n on [m]. Forany i € [m], K\ iisa
pure simplicial complex of dimension n, a weak pseudomanifold with boundary, and each
connected component of D(K \ i) contains a vertex of degree strictly less than n + 1.
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Proof. First, we show that K \ i is pure of dimension n. Suppose ¢ is a maximal face of
K\ i of dimension k < n. By assumption, K is pure of dimension 7 so ¢ must be
contained in some maximal simplex ¢’ € K with i € ¢’. Since i ¢ 0, there must exist a
codimension one face T C ¢’ such that c C T and i ¢ T. Moreover K is a
pseudomanifold, and so in K, 7 is contained in two maximal faces, ¢’ and ¢”.
However, since ¢’ contains i and 7 is of codimension one, ¢/’ does not contain i, and
therefore 0"’ € K\ i. Since ¢ C 7, this implies ¢ C ¢”, which is a contradiction. Thus
every maximal face of K \ i has dimension n, implying that K \ 7 is pure of dimension
n.

Next, we show that K '\ i is a weak pseudomanifold with boundary. Let T be a
codimension one face of K \ i. In K, since K is a pseudomanifold, 7 is contained in two
maximal faces, ¢ and ¢’. At most one of ¢ and ¢’ contains the vertex i, otherwise

o =1U{i} = ¢’. Therefore one of o and ¢’ is in K \ i. Hence, 7 is contained in either
one or two maximal faces in K \ i. We now show that the boundary of K \ 7 is
non-empty. Since K is pure, the vertex i must be contained in at least one maximal face
¢’ in K. Hence, if T’ is the codimension one face of ¢’ which does not contain i, then it

follows that 7’ is contained in the boundary of K \ i.

Finally, we show that each connected component of D(K \ i) contains a vertex of
degree strictly less than 7 4- 1. Since K is a pseudomanifold of dimension #, each
maximal face contains n + 1 codimension one faces, each of which is contained in two
distinct maximal faces. Therefore, each vertex in D(K) has degree n + 1. The graph
D(K \ i) is obtained from D(K) by removing vertices corresponding to maximal faces
of K containing the vertex i. If D(K '\ 7) is connected, then since D(K) is connected,
there must exist a vertex in D(K \ i) which is adjacent to at least one of the vertices
removed from D(K). Therefore, there must exist a vertex in D(K \ i) with degree
strictly less than n + 1. Now suppose D(K \ i) is disconnected, and let x,y € D(K\ i)
be two vertices in different connected components. Since D(K) is connected and

D(K '\ i) is disconnected, any path in D(K) between x and y must pass through one of
the vertices removed from D(K) to obtain D(K \ i). Therefore, for each connected
component of D(K \ i), there must exist a vertex v such that v is adjacent to at least
one of the vertices removed from D(K). Hence, v has degree strictly less than n + 1 in
D(K\ Q). O

Theorem 5.3. Let K be either a 2-dimensional pseudomanifold or a 3-dimensional
pseudomanifold such that H,(|L|) is torsion free for all full subcomplexes L of K with complete
1-skeleton. Suppose that K is on the vertex set [m] and Ay, - - - , A,y are spaces such that

YA; € W forall i € [m]. If K does not have complete 1-skeleton then Q(CA, A)X € TTP.

Proof. Foralli € [m], Lemma 5.2 implies K \ i satisfies the hypotheses of Theorem 4.3.
Therefore, O (CA, A)X\' € T]P for all i € [m]. Since K does not have a complete
1-skeleton, Theorem 5.1 implies that O(CA, A)K e1P. O
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A special case of pseudomanifolds of dimension 2 are connected, orientable, closed
surfaces. In this case, we can give a complete picture of QO(CA, A)X without the
assumption on the 1-skeleton.

Theorem 5.4. Let K be the triangulation of a connected, orientable, closed surface on [m]. Let
A1, -+, Ay be spaces such that X A; € W. Then Q(%A)K e[IP.

Proof. Since K is the triangulation of a connected, orientable, closed surface, for each
I C [m], |K;| embeds into R3. By (H, Corollary 3.46), this implies that H. (|K;|) is
torsion free. Therefore, Theorem 2.7 implies that ()(CA, AXeTlIP. d

A special case of Theorem 5.4 proves Theorem 1.1.

Proof of Theorem 1.1. Take each pair (CA;, A;) in Theorem 5.4 to be (D?, S!). O

6 Loop space decompositions of moment-angle manifolds

In this section, we specialise to moment-angle complexes associated to triangulations
of spheres, all of which are pseudomanifolds. If K is a triangulation of S? then

O Zg € [1P by Theorem 1.1. We will prove an analogous result if K is a triangulation
of $3. To start, we consider more general properties of a family of odd dimensional
sphere triangulations called neighbourly triangulations. Let K be a triangulation of 5"
on [m]. In this case, Zx has the structure of a manifold of dimension m + n + 1 (BP,
Theorem 4.1.4) which is 2-connected.

Pseudomanifolds and the minimally non-Golod property. An important algebraic
condition on simplicial complexes is the notion of Golodness. A simplicial complex K
on [m] is called Golod if all cup products and higher Massey products in H*(Zk) are
trivial, and K is minimally non-Golod if K \ i is Golod for all i € [m]. For example, if Zx
is a suspension, or a co-H-space, then all cup products and higher Massey products
vanish in H*( Zk), implying that K is Golod.

We focus our attention on a special family of odd dimensional sphere triangulations.
Recall from the Introduction that a simplicial complex K is called k-neighbourly if every
set of k + 1 vertices spans a simplex. A triangulation K of a sphere 5***! is called
neighbourly if K is n-neighbourly. It was shown in (L, Proposition 3.6) that if K is the
boundary of a dual polytope and neighbourly, then K is minimally non-Golod. Gitler
and Lopez de Medrano (GLdM, Theorem 1.3) showed that in this case the
corresponding Zy is diffeomorphic to a connected sum of sphere products, with two
spheres in each product. We give an anaologue of Limonchenko’s result that holds for
any n-neighbourly (21 + 1)-dimensional pseudomanifold. This requires a suspension
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splitting of moment-angle complexes from (BBCG, Corollary 2.23), known as the
BBCG decomposition.

Theorem 6.1. Let K be a simplicial complex. There is a homotopy equivalence

2x ~ \/ 22K
I¢K

that is natural for inclusions of simplicial complexes. O

The BBCG decomposition for £ Zx “desuspends” if there is a homotopy equivalence

Zx ~ \/ =K.
I¢K

Observe that if the BBCG decomposition desuspends then Zk is a suspension, and so
is Golod.

Theorem 6.2. Let K be a pseudomanifold on [m] of dimension 2n + 1. If K is n-neighbourly
then the BBCG decomposition for .2\ ; desuspends for all i € [m]. Consequently, K is either
Golod or minimally non-Golod.

Proof. By (IK2, Theorem 1.3), for any simplicial complex K, Zx is a co-H space if and
only if the BBCG decomposition desuspends. Hence, it suffices to show that Zy,; is a
co-H space for all i € [m]. Since K is a pseudomanifold, Lemma 5.2 implies K \ i
satisfies the hypotheses of Theorem 4.1, implying that Z.; retracts off Z . ;.. The
simplicial complex (K \ i)?" is an n-neighbourly, 2n-dimensional simplicial complex,
so by (IK2, Theorem 1.6), the BBCG decomposition for ¥.Z g\ ;2 desuspends. Thus

Z g\ 1s a suspension. As Zy,; retracts off Z k. ;j2n, Z\; is therefore a co-H space. [

If K is a triangulation of 5", we can characterise when K is Golod. If K = A" then
Theorem 6.1 implies that Zx has one non-trivial homology group, and therefore has
no nontrivial cup products or Massey products, implying that K is Golod. If

K # 9A""!, then Theorem 6.1 implies that a minimal missing face corresponds to a Z
summand in H'(2x), where i < m +n + 1. If x € H( Zx) generated this summand,
then as Z is a manifold, Poincaré duality implies there is a class y € H"+"+171( Zy)
such that x Uy # 0. Thus H*(Zk) has non-trivial cup products, implying that K is not
Golod. Therefore, we obtain the following.

Lemma 6.3. If K is a triangulation of S" then K is Golod if and only if K = dA" 1. 0
Neighbourly trianglulations of S***!. To start, let K be a triangulation of S" on [m].
Let Z be the (m + n)-skeleton of Zg. There is a homotopy cofibration

srtm Loz oz
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where f attaches the (m + n + 1)-cell to Zx. We aim for a decomposition of Zx under
certain hypotheses. These hypotheses will be satisfied when K is a neighbourly
triangulation of an odd dimensional sphere. First, we determine the homology of Z.

Proposition 6.4. Let K be a triangulation of S" on [m]. There are isomorphisms

H(Zx) = @H.E"K|) HZ)= @ HEK]).
I¢K 1¢K,1#[m]

Proof. The first isomorphism follows from Theorem 6.1. For the second, one
summand has been deleted, corresponding to I = [m]. When I = [m] then K; = K.
Since K is a triangulation of a sphere, |K| = 5", so Z1*|["l|K| ~ §"+1+1 This accounts
for the generator in H,,4,11(Zk). As Zx is the (m + n)-skeleton of Z, the second

isomorphism follows. O

In case the BBCG decomposition for X Z.; desuspends for each i € [m] we can
decompose Zx.

Proposition 6.5. Let K be a triangulation of S" on [m]. If the BBCG decomposition for £.2Z ;
desuspends for all i € [m], then K is Golod when K = 9A"~1 or minimally non-Golod when
K # 0A""1, and there is a homotopy equivalence

Zx~ \/ =Mk
I¢K,I#[m]

Proof. The BBCG decomposition for X2 is

22k ~ \/ =K.
I¢K

Consider the map Zy,; — Zx induced by the inclusion K\ i — K. The naturality of
the BBCG decomposition implies that the decomposition of X Zy,; may be obtained by
restricting the decomposition for £.Zx to those full subcomplexes K; with I ¢ K and
i ¢ I. As the BBCG decomposition for ¥.Z,; desuspends by hypothesis, we obtain a
homotopy equivalence
ZK\Z ~ \/ Zl+|IHK1‘.
I¢K,i¢]

Taking the wedge sum of the inclusion maps Zy\; — Zx over all i € [m] then gives a
map

m

\/ < \/ ZH_“' |K1|> — ZK.

i=1 \NI¢K,i¢l
Observe that the index set on the left accounts for all I ¢ K except for an instance of I
that contains each i € [m], of which there is only one, I = [m]. However, the index set
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may include multiple copies of the same wedge summand. Restricting to a single
copy for each instance of I ¢ K, I # [m], we obtain a map

g: \/ Zl+|l‘|K1‘ — ZK
€K, 1#][m]

whose suspension induces the inclusion of all wedge summands in the BBCG
decomposition of Zx except for the I = [m] summand. In particular, g induces an
injection in homology. As each wedge summand 2!*!!l|K;| has dimension < n +n + 1
for I # [m], the map g factors through the (m + n)-skeleton Zk of Zx to give a map

¢\ =K — Z
12K, 1#[m]

Since ¢ induces an injection in homology, so does g’. The description of H,(Zk) in
Proposition 6.4 therefore implies that ¢’ must induce an isomorphism in homology,
and hence ¢’ is a homotopy equivalence by Whitehead’s Theorem. O

We will show that Proposition 6.5 holds when K is a neighbourly triangulation of
S2"+1 In this case, the decomposition of Z can be refined. The following argument is
essentially due to Gitler and Lopez de Medrano (GLdM), and the authors thank a
referee for pointing out the following result holds for all neighbourly triangulations of
S21+1 rather than just S°.

Theorem 6.6. If K is a neighbourly triangulation of S on [m] with n > 1 then the
simplicial complex K is Golod when K = 9A*'*2, or minimally non-Golod when K # dA*"+2,
Moreover, Zx € W.

Proof. Consider the real moment-angle complex RZx := (Dl, SO)K associated to K,
which is a closed topological manifold of dimension 2 + 2 (BP, Theorem 4.1.7). By
(BBCG, Corollary 2.24), there is a homotopy equivalence

SRZx ~ \/ 22K (6.6)
I¢K

Since K is a neighbourly triangulation of $*'*1, each full subcomplex K; has

Hi(|K;|) = 0 for all k < n. It follows from (6.6) that R Zx is n-connected. By Poincaré
duality, the reduced homology of R Zk is non-trivial only in degrees n + 1 and 2n + 2.
Therefore since Ha,12(RZx) & Z and K = S*'*1, (6.6) implies that for all I C [m] with
I # [m], Hy(]K;|) can be non-trivial if and only if k = 1. Hence either |K;]| is
contractible or homotopy equivalent to a wedge of S™’s. In particular, each such

Z|K;| € W.
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Combining Theorem 6.2, Lemma 6.3, and Proposition 6.5, we then obtain the desired
result. O

Now we can prove Theorem 1.3, which states that if K is a neighbourly triangulation
of §?"*1 then O Zx € P.

Proof of Theorem 1.3. Theorem 6.6 implies that Zx € W. The Hilton-Milnor theorem
then implies that QOZx €TIP. Using the fact that Zk is a manifold, by (T, Example
5.4), the inclusion Zx — Z has a right homotopy inverse after looping. Hence,
Theorem 2.4 implies that O.Zx € []P. O

Triangulations of S°. Now we specialise to any triangulation K of S® and prove

Theorem 1.2, which states that (2.Zx € []P. This splits into two cases, the first where
K has a complete 1-skeleton, and the second where it does not. The first case follows
from Theorem 1.3 and the second requires a preliminary homological result from (Si,

Lemma 3.4.12) on the homology of Zx. We provide a proof for completeness.

Lemma 6.7. Let K be a triangulation of S® on [m]. Then H.(Zx) is torsion free. O

Proof. Since K is a triangulation of S3, H,(|K|) is torsion free. If I C [m] with I # [m],
|K;| embeds into S3 \ {pt} = R3, and so by (H, Corollary 3.46), H.(|K;|) is torsion
free. Therefore, Proposition 6.4 implies that H.(Zk) is torsion free. O

We can now prove Theorem 1.2.

Proof of Theorem 1.2. By Lemma 6.7, H,(Zx) is torsion free, so Theorem 6.1 implies
that H,(|K;|) is torsion free for all I C [m]. If the 1-skeleton of K is not a complete
graph, then Theorem 5.3 implies that QO Zx € [ P.

If the 1-skeleton is a complete graph, then Theorem 1.3 implies QZx € [TP. O

Remark 6.8. By a result of Cai (C, Corollary 2.10), Zk is a manifold if and only if K'is a
generalised homology sphere. It would be interesting to know if these results also
hold when K is a generalised homology sphere, but not a triangulation of a sphere.

Remark 6.9. Not every triangulation K of a sphere will result in QZg € P. For
example, let L be the 6-vertex triangulation of RP%. By (GPTW, Example 3.3), there is
a homotopy equivalence

Z; ~ WV XRP? (6.7)

where W € W. As in (LW, Theorem 3.2), one can construct a triangulation of st
containing L as a full subcomplex by applying certain stellar subdivisions to dA°. Let
K be such a triangulation. By Lemma 2.5 and (6.7), Y7IRP? retracts off Zk, and so
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QOX7RP? retracts off QZg. This implies that H,(Q Zx) contains 2-torsion and so
QOZx ¢ T1P.

Quasitoric manifolds. Theorem 1.2 will be applied in Proposition 6.11 to show similar
results for certain manifolds known as quasitoric manifolds. As in (D]), a
2n-dimensional manifold has a locally standard T"-action if locally it is the standard
action of T" on C". A quasitoric manifold over an n-dimensional simple polytope P is a
closed, smooth 2n-dimensional manifold M that has a smooth locally standard
T"-action for which the orbit space M/T" is homeomorphic to P as a manifold with

corners.

Let P be an n-dimensional simple polytope with m facets, and let K = dP* be the dual
of the boundary of P. The simplicial complex K is a triangulation of "1, and
therefore Z is a moment-angle manifold. By (BP, Proposition 7.3.12), a quasitoric
manifold M of dimension 2n arises as a quotient M = Zx /T™~" for some subtorus
T™=" C T™ that acts freely on the corresponding moment-angle complex Zx. The

quotient description of M implies that there is a principal T"~"-fibration
™" — Zx — M. (6.8)

The following lemma is well known to experts in the area.

Lemma 6.10. Let M be a quasi-toric manifold of dimension 2n associated to a polytope P of
dimension n. Let K = dP*. Then there is a homotopy equivalence QM ~ T" ™" x () Z.

Proof. Consider the homotopy fibration QM —— T"~" — Zy induced by (6.8). By
(BP, Proposition 4.3.5 (a)), Zk is 2-connected. Therefore r induces an isomorphism on
1. Bach Z generator of 711 (QQM) is the Hurewicz image of a map S' — QM, and the
loop space structure allows these to be multiplied together to obtain a map

s: T"™" — QM. The composite r o s therefore induces an isomorphism on 7. As
T™~" is an Eilenberg-Mac Lane space, this implies r o s is a homotopy equivalence.
Thus OM ~ T"" x QZk. O

Proposition 6.11. If M is a quasitoric manifold of dimension 4, 6 or 8, then QM € J]P.

Proof. If M is 2n-dimensional with m facets then, by Lemma 6.10, there is a homotopy
equivalence QM ~ T™"~" x () Zk, where K is the dual of the boundary of an
n-dimensional polytope. To show that QM € [] P, it therefore suffices to show that

O Zk € [1P. But the hypotheses that M has dimension 4, 6 or 8 implies that K is a
triangulation of S!, S? or S® respectively. Theorem 2.6 in the first case, Theorem 1.1 in
the second case, and Theorem 1.2 in the third case imply that QZx € []P, as
required. O






89

References

[BBCG] A. Bahri, M. Bendersky, F. R. Cohen and S. Gitler, The polyhedral product
functor: a method of decomposition for moment-angle complexes,
arrangements and related spaces, Adv. Math. 225 (2010), 1634-1668.

[BM] FE. Bosio and L. Meersseman, Real quadrics in C", complex manifolds and
convex polytopes, Acta Math. 197 (2006), 53-127.

[BP] V.M. Buchstaber and T.E. Panov, Toric topology, Mathematical Surveys and
Monographs 204, American Mathematical Society, 2015.

[C] L. Cai, On products in real moment-angle manifolds, J. Math. Soc. Japan 69
(2017), 503-528.

[CFW] L. Chen, F. Fan and X. Wang, The topology of moment-angle manifolds - on a
conjecture of S. Gilter and S. Lépez de Medrano, Sci. China Math. 63 (2020),
2079-2088.

[DJ]] M.W. Davis and T. Januszkiewicz, Convex polytopes, Coxeter orbifolds and
torus actions, Duke Math. |. 62 (1991), 417-452.

[DS] G. Denham and A.IL Suciu, Moment-angle Complexes, Monomial Ideals and
Massey Products, Pure Appl. Math. Q. 3 (2007), 25-60.

[E] B. Eldridge, Loop spaces of polyhedral products associated with the
polyhedral join product, arXiv:2410.19676.

[GT] J. Grbi¢, and S. Theriault, The homotopy type of the polyhedral product for
shifted complexes, Adv. Math. 245 (2013), 690-715.

[GLdM] S. Gitler and S. Lépez de Medrano, Intersections of quadrics, moment-angle
manifolds and connected sums, Geom. Topol. 17 (2013), 1497-1534.

[GPTW] ]. Grbi¢, T. Panov, S. Theriault, and ]. Wu, The homotopy types of
moment-angle complexes for flag complexes, Trans. Amer. Math. Soc. 368
(2016), no. 9, 6663-6682.

[H] A. Hatcher, Algebraic Topology, Cambridge University Press, 2002.



90 REFERENCES

[IK1] K. Iriye, and D. Kishimoto, Golodness and polyhedral products for
two-dimensional simplicial complexes, Forum Math. 30 (2018), no. 2, 527-532.

[IK2] K. Iriye, and D. Kishimoto, Fat-wedge filtrations and decomposition of
polyhedral products, Kyoto J. Math. 59 (2019), no. 1, 1-51.

[IK3] K. Iriye, and D. Kishimoto, Decompositions of polyhedral products for
shifted complexes, Adv. Math. 245 (2013), 716-736.

[LW] X.Li, G.Wang, A moment-angle manifold whose cohomology is not torsion
free, Homology Homotopy Appl. 21 (2019), 199-212.

[L] I. Limonchenko, Stanley-Reisner rings of generalized truncation polytopes
and their moment-angle manifolds, Proc. Steklov Inst. Math., 286 (2014),
188-197.

[PT] T. Panov, S. Theriault, The homotopy theory of polyhedral products
associated with flag complexes, Compos. Math. 155 (2019), 206-228.

[M] D. MacGavran, Adjacent connected sums and torus actions, Trans. Amer.
Math. Soc. 251 (1979), 235-254.

[Si] G.Simmons, Homotopy theory of polyhedral products, PhD thesis, University of
Southampton, 2023.

[St1] L. Stanton, Loop space decompositions of moment-angle complexes
associated to flag complexes, Q. |. Math., 75 (2024), no. 2, 457-477.

[St2] L. Stanton, Loop space decompositions of moment-angle complexes
associated to 2-dimensional simplicial complexes, to appear in Proc. Edinb.
Math. Soc., arXiv:2407.10781.

[T] S. Theriault, Top cell attachment for a Poincaré duality complex,
arXiv:2402.13775.

[V] E. Vylegzhanin, Loop homology of moment-angle complexes in the flag
case,to appear in Algebr. Geom. Topol., arXiv:2403.18450.



	Contents
	Declaration of Authorship
	Acknowledgements
	1 Introduction
	References
	2 Paper 1 - Loop spaces of MACs associated to flag complexes
	1 Introduction
	2 Preliminary Material
	2.1 Idempotent Matrices
	2.2 Atomicity of loops on spheres
	2.3 James-Hopf maps and Hopf invariants
	2.4 Hurewicz images
	2.5 Preliminary loop space decompositions
	3 Closure of P under retracts
	3.1 Setup
	3.2 Case 1
	3.3 Case 2
	3.4 Case 3
	3.5 Conclusion of proof

	4 Loop spaces of pushouts of polyhedral products
	References
	3 Paper 2 - Loops on MACs associated to two dim. simplicial complexes
	1 Introduction
	2 Preliminary results
	2.1 Unique decomposition of H-spaces and co-H spaces
	2.2 Rational and p-local decompositions of moment-angle complexes
	3 Closure of W cup M under retracts
	4 Closure of P cup T under retracts
	4.1 Special cases
	4.2 Review of the proof of Theorem 4.1
	4.3 Defining phi'
	4.4 Case 1
	4.5 Case 2
	4.6 Conclusion of proof

	5 Preliminary decompositions of Moment-angle complexes
	6 Loop spaces of moment-angle complexes associated to 2-dimensional simplicial complexes
	7 Loop spaces of certain MACs after localisation
	References

	4 Paper 3 - Polyhedral products associated to pseudomanifolds
	1 Introduction
	2 Preliminary material
	3 The effect on polyhedral products of removing certain maximal faces
	4 Polyhedral products associated to pseudomanifolds with boundary
	5 Polyhedral products associated to pseudomanifolds
	6 Loop space decompositions of moment-angle manifolds

	References






