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This thesis studies the pointed loop space of spaces known as polyhedral products

and gives loop space decompositions in various cases as a product of well-studied

spaces. It is a research paper thesis which contains the following papers:

[1] L. Stanton, Loop space decompositions of moment-angle complexes associated to flag

complexes, Q. J. Math. 75 (2024), no. 2, 457–477

[2] L. Stanton, Loop space decompositions of moment-angle complexes associated to two

dimensional simplicial complexes, (2024), to appear in Proceedings of the

Edinburgh Mathematical Society, https://arxiv.org/abs/2407.10781

[3] L. Stanton and S. Theriault., Polyhedral products associated to pseudomanifolds, Int.

Math. Res. Not. 2025 (2025), rnaf164

In [1], we show that the loop space of a moment-angle complex associated to the

k-skeleton of a flag complex decomposes as a product of spheres and loops on spheres

up to homotopy.

In [2], we show that the loop space of a moment-angle complex associated to a

2-dimensional simplicial complex decomposes as a product of spheres, loops on

spheres and well-studied torsion spaces up to homotopy.

In [3], we study the homotopy theory of polyhedral products associated to a

combinatorial generalisation of manifolds known as a pseudomanifold. We use this to

show that the loop space of a moment-angle manifold associated to a connected,

orientable surface, or a triangulation of S3 decomposes as a product of spheres and

loops on spheres up to homotopy.
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Chapter 1

Introduction

The main goal of algebraic topology is to classify topological spaces up to continuous

deformation. One of the main algebraic tools used to do this is the sequence of

homotopy groups π∗(X) of a topological space X. These groups are notoriously

difficult to calculate, even in the case of spheres (Tod16). However, there are some

global properties of the homotopy groups of spheres which are known. In particular,

the torsion free parts of the homotopy groups were calculated by Serre (Ser51), and

information about the odd primary torsion was obtained in celebrated work of Cohen,

Moore and Neisendorfer (CMN79b; CMN79a; Nei81).

One approach to determining the homotopy groups of a space X is to find a

homotopy equivalence of the form X ≃ A × B, where A and B are spaces which are

not contractible. This implies there is an isomorphism π∗(X) ∼= π∗(A)× π∗(B), and

so we may write the homotopy groups of X in terms of those of A and B. This may be

difficult in general, and many spaces do not admit a product decomposition of this

form.

One remedy to this is to consider the pointed loop space of X, ΩX := Map∗(S
1, X),

the space of pointed maps from the circle S1 to X. There is an isomorphism

πn(X) ∼= πn−1(ΩX), and so the problem of determining the homotopy groups of X is

equivalent to determining the homotopy groups of ΩX. The benefit of studying ΩX is

that it has a multiplication up to homotopy given by concatenation of loops, and this

makes it easier to find product decompositions of ΩX. This approach has been used to

great effect in the context of Poincaré duality complexes (BT14; BB18; BT22? ).

This thesis is a research paper thesis and the main aim of the papers contained within

is to use this approach in the context of spaces known as polyhedral products. These

papers greatly extend our understanding of the homotopy groups of these spaces, and

verify major conjectures in homotopy theory for certain classes of polyhedral

products. Other work completed by the author during the course of the PhD are

(AHS24; ST25a).
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Polyhedral products

Polyhedral products are a generalisation of spaces known as moment-angle

complexes, which first were first constructed by Davis and Januszkiewicz (DJ91) in

the context of toric topology. The definition was reformulated and generalised by

Buchstaber and Panov (BP02) (and independently in unpublished notes of Strickland).

The definition of a polyhedral product is as follows. Let K be a simplicial complex on

[m] := {1, · · · , m}, and let (X, A) = {(Xi, Ai)}
m
i=1 be a tuple of CW-pairs. For each

σ ∈ K, define

(X, A)σ =
m

∏
i=1

Yi where Yi =





Xi i ∈ σ

Ai i /∈ σ.

The polyhedral product determined by (X, A) and K is the space

(X, A)K :=
⋃

σ∈K

(X, A)σ ¦
m

∏
i=1

Xi.

The moment-angle complex and its closely associated Davis-Januszkiewicz space,

denoted ZK and DJK respectively, correspond to the cases where (Xi, Ai) = (D2, S1),

and (Xi, Ai) = (CP∞, ∗).

The first focused study of the homotopy theory of polyhedral products was conducted

by Bahri, Bendersky, Cohen, and Gitler (BBCG10). They showed that the homotopy

type of the suspension of any polyhedral product can be written in terms of a

construction known as the polyhedral smash product. If either each Xi is contractible

or each Ai is the basepoint of Xi, the polyhedral smash product has a homotopy

decomposition as a wedge of spaces which can be written in terms of the

combinatorics of K. This completely determines the homology groups of these

polyhedral products in terms of the homology of the ingredient spaces and K.

Focusing our attention on the case that each Xi is contractible, it was shown for

various families of simplicial complexes that the decomposition proved by Bahri,

Bendersky, Cohen and Gitler holds without suspension (GT13; IK13; GPTW16; IK19)

and this has important consequences in combinatorics. Work is ongoing to further

expand the families for which such a decomposition is known.

Conjectures in unstable homotopy theory

We now shift our focus onto the homotopy groups of polyhedral products. Before

proceeding, we place the study of these in a broader context. To do this, we require

some definitions. A CW-complex X is called rationally elliptic if it has finitely many

rational homotopy groups, and X is called rationally hyperbolic otherwise. The
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homotopy exponent of X at a prime p is the least power of p which annihilates the

p-torsion of the homotopy groups of X. A major driving force of research in

homotopy theory is Moore’s conjecture which asserts a deep connection between the

rational and torsion parts of the homotopy groups.

Conjecture 1.1 (Moore’s Conjecture). Let X be a finite, simply-connected CW-complex.

The following are equivalent:

1. X is rationally elliptic,

2. X has a finite homotopy exponent at every prime p,

3. X has a finite homotopy exponent at some prime p.

This conjecture has been verified for various families of spaces, including spheres

(Jam56; Tod56), odd primary Moore spaces (Nei87), certain highly connected Poincaré

duality complexes (BT14; BB18; BT22; ST25a) and moment-angle complexes (HST19).

In the case of moment-angle complexes, this was proved by giving an explicit

decomposition of its loop space in the case that it is rationally elliptic, and showing

that a space with no homotopy exponent retracts off it in the rationally hyperbolic

case. However, in the rationally hyperbolic case, this approach does not allow us to

explicitly enumerate the homotopy groups that appear. The papers in this thesis will

remedy this in certain cases, and expand the results to more general polyhedral

products.

There are two related conjectures which can be seen as approximations to Moore’s

conjecture. Let X be a simply-connected CW-complex, and let p be a prime.

Localisation at the prime p is a functor which outputs a space X(p) such that the

homotopy groups of X(p) encode the p-torsion information of the homotopy groups of

X. More precisely, there is an isomorphism π∗(X(p)) ∼= π∗(X)¹ Z(p), where Z(p) is

the subring of Q consisting of fractions whose denominators are coprime to p.

Localised at a prime p, Huang and Wu (HW19) showed that if X is an H-space of

finite type, then X decomposes uniquely (up to order and homotopy equivalence) as a

product of indecomposable factors. In particular, if X is a simply-connected

CW-complex, localised at a prime p, there is a homotopy equivalence

ΩX ≃ ∏
i∈I

Yi,

where I is some indexing set and each Yi is an indecomposable H-space. Therefore to

decompose ΩX, we first require candidates for indecomposable H-spaces which

could appear in a decomposition for ΩX.

Localise at an odd prime p. The spaces S2n−1 and ΩS2n+1 for n g 1 are examples of

indecomposable H-spaces. For integers m g 1 and r g 1, Cohen, Moore and
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Neisendorfer (CMN79b; CMN79a; Nei87) defined spaces S2m+1{pr} and T2m+1{pr},

whose homology consists purely of pr summands. These are indecomposable

H-spaces with the single exception of T3{p}, for which there is a homotopy

equivalence T3{p} ≃ T2p+1{p} × U1, where U1 is an indecomposable H-space. Let P

be the collection of H-spaces which are homotopy equivalent to a finite type product

of spheres S2n−1, where n g 1, loops on simply connected spheres ΩS2m+1 and the

indecomposable torsion spaces defined by Cohen, Moore and Neisendorfer. Anick

conjectured that localised at all but finitely many primes, these spaces are enough to

describe ΩX up to homotopy (Ani92).

Conjecture 1.2 (Anick’s conjecture). Let X be a finite, simply-connected CW-complex.

Localised at all but finitely many primes, ΩX ∈ P .

Anick’s conjecture has been verified for rationally elliptic spaces (MW86) and certain

two-cones (Ani89a). Decompositions of this form without localisation have been

proven for certain highly connected Poincaré duality complexes

(BT14; BB18; BT22; ST25a). It was shown by Panov and Theriault (PT19) that if K is a

flag complex, then ΩZK is homotopy equivalent to a product of spheres and loops on

spheres without localisation. The papers in this thesis recover and greatly expand this

result in various contexts.

Finally, let X be a space and p be a prime. The Steenrod algebra Ap consists of

homomorphisms between the cohomology groups of X with coefficients in Z/pZ

which satisfy certain axioms (Hat02). McGibbon and Wilkerson conjectured the

following (MW86).

Conjecture 1.3. If X is a finite, simply-connected CW-complex, then for all but finitely many

primes

1. pth powers vanish in H̃(ΩX; Z/pZ);

2. the Steenrod algebra acts trivially on H∗(ΩX; Z/pZ).

The first assertion was proved by Anick (Ani89b); however, the second assertion

remains open. The Steenrod algebra acts trivially on spheres and loops on spheres,

and so knowing a space is homotopy equivalent to a product of spheres and loops on

spheres localised at an odd prime verifies the McGibbon and Wilkerson conjecture. In

this thesis, we give loop space decompositions for various families of polyhedral

products which verify all three of these conjectures for these spaces.

Summary of papers

The three papers (Sta24a; Sta24b; ST25b) contained in this thesis give loop space

decompositions of various families of polyhedral products. The first two papers are
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single author papers, and the final paper is a joint paper with Stephen Theriault (my

supervisor). In the joint paper, Stephen came up with the idea of introducing an

auxillary simplicial complex and using this under certain conditions to show that a

map induced by an inclusion of simplicial complexes has a right homotopy inverse.

The application of this to pseudomanifolds and low dimensional triangulations of

spheres was proved by myself. To describe the main results, we establish some

notation. For a collection of spaces X , let
∨
X (resp. ∏X ) be the collection of spaces

which are homotopy equivalent to a finite type wedge (resp. product) of spaces in X .

Let P := {S1, S3, S7, ΩSn | n g 2, n /∈ {2, 4, 8}}. Recall by (HW19) that localised at a

prime p, any finite type H-space decomposes into a product of indecomposable spaces

which are unique up to order and homotopy equivalence. Let T be the collection of

indecomposable spaces which appear in the decomposition of the loop space of a

wedge of Moore spaces of the form
∨m

i=1 Pni(pri
i ), where m g 2, ni g 3, pi is a prime

and ri g 1. The collection T includes the spaces T2m+1{pr}, S2m+1{pr} and U1 defined

by Cohen, Moore and Neisondorfer, and these are sufficient for odd primes. At the

prime 2, for r > 1, Cohen (Coh89) defined an analogous space T2m+1{2r}. When r = 1,

there is not an analogue of the Cohen, Moore and Neisendorfer space.

Let W be the collection of simply connected spheres, and M be the collection of

Moore spaces of the form Pn(pr), where n g 3, p is a prime, and r g 1, and the

indecomposable factors which appear as wedge summands in the unique 2-local

wedge decomposition of spaces of the form Σ((Pn1(2) ' · · · ' (Pnl (2)), where l g 2,

and each ni g 3 (which exist by (HW19)). The collection M contains Moore spaces of

the form Pn(pr), and these spaces are sufficient when pr ̸= 2. Some progress on

identifying the indecomposable spaces when pr = 2 has been made by Wu (Wu03).

The first paper focuses on the case where K is the k-skeleton of a flag complex,

generalising a result of Panov and Theriault (PT19). These simplicial complexes are

obtained by starting with a graph, and gluing in all possible simplices of dimension

2 f l f k. The main result is as follows.

Theorem 1.1. Let K be the k-skeleton of a flag complex on [m], and let A1, · · · , Am be

CW-complexes such that ΣAi ∈
∨
W . Then Ω(CA, A)K ∈ ∏P .

A key technical result proved in the first paper is closure of the collection ∏P under

retracts. This was a folklore result, but a proof did not appear in the literature.

The second paper extends the techniques of the first paper in order to include torsion

spaces. Any graph G can be considered as the 1-skeleton of a flag complex, and so the

previous result implies that Ω(CA, A)G ∈ ∏P , when each ΣAi ∈
∨
W . The second

paper extends decompositions of this kind to the case of a 2-dimensional simplicial

complex. One step in doing this is showing that ∏(P ∪ T ) is closed under retracts.

The main result of this paper is as follows.
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Theorem 1.2. Let K be a 2-dimensional simplicial complex, and let A1, · · · , Am be

CW-complexes such that ΣAi ∈
∨
(W ∪M). Then Ω(CA, A)K ∈ ∏(P ∪ T ).

The third paper focuses on the case where K is a triangulation of a sphere. When K is a

triangulation of a sphere, the moment-angle complex ZK has the structure of a

manifold (BP15). When K is a triangulation of S2n+1 for n g 0 such that every simplex

of dimension n is in K, and K is the dual of the boundary of a simple polytope, it was

shown by Gitler and López de Medrano (GdM13) that ZK is diffeomorphic to a

connected sum of products of two spheres. Outside of this case, not much is known

about the homotopy type of moment-angle manifolds. The third paper starts the

study of the homotopy type of the loop space of moment-angle manifolds. The

following result is proved.

Theorem 1.3. Let K be a triangulation of a connected, orientable closed surface or a

triangulation of S3. Then ΩZK ∈ ∏P .

Moment-angle manifolds are closely related to another family of manifolds known as

quasitoric manifolds. A quasitoric manifold is a manifold of dimension 2n which has

an action of a torus of dimension n with certain hypotheses. Quasitoric manifolds can

be viewed as a quotient of a moment-angle complex under the action of a torus which

acts freely on the moment-angle complex. The loop space of a quasitoric manifold can

be related to that of the corresponding moment-angle complex. The second main

result of the paper is the following.

Theorem 1.4. Let M be a quasitoric manifold of dimension 4, 6 or 8. Then ΩM ∈ ∏P .

Future work

The papers contained in this thesis greatly expand the families of polyhedral products

for which Moore’s conjecture, Anick’s conjecture and the McGibbon-Wilkerson

conjecture are verified. Previously, loop space decompositions which verified these

conjectures were only known when K is a flag complex (PT19), with the proof relying

on a folklore result which was proved in Paper 1 (Sta24a). Many of the

decompositions are coarse, in the sense that the terms appearing in the decomposition

are not explicitly enumerated. In principle, the techniques of the paper could be used

to enumerate the terms, but it would be impractical to do so. In the case of a flag

complex, following the release of Paper 1 (Sta24a), Vylegzhanin (Vyl24) enumerated

the spheres and loops on spheres which appear in the decomposition of the associated

moment-angle complex. This motivates the following problem.

Problem 1.5. If K is a simplicial complex such that Ω(CA, A)K ∈ ∏(P ∪ T ),

enumerate the factors which appear in the decomposition.



7

If X is a simply connected CW-complex and F is a field, then H∗(ΩX; F) has the

structure of an algebra. The decompositions of the loop spaces of polyhedral products

contained in this thesis are not splitting as H-spaces, and so these splittings only give

you information about H∗(Ω(CA, A)K; F) as a module. If K is a simplicial complex, let

CK be the set of full subcomplexes of K such that the 1-skeleton of K has no missing

edges. A result in Paper 2 (Sta24b) shows that Ω(CA, A)K ∈ ∏(P ∪ T ) if and only if

Ω(CA, A)KI ∈ ∏(P ∪ T ) for all KI ∈ CK. This raises the question as to whether these

decompositions give you information about the algebra structure of the loop

homology.

Problem 1.6. Describe H∗(Ω(CA, A)K) as an algebra in terms of H∗(Ω(CA, A)KI )

where KI ∈ CK.

Finally, the Hilton-Milnor theorem (Hil55) implies that Ω (
∨m

i=1 Sni) ∈ ∏P , where

each ni g 2. Moreover, the terms appearing in the product are explicitly identified in

terms of a basis of the free Lie algebra, with the homotopy equivalence being given by

a product of looped Whitehead products. This proof used the fact that

H∗ (Ω (
∨m

i=1 Sni)) is the universal enveloping algebra of the free Lie algebra.

Polyhedral products of the form (X, ∗)K give a natural interpolation between
∨m

i=1 Xi

(when K is m disjoint points) and ∏
m
i=1 Xi (when K is the (m − 1)-simplex). If K is flag,

it was shown in Paper 1 (Sta24a) that if each Xi = Sni with ni g 2, then

Ω(X, ∗)K ∈ ∏P . In this case, Cai (Cai24) gave a presentation of H∗(Ω(X, ∗)K) which

recovers the presentation of H∗(Ω(
∨m

i=1 Sni)) when K is a set of disjoint points. If each

Xi = Sni where ni g 2, then H∗(Ω(X, ∗)K) is a universal enveloping algebra of a Lie

algebra. One may hope to use Cai’s presentation in order to give an explicit homotopy

equivalence for Ω(X, ∗)K in terms of a basis of the underlying Lie algebra.

Problem 1.7. Let K be a flag complex and let Xi = Sni where ni g 2. Give an explicit

homotopy equivalence for Ω(X, ∗)K as a product of looped spheres in terms of looped

Whitehead products.
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Chapter 2

Paper 1 - Loop space decompositions

of moment-angle complexes

associated to flag complexes

1 Introduction

Polyhedral products have attracted vast attention due to their many applications

across mathematics (see (BBC)). A polyhedral product is a natural subspace of ∏
m
i=1 Xi

defined as follows. Let K be a simplicial complex on the vertex set [m] = {1, 2, · · · , m}.

For 1 f i f m, let (Xi, Ai) be a pair of pointed CW-complexes, where Ai is a pointed

CW-subcomplex of Xi. Let (X, A) = {(Xi, Ai)}
m
i=1 be the sequence of pairs. For each

simplex σ ∈ K, let (X, A)σ be defined by

(X, A)σ =
m

∏
i=1

Yi where Yi =





Xi i ∈ σ

Ai i /∈ σ.

The polyhedral product determined by (X, A) and K is

(X, A)K =
⋃

σ∈K

(X, A)σ ¦
m

∏
i=1

Xi.

An important special case is when (Xi, Ai) = (D2, S1) for all i. These polyhedral

products are called moment-angle complexes, and are denoted ZK. More generally,

when (Xi, Ai) = (Dn, Sn−1) for n g 2 and all i, the polyhedral products are called

generalised moment-angle complexes. In this paper, we identify the homotopy type of the

loop space of certain polyhedral products. One particular case is when K is a flag

complex. When K is flag, certain polyhedral products give models for the classifying

space of graph products of groups, implying that the loop space of these polyhedral
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products are graph products of groups. This geometric group theoretic framework has

been generalised by Cai (Ca) to consider loops on a wider class of polyhedral products

associated to flag complexes. For general simplicial complexes K, the loop space of the

corresponding moment-angle complex is related to a certain diagonal subspace

arrangement (D).

Let
∨
W be the full subcategory of topological spaces which are homotopy equivalent

to a finite type wedge of simply connected spheres, and let ∏P be the full

subcategory of H-spaces which are homotopy equivalent to a finite type product of

spheres and loops on simply connected spheres. Note that if X ∈ ∏P , by the Hopf

invariant one problem (Ad), the only spheres that can appear in a product

decomposition for X are Sn for n ∈ {1, 3, 7}, and it will be assumed that the loops on

spheres ΩSn which appear are of dimension n g 2, n /∈ {2, 4, 8}, as when n ∈ {2, 4, 8},

there is a homotopy equivalence ΩSn ≃ Sn−1 × ΩS2n−1. Relations between spaces in
∨
W and spaces in ∏P will be used frequently throughout the paper. In particular,

the Hilton-Milnor theorem (H; M) implies that looping sends spaces in
∨
W to spaces

in ∏P , and decomposing the suspension of a product as a wedge and the James

construction (J) implies that suspension sends spaces in ∏P to spaces in
∨
W .

Determining the homotopy type of polyhedral products in general is difficult, but in

the special case of a moment-angle complex, progress has been made in showing that

certain moment-angle complexes are in
∨
W . For example, moment-angle complexes

associated with shifted complexes (GT2, Theorem 1.2), flag complexes with chordal

1-skeleton (GPTW, Theorem 4.6), or more generally, totally fillable simplicial

complexes (IK2, Corollary 7.3) are in
∨
W . There is a wider range of moment-angle

complexes (including the aforementioned ones) for which its loop space is in ∏P . For

example, moment-angle complexes associated to any flag complex are in ∏P (PT,

Corollary 7.3). It is known that many moment-angle complexes are not in
∨
W due to

the existence of non-trivial cup products in cohomology. For example, when K is the

boundary of a square, ZK ≃ S3 × S3, and it follows that for any simplicial complex L

containing K as a full subcomplex, ZL contains non-trivial cup products in

cohomology, and so ZL /∈
∨
W .

In this paper, we specialise to the case where K is the k-skeleton of a flag complex. In

particular, we prove the following result.

Theorem 1.1. Let k g 0, and let K be the k-skeleton of a flag complex on the vertex set [m]

and A1, · · · , Am be path connected CW-complexes such that ΣAi ∈
∨
W for all i. Then

Ω(CA, A)K ∈ ∏P .

There are two cases of Theorem 1.1 which should be highlighted. The first important

case is when k is the dimension of the flag complex. While not stated in this generality,

the following result recovers (PT, Corollary 7.3) via a different method.
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Corollary 1.2. Let K be a flag complex on the vertex set [m] and A1, · · · , Am be path

connected CW-complexes such that ΣAi ∈
∨
W for all i. Then Ω(CA, A)K ∈ ∏P . □

The second important case of Theorem 1.1 is when k = 1.

Corollary 1.3. Let K be a graph on the vertex set [m] and A1, · · · , Am be path connected

CW-complexes such that ΣAi ∈
∨
W for all i. Then Ω(CA, A)K ∈ ∏P . □

Loop spaces of moment-angle complexes associated to graphs in certain cases have

been studied. In particular, explicit decompositions of the loops of moment-angle

complexes associated to wheel graphs and certain generalisations of wheel graphs

(T2), and certain classes of generalised book graph (St) have been given. This paper

establishes that decompositions of this form exist for all graphs. While in principle an

explicit decomposition could be obtained, in practice it would be difficult to do so.

Letting Ai = Sn−1 with n g 2 for all i in Theorem 1.1 has consequences for generalised

moment-angle complexes and moment-angle complexes.

Corollary 1.4. Let k g 0, and let K be the k-skeleton of a flag complex. Then

Ω(Dn, Sn−1)K ∈ ∏P where n g 2. □

Corollary 1.5. Let k g 0, and let K be the k-skeleton of a flag complex. Then ΩZK ∈ ∏P . □

It is interesting to note when the decomposition in Corollary 1.5 arises from the fact

that ZK ∈
∨
W . In the case of K1, it is shown in (IK2, Theorem 11.8) that K1 has

ZK1 ∈
∨
W if and only if K1 is chordal. In particular, if K1 is not chordal, then ZK1 is

not in
∨
W . However, Corollary 1.5 implies that nevertheless, ΩZK1 is still in ∏P . In

the case of K itself, a similar result is true (PT, Theorem 6.4), namely that ZK ∈
∨
W iff

K1 is chordal.

To prove Theorem 1.1, we will show that ∏P is closed under retracts. This result was

stated in (PT, p. 224) without proof, so a proof is provided here. The main tool that is

used in the proof of this is the atomicity of loops on spheres when localised at certain

primes (see Theorem 2.4). Let K be a simplicial complex with a decomposition as

K = K1 ∪L K2 where L is a full subcomplex of both K1 and K2. Closedness of ∏P

under retractions is applied to show that if Ω(CA, A)K1 ∈ ∏P and

Ω(CA, A)K2 ∈ ∏P , then Ω(CA, A)K ∈ ∏P . This then allows us to prove the main

result by an inductive argument.

The decomposition in Theorem 1.1 fits into a wider story related to loop space

decompositions of spaces. Localise at a prime p. Given a space X, one may wish to

find a decomposition of ΩX into a product of spaces, where each space in the product

is indecomposable. Spheres Sn where n ∈ {1, 3, 7} and loops on simply connected

spheres ΩS2m+1, where m g 1 are examples of indecomposable H-spaces. In a series
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of papers (CMN1; CMN2; CMN3), Cohen, Moore and Neisendorfer defined spaces

S2m+1{pr} and T2m+1{pr} for r g 1 and m g 1, for which the loop space of a Moore

space decomposes as a finite type product of these spaces. The spaces S2m+1{pr} are

indecomposable, and the spaces T2m+1{pr} are indecomposable except for T3{p}, in

which case there is a homotopy equivalence T3{p} ≃ T2p+1{p} × U1, where U1 is

some indecomposable space. Anick (An) conjectured that if X is a finite, connected

CW-complex, then localised at almost all primes p, ΩX decomposes as a finite type

product of indecomposable spaces consisting of spheres, loops on simply connected

spheres, S2m+1{pr}, T2m+1{pr} and U1. Theorem 1.1 verifies Anick’s conjecture for

polyhedral products (CA, A)K where ΣAi ∈
∨
W and K is the k-skeleton of a flag

complex, and does so without the need to localise.

In Section 2, some preliminary results in linear algebra and homotopy theory that will

be required are introduced. In Section 3, we prove that the retract of a space in ∏P is

in ∏P . In Section 4, this is applied to polyhedral products to prove Theorem 1.1.
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2 Preliminary Material

2.1 Idempotent Matrices

In this section, we state and prove the basic properties of idempotent matrices that

will be required in Section 3. Denote by Mn(Z) the set of n x n matrices with integer

entries. A matrix A ∈ Mn(Z) is idempotent if A2 = A. Let N(A) and C(A) denote the

null space and column space of A respectively. Recall that the null space and column

space of a matrix is the kernel and image of the corresponding linear map. The

following result gives a decomposition of Zn in terms of the null space and column

space of an idempotent matrix. This lemma is given as an exercise in (L, p. 163), so we

provide a proof here.

Lemma 2.1. Let A ∈ Mn(Z) be an idempotent matrix. Then Zn ∼= N(A)· C(A).

Proof. If A is the zero matrix, then C(A) = {0} and Zn = N(A), and so the result

holds in this case. Now suppose A is non-trivial. First, we show that



2. Preliminary Material 17

Zn = N(A) + C(A). Clearly, N(A) and C(A) are subspaces of Zn, and so

N(A) + C(A) ¦ Zn. For the opposite inclusion, let x ∈ Zn. Write x as

x = Ax − (Ax − x). Applying A to Ax − x and using the fact that A is idempotent, we

obtain

A(Ax − x) = A2x − Ax = Ax − Ax = 0.

Therefore, since Ax ∈ C(A) and Ax − x ∈ N(A), Zn ¦ N(A) + C(A). Hence,

Zn = N(A) + C(A).

Now we show that N(A) ∩ C(A) = {0}. The zero vector is contained in N(A) and

C(A). Let x ∈ N(A) ∩ C(A). Since x ∈ C(A), there exists x′ ∈ Zn such that Ax′ = x.

Applying A to x and using the fact that x ∈ N(A), we obtain

0 = Ax = A2x′ = Ax′ = x.

Therefore, N(A) ∩ C(A) = {0} and so Zn = N(A)· C(A).

The next result describes how an idempotent matrix acts on an element of the column

space. The proof is immediate from the definition of an idempotent matrix.

Lemma 2.2. Let A ∈ Mn(Z) be an idempotent matrix and let x ∈ C(A). Then Ax = x. □

The final result describes the properties of the components of a vector v ∈ Zn which

extends to a basis of Zn. The result is clear from the contrapositive.

Lemma 2.3. Let v = (v1, · · · , vn)T ∈ Zn be a vector which extends to a basis of Zn. Then

the greatest common divisor of the non-zero components v1, · · · , vn is 1. Moreover, one of

v1, · · · , vn is odd. □

2.2 Atomicity of loops on spheres

In this section, we recall the notion of atomic spaces. A simply connected topological

space X is atomic (CMN3, Section 4) if any self map f : X → X inducing an

isomorphism in the lowest non-vanishing degree in homology is a homotopy

equivalence. A space X is decomposable if it is homotopy equivalent to a product A × B

where A and B are not contractible. A space is indecomposable if it is not decomposable.

The study of atomic spaces is useful since atomic spaces are indecomposable. In

Section 3, we will be interested in the atomicity properties of ΩSn. In particular, the

following result is from (CPS, Corollary 5.2).

Theorem 2.4. Let p be a prime, and let f be a self-map of ΩkSm+1, k < m, which induces an

isomorphism on the (least non-vanishing) homology group Hm+1−k(Ω
kSm+1; Z/pZ). If

p > 2, we suppose that m is even, and if p = 2, we suppose m /∈ {1, 3, 7}. Then f is a p-local

homotopy equivalence. □
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Theorem 2.4 implies that localised at any prime p, ΩSn is atomic for n odd, and when

n is even and n /∈ {1, 3, 7}, ΩSn is only atomic when localised at 2. The following

result of Serre (Se) shows that, localised at an odd prime, the loop space of an even

dimensional sphere is decomposable.

Theorem 2.5. Let p be an odd prime. There is a p-local homotopy equivalence

ΩS2n ≃ S2n−1 × ΩS4n−1.

2.3 James-Hopf maps and Hopf invariants

In this section, we introduce the James-Hopf maps and prove basic properties of their

induced map on homology that will be required in Section 3. All homology groups

will be assumed to have integer coefficients unless otherwise stated.

Let X be a path-connected CW-complex such that H∗(X) is torsion free. Let

E : X → ΩΣX be the suspension map. The Bott-Samelson theorem implies that

H∗(ΩΣX) ∼= T(H̃∗(X)) where T is the tensor algebra functor. Moreover, E∗ induces

the inclusion of H̃∗(X) into T(H̃∗(X)). Let e : ΣΩΣX
e
−→
∨

kg1 ΣX'k be the James

decomposition (J), where X'k is the k-fold smash product of X with itself. The

James-Hopf map hk : ΩΣX → Ω(ΣX'k) is the adjoint of the composite

hk : ΣΩΣX
≃
−→

∨

kg1

ΣX'k → ΣX'k

where the righthand map is the pinch map. The case that is applicable to Section 3 is

X = Sn−1 and k = 2. In this case, h2 is a map from ΩSn to ΩS2n−1, and we can describe

the induced map (h2)∗ on homology in degree 2n − 2. Note that

H2n−2(ΩSn) ∼= H2n−2(ΩS2n−1) ∼= Z.

Lemma 2.6. The map

(h2)∗ : H2n−2(ΩSn) → H2n−2(ΩS2n−1)

is an isomorphism. In particular, the generator δ ∈ H2n−2(ΩSn) maps to

τ ∈ H2n−2(ΩS2n−1), where τ is a generator.

Proof. Consider the composite

h′2 : ΣΩSn Σh2−−→ ΣΩS2n−1 ev
−→ S2n−1

where ev is the evaluation map. The map h′2 is homotopic to h2 since it is the adjoint of

h2. By definition of h2 as the composite of a homotopy equivalence followed by the

pinch map, (h2)∗ sends a generator σδ ∈ H2n−1(ΣΩSn) to a generator
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τ′ ∈ H2n−1(S
2n−1). Therefore, (h′2)∗ also sends σδ to τ′. Since H2n−1(ΣΩSn),

H2n−1(ΣΩS2n−1) and H2n−1(S
2n−1) are isomorphic to Z, the only possibility is that

(Σh2)∗ and ev∗ are isomorphisms in degree 2n − 1. Therefore, (Σh2)∗(σδ) = στ where

τ is a generator of H2n−2(ΩS2n−1). From the homology suspension isomorphism, we

obtain that (h2)∗(δ) = τ.

Now consider the case where X = S2n−1. For m, k g 1 and maps f : Sm → Z and

g : Sk → Z, denote the Whitehead product of f and g by [ f , g] : Sm+k+1 → Z, and

denote its adjoint, the Samelson product, by ï f̃ , g̃ð : Sm+k → ΩZ, where f̃ and g̃ are the

adjoints of f and g respectively. In particular, let id : S2n → S2n be the identity map.

Lemma 2.7. The map

(Ω[id, id])∗ : H4n−2(ΩS4n−1) → H4n−2(ΩS2n)

sends a generator τ ∈ H4n−2(ΩS4n−1) to 2δ ∈ H4n−2(ΩS2n) where δ is a generator of

H4n−2(ΩS2n).

Proof. Consider the diagram

S4n−2

ΩS4n−1 ΩS2n

E

Ω[id,id]

ïE,Eð

where E : S2n−1 → ΩS2n is the suspension map. The diagram homotopy commutes

since ïE, Eð is the adjoint of [id, id]. Since E induces the inclusion of the generator

τ ∈ H4n−2(ΩS4n−1), its image under (Ω[id, id])∗ is determined by its image under

ïE, Eð. The Samelson product commutes with homology in the sense that

ïE, Eð∗ = ïE∗, E∗ð where the bracket on the right is the commutator in

H∗(ΩS2n) ∼= T(γ). The map E induces the inclusion of the generator

γ ∈ H2n−1(ΩS2n), and so by definition of the commutator, ïE∗(γ), E∗(γ)ð = 2δ, where

δ is a generator of H4n−2(ΩS2n).

2.4 Hurewicz images

Let X be a space. An element x ∈ Hn(X) is said to be in the Hurewicz image if it is in

the image of the Hurewicz homomorphism. We will require the following result about

the Hurewicz image of even dimensional spheres in a certain degree.

Lemma 2.8. The Hurewicz image π4n−2(ΩS2n) → H4n−2(ΩS2n) when n /∈ {1, 2, 4} is 2Z.
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Proof. Suppose that f : S4n−2 → ΩS2n is a map with odd Hurewicz image. By the

universal property of the James construction, there exists an H-map

f : ΩS4n−1 → ΩS2n such that

S4n−2

ΩS4n−1 ΩS2n

E
f

f

homotopy commutes, where E is the suspension map. Let τ be a generator of

H4n−2(ΩS4n−1) and δ be a generator of H4n−2(ΩS2n). By commutativity of the

diagram and the fact that f has odd Hurewicz image, f sends τ to (2k + 1)δ for some

k. Consider the composite

φ : ΩS4n−1 ∆
−→ ΩS4n−1 ×ΩS4n−1 p−k× f

−−−→ ΩS4n−1 ×ΩS2n Ω[id,id]×id
−−−−−−→ ΩS2n ×ΩS2n µ

−→ ΩS2n,

where p−k is the −k’th power map. By Lemma 2.7 and definition of φ, φ∗(τ) = δ.

Now consider the composite

ψ : ΩS4n−1 φ
−→ ΩS2n h2−→ ΩS4n−1.

By Lemma 2.6 and definition of φ, ψ∗(τ) = τ, and so ψ induces an isomorphism on

H4n−2(ΩS4n−1). By Theorem 2.4, ΩS4n−1 is 2-locally atomic. Therefore, we obtain that

ψ is a 2-local homotopy equivalence, implying that ΩS4n−1 retracts off ΩS2n when

localised at 2. However, by Theorem 2.4, ΩS2n is 2-locally atomic, and therefore

indecomposable. Hence, ΩS2n has no non-trivial retracts localised at the prime 2.

2.5 Preliminary loop space decompositions

In this section, we state and prove some initial loop space decompositions which will

be applied in Section 4. Let K be a simplicial complex on [m] and let L be a full

subcomplex of K on [n]. It is well known (see for example (DS, Lemma 2.2.3)) that the

projection map
m

∏
i=1

Xi →
n

∏
j=1

Xj restricts to a map (X, A)K → (X, A)L, which is a right

inverse for the map (X, A)L → (X, A)K. Note that a full subcomplex L′ of L is also a

full subcomplex of K, and this fact will often be used without comment.

There are two main results which will be used in Section 4. The first result was proved

in (GT1, Theorem 7.2). If X and Y have basepoints x0 and y0 respectively, the right

half-smash is defined by X ìY = X × Y/(∗ × Y) and the left half-smash is defined by

X ëY = X × Y/(X × ∗). The reduced join is defined by X ∗ Y = (X × I × Y)/ ∼,

where I is the unit interval, (x, 0, y) ∼ (x, 0, y′), (x, 1, y) ∼ (x′, 1, y) and

(x0, t, y0) ∼ (x0, 0, y0) for all x, x′ ∈ X, y, y′ ∈ Y and t ∈ I.
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Proposition 2.9. Let K1 be a simplicial complex on the vertex set {1, · · ·m}, K2 a simplicial

complex on the vertex set {ℓ+ 1, · · · , n}, and τ be a common face of K1 and K2 on the vertex

set {ℓ+ 1, · · · , m}, where ℓ < m < n. Then there is a homotopy equivalence

(CA, A)K1∪τK2 ≃ (A ∗A′) ( ((CA, A)K1
ìA′) ( (Aë (CA, A)K2)

where A = ∏
ℓ
i=1 Ai and A′ = ∏

n
i=m+1 Ai. □

The next main result is from (T1, Theorem 1.1).

Proposition 2.10. Let K1 be a simplicial complex on the vertex set {1, · · · , m}, K2 a

simplicial complex on the vertex set {ℓ+ 1, · · · , n}, and L a full subcomplex of both K1 and

K2 on the vertex set {ℓ+ 1, · · · , m}, where ℓ < m < n. Then there is a homotopy fibration

(A ∗A′) ( (G ìA′) ( (Aë H) → (CA, A)K1∪LK2 → (CA, A)L

where A = ∏
ℓ
i=1 Ai, A

′ = ∏
n
j=m+1 Ai, and G and H are the homotopy fibres of the

retractions (CA, A)K1 → (CA, A)L and (CA, A)K2 → (CA, A)L respectively. Further, this

fibration splits after looping to give a homotopy equivalence

Ω(CA, A)K1∪LK2 ≃ Ω(CA, A)L × Ω((A ∗A′) ( (G ìA′) ( (Aë H)).

Remark 2.11. The loop of the decomposition in Proposition 2.9 can be obtained from

Proposition 2.10. However, the proof of Proposition 2.10 requires that M is non-empty,

whereas in Proposition 2.9, τ can be the empty set.

The aim of Section 4 is to use the decompositions in Proposition 2.9 and Proposition

2.10 to show that the property of loop spaces of polyhedral products being in ∏P is

closed under taking pushouts of simplicial complexes over a common full

subcomplex. First, we give a decomposition of Ω(X ëY) for spaces X and Y. Observe

there is a projection map X ëY → Y given by projecting onto Y.

Lemma 2.12. Let X and Y be path-connected, CW-complexes. Then there exists a homotopy

fibration

X ∗ ΩY → X ëY → Y.

Furthermore, this splits after looping to give a homotopy equivalence

Ω(X ëY) ≃ Ω(X ∗ ΩY)× ΩY.
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Proof. Consider the commutative diagram

ΩY X × ΩY X

∗ X X × Y

Y Y Y

iX

∗ πY

πX

πX

iX

πΩY

where the columns are homotopy fibrations, iX is the inclusion and πX, πY and πΩY

are the projections onto X, Y and ΩY respectively. Observe that the homotopy

pushout of the top row is X ∗ ΩY, the homotopy pushout of the middle row is X ëY

and the induced map from X ëY to Y is the projection map. Therefore by (F, p.180),

there is a homotopy fibration

X ∗ ΩY → X ëY → Y.

Moreover, the projection X ëY → Y has a right homotopy inverse given by the

inclusion map Y ↪→ X ëY, which implies that there is a homotopy equivalence

Ω(X ëY) ≃ Ω(X ∗ ΩY)× ΩY.

Before determining conditions on X and Y for Ω(X ëY) to be in ∏P , we prove some

relations between spaces in
∨
W and spaces in ∏P .

Lemma 2.13. Let X be a space such that ΣX ∈
∨
W and let A1, · · · , Am be spaces in ∏P ,

then

Σ(X ' A1 ' · · · ' Am) ∈
∨

W .

Proof. We proceed by induction. First consider the case m = 1. Since A1 ∈ ∏P ,

ΣA1 ∈
∨
W . There is a homeomorphism Σ(X ' A1) ∼= X ' ΣA1. Therefore,

distributing the wedge sum over the smash product implies Σ(X ' A1) ∈
∨
W .

Now suppose the result is true for 1 f m f k − 1 and consider the case m = k. There

are homeomorphisms

Σ(X ' A1 ' · · · ' Am) ∼= Σ(A1 ' X ' A2 ' · · · ' Am) ∼= A1 ' Σ(X ' A2 ' · · · ' Am).

The inductive hypothesis implies Σ(X ' A2 ' · · · ' Am) ∈
∨
W . Therefore,

Σ(X ' A2 ' · · · ' Am) ≃ ΣW where W is a wedge of spheres. Hence, there is a

homotopy equivalence

Σ(X ' A1 ' · · · ' Am) ≃ X ' ΣW.
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Since ΣX ∈
∨
W by assumption, shifting the suspension coordinate and distributing

the smash product over the wedge sum implies X ' ΣW ∈
∨
W .

Lemma 2.14. Let X and Y be path-connected CW-complexes such that ΣX ∈
∨
W and

ΩY ∈ ∏P . Then

Ω(X ëY) ∈ ∏P .

Proof. By Lemma 2.12, Ω(X ëY) ≃ Ω(X ∗ ΩY)× ΩY. Since X ∗ ΩY ≃ Σ(X ' ΩY),

ΣX ∈
∨
W and ΩY ∈ ∏P , Lemma 2.13 implies Σ(X ' ΩY) ∈

∨
W . Therefore the

Hilton-Milnor theorem (M) implies Ω(Σ(X ' ΩY)) ∈ ∏P , and so

Ω(X ëY) ∈ ∏P .

Now we state a result of Porter (P, Theorem 1) which gives a loop space

decomposition of a wedge of spaces. Let X be a pointed space. Denote by X(k the

k-fold wedge sum of X with itself.

Lemma 2.15. Let X1, · · · Xm be path-connected CW-complexes. Then there exists a homotopy

fibration
m∨

k=2

∨

1fi1<···<ikfm

(ΣΩXi1 ' · · · ' ΩXik
)((k−1) →

m∨

i=1

Xi ↪→
m

∏
i=1

Xi.

Moreover, this splits after looping. □

Lemma 2.15 can be applied to show that if there are spaces Xi such that ΩXi ∈ ∏P ,

then the loop space of the wedge of the Xi’s is in ∏P .

Corollary 2.16. Let X1 · · · , Xn be spaces such that ΩXi ∈ ∏P . Then Ω (
∨n

i=1 Xi) ∈ ∏P .

Proof. By Lemma 2.15, there is a homotopy equivalence

Ω

(
m∨

i=1

Xi

)
≃

m

∏
i=1

ΩXi × Ω

(
m∨

k=2

∨

1fi1<···<ikfm

(ΣΩXi1 ' · · · ' ΩXik
)((k−1)

)
.

The product ∏
m
i=1 ΩXi is in ∏P since ∏P is closed under products, so consider the

complimentary factor. Since ΩXi1 , ΣΩXi1 ∈
∨
W . Lemma 2.13 then implies

ΣΩXi1 ' · · · ' ΩXik
∈
∨

W ,

and so
m∨

k=2

∨

1fi1<···<ikfm

(ΣΩXi1 ' · · · ' ΩXik
)((k−1) ∈

∨
W .

Therefore, by the Hilton-Milnor Theorem

Ω

(
m∨

k=2

∨

1fi1<···<ikfm

(ΣΩXi1 ' · · · ' ΩXik
)((k−1)

)
∈ ∏P .
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3 Closure of ∏P under retracts

3.1 Setup

In this section, homology will be assumed to have integer coefficients unless

otherwise stated. Let X ∈ ∏P , and suppose there is a space A which retracts off X,

that is, there exist maps f : A → X and g : X → A such that the diagram

A X

A

f

g

homotopy commutes. In this section, we will show that A is homotopy equivalent to a

subproduct of X.

The product decomposition of X implies there is a coalgebra isomorphism of H∗(X)

as a tensor product of exterior algebras corresponding to the spheres, and

single-variable polynomial rings corresponding to the loops on spheres. Consider the

composite φ : X
g
−→ A

f
−→ X. Observe that f ◦ g ◦ f ◦ g ≃ f ◦ g which implies that the

induced map φ∗ is an idempotent. To show that A is homotopy equivalent to a

subproduct of X, we will proceed in three stages. First, we consider the case where

H∗(A) contains a primitive generator in degree m for m ∈ {1, 2, 3, 6, 7, 14, 4m | m g 1},

then we will consider the case where H∗(A) contains a primitive generator in the

Hurewicz image in degree 4m + 2, where m g 2, m ̸= 3, and we will conclude by

considering the case where H∗(A) contains a primitive generator in degree m where m

is odd and m /∈ {1, 3, 7}.

Each case requires an adaptation of the same core idea, and the notation defined in

each subsection will be reused to reflect where the argument is the same. There is

some notation that will be universal which we now define. Let Y = Sn for n ∈ {1, 3, 7}

or Y = ΩSm for m /∈ {2, 4, 8}. Let mY be the number of instances of Y in the product

decomposition of X. In particular, write X as

X ≃
mY

∏
i=1

Yi × ∏
α′∈I ′

Zα′

where each Yi is an instance of Y in the product decomposition of X, and each Zα′ are

the spheres and loops on spheres that are not equal to Y. Denote by H the lowest

non-vanishing homology group of Y, and Hi the lowest non-vanishing homology

group of Yi. Note that H ∼= Hi
∼= Z for all i. Let γi be the primitive generator of H∗(X)
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which is the image of a generator γ′
i ∈ Hi under the map induced by the inclusion

Yi ↪→ X. We will define maps ρv : Y → X and ρ′v : X → Y such that the composite

Y
ρv
−→ X

φ
−→ X

ρ′v−→ Y is a homotopy equivalence. Since φ factors through A and A is a

H-space, this will imply that we obtain a homotopy equivalence A ≃ Y × A′ for some

space A′. An iterative approach will then be used to conclude that A ∈ ∏P .

3.2 Case 1

In this subsection, we implicitly fix Y to be either Y = Sn for n ∈ {1, 3, 7}, Y = ΩS4m+1

for m g 2, or Y = ΩS4m+3 for m ∈ {0, 1, 3}. We show that if the homology of A

contains a primitive generator in the same degree as H, then Y retracts off A.

Observe that in this case, the set {γ1, · · · , γmY
} forms a basis of primitives in Hn(X) if

Y = Sn, H4m(X) if Y = ΩS4m+1, or H4m+2(X) if Y = ΩS4m+3. Since φ∗ is a graded

coalgebra map, it maps primitive elements to primitive elements of the same degree,

and so φ∗(γi) = ∑
mY
j=1 zi,jγj, where zi,j ∈ Z for all j. Let BY ∈ MmY

(Z) be the matrix

with entries zi,j. Since φ∗ is an idempotent map, BY is an idempotent matrix.

Suppose BY is not the zero matrix. Since BY is idempotent, Lemma 2.1 implies that

there exists an element v = (y1, · · · , ymY
)T ∈ C(BY) which extends to a basis of ZmY .

Therefore, by Lemma 2.3, the greatest common divisor of the non-zero components

y1, · · · , ymY
is 1. By Bézout’s Lemma, for 1 f i f mY, there exists ci ∈ Z such that

∑
mY
i=1 ciyi = 1. Since v ∈ C(BY), Lemma 2.2 implies BYv = v. Let the vector v

correspond to the element ∑
mY
i=1 yiγi in H∗(X).

Let dk : Sn → Sn be the degree k map, and let pk : ΩSn → ΩSn be the kth power map.

Note that dk and pk both induce multiplication by k in H (in this case of pk, this

follows from the Hurewicz theorem). Let ψk be dk if Y is a sphere or pk if Y is the loops

on a sphere. Define a map ρv : Y → X as the composite

ρv : Y
∆
−→

mY

∏
i=1

Yi

mY
∏
i=1

ψyi

−−−→
mY

∏
i=1

Yi ↪→ X

where ∆ is the diagonal map, and the right map is the inclusion. Now define a map

ρ′v : X → Y as the composite

ρ′v : X
π
−→

mY

∏
i=1

Yi

mY
∏
i=1

ψci

−−−→
mY

∏
i=1

Yi
µ
−→ Y

where π is the projection, µ is some choice of mY-fold H-space multiplication on Y,

and the ci’s have the property that ∑
mY
i=1 ciyi = 1.
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Lemma 3.1. Suppose that BY is not the zero matrix. Then, the composite

e : Y
ρv
−→ X

φ
−→ X

ρ′v−→ Y

induces an isomorphism on H.

Proof. By definition, (ρv)∗ sends the generator γ ∈ H to the element v in H∗(X). Since

v is in the column space of BY, Lemma 2.2 implies that v is fixed by φ∗. By definition of

ρ′v, (ρ′v)∗ sends v to the generator γ ∈ H. Therefore, e∗ is an isomorphism on H.

Lemma 3.1 allows us to conclude that e is a homotopy equivalence.

Lemma 3.2. Let Y be a sphere Sm for m ∈ {1, 3, 7}, loops on a sphere of the form ΩS4m+1 for

m g 1, or ΩS4m+3 for m ∈ {0, 1, 3}. Suppose that H∗(A) contains a primitive generator in

degree m if Y is a sphere, in degree 4m if Y = ΩS4m+1, or in degree 4m + 2 if ΩS4m+3. Then

Y retracts off A.

Proof. Since Hn(A) contains a primitive generator, by definition of φ, the matrix BY is

non-zero. If Y is a sphere, then H is the only non-vanishing homology group of Y. As

e∗ is an isomorphism on H by Lemma 3.1 and Y is an H-space, e is a homotopy

equivalence. The map φ factors through A, and so Y retracts off A.

If Y = ΩS4m+1 or ΩS4m+3, then e induces an isomorphism on Hk(Y), where k = 4m if

Y = ΩS4m+1 and k = 4m + 2 if Y = ΩS4m+3. This implies that e induces an

isomorphism on Hk(Y; Z/pZ) for all primes p and rationally. Therefore when

localised at p or rationally, Theorem 2.4 implies e is a homotopy equivalence. Since e is

a homotopy equivalence localised at every prime and rationally, e is an integral

homotopy equivalence. Hence, Y retracts off A.

From the previous lemma, we obtain the following result.

Proposition 3.3. Let X ∈ ∏P and A be a space which retracts off X. Suppose that H∗(A)

contains a primitive generator in degree m where m ∈ {1, 2, 3, 6, 7, 14, 4m | m g 1}. Then

there is a homotopy equivalence

A ≃ Y × A′

where Y = Sm if m ∈ {1, 3, 7}, or Y = ΩSm+1 otherwise. Moreover, A′ retracts off X, and

Hm(A′) contains one fewer primitive generator than Hm(A).

Proof. Since there is a primitive generator of degree m, the matrix BY is non-zero, and

so Lemma 3.2 implies that Y retracts off A. This implies there is a map r : A → Y
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which has a right homotopy inverse. Let F be the homotopy fibre of g and consider

the homotopy fibration diagram

F X′ A′

F X A

Y Y

g

rg◦r

where A′ and X′ are the homotopy fibres of r and g ◦ r respectively. Since A retracts

off X, it is an H-space. The right homotopy inverse for r implies there is a homotopy

equivalence A ≃ Y × A′. Observe that A′ has the same homology as A except with

one less primitive generator in degree m. Moreover, since g has a right homotopy

inverse and X is an H-space, there are homotopy equivalences

X ≃ A × F ≃ Y × A′ × F. Hence, A′ retracts off X.

3.3 Case 2

In this subsection, fix Y to be ΩS4n+3 for n g 2, n ̸= 3. We show that if the homology

of A contains a primitive generator in H4n+2(A) which is in the Hurewicz image, then

ΩS4n+3 retracts off A. In this case, the set {γ1, · · · , γmY
} does not form a basis of

primitives in H4n+2(X), since there may be ΩS2n+2 terms in the product

decomposition for X. Let Y = ΩS2n+2. Write X as

X ≃
mY

∏
i=1

ΩS4n+3
i ×

mY

∏
j=1

ΩS2n+2
j × ∏

α′∈I ′

Zα′

where each Zα′ are the spheres and loops on spheres that are not equal to ΩS4n+3 or

ΩS2n+2. Let γi be the primitive generator of H∗(X) which is the image of a generator

γ′
i ∈ H4n+2(ΩS2n+2) under the map induced by the inclusion ΩS2n+2

i ↪→ X. The set

{γ1, · · · , γmY
, γ1, · · · , γmY

} forms a basis of primitives in H4n+2(X).

Consider a primitive generator a ∈ H4n+2(A) such that a is in the Hurewicz image.

Observe that f∗(a) is primitive, in the Hurewicz image, and since f∗ is injective, f∗(a)

is non-zero. By Lemma 2.8, f∗(a) = ∑
mY
i=1 yiγi + ∑

mY
j=1 2yjγj. Let

v = (y1, · · · , ymY
, 2y1, · · · , 2ymY

) correspond to the element f∗(a). By definition of φ,

im(φ∗) = im( f∗), and f∗(a) is a generator of im(φ∗). Therefore, by Lemma 2.3, the

greatest common divisor of the components of v is 1. By Bézout’s Lemma, for

1 f i f mY and 1 f j f mY, there exists ci, cj ∈ Z such that ∑
mY
i=1 ciyi + ∑

mY
j=1 2cjyj = 1.

Since v ∈ im(φ), Lemma 2.2 implies φ∗( f∗(a)) = f∗(a).
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Let λk be the composite

λk : ΩS4n+3 Ω[id,id]
−−−−→ ΩS2n+2 pk

−→ ΩS2n+2.

By Lemma 2.7, λk maps γ to 2kγ. Define a map ρv : ΩS4n+3 → X as the composite

ρv : ΩS4n+3 ∆
−→

mY

∏
i=1

ΩS4n+3
i ×

mY

∏
j=1

ΩS4n+3
j

mY
∏
i=1

pyi
×

m
Y

∏
j=1

λyj

−−−−−−−→
mY

∏
i=1

ΩS4n+3
i ×

mY

∏
j=1

ΩS2n+2
j ↪→ X

where ∆ is the diagonal map, and the right map is the inclusion. Now define a map

ρ′v : X → ΩS4n+3 as the composite

ρ′v : X
π
−→

mY

∏
i=1

ΩS4n+3
i ×

mY

∏
j=1

ΩS2n+2
j

mY
∏
i=1

id×
m

Y
∏
j=1

h2

−−−−−−→
mY

∏
i=1

ΩS4n+3
i ×

mY

∏
j=1

ΩS4n+3
j

mY
∏
i=1

pci
×

m
Y

∏
j=1

pcj

−−−−−−−→
mY

∏
i=1

ΩS4n+3
i ×

mY

∏
j=1

ΩS4n+3
j

µ
−→ ΩS4n+3

where π is the projection, µ is some choice of mY-fold H-space multiplication on

ΩS4n+3, and the ci’s and cj’s have the property that ∑
mY
i=1 ciyi + ∑

mY
j=1 2cjyj = 1. By

definition, (ρv)∗ sends the generator γ ∈ H to the element v in H∗(X), and by

definition of ρ′v, (ρ′v)∗ sends v to the generator γ ∈ H. Therefore, arguing as in Lemma

3.1, Lemma 3.2 and Proposition 3.3, we obtain the following.

Proposition 3.4. Let X ∈ ∏P and A be a space which retracts off X. Suppose H4n+2(A),

n g 2, n ̸= 3, contains a primitive generator in the Hurewicz image. Then there is a homotopy

equivalence

A ≃ ΩS4n+3 × A′

where A′ retracts off X, and H4n+2(A′) contains one fewer primitive generator in the

Hurewicz image than H4n+2(A). □

3.4 Case 3

In this subsection, fix Y to be ΩS2n for n /∈ {1, 2, 4}. We show that if the homology of

A contains a primitive generator in H2n−1(A), then ΩS2n retracts off A. Observe that

in this case, the set {γ1, · · · , γmY
} forms a basis of primitives in H2n−1(X). Therefore,

if H2n−1(A) contains a primitive generator, arguing as in Subsection 3.2, we obtain

1. a generator of im(φ∗), ∑
mY
i=1 yiγi ∈ H2n−1(X),

2. a vector v = (y1, · · · , ymY
) corresponding to the generator in (1) such that the

greatest common divisor of the non-zero components is 1;
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3. a composite

ρv : ΩS2n ∆
−→

mY

∏
i=1

ΩS2n
i

pyi−→
mY

∏
i=1

ΩS2n
i ↪→ X

such that a generator γ ∈ H2n−1(ΩS2n) maps to v;

4. a composite

ρ′v : X
π
−→

mY

∏
i=1

ΩS2n
i

mY
∏
i=1

pci

−−−→
mY

∏
i=1

ΩS2n
i

µ
−→ ΩS2n

where π is the projection, µ is some choice of mY-fold H-space multiplication on

ΩS2n, the ci’s have the property that ∑
mY
i=1 ciyi = 1, and the map (ρ′v)∗ maps v to

γ;

5. the composite e : (ρ′v)∗ ◦ φ∗ ◦ (ρv)∗ is an isomorphism on H2n−1(ΩS2n).

In Subsection 3.2, this was enough to conclude that the corresponding loop on sphere

retracted off of A. In this case, e may not be a homotopy equivalence since ΩS2n is not

atomic at odd primes. However, we can adjust the maps ρv and ρ′v to define a map e′

which is a homotopy equivalence. In particular, these maps will agree with ρv and ρ′v
respectively in degree 2n − 1, but may differ in degree 4n − 2 so that e′ is an

isomorphism on both H2n−1(ΩS2n) and H4n−2(ΩS2n).

Since the generators of H∗(ΩS2n) in degree 2n − 1 and 4n − 2 are divisors of elements

in the Hurewicz image, the map induced by the kth power map sends a generator

γ ∈ H2n−1(ΩS2n) to kγ, and a generator δ ∈ H4n−2(ΩS2n) to kδ. Recall that

v = (y1, · · · , ymY
)T, and (ρv)∗ maps a generator γ ∈ H2n−1(ΩS2n) to v in H∗(X). Let δi

be the primitive generator of H4n−2(X) which is the image of a generator

δ′i ∈ H4n−2(ΩS2n
i ) under the map induced by the inclusion ΩS2n

i ↪→ X. By definition

of ρv, for a suitable choice of generator δ ∈ H4n−2(ΩS2n), (ρv)∗ maps δ to the element

∑
mY
i=1 yiδi.

Let Y = ΩS4n−1. Write X as

X ≃
mY

∏
i=1

ΩS2n
i ×

mY

∏
j=1

ΩS4n−1
j × ∏

α′∈I ′

Zα′

where each Zα′ are the spheres and loops on spheres that are not equal to ΩS2n or

ΩS4n−1. Let δi be the primitive generator of H4n−2(X) which is the image of a

generator δ
′
i ∈ H4n−2(ΩS4n−1

i ) under the map induced by the inclusion ΩS4n−1
i ↪→ X.

Observe that the set {δ1, · · · , δmY
, δ1, · · · , δmY

} forms a basis of the primitives in

H4n−2(X). Let w = (y1, · · · , ymY
, 0, · · · , 0)T be the vector defined by taking the

coefficients of ∑
mY
i=1 yiδi. Since w is primitive, φ∗ maps w to an element of the form

∑
mY
i=1 y′iδi + ∑

mY
j=1 yiδj. Let w′ = (y′1, · · · , y′mY

, y1, · · · , ymY
)T be the vector containing the
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coefficients of ∑
mY
i=1 y′iδi + ∑

mY
j=1 yiδj. The components of w′ can be related to the

components of v.

Lemma 3.5. The components yi are equal to y′i modulo 2. Moreover, there exists 1 f j f mY

such that yj is odd.

Proof. Since the vector v extends to a basis of ZmY , by Lemma 2.3, at least one of

y1, · · · , ym must be odd. Consider a component yi of v which is odd, and consider the

composite

ψ : ΩS2n ρv
−→ X

φ
−→ X

πi−→ ΩS2n
i

where πi is the projection map. By definition, ψ∗ sends the generator

γ ∈ H2n−1(ΩS2n) to yiγ, and the generator δ ∈ H4n−2(ΩS2n) to y′iδ. Since yi is odd, ψ∗

is an isomorphism in degree 2n − 1, and so by Theorem 2.4, ψ is a 2-local homotopy

equivalence. This implies that integrally, y′i must be odd and so y′i = yi + 2ki for some

ki ∈ Z, and this holds for all i for which yi is odd.

Now fix a component yi of v which is odd, and consider a component yj which is

even. Consider the composite

ψ′ : ΩS2n ρv
−→ X

φ
−→ X

πi,j
−→ ΩS2n

i × ΩS2n
j

µ
−→ ΩS2n

where πi,j is the projection onto ΩS2n
i × ΩS2n

j and µ is the loop space multiplication.

By definition, (ψ′)∗ sends the generator γ ∈ H2n−1(ΩS2n) to (yi + yj)γ and the

generator δ ∈ H4n−2(ΩS2n) to (y′i + y′j)δ. Since yi is odd and yj is even, yi + yj is odd.

Therefore, (ψ′)∗ on H2n−1(ΩS2n; Z/2Z) is an isomorphism, and so by Theorem 2.4, ψ′

is a 2-local homotopy equivalence. Therefore, y′i + y′j must be odd. As yi is odd by

assumption, y′i is odd by the previous paragraph, which implies that y′j must be even.

This implies that y′j = yj + 2k j for some k j ∈ Z, and this holds for all j for which yj is

even.

Lemma 3.5 implies that w′ = (y1 + 2k1, · · · , ymY
+ 2kmY

, y1, · · · , ymY
) for

k1, · · · , kmY
∈ Z. The next result shows that there exists a vector w ∈ H4n−2(X) with

similar properties to v. For two vectors u = (x1, · · · , xn)T and u′ = (x′1, · · · , x′n)
T, we

say that u and u′ are equal modulo 2 if xi
∼= x′i mod 2 for all i.

Lemma 3.6. There exists a vector w which is equal to w′ modulo 2, and whose non-zero

components have greatest common divisor 1. Moreover, φ∗(w) = w.

Proof. Recall that yi + 2ki = y′i. Let d be the greatest common divisor of the non-zero

components of y1 + 2k1, · · · , ymY
+ 2kmY

, y1, · · · , ymY
. Then w′ = dw for some vector w.

Lemma 2.3 implies that one of y1, · · · , ymY
is odd, and so it follows that d is odd. By
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definition of w, the greatest common divisor of the non-zero components of w is 1.

Since φ∗ is an idempotent map,

dw = w′ = φ∗(w
′) = dφ∗(w),

which implies that φ∗(w) = w. Moreover, since d is odd, it follows that w is equal to w′

modulo 2.

Lemma 3.6 implies there exists a vector

w = (y1 + 2k′1, · · · , ymY
+ 2k′mY

, y1 + 2k1, · · · , ymY
+ 2kmY

) for

k′1, · · · , k′mY
, k1, · · · , kmY

∈ Z such that the greatest common divisor of

y1 + 2k′1, · · · , ymY
+ 2k′mY

, y1 + 2k1, · · · , ymY
+ 2kmY

is 1. For an integer k, let λk : ΩS4n−1 → ΩS2n be pk ◦ Ω[id, id], where pk is the kth

power map and id : S2n → S2n is the identity map. By Lemma 2.7, (Ω[id, id])∗ sends a

generator τ ∈ H4n−2(ΩS4n−1) to the element 2δ ∈ H4n−2(ΩS2n) where δ is a generator

of H4n−2(ΩS2n). Therefore by definition of λk, (λk)∗ sends τ to 2kδ. Let

h2 : ΩS2n → ΩS4n−1 be the 2nd James-Hopf invariant. By Lemma 2.6, (h2)∗ sends δ to

τ. For an integer k, let ηk be the composite

ηk : ΩS2n h2−→ ΩS4n−1 λk−→ ΩS2n.

The map (ηk)∗ is trivial on H2n−1(ΩS2n) and sends δ to 2kδ. We adjust the map ρv by

defining the map ρv as the composite

ρv : ΩS2n ∆
−→

mY

∏
i=1

ΩS2n ×
mY

∏
j=1

ΩS2n

mY
∏
i=1

∆×
m

Y
∏
j=1

h2

−−−−−−→
mY

∏
i=1

(ΩS2n × ΩS2n)×
mY

∏
j=1

ΩS4n−1

mY
∏
i=1

(pyi
×ηk′

i
)×

m
Y

∏
j=1

pyj+2kj

−−−−−−−−−−−−→
mY

∏
i=1

(ΩS2n ×ΩS2n)×
mY

∏
j=1

ΩS4n−1

mY
∏
i=1

µ×
m

Y
∏
j=1

id

−−−−−−→
mY

∏
i=1

ΩS2n ×
mY

∏
j=1

ΩS4n−1
↪→ X.

By definition, ρv sends the generator γ ∈ H2n−1(ΩS2n) to v, and the generator

δ ∈ H4n−2(ΩS2n) to w.

Lemma 3.7. Suppose that H2n−1(A), n /∈ {1, 2, 4} contains a primitive generator. Then the

composite

e : ΩS2n ρv−→ X
φ
−→ X

ρ′v−→ ΩS2n

induces an isomorphism on H2n−1(ΩS2n). Moreover, (e)∗ maps the generator

δ ∈ H4n−2(ΩS2n) to an element of the form (2k
′
+ 1)δ for some k

′
∈ Z.
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Proof. The map (ηk)∗ is trivial on H, and so (ρv)∗ maps the generator γ ∈ H to v. The

element v is fixed by φ∗. The map (ρ′v)∗ sends v to γ ∈ H. Therefore, e induces an

isomorphism on H2n−1(ΩS2n). By Theorem 2.4, the map e is a 2-local homotopy

equivalence. Hence, (e)∗ maps δ ∈ H4n−2(ΩS2n) to an element of the form (2k + 1)δ

for some k ∈ Z.

Now we adjust ρ′v to obtain an isomorphism on the bottom two non-vanishing

degrees in homology. Recall w = (y1 + 2k′1, · · · , ymY
+ 2k′mY

, y1 + 2k1, · · · , ymY
+ 2kmY

),

and the greatest common divisor of the non-zero components of w is 1. Therefore, by

Bézout’s Lemma, for 1 f i f mY, and 1 f j f mY there exist c′i, cj ∈ Z such that

∑
mY
i=1 c′i(yi + 2k′i) + ∑

mY
j=1 cj(yj + 2kj) = 1. Let λ′ be the composite

λ′ :
mY

∏
i=1

ΩS2n ×
mY

∏
j=1

ΩS4n−1

mY
∏
i=1

h2×
m

Y
∏
j=1

id

−−−−−−→
mY

∏
i=1

ΩS4n−1 ×
mY

∏
j=1

ΩS4n−1

mY
∏
i=1

pc′
i
×

m
Y

∏
j=1

pcj

−−−−−−−→
mY

∏
i=1

ΩS4n−1 ×
mY

∏
j=1

ΩS4n−1 µ
−→ ΩS4n−1

λ
−k

′

−−→ ΩS2n.

By definition, λ′ sends the element w in H4n−2

(
∏

mY
i=1 ΩS2n

i × ∏
mY
j=1 ΩS4n−1

j

)
to −2kδ,

and is trivial in degree 2n − 1. Now adjust the map ρ′v by defining a map ρ′v as the

composite

ρ′v : X
π
−→

mY

∏
i=1

ΩS2n
i ×

mY

∏
j=1

ΩS4n−1
j

∆
−→

(
mY

∏
i=1

ΩS2n
i ×

mY

∏
j=1

ΩS4n−1
j

)
×

(
mY

∏
i=1

ΩS2n
i ×

mY

∏
j=1

ΩS4n−1
j

)

π×λ′

−−−→

(
mY

∏
i=1

ΩS2n
i

)
× ΩS2n ρ′v×id

−−−→ ΩS2n × ΩS2n µ
−→ ΩS2n.

Using ρv and ρ′v, we can now conclude that ΩS2n retracts off A when Y.

Lemma 3.8. Suppose that H2n−1(A) contains a primitive generator where n /∈ {1, 2, 4}.

Then ΩS2n retracts off A.

Proof. By definition of ρv, the induced map (ρv)∗, sends the generator

γ ∈ H2n−1(ΩS2n) to v, and the generator δ ∈ H4n−2(ΩS2n) to the element w. By

construction, the induced map ρ′v maps the element v to the generator

γ ∈ H2n−1(ΩS2n), and maps the element w to the generator δ ∈ H4n−2(ΩS2n).

Therefore since v and w are fixed by φ∗, the composite

e′ : ΩS2n ρv−→ X
φ
−→ X

ρ′v−→ ΩS2n
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induces an isomorphism on H2n−1(ΩS2n) and H4n−2(ΩS2n). By Theorem 2.4 at the

prime 2, the map e′ is a 2-local homotopy equivalence. Therefore, e′ is also a rational

homotopy equivalence. The splitting of ΩS2n in Theorem 2.5 and atomicity of loops

on odd spheres localised at an odd prime in Theorem 2.4 implies that e′ is a homotopy

equivalence when localised at any odd prime. Since e′ is a homotopy equivalence

localised at every prime and rationally, e′ is an integral homotopy equivalence.

Therefore, since φ factors through A, ΩS2n retracts off A.

Now arguing as in Proposition 3.3, we obtain the following result.

Proposition 3.9. Let X ∈ ∏P and A be a space which retracts off X. Suppose that

H2n−1(A) contains a primitive generator where n /∈ {1, 2, 4}. Then there is a homotopy

equivalence

A ≃ ΩS2n × A′

where A′ retracts off X and H2n−1(A′) contains one fewer primitive generator than

H2n−1(A). □

3.5 Conclusion of proof

We can combine the work of the previous sections to conclude that ∏P is closed

under retracts.

Theorem 3.10. Let X ∈ ∏P , and let A be a space which retracts off X. Then A ∈ ∏P .

Proof. Let n0 be the degree of the lowest non-trivial homology group of A, and let k0

be the rank of Hn0(A). Observe that since n0 is the lowest non-trivial degree, each of

the primitive generators of Hn0(A) are in the Hurewicz image. Let Y = Sn0 if

n0 ∈ {1, 3, 7} or Y = ΩSn0+1 otherwise. We claim that A ≃
k0

∏
i=1

Y × Z0 where Z0 has no

primitive generators in degree n0, Z0 retracts off X.

We proceed by induction. Suppose k0 = 1. Then by Proposition 3.3, Proposition 3.4 or

Proposition 3.9 (depending on the parity of n0), there is a homotopy equivalence

A ≃ Y × Z0

where Z0 retracts off X, and Hn0(Z0) contains one fewer primitive generator than

Hn0(Z0). Since k0 = 1, Z0 contains no primitive generators in degree n0.

Now suppose the result is true for m − 1 and suppose k0 = m. Then by Proposition

3.3, Proposition 3.4 or Proposition 3.9, there is a homotopy equivalence

A ≃ Y × A′
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where A′ retracts off X, and Hn0(A′) contains one fewer primitive generator than

Hn0(A′). Therefore, the inductive hypothesis implies that there is a homotopy

equivalence A′ ≃ ∏
m−1
i=1 Y × Z0, where Z0 retracts off X and has no primitive

generators in degree n0. Hence A ≃ ∏
m
i=1 Y × Z0 as claimed.

Observe that Z0 is more highly connected than A. Let n1 be the degree of the lowest

non-trivial homology group of Z, and let k1 be the rank of Hn1
(Z0). We can repeat this

argument to obtain a homotopy equivalence Z0 ≃ P × Z1 where P is a product of

spheres or loops on spheres whose lowest non-trivial homology group is n1, Z1

retracts off X, and Z1 is more highly connected than Z0. Since A is of finite type, we

can iteratively repeat this argument for each degree of H∗(A) containing a primitive

generator. Therefore, we obtain that A ∈ ∏P .

4 Loop space decompositions of pushouts of polyhedral

products as a product of spheres and loops on spheres

Recall from the introduction that
∨
W is the collection of topological spaces which are

homotopy equivalent to a finite type wedge of simply connected spheres, and ∏P is

the collection of H-spaces which are homotopy equivalent to a finite type product of

spheres and loops on simply connected spheres. The purpose of this section is to

apply Theorem 3.10 to prove that under mild hypotheses, if a simplicial complex K

can be decomposed as a pushout of simplicial complexes for which the loop space of

the associated polyhedral product is in ∏P , then Ω(CA, A)K ∈ ∏P .

Theorem 4.1. Let K be a simplicial complex defined as the pushout

L K1

K2 K

where either L = ∅ or L is a proper full subcomplex of K1 and K2. If ΣAi ∈
∨
W for all i,

Ω(CA, A)K1 ∈ ∏P and Ω(CA, A)K2 ∈ ∏P , then Ω(CA, A)K ∈ ∏P .

Proof. If L is the empty set, since K = K1 ∪L K2, by Proposition 2.9, we obtain a

homotopy equivalence

Ω(CA, A)K ≃ Ω((A ∗A′) ( ((CA, A)K1
ìA′) ( (Aë (CA, A)K2)) (4.1)

where A and A′ are a product of Ai’s. If L is a full subcomplex of K1 and K2, since

K = K1 ∪L K2, the simplicial complex K satisfies the hypothesis of Proposition 2.10, so
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there is a homotopy equivalence

Ω(CA, A)K ≃ Ω(CA, A)L × Ω
(
(A ∗A′) ( (G ìA′) ( (Aë H)

)
(4.2)

where A and A′ are a product of Ai’s, and G and H are the homotopy fibres of the

retractions f1 : (CA, A)K1 → (CA, A)L and f2 : (CA, A)K2 → (CA, A)L respectively.

Since Ω(CA, A)L retracts off Ω(CA, A)K1 , Theorem 3.10 implies that

Ω(CA, A)L ∈ ∏P . By Corollary 2.16, to show that the decompositions in (4.1) and

(4.2) are in ∏P , it suffices to show that each of Ω(A ∗A′), Ω((CA, A)K1 ìA′),

Ω(Aë (CA, A)K2) are in ∏P for (4.1), and additionally Ω(G ìA′) and Ω(Aë H) are

in ∏P for (4.2).

Since A and A′ are products of A’s and ΣA ∈
∨
W by assumption, it follows that

ΣA ∈
∨
W , ΣA′ ∈

∨
W and A ∗A′ ∈

∨
W . Therefore, the Hilton-Milnor theorem

implies that Ω(A ∗A′) ∈ ∏P . Since Ω(CA, A)K1 ∈ ∏P and Ω(CA, A)K2 ∈ ∏P by

hypothesis, and ΣA, ΣA′ ∈
∨
W , by Lemma 2.14, Ω((CA, A)K1 ìA′) ∈ ∏P and

Ω(Aë (CA, A)K2) ∈ ∏P . Therefore, if L is the empty set, then Ω(CA, A)K ∈ ∏P .

Now consider G ìA′. By Lemma 2.14, to show Ω(G ìA′) ∈ ∏P , it suffices to show

that ΩG ∈ ∏P . The map f1 : (CA, A)K1 → (CA, A)L has a right homotopy inverse,

which implies that there is a homotopy equivalence Ω(CA, A)K1 ≃ Ω(CA, A)L × ΩG.

Therefore ΩG retracts off Ω(CA, A)K1 . Since Ω(CA, A)K1 ∈ ∏P by hypothesis,

Theorem 3.10 implies ΩG ∈ ∏P . A similar argument shows that Ω(Aë H) ∈ ∏P .

Hence Ω(CA, A)K ∈ ∏P .

The next result will be used to show that if K is the k-skeleton of a simplex, then the

loop space of certain polyhedral products is in ∏P . The following result was first

proved by Porter (P, Theorem 1) in the (CΩA, ΩA)K case, and was generalised

independently by (GT1, Theorem 1.1) and (IK1, Theorem 1.7) for general polyhedral

products of the form (CA, A)K.

Proposition 4.2. Let K be the k-skeleton of ∆m−1. Then there is a homotopy equivalence

(CA, A)K ≃
m∨

j=k+2


 ∨

1fi1<···<ijfm

(Σk+1Ai1 ' · · · ' Aij
)((

j−1
k+1)


 .

□

This proposition can be used to prove the following lemma.

Lemma 4.3. Let K be the k-skeleton of ∆m−1 and A1, · · · , Am be spaces such that

ΣAi ∈
∨
W for all i, then (CA, A)K ∈

∨
W .

Proof. Since ΣAi ∈
∨
W for all i, by shifting the suspension coordinate it follows that

Σk+1Ai1 ' · · · ' Aij
∈
∨
W .
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For a general simplicial complex K, a general decomposition of K will be required in

order to apply Theorem 4.1. Let V(K) be the vertex set of K and for a subset S ¦ V(K),

let KS be the full subcomplex of K on the vertices of S. For a vertex v ∈ V(K), denote

by N(v) the set of vertices adjacent to v in the 1-skeleton of K.

Lemma 4.4. Let K be a simplicial complex and v ∈ V(K). Then K can be written as the

pushout

KN(v) Kv∪N(v)

KV(K)\{v} K.

Moreover, KN(v) is a full subcomplex of both Kv∪N(v) and KV(K)\{v}.

Proof. Since KV(K)\{v} contains every simplex which does not contain the vertex v and

Kv∪N(v) contains every simplex containing v, Kv∪N(v) ∪ KV(K)\{v} = K.

Clearly, KN(v) ¦ Kv∪N(v) ∩ KV(K)\{v}, so let σ ∈ Kv∪N(v) ∩ KV(K)\{v}. Since σ ∈ Kv∪N(v),

σ must have vertices in v ∪ N(v). However since σ ∈ KV(K)\{v}, none of the vertices

can be v. Hence Kv∪N(v) ∩ KV(K)\{v} ¦ KN(v), and so Kv∪N(v) ∩ KV(K)\{v} = KN(v).

By definition, the subcomplex KN(v) contains every simplex in K on the vertex set

N(v). Therefore, it is a full subcomplex of both Kv∪N(v) and KV(K)\{v}.

We now prove Theorem 1.1. Recall that k g 0, and let K be the k-skeleton of a flag

complex on the vertex set [m]. Let A1, · · · , Am be path connected CW-complexes such

that ΣAi ∈
∨
W for all i. Then we wish to prove that Ω(CA, A)K ∈ ∏P . A dominating

vertex of K is a vertex v such that N(v) = V(K) \ {v}. In other words, v is adjacent to

every other vertex in the 1-skeleton of K.

Proof of Theorem 1.1. We proceed by strong induction. If K has one vertex, then

(CX, X)K is contractible, and so Ω(CX, X)K ∈ ∏P .

Now suppose K has m vertices, and the result is true for all n < m. Since K is the

k-skeleton of a flag complex, if every vertex of K is a dominating vertex, then K is the

k-skeleton of a simplex. In this case, Lemma 4.3 implies that Ω(CA, A)K ∈ ∏P .

Therefore, suppose there exists a vertex v ∈ V(K) such that v is not a dominating

vertex of K. By Lemma 5.4, K can be written as the pushout

KN(v) Kv∪N(v)

KV(K)\{v} K
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where KN(v) is a full subcomplex of both Kv∪N(v) and KV(K)\{v}. Since v is not a

dominating vertex, Kv∪N(v) is not the whole of K, and so Kv∪N(v) and KV(K)\{v} are

simplicial complexes with strictly fewer vertices than K. Therefore, by the inductive

hypothesis, Ω(CA, A)Kv∪N(v) ∈ ∏P and Ω(CA, A)KV(K)\{v} ∈ ∏P . Hence, Theorem 4.1

implies that Ω(CA, A)K ∈ ∏P .

Remark 4.5. In principle, one could iteratively use Proposition 2.9, Proposition 2.10

and Lemma 5.4 to obtain an explicit decomposition for (CX, X)K. However, in

practice, this process would be unwieldy.

Theorem 1.1 also has consequences for other polyhedral products associated to the

k-skeleton of flag complexes.

Lemma 4.6. Let K be a simplicial complex on the vertex set [m] and let (X, A) be any

sequence of pointed, path-connected CW-pairs. Denote by Yi the homotopy fibre of the

inclusion Ai → Xi. Suppose Ω(CY, Y)K ∈ ∏P and for 1 f i f m, ΩXi ∈ ∏P for all i.

Then Ω(X, A)K ∈ ∏P .

Proof. By (HST, Theorem 2.1), there is a homotopy fibration

(CY, Y)K → (X, A)K →
m

∏
i=1

Xi

which splits after looping. Therefore, there is a homotopy equivalence

Ω(X, A)K ≃
m

∏
i=1

ΩXi × Ω(CY, Y)K.

By assumption, ΩXi ∈ ∏P for all i and Ω(CY, Y)K ∈ ∏P , and so

Ω(X, A)K ∈ ∏P .

When K is the k-skeleton of a flag complex, Theorem 1.1 and Lemma 4.6 implies the

following result.

Corollary 4.7. Let K be the k-skeleton of a flag complex on the vertex set [m]. Let (X, A) be

any sequence of pointed, path-connected CW-pairs, and denote by Yi the homotopy fibre of the

inclusion Ai ↪→ Xi. Suppose ΩXi ∈ ∏P for all i and ΣYi ∈
∨
W for all i. Then

Ω(X, A)K ∈ ∏P .

Proof. Since ΣYi ∈
∨
W for all i, Theorem 1.1 implies that Ω(CY, Y)K ∈ ∏P . By

assumption ΩXi ∈ ∏P for all i, so Lemma 4.6 implies that Ω(X, A)K ∈ ∏P .

Corollary 4.7 applies to more examples, as follows.
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Corollary 4.8. Let K be the k-skeleton of a flag complex on the vertex set [m], and for

1 f i f m, let ni ∈ N ∪ {∞} and mi ∈ N with mi < ni. Let (Xi, Ai) = (CPni , CPmi) or

(Xi, Ai) = (CPni , ∗) for all i. Then Ω(X, A)K ∈ ∏P .

Proof. There are homotopy equivalences ΩCPk ≃ S1 × ΩS2k+1 and ΩCP∞ ≃ S1.

Therefore, ΩCPni ∈ ∏P for all i. First consider a pair of the form (CPni , ∗). The

homotopy fibre Yi of the inclusion of the basepoint into CPni is ΩCPni , and so

Yi ∈ ∏P . Hence, ΣYi ∈
∨
W .

Now consider a pair of the form (CPni , CPmi). Suppose ni = ∞. In this case, there is a

standard homotopy fibration

S2k+1 → CPk → CP∞,

and ΣS2k+1 ∈
∨
W . Now suppose ni ̸= ∞. Consider the homotopy fibration diagram

S2m+1 × ΩS2n+1 S2m+1 S2n+1

Yi CPmi CPni

CP∞ CP∞

∗

where the maps in the bottom square are all inclusions, and the top map in the top

right square is null homotopic since m < n. The top right square is a homotopy

pullback, implying that Yi ≃ S2m+1 × ΩS2n+1. Therefore, Yi ∈ ∏P , and so ΣYi ∈
∨
W .

Hence, ΣYi ∈
∨
W for all i, and Lemma 4.7 implies that Ω(X, A)K ∈ ∏P .
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Chapter 3

Paper 2 - Loop space decompositions

of moment-angle complexes

associated to two dimensional

simplicial complexes

1 Introduction

Polyhedral products are a natural subspace of the Cartesian product which are

indexed by the face poset of a simplicial complex. They have generated much interest

due to their far reaching applications across mathematics (see (BBC)). Let K be a

simplicial complex on the vertex set [m], and for 1 f i f m, let (Xi, Ai) be a pair of

pointed CW-complexes, where Ai is a pointed CW-subcomplex of Xi. The polyhedral

product associated to K is

(X, A)K =
⋃

σ∈K

(
m

∏
i=1

Yσ
i

)
,

where Yσ
i = Xi if i ∈ σ, and Yσ

i = Ai if i /∈ σ. An important special case, which

appears in toric topology, is when (Xi, Ai) = (D2, S1) for all i. These polyhedral

products are called moment-angle complexes, and are denoted ZK.

One particular problem associated to moment-angle complexes is understanding their

loop spaces. In the case that K is a flag complex, the loop homology of moment-angle

complexes models commutator subalgebras of algebraic analogues of right angled

Coxeter groups (GPTW). More generally, for any simplicial complex K, the loop space

of the corresponding moment-angle complex is related to a certain diagonal subspace

arrangement (D). When K is flag, most homotopical and homological information

about ΩZK is known. In particular, a coarse description of ΩZK was given in (S),
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which was upgraded to an explicit decomposition in (V). This allowed for a complete

description of H∗(ΩZK; R) as an algebra, where R is any commutative ring with unit

(V). Another interesting case is when K is a 1-dimensional simplicial complex (a

graph). In this case, it was shown in (S) that ΩZK decomposes as a finite type product

of spheres and loops on spheres. In particular, this implies that the homology of ΩZK

is torsion free. In this paper, we study the case of a 2-dimensional simplicial complex,

and give a coarse description of ΩZK in this case. The homology of ΩZK in this case

can contain torsion, and this will require the introduction of certain indecomposable

torsion spaces which have been considered in (CMN1; CMN2; C). We also give a

coarse description of ΩZK as a product of spheres and loops on spheres after

localising away from a finite set of primes, under conditions on the rational

cohomology of certain full subcomplexes of K.

It is useful to identify two families of H-spaces. For a collection of topological spaces

X , let ∏X be the collection of spaces homotopy equivalent to a finite type product of

spaces in X . Let P := {S1, S3, S7, ΩSn | n g 2, n /∈ {2, 4, 8}}. In (S), it was shown that

∏P is closed under retracts, and this was the key ingredient in proving coarse

descriptions of ΩZK, in the case that K is the k-skeleton of a flag complex. In this

paper, we extend this to include torsion spaces. Denote the mod pr Moore space by

Pn(pr), which is the mapping cone of the degree pr map on Sn−1. By (HW, Theorem

1.1), for a finite type H-space X localised at a prime p, there is a unique decomposition

of X, up to homotopy, as a finite type product of indecomposable spaces. Let T be the

collection of indecomposable spaces which appear in the decomposition of the loop

space of a wedge of Moore spaces of the form
∨m

i=1 Pni(pri
i ), where m g 2, ni g 3, pi is

a prime and ri g 1. Through an adaptation of the argument in (S), we will show in

Section 4 that ∏(P ∪ T ) is also closed under retracts. This is the key technical result

which is required to prove the main result of this paper.

Theorem 1.1 (Theorem 6.4 in the text). Let K be a 2-dimensional simplicial complex. Then

ΩZK ∈ ∏(P ∪ T ).

In Section 3, a collection of co-H spaces,
∨
(W ∪M), related to ∏(P ∪ T ) will be

defined, and it will be shown that this collection is also closed under retracts. An

important ingredient of the proof of Theorem 1.1 is a generalisation of (S, Theorem

1.1). For a simplicial complex K, let CK be the collection of full subcomplexes of K

whose 1-skeleton has no missing edges. The generalisation states ΩZK being in

∏(P ∪ T ) depends only on ΩZKI
being in ∏(P ∪ T ) for each full subcomplex

KI ∈ CK (see Theorem 5.5). This result can also be used to prove a localised result,

which gives conditions on the rational cohomology of each KI ∈ CK in K, for which

after localising away from a finite set of primes (controlled by these full

subcomplexes), ΩZK ∈ ∏P . A simplicial complex K is called k-neighbourly if any

I ¦ [m] with |I| f k + 1 spans a simplex.
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Theorem 1.2 (Theorem 7.1 in the text). Let K be a simplicial complex such that all cup

products and higher Massey products in H∗(|KI |; Q) are trivial, for all KI ∈ CK. For

KI ∈ CK, suppose that KI is k I-neighbourly, and let a = maxKI∈CK
{|I|+ dim(KI)− 2k I}.

Localise away from primes p f 1
2 a and primes p appearing as p-torsion in H∗(|KI |; Z) for

any KI ∈ CK. Then ΩZK ∈ ∏P .

Theorem 1.2 has consequences for a question posed by McGibbon and Wilkerson. A

space X is called rationally elliptic if it has finitely many rational homotopy groups.

Otherwise, it is called rationally hyperbolic. It was shown by McGibbon and Wilkerson

(MW) that if X is rationally elliptic then at almost all primes p, the Steenrod algebra

acts trivially on H∗(ΩX; Z/pZ). They asked to what extent this holds for rationally

hyperbolic spaces. We will show in Section 7 that Theorem 1.2 gives infinitely many

examples for which this question has an affirmative answer.

Theorem 1.1 and Theorem 1.2 also verifies a conjecture of Anick (A). Anick

conjectured that if X is a finite, simply connected CW-complex, then at all but finitely

many primes, ΩX ∈ ∏(P ∪ T ). Theorem 1.1 and Theorem 1.2 shows that such a

decomposition holds for a family of moment-angle complexes.

We remark that the proofs in this paper hold more generally for polyhedral products

of the form (CX, X)K, where each ΣXi is homotopy equivalent to a finite type wedge

of spheres and Moore spaces, however, we work only with moment-angle complexes

to ease notation.

The author would like to thank Stephen Theriault for reading a draft of this work and

providing many useful comments which helped to improve the paper. The author

would also like to thank the anonymous referee for numerous helpful comments

which improved the exposition of the paper.

2 Preliminary results

2.1 Unique decomposition of H-spaces and co-H spaces

In this subsection, we show a cancellation result after localisation that will be required

to show that ∏(P ∪ T ) is closed under retracts. We will also require analogous results

for wedges of spaces. We first state a result of (HW, Theorem 1.1) showing that after

localising at a prime p, there is a unique decomposition of H-spaces and co-H spaces

into indecomposable spaces.

Proposition 2.1. The following hold:

1. Let X be a connected, finite type, p-local H-space. Then X can be uniquely decomposed

into a weak product of indecomposable factors up to order and homotopy equivalence.
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2. Let X be a connected, finite type, p-local co-H-space. Then X can be uniquely

decomposed into a finite type wedge of indecomposable factors up to order and homotopy

equivalence.

We now apply Proposition 2.1 to show a cancellation result after localising at a prime

p. Let X and Y be spaces. We say that X retracts off Y if there exist maps f : X → Y and

g : Y → X such that g ◦ f is homotopic to the identity on X.

Proposition 2.2. The following hold:

1. Let X be a connected, finite type H-space, which is p-locally homotopy equivalent to a

product

X ≃ ∏
i∈I

Xi,

where each Xi is indecomposable. If A is a space which retracts off X, then there is a

p-local homotopy equivalence

A ≃ ∏
j∈J

Xj

where J ¦ I .

2. Let X be a connected, finite type co-H-space, which is p-locally homotopy equivalent to a

wedge

X ≃
∨

i∈I

Xi,

where each Xi is indecomposable. If A is a space which retracts off X, then there is a

p-local homotopy equivalence

A ≃
∨

j∈J

Xj

where J ¦ I

Proof. We prove part (1), and part (2) follows by arguing dually. Localise at a prime p.

Since A retracts off X, there exists a map g : X → A which has a right homotopy

inverse. Proposition 2.1 implies that there is a unique p-local decomposition

Ai ≃ ∏k∈K Ak, where each Ak is indecomposable. Since g has a right homotopy

inverse and X is an H-space, there is a p-local homotopy equivalence X ≃ A × F,

where F is the homotopy fibre of g. The space F retracts off X, and so F is an H-space,

implying by Proposition 2.1 that there is a p-local homotopy equivalence

F ≃ ∏k′∈K′ Fk′ , where each Fk′ is indecomposable. Hence,

∏
i∈I

Xi ≃ X ≃ A × F ≃ ∏
k∈K

Ak × ∏
k′∈K′

Fk′ .

Since the product decomposition of X is unique, there exists an indexing set J ¦ I

such that A ≃ ∏
j∈J

Xj.
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2.2 Rational and p-local decompositions of moment-angle complexes

In this subsection, we state some preliminary localised decompositions of spaces. The

first states conditions under which a finite CW-complex decomposes as a wedge of

spheres after localising away from sufficiently many primes. This result is a mild

generalisation of a result proved in (HT, Lemma 5.1), however, the proof goes through

unchanged.

Lemma 2.3. Let X be a simply-connected, finite CW-complex of dimension d and

connectivity s. Suppose that X is rationally homotopy equivalent to a wedge of spheres. Let p

be a prime such that p >
1
2 (d − s + 1), and H∗(X; Z) is p-torsion free. Then X is p-locally

homotopy equivalent to a wedge of spheres. □

The next result relates to a rational decomposition for certain moment-angle

complexes. Let K be a simplicial complex. The simplicial complex K is said to be Golod

over a ring R if all products and higher Massey products in H∗(ZK; R) are trivial. In

this case, there is a relation between the rational Golodness of K and ZK being a

suspension. The following result is attributed to Berglund, however, the reference

now appears to be unavaliable. Therefore, we provide an alternative proof.

Proposition 2.4. Let K be a simplicial complex. Then K is rationally Golod if and only if ZK

is rationally a co-H space.

Proof. Rationally, any co-H space is homotopy equivalent to a wedge of spheres.

Therefore, if ZK is rationally a co-H space then K is rationally Golod. Suppose K is

rationally Golod. Then by (K, Proposition 3.6), K is Golod over Z/pZ, when p is a

sufficiently large prime. Moreover, by (BG, Theorem 3.1), localised at a sufficiently

large prime p, ZK is a co-H space if and only if ZK is Golod over Z/pZ. Therefore, ZK

is rationally a co-H space.

A counterexample to the integral analogue of Proposition 2.4 was constructed in (IY).

Since any co-H space is rationally homotopy equivalent to a wedge of spheres, a

rational decomposition of ZK in this case can be recovered from its homology. For any

moment-angle complex, a suspension splitting was proved in (BBCG1, Theorem 2.21).

Proposition 2.5. Let K be a simplicial complex. There is a homotopy equivalence

ΣZK ≃
∨

I /∈K

Σ2+|I||KI |.

Finally, we require a result which relates the rational homotopy type and the p-local

homotopy type of an H-space. This result is known as the Sullivan arithmetic square

(see (MP, Theorem 8.1.3) for a modern presentation). For a prime p, denote by X(p) the

localisation of X at p, and let XQ denote the rationalisation of X.
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Theorem 2.6. Let X be an H-space. Then there is a homotopy pullback

X ∏
p

X(p)

XQ ∏
p

XQ.

In particular, if X is rationally trivial, there is a homotopy equivalence

X ≃ ∏
p

X(p).

3 Closure of
∨
(W ∪M) under retracts

To prove Theorem 1.1, we will need to consider wedge decompositions of certain

spaces. For a collection of topological spaces X , let
∨
X denote the collection of spaces

homotopy equivalent to a finite type wedge of spaces in X . Let W be the collection of

simply connected spheres. By Proposition 2.1, when localised at a prime, there is a

unique decomposition of any co-H space, up to homotopy, as a finite type wedge of

indecomposable spaces. Let M be the collection of Moore spaces of the form Pn(pr),

where n g 3, p is a prime, and r g 1, and the indecomposable factors which appear as

wedge summands in the unique 2-local wedge decomposition of spaces of the form

Σ((Pn1(2) ' · · · ' (Pnl (2)), where l g 2, and each ni g 3. Note that we do not require

smash products of Moore spaces of the form Pn(pr) when pr ̸= 2, since in this case by

(N3, Corollary 6.6), there is a homotopy equivalence

Pn(pr1) ' Pm(pr2) ≃ Pn+m(pmin{r1,r2}) ( Pn+m−1(pmin{r1,r2})

when pr1 , pr2 ̸= 2. In general, the indecomposable wedge summands that appear in

the decomposition of spaces of the form Σ((Pn1(2) ' · · · ' (Pnl (2))) are unknown, but

some progress has been made in (W). In this section, we will show that
∨
(W ∪M) is

closed under retracts. This is well known for spaces in
∨
W , and it was shown for a

wedge of Moore spaces of a fixed odd prime power in (N2, Lemma 4.2). The

introduction of the 2-torsion spaces necessitates a more technical argument which we

complete here.

Let X ∈
∨
(W ∪M), and let A be a space which retracts off X. The strategy to show

that A ∈
∨
(W ∪M) is to retract a sphere off A for every Z summand which appears

in the homology of A. This will give us a homotopy equivalence A ≃ W ( A′, where

W ∈
∨
W , and the homology of A′ is torsion. We can then use Theorem 2.6 and

Proposition 2.2 to show that A′ ∈
∨
M.
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To retract spheres off A, we argue similarly to (S, Section 3). Since A retracts off X,

there exists maps f : A → X and g : X → A such that g ◦ f ≃ idA. Define φ : X → X

as the composite

φ : X
g
−→ A

f
−→ X.

Note that φ is an idempotent. Let W be the wedge of spheres that appear in the wedge

decomposition of X. Define φ′ to be the composite

φ′ : W ↪→ X
φ
−→ X

p
−→ W,

where the lefthand map is the inclusion, and p is the pinch map. While φ′ may not be

an idempotent, the following shows that the induced map (φ′)∗ is an idempotent on

homology, which suffices for our purposes. This follows from the following technical

lemma.

Lemma 3.1. Let G be a finitely generated abelian group, G f ree be the free part of G, and Gtor

be the torsion part of G. Let φ : G → G be an idempotent. Then the composite

φ′ : G f ree
i
−→ G

φ
−→ G

π
−→ G f ree,

where i is the inclusion and π is the projection, is an idempotent. Moreover, if

φ(g, t) = (g′, t′) where g, g′ ∈ G f ree and t, t′ ∈ Gtor, then g′ ∈ Im(φ′).

Proof. Consider φ′ ¹ Q. Since G f ree is free, the maps i ¹ Q and π ¹ Q are both the

identity map. By assumption, φ is idempotent implying that φ ¹ Q is idempotent and

so φ′ ¹ Q is idempotent. Hence, φ′ is idempotent. A similar argument shows that the

second part is true.

The inclusion W → X and the pinch map X
p
−→ W induce the inclusion and projection

respectively of the free part of H∗(X), and so by Lemma 3.1, (φ′)∗ is an idempotent on

homology. Let a ∈ Hn(A) be a generator of a Z summand. We aim to show that Sn

retracts off A. First, we show that (φ′
∗)n : Hn(W) → Hn(W) is non-zero.

Lemma 3.2. Let a ∈ Hn(A) be a generator of a Z summand. Then the induced map (φ′
∗)n in

homology is non-zero.

Proof. Recall that f : A → X and g : X → A are maps such that g ◦ f ≃ idA, and φ is

the composite

φ : X
g
−→ A

f
−→ X.

Since fn is injective, fn(a) is non-zero and not torsion. Moreover, the composite gn ◦ fn

is the identity, and so gn ◦ fn(a) is non-zero. Hence,

φn( fn(a)) = ( fn ◦ gn ◦ fn)(a) = fn(a) is non-zero, and so Lemma 3.1 implies that (φ′
∗)n

is non-zero.
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Let x be a generator of Im((φ′
∗)n). Let Hn(W) =

⊕m
i=1 Z, and write x as

x = (x1, · · · , xm). Since (φ′
∗)n is an idempotent of free abelian groups, x must extend

to a basis of Zm, and so the greatest common divisor of x1, · · · , xm is 1 (see (S, Lemma

2.3) for example). Bézout’s Lemma implies that there exists y1, · · · , ym ∈ Z such that

∑
m
i=1 yixi = 1. Let ρ : Sn → W be the composite

ρ : Sn σ
−→

m∨

i=1

Sn

m∨
i=1

pxi

−−−→
m∨

i=1

Sn
↪→ W,

where σ is a choice of m-fold suspension comultiplication, and pxi
is the xth

i degree

map. Let γ be a generator of Hn(Sn). By definition of ρ and the fact that pxi
induces

multiplication by xi in homology, ρn sends γ to x ∈ Hn(W). Now let ρ′ be the

composite

ρ′ : W
p
−→

m∨

i=1

Sn

m∨
i=1

pyi

−−−→
m∨

i=1

Sn ∇
−→ Sn,

where p is the pinch map, and ∇ is the fold map. By definition of ρ′, since the degree

map pyi
induces multiplication by yi in homology, ρ′n sends x to γ. Since (φ′

∗)n is

idempotent, it fixes its image, and so the composite

e : Sn ρ
−→ W

φ′

−→ W
ρ′

−→ Sn,

is an isomorphism in homology. This implies that e is a homotopy equivalence. Since

φ′ factors through A, Sn retracts off A. Arguing dually to (S, Proposition 3.3, Theorem

3.10) for each generator of a Z summand in H∗(A), we obtain the following.

Proposition 3.3. Let X ∈
∨
(W ∪M), and let A be a space which retracts off X. Then there

is a homotopy equivalence

A ≃ S ( A′,

where S ∈
∨
W , and the homology of A′ is torsion. □

It now suffices to show that A′ in Proposition 3.3 is in M.

Proposition 3.4. Let X ∈
∨
(W ∪M), and let A′ be a space which retracts off X, such that

the homology of A′ is torsion. Then A′ ∈
∨
M.

Proof. By assumption, H∗(A′) is torsion, and so A′ is rationally trivial. By Theorem

2.6, there is a homotopy equivalence

A′ ≃ ∏
p

A′
(p).

For each prime p, A′
(p) retracts off X(p). Proposition 2.2(2) therefore implies that each

A′
(p) is homotopy equivalent to a wedge of p-torsion spaces in M.
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Let i :
∨

p A′
(p) → ∏p A′

(p) be the inclusion. Localised at a prime p, the map i is the

identity map A′
(p) → A′

(p) and so i is a homotopy equivalence localised at any prime

p. Rationally each A′
(p) is contractible, and so i is a homotopy equivalence rationally.

Hence, i is a homotopy equivalence integrally. Putting this all together, we obtain a

homotopy equivalence A′ ≃
∨

p A′
(p), where each A′

(p) ∈
∨
M.

Combining Proposition 3.3 and Proposition 3.4, we obtain the following.

Theorem 3.5. Let X ∈
∨
(W ∪M), and let A be a space which retracts off X. Then

A ∈
∨
(W ∪M). □

4 Closure of ∏(P ∪ T ) under retracts

4.1 Special cases

Recall that for a collection of topological spaces X , ∏X is the collection of spaces

homotopy equivalent to a finite type product of spaces in X . Moreover, recall the

collections P := {S1, S3, S7, ΩSn | n g 2, n /∈ {2, 4, 8}}, and T , which is the collection

of indecomposable spaces which appear in the decomposition of the loop space of a

wedge of Moore spaces of the form
∨m

i=1 Pni(pri
i ), where m g 2, ni g 3, pi is a prime

and ri g 1. In this section, we show that ∏(P ∪ T ) is closed under retracts.

We start with some special cases. First, we have the following result from (S, Theorem

3.10).

Theorem 4.1. Let X ∈ ∏P , and A be a space which retracts off X. Then A ∈ ∏P . □

We can also prove a similar result in the case of a space A retracting off

X ∈ ∏(P ∪ T ), where the homology of A is torsion.

Theorem 4.2. Let X ∈ ∏(P ∪ T ), and A be a space which retracts off X, such that the

homology of A is torsion. Then A ∈ ∏ T .

Proof. Since the homology of A is torsion, A is rationally trivial. Therefore by

Theorem 2.6, there is a homotopy equivalence

A ≃ ∏
p

A(p).

For each prime p, A(p) retracts off X(p). Proposition 2.2 implies that each A(p) ∈ ∏ T ,

and so A ∈ ∏ T .
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4.2 Review of the proof of Theorem 4.1

First, we recall the strategy from (S, Section 3) which was used to prove Theorem 4.1.

The strategy is similar to the one used in Section 3. Let X ∈ ∏P , and let A be a space

which retracts off X. This implies there are maps f : A → X, and g : X → A such that

g ◦ f is homotopic to the identity on A. The first ingredient of the proof is the

idempotent φ : X
g
−→ A

f
−→ X. The key property that is used here is that φ∗ is an

idempotent on homology, and so φ∗ fixes its image. Let n be an integer such that

Hn(A) contains a primitive generator. The proof is split into three cases, the first is

where n ∈ {1, 2, 3, 6, 7, 14, 4m | m g 1}, the second is where n = 4m + 2, m g 2, m ̸= 3,

and the third is where n = 2m − 1, where m /∈ {1, 2, 4}.

Consider the first and third case (see (S, Subsections 3.2 and 3.4)), where

n ∈ {1, 2, 3, 6, 7, 14, 4m, 2l − 1 | m, l g 1, l /∈ {1, 2, 4}}.

Fix such an n and write X as

X ≃
mY

∏
i=1

Yi × ∏
α′∈I ′

Zα′ ,

where each Yi is an instance of Sn if n ∈ {1, 3, 7}, or Yi = ΩSn+1 otherwise, and each

Zα′ are the spheres and loops on spheres not equal to Yi. Let Y = Sn if n ∈ {1, 3, 7}, or

Y = ΩSn+1 otherwise. In this case, the bottom non-vanishing degree of each Yi gives a

basis of primitives {γ1, · · · , γmY
} of Hn(X). It was shown that there exists a non-zero

element x = ∑
mY
i=1 yiγi ∈ Im(φ∗) such that the greatest common divisor of y1, · · · , ymY

is 1. Let γ be a generator of the lowest non-vanishing degree in the homology of Y.

Two maps ρ : Y → X, and ρ′ : X → Y were defined such that ρ∗(γ) = x, and

ρ′∗(x) = γ. Since φ∗ fixes its image, the composite

e : Y
ρ
−→ X

φ
−→ X

ρ′

−→ Y

is an isomorphism on the lowest non-vanishing degree in homology. If Y is a sphere,

then e is a homotopy equivalence by Whitehead’s theorem. If Y is the loops on a

sphere, localisation and atomicity properties of the loops on spheres (with a slight

adjustment to the maps ρ and ρ′ in the case that n = 2l − 1) are used to show that e is a

homotopy equivalence, implying that Y retracts off X.

Now consider the second case (see (S, Subsection 3.3)), where H4n+2(A) contains a

primitive generator, n g 2, n ̸= 3. In this case, write X as

X ≃
mY

∏
i=1

ΩS4n+3
i ×

mY

∏
j=1

ΩS2n+2
j × ∏

α′∈I ′

Zα′
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where each Zα′ are the spheres and loops on spheres that are not equal to ΩS4n+3 or

ΩS2n+2. A basis of primitives {γ1, · · · , γmY
, γ1, · · · , γmY

} was obtained of H4n+2(X),

where γi is a generator of H4n+2(ΩS4n+3
i ), and γi is a generator of H4n+2(ΩS2n+2

i ). It

was shown that there exists a non-zero element ∑
mY
i=1 yiγi + ∑

mY
i=1 2yiγi ∈ Im(φ∗) such

that the greatest common divisor of y1, · · · , ymY
, 2y1, · · · , 2ymY

is 1, and as in the

previous case, this element was used to define maps ρ : Y → X, and ρ′ : X → Y such

that the composite

Y
ρ
−→ X

φ
−→ X

ρ′

−→ Y

is a homotopy equivalence, implying that Y retracts off X. Therefore, for each

primitive generator in H∗(A), we can retract a sphere or the loops on a sphere off A.

Iterating this, we obtain a product decomposition for A as a product of spheres and

loops on spheres (see (S, Theorem 3.10)).

To generalise to the case where X ∈ ∏(P ∪ T ), we first retract off all the spheres and

loops on spheres that we expect to obtain in a decomposition for A, by analysing the

coalgebra structure of H∗(A; Q). This will give us a homotopy equivalence

A ≃ P × A′, where P ∈ ∏P , and the homology of A′ is torsion. We can then use

Theorem 2.6 to obtain that A′ ∈ ∏ T .

4.3 Defining φ′

From now on, homology will be assumed to be taken to be taken with integral

coefficients unless otherwise stated. The coalgebra structure on the homology of a

space is defined whenever the Künneth isomorphism holds. In this case however, the

homology of X and A may contain torsion, and so we can not appeal to the coalgebra

structure in order to repeat the argument for Theorem 4.1. However, we will adjust

the map φ to obtain a self map φ′ of the spheres and loops on spheres that appear in

the product decomposition of X which is idempotent in homology. This will allow us

to find the required elements in the image of φ′ in order to appeal to the argument in

(S). Let X ∈ ∏(P ∪ T ), and let A be a space which retracts off X, such that H∗(A; Q) is

non-trivial. In particular there exists maps f : A → X and g : X → A such that g ◦ f is

homotopic to the identity on A. Observe that the map φ = f ◦ g is an idempotent.

Write X as X ≃ S × M, where S ∈ ∏P and M ∈ ∏ T . Define the map φ′ : S → S as

the composite

φ′ : S ↪→ X
φ
−→ X

π
−→ S,

where the left map is the inclusion of S into X, and π is the projection. We would like

φ′ to also be an idempotent in order to emulate the map φ in the case where X ∈ ∏P .

This may not be true for the map itself, however, the inclusion S → X induces the

inclusion of the free part of H∗(X) and the projection X → S induces the projection
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onto the free part of H∗(X). Therefore, Lemma 3.1 implies that (φ′)∗ is an idempotent

on homology.

To appeal to the argument in (S, Section 3), we require a primitive element x ∈ Im(φ′)

with the properties as described in Subsection 4.2. First, we need to show that in

certain degrees, (φ′)∗ is non-zero when restricted to the submodule of primitives in

H∗(S). In the case that X ∈ ∏P , this was done by showing that φn is non-zero when

restricted to the submodule of primitives whenever there is a primitive generator in

Hn(A). However, in this case, we can not appeal to the coalgebra structure in integral

homology as H∗(A) may contain torsion. However, rational homology H∗(A; Q) does

have a coalgebra structure. We can use this to show that if a ∈ Hn(A) is an element

which reduces to a primitive generator in rational homology, then (φ′
∗)n is non-zero

when restricted to the submodule of primitives in Hn(S).

Lemma 4.3. Suppose that a ∈ H∗(A) is a generator of a Z summand in degree n, which

reduces to a primitive generator in rational homology. Then f∗(a) maps to an element in

Hn(X) whose free part reduces to an element in the submodule of primitives in rational

homology, and (φ′
∗)n is non-zero when restricted to the submodule of primitives in H∗(S).

Proof. Let a ∈ H∗(A; Q) be the primitive generator which is the reduction of a. Recall

that φ′ is the composite

φ′ : S ↪→ X
φ
−→ X

π
−→ S,

where S is the product of spheres and loops on spheres that appear in X, φ is the

composite f ◦ g which is an idempotent, the left map is the inclusion of S into X, and

π is the projection. By the naturality of the universal coefficient theorem with respect

to coefficients, there is a commutative diagram

Hn(A) Hn(X)

Hn(A)¹ Q Hn(X)¹ Q.

fn

fn¹Q

In particular, since Hn(A)¹ Q is a coalgebra, and a is a primitive generator, fn(a)

must map to an element x ∈ Hn(X) such that the free part of x, which we will denote

by x′, reduces to a primitive element in Hn(X)¹ Q. This proves the first part of the

lemma. Since fn(a) is injective, x is non-zero and has infinite order, and so x′ is also

non-zero. By definition of φ, the image of φ is equal to the image of f , and so

x ∈ Im(φ). Lemma 3.1 implies that x′ is in the image of (φ′
∗)n. Since S ∈ ∏P and x′

reduces to a primitive element in rational homology, (φ′
∗)n(x′) is contained in the

submodule of primitives of Hn(S) integrally. Hence (φ′
∗)n is non-zero when restricted

to the submodule of primitives in H∗(S).
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4.4 Case 1

In this subsection, fix n ∈ {1, 2, 3, 6, 7, 14, 4m, 2l − 1 | m, l g 1, l /∈ {1, 2, 4}} such that A

contains a generator a ∈ Hn(A) which reduces to a primitive generator in rational

homology. Write S as

S ≃
mY

∏
i=1

Yi × ∏
α′∈I ′

Zα′ ,

where each Yi is an instance of Sn if n ∈ {1, 3, 7}, or Yi = ΩSn+1 otherwise, and the

factors Zα′ are the spheres, and loops on spheres that are not equal to Yi. In this case,

the bottom non-vanishing degree of each Yi gives a basis of primitives {γ1, · · · , γmY
}

of Hn(S). As in Subsection 4.2, we require an element ∑
mY
i=1 yiγi ∈ Im(φ′) such that the

greatest common divisor of y1, · · · , ymY
is 1. By Lemma 4.3, (φ′

∗)n is a non-zero

idempotent map in this degree. Let λ = ∑
mY
i=1 ziγi be a generator of Im(φ′). Since (φ′

∗)n

is an idempotent, the greatest common divisor of z1, · · · , zmY
is 1 (see for example (S,

Section 2)). Hence λ has the desired properties. Therefore, we can argue as in (S,

Subsection 3.2) in the case where n ∈ {1, 2, 3, 6, 7, 14, 4m | m g 1}, and (S, Subsection

3.4) in the case where n = 2l − 1, l /∈ {1, 2, 4} to retract the following spheres and

loops on spheres off A: for each generator of a Z summand in Hn(A) which reduces

to a primitive generator in rational homology, an Sn or ΩSn+1 retracts off A. We obtain

the following.

Lemma 4.4. Let X ∈ ∏(P ∪ T ), and A be a space which retracts off X. There is a homotopy

equivalence

A ≃ P × A′,

where P is a product of spheres of the form Sn, where n ∈ {1, 3, 7}, and loops on spheres of the

form ΩSm+1, where m ∈ {2, 6, 14, 4m, 2l − 1 | m g 1, l /∈ {1, 2, 4}}. Moreover, the only

generators in H∗(A′) which reduce to primitive generators in rational homology are in degrees

of the form 4k + 2, where k g 2, k ̸= 3. □

4.5 Case 2

By Lemma 4.4, it suffices to consider a space A which retracts off X ∈ ∏(P ∪ T ), such

that the only generators of H∗(A) which reduce to primitive generators in rational

homology are in degrees of the form 4n + 2, where n g 2, and n ̸= 3. Fixing n, write X

as

X ≃
mY

∏
i=1

ΩS4n+3
i ×

mY

∏
j=1

ΩS2n+2
j × ∏

α′∈I ′

Zα′

where the factors Zα′ are the spheres, loops on spheres and indecomposable torsion

spaces that are not equal to ΩS4n+3 or ΩS2n+2. For 1 f i f mY, let γi be the generator

of H4n+2(X) corresponding to a generator of H4n+2(ΩS4n+3
i ), and for 1 f j f mY, let

γj be the generator of H4n+2(X) corresponding to a generator of H4n+2(ΩS2n+2
j ).
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Observe that by definition of X, the generators γi and γj form a basis for the

submodule of primitives of rational homology in degree 4n + 2. Let a ∈ H4n+2(A) be a

generator of a Z summand which reduces to a primitive generator in rational

homology. By Lemma 3.1, f∗(a) = ∑
mY
i=1 yiγi + ∑

mY
j=1 yjγj + t, where t has finite order.

Recall φ′ is the composite

φ′ : S ↪→ X
φ
−→ X

π
−→ S,

where the left map is the inclusion of S into X, φ = f ◦ g and π is the projection. Since

f∗ is injective, the image of φ∗ is equal to the image of f∗. Therefore, by Lemma 4.3,

∑
mY
i=1 yiγi + ∑

mY
j=1 yjγj is in the image of (φ′)4n+2. As described in Subsection 4.2, to

retract ΩS4n+2 off A, it suffices to show that the greatest common divisor of

y1, · · · , ymY
, y1, · · · , ymY

is 1, and that each yj is even.

Lemma 4.5. The greatest common divisor of y1, · · · , ymY
, y1, · · · , ymY

is 1.

Proof. Let y = (y1, · · · , ymY
, y1, · · · , ymY

), and suppose y = dy′ for some d > 1. In this

proof, we work with homology with rational coefficients and use the same notation

for each element and map to mean its reduction in rational homology.

By definition of y, f∗(a) = y. Since g∗ ◦ f∗ = id∗, g∗(y) = a. Let g∗(y′) = a′ for some

a′ ∈ H4n+2(A; Q). By definition of y′, da′ = dg∗(y′) = g∗(y) = a. However, integrally,

a is a generator of a Z summand, and so d = 1 and a′ = a, which is a

contradiction.

Now we must show that each y1, · · · , ymY
is even. To do this, we first determine the

rational homotopy type of A.

Lemma 4.6. Let A be a space which retracts off X ∈ ∏(P ∪ T ). Suppose that the only

generators in H∗(A) which reduce to primitive generators in rational homology are in degrees

of the form 4n + 2, where n g 2, n ̸= 3. Then A is rationally homotopy equivalent to a finite

type product of loops on spheres of the form ΩS4n+3, where n g 2, n ̸= 3.

Proof. Since A retracts off X, A is an H-space. Rationally, every H-space is homotopy

equivalent to a product of spheres and loops on odd dimensional spheres. Since A

only contains primitive generators in degrees of the form 4n + 2, n g 2, n ̸= 3, there is

a rational homotopy equivalence as claimed.

Using this lemma, we can now show that each yj must be even.

Lemma 4.7. For 1 f j f mY, yj is even.

Proof. By Lemma 4.6, there is a rational homotopy equivalence AQ ≃ ∏i∈I ΩS4ni+3
Q

for

some indexing set I . Now localise at the prime 2, by Proposition 2.2, there is a 2-local
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homotopy equivalence

A(2) ≃
l

∏
i=1

ΩS4n+3
(2)

× S′ × T,

where l g 1, S′ is a product of 2-local loops on spheres of the form ΩSm, where

m ̸= 4n + 3, and T ∈ T is a product of indecomposable, 2-torsion spaces. Recall that

a ∈ H4n+2(A) is a generator reducing to a primitive generator in rational homology,

and f∗(a) = ∑
mY
i=1 yiγi + ∑

mY
j=1 yjγj + t, where t has finite order. The Hurewicz theorem

implies that there is a map ν : S4n+2 → A(2) such that in homology, ν sends a

generator λ of H4n+2(S
4n+2) to a. By the universal property of the James construction

(J), this extends to a map ν′ : ΩS4n+3 → A(2), which sends a generator λ′ of

H4n+2(ΩS4n+3) to a. Finally, by the universal property of localisation, there exists a

map ν′ : ΩS4n+3
(2)

→ A(2) which sends λ′ to a.

Consider the composite

ψ : ΩS4n+3
(2)

ν′
−→ A(2)

f(2)
−→ X(2)

πj
−→ ΩS

2nj+2

(2)
,

where πj is the projection onto the loops on a sphere corresponding to γj, and n = nj.

Suppose that yj is odd. By definition, ψ∗ sends the generator λ′ to yjγj. Let

J : ΩS2nj+2 → ΩS4n+3 be the 2nd James-Hopf invariant. Consider the composite

ψ′ = J(2) ◦ ψ : ΩS4n+3
(2)

→ ΩS4n+3
(2)

. As recounted in (S, Lemma 2.6) for example, in

homology, J∗ induces an isomorphism in degree 4n + 2, and so ψ′
∗ sends λ′ to ±yjλ

′.

Since yj is odd, ψ′
∗ is an isomorphism localised at 2. By (CPS, Corollary 5.2), ΩS4n+3 is

atomic localised at the prime 2, meaning that any self-map which is an isomorphism

in the bottom non-trivial degree in homology localised at the prime 2 is a 2-local

homotopy equivalence. The map ψ′ factors through ΩS
2nj+2

(2)
, implying that ΩS4n+3

(2)

retracts off ΩS
2nj+2

(2)
. However, since nj /∈ {0, 1, 3}, (CPS, Corollary 5.2) implies that

ΩS
2nj+2

(2)
is also atomic, and atomic spaces are indecomposable. Hence, yj must be

even.

Combining Lemma 4.5 and Lemma 4.7, ∑
mY
i=1 yiγi + ∑

mY
j=1 yjγj is an element in the

image of (φ′)4n+2 as described in Subsection 4.2. Therefore, we can use the argument

in (S, Subsection 3.3) to show the following.

Lemma 4.8. Let X ∈ ∏(P ∪ T ), and A be a space which retracts off X. Suppose that the

only generators in H∗(A) which reduce to primitive generators in rational homology are in

degrees 4n + 2, n g 2, n ̸= 3. There is a homotopy equivalence

A ≃ P × T,

where P is a product of loops on spheres of the forms ΩS4n+3, where n g 2, n ̸= 3, and the

homology of T is torsion. □
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4.6 Conclusion of proof

Returning to the general case, let X ∈ ∏(P ∪ T ), and A be a space which retracts off

X. By Lemma 4.4, there is a homotopy equivalence A ≃ P × A′, where P is a product

of spheres and loops on spheres of the forms Sn, where n ∈ {1, 3, 7}, and ΩSm+1,

where m ∈ {2, 6, 14, 4m, 2l − 1 | m g 1, l /∈ {1, 2, 4}}. Moreover, the only generators in

H∗(A′) which reduce to primitive generators in rational homology are in degrees of

the form 4k + 3, where k g 2 and k ̸= 3. Lemma 4.8 then implies there is a homotopy

equivalence A′ ≃ P′ × T where P′ is a product of loops on spheres of the forms

ΩS4n+3, where n g 2, n ̸= 3, and the homology of T is torsion. Combining these, we

obtain a homotopy equivalence

A ≃ P × P′ × T,

where P, P′ ∈ ∏P , and the homology of T is torsion. Since A retracts off X, T retracts

off X, and Theorem 4.2 implies that T ∈ ∏ T . Summarising, we have obtained the

following result.

Theorem 4.9. Let X ∈ ∏(P ∪ T ) and A be a space which retracts off X. Then

A ∈ ∏(P ∪ T ). □

5 Preliminary decompositions of Moment-angle complexes

In this section, we prove some relations between spaces in
∨
(W ∪M) and ∏(P ∪ T ).

These will be generalisations of the relations between spaces in
∨
W and ∏P shown

in (S, Subsection 2.5). Before proving these relations, we require a result of (N3,

Corollary 6.6), which gives a wedge decomposition for certain smash products of

Moore spaces.

Lemma 5.1. Let p and q be primes, and r, s g 1 such that max{pr, qs} > 2. If p ̸= q, then

Pn(pr) ' Pm(qs) is contractible. If p = q, there is a homotopy equivalence

Pn(pr) ' Pm(ps) ≃ Pn+m(pmin{r,s}) ( Pn+m−1(pmin{r,s}).

Lemma 5.2. The following hold:

1. let A be a space in ∏ T , then ΣA ∈
∨
M;

2. let A ∈
∨
(W ∪M), then ΩA ∈ ∏(P ∪ T );

3. let A ∈ ∏(P ∪ T ), then ΣA ∈
∨
(W ∪M);
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4. let X be a space such that ΣX ∈
∨
(W ∪M), and let A1, · · · , Am be spaces in

∏(P ∪ T ), then Σ(X ' A1 ' · · · Am) ∈
∨
(W ∪M);

5. let X and Y are spaces such that ΣX ∈
∨
(W ∪M), and ΩY ∈ ∏(P ∪ T ), then we

obtain Ω(X ëY) ∈ ∏(P ∪ T );

6. let X1, · · · , Xm be spaces such that ΩXi ∈ ∏(P ∪ T ), then Ω(
∨m

i=1 Xi) ∈ ∏(P ∪ T ).

Proof. For part (1), since A ∈ ∏ T , there is a homotopy equivalence A ≃ ∏i∈I Ti,

where each Ti is an indecomposable space in the loop space decomposition of

Ω(
∨

j∈J Pni(pri
i )). In particular, ΣTi retracts off ΣΩ(

∨
j∈J Pni(pri

i )). Since each Pni(pr)

is a suspension, the James splitting implies that there is a homotopy equivalence

ΣΩ(
∨

j∈J

Pni(pri
i )) ≃

∨

jg1

(
∨

j∈J

Pni(pri
i ))

'j. (5.1)

Distributing the wedge sum over the smash, we obtain a wedge of spaces which are

smashes of Moore spaces, where by Lemma 5.1, each wedge summand consists of

Moore spaces of a fixed prime. By Lemma 5.1, if pr ̸= 2, then the smash products

decompose further as a wedge of Moore spaces. If pr = 2, then by Proposition 2.1, this

decomposes as a finite type wedge of indecomposable spaces which appear in the

unique decomposition of smashes of mod 2 Moore spaces. Therefore, by Theorem 3.5

and by definition of M, ΣTi ∈
∨
(W ∪M). Hence, iterating the homotopy

equivalence Σ(X × Y) ≃ ΣX ( ΣY ( Σ(X ' Y), and shifting the suspension

coordinate, we obtain that ΣA ∈
∨
M.

For part (2), write A as

A ≃
∨

i∈I

Sni (
∨

j∈J

Pmj(p
rj

j ).

The Hilton Milnor theorem implies there is a homotopy equivalence

ΩA ≃ ∏
k∈K

ΩΣ(A1 ' · · · ' Ak),

where K is some indexing set, and each Ai is either a sphere or a Moore space.

Consider the term A′
k = ΩΣ(A1 ' · · · ' Ak). If each Al is a sphere, then A′

k is

homeomorphic to the loops on a sphere. If there exists an Al which is a Moore space,

then by Lemma 5.1, A′
k is either contractible, the loops on a wedge of Moore spaces of

the form Pnj(pr) for nj g 3, p a fixed prime, and r g 1 fixed, or the smash product of

mod 2 Moore spaces. In the first two cases, it is clear by definition of T that A′
k ∈ ∏ T .

For the latter case, consider ΩΣ(Pn1(2) ' · · · ' Pnl (2)), where l g 2, and ni g 2. The

Hilton-Milnor thoerem implies there is a homotopy equivalence

ΩΣ

(
l∨

i=1

Pni(2)

)
≃ ∏

i∈B

ΩΣ(Pn1(2)'b(1) ' · · · ' Pnl (2)'b(l)),
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where B is a Hall basis of the free ungraded Lie algebra on {1, · · · , l} over Z, and b(i)

is the number of times i appears in the bracket b. By construction of a Hall basis (see

(N1, p.120) for example), the smash product ΩΣ(Pn1(2) ' · · · ' Pnl (2)) appears as a

product term, and so ΩΣ(Pn1(2) ' · · · ' Pnl (2)) retracts off ΩΣ(
∨l

i=1 Pni(2)).

Therefore, Theorem 4.2 implies ΩΣ(Pn1(2) ' · · · ' Pnl (2)) ∈ ∏ T . Hence, each

A′
k ∈ ∏ T , and so we obtain that ΩA ∈ ∏(P ∪ T ).

For part (3), write A as

A ≃ ∏
i∈I

Sni × ∏
j∈J

ΩSmi × ∏
k∈K

Ti,

where Ti ∈ T . Iterating the homotopy equivalence Σ(X × Y) ≃ ΣX ( ΣY ( Σ(X ( Y),

we obtain a homotopy equivalence

ΣA ≃
∨

l∈L

Σ(A1 ' · · · ' Al), (5.2)

where each Ai is either a sphere, the loops on a sphere, or some Tj. Consider

A′
l = Σ(A1 ' · · · ' Al). By the James construction, ΣΩSn ∈

∨
W , and by part (a), each

ΣTk ∈
∨
M. By shifting the suspension coordinate, we can decompose A′

l as a wedge

of spaces W ′
l′ , where each W ′

l′ is the suspension of a smash product of spheres and

Moore spaces. If each space is a sphere, then W ′
l is a sphere. If there is a Moore space,

then by Lemma 5.1, Wl′ can be decomposed further as a wedge of spaces, each of

which is either a Moore space, or a smash of mod 2 Moore spaces. In either case, by

definition of M, Wl′ ∈
∨
M, and so A′

l ∈
∨
(W ∪M). Therefore, by (5.2),

A ∈
∨
(W ∪M).

The remaining parts follow by arguing as in (S, Lemma 2.13, Lemma 2.14, Corollary

2.16) respectively.

The next result shows the property of ΩZK ∈ ∏(P ∪ T ) is closed under pushouts of

simplicial complexes over full subcomplexes.

Theorem 5.3. Let K be a simplicial complex defined as the pushout

L K1

K2 K

where either L = ∅ or L is a proper full subcomplex of K1 and K2. If ΣAi ∈
∨
(W ∪M) for

all i, Ω(CA, A)K1 ∈ ∏(P ∪ T ) and Ω(CA, A)K2 ∈ ∏(P ∪ T ), then

Ω(CA, A)K ∈ ∏(P ∪ T ).
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Proof. The case where ΣAi ∈
∨
W , and each loop space is in ∏P was proved in (S,

Theorem 4.1). The proof depended on two results: closure of ∏P under retracts and

the
∨
W analogue of Lemma 5.2. The same argument holds for ∏(P ∪ T ) using

Theorem 4.9, and Lemma 5.2.

Using Theorem 2.9, we can obtain a generalisation of (S, Theorem 1.1). To do this, we

require the following pushout decomposition for a simplicial complex K from (S,

Lemma 4.4).

Lemma 5.4. Let K be a simplicial complex and v ∈ V(K). Then K can be written as the

pushout

KN(v) Kv∪N(v)

KV(K)\{v} K.

Moreover, KN(v) is a full subcomplex of both Kv∪N(v) and KV(K)\{v}. □

For a simplicial complex K, let CK be the collection of full subcomplexes of K whose

1-skeleton has no missing edges. For a vertex v ∈ V(K), denote by N(v) the set of

vertices adjacent to v in the 1-skeleton of K. A dominating vertex of K is a vertex v such

that N(v) = V(K) \ {v}. In other words, v is adjacent to every other vertex in the

1-skeleton of K. The following result is a generalisation of (S, Theorem 1.1)

Theorem 5.5. If K is a simplicial complex, then ΩZK ∈ ∏(P ∪ T ) if and only if

ΩZKI
∈ ∏(P ∪ T ) for all KI ∈ CK. Moreover, ΩZK ∈ ∏P if and only if ΩZKI

∈ ∏P for

all KI ∈ CK.

Proof. Suppose ΩZK ∈ ∏(P ∪ T ) but there exists KI ∈ CK such that

ΩZKI
/∈ ∏(P ∪ T ). By (DS), ZKI

retracts off ZK, and so ΩZKI
retracts off ΩZK.

Theorem 4.9 then implies that ΩZKI
∈ ∏(P ∪ T ) which is a contradiction.

Now suppose that ΩZKI
∈ ∏(P ∪ T ) for all KI ∈ CK. We proceed by strong

induction. If K has one vertex, then ZK is contractible, and so ΩZK ∈ ∏(P ∪ T ).

Now suppose K has m vertices, and the result is true for all n < m. If every vertex of K

is a dominating vertex, then every vertex in K is adjacent to every other vertex in K.

Hence, K ∈ CK so by assumption, ΩZK ∈ ∏(P ∪ T ). Therefore, suppose there exists a

vertex v ∈ V(K) such that v is not a dominating vertex of K. By Lemma 5.4, K can be

written as the pushout

KN(v) Kv∪N(v)

KV(K)\{v} K
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where KN(v) is a full subcomplex of both Kv∪N(v) and KV(K)\{v}. Since v is not a

dominating vertex, v ∪ N(v) is not the whole vertex set of K, so Kv∪N(v) and KV(K)\{v}

are simplicial complexes with strictly fewer vertices than K. Therefore, by the

inductive hypothesis, ΩZKv∪N(v)
∈ ∏(P ∪ T ) and ΩZKV(K)\{v}

∈ ∏(P ∪ T ). Hence,

Theorem 2.9 implies that ΩZK ∈ ∏(P ∪ T ).

In the special case where ΩZK ∈ ∏P , the same proof follows through.

6 Loop spaces of moment-angle complexes associated to

2-dimensional simplicial complexes

In this section, we consider moment-angle complexes associated to 2-dimensional

simplicial complexes. We start with a more general statement. To prove this, we

require the following from (IK, Theorem 1.6). Recall that a simplicial complex K is

called k-neighbourly if any I ¦ [m] with |I| f k + 1 spans a simplex. For x ∈ R, define

+x, to be the smallest integer z such that z g x.

Lemma 6.1. Let K be a simplicial complex on [m]. If K is +dim(K)
2 ,-neighbourly, then there is

a homotopy equivalence

ZK ≃
∨

I /∈K

Σ1+|I||KI |. □

We also require a wedge decomposition of (n − 1) connected, (n + 1)-dimensional

CW-complexes, where n g 2. This is proved in (H, Example 4C.2) for example.

Lemma 6.2. Let X be an (n − 1) connected, (n + 1)-dimensional CW-complex, where n g 2.

Then X is homotopy equivalent to a wedge of spheres and Moore spaces. If H∗(X) is torsion

free, then X ∈
∨
W .

Theorem 6.3. If K is a simplicial complex on [m] such that each KI ∈ CK is

dim(KI)− 1-neighbourly, then ΩZK ∈ ∏(P ∪ T ). If H∗(|KI |; Z) is torsion free for all

KI ∈ CK, then ΩZK ∈ ∏P .

Proof. By Theorem 5.5, it suffices to show that ΩZKI
∈ ∏(P ∪ T ), where KI ∈ CK. If

dim(KI) = 1, then KI is the 1-skeleton of a simplex, and so by (GT, Theorem 9.1), ZKI

is homotopy equivalent to a wedge of simply connected spheres. The Hilton-Milnor

theorem then implies that ΩZKI
∈ ∏P . If dim(KI) > 1, then dim(KI)− 1 g +dim(KI)

2 ,,

and so Lemma 6.1 implies that there is a homotopy equivalence

ZKI
≃

∨

J /∈KI

Σ1+|J||KJ |.

Since KI is dim(KI)− 1-neighbourly, each KJ is dim(KI)− 1-neighbourly. Moreover,

each KJ is a full subcomplex of KI , and so dim(KJ) f dim(KI). Hence, each KJ is at
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least dim(KJ)− 1 neighbourly. By (IK, Lemma 10.8) for example, this implies that each

KJ is at least (dim(KJ)− 2)-connected. Since Σ1+|J||KJ | is simply connected, by Lemma

6.2, each Σ1+|J||KJ | is homotopy equivalent to a wedge of spheres and Moore spaces.

Hence part (2) of Lemma 5.2 implies that ΩΣ1+|J||KJ | ∈ ∏(P ∪ T ), and therefore part

(6) of Lemma 5.2 implies that ΩZKI
∈ ∏(P ∪ T ). Hence, ΩZK ∈ ∏(P ∪ T ).

If H∗(|KI |; Z) is torsion free for all KI ∈ CK, then by Lemma 6.2, each Σ1+|J||KJ | is

homotopy equivalent to a wedge of spheres. The Hilton-Milnor theorem implies that

ΩΣ1+|J||KJ | ∈ ∏P , and so Theorem 5.5 implies that ΩZK ∈ ∏P .

Theorem 5.5 and Theorem 6.3 can be applied to give a coarse decomposition of the

loops on a moment-angle complex associated to any 2-dimensional simplicial

complex.

Theorem 6.4. Let K be a 2-dimensional simplicial complex. Then ΩZK ∈ ∏(P ∪ T ).

Proof. If KI ∈ CK is 1-dimensional, then by (GT, Theorem 9.1), ZKI
is homotopy

equivalent to a wedge of simply connected spheres. The Hilton-Milnor theorem

implies that ΩZKI
∈ ∏P , which is contained in ∏(P ∪ T ). If KI ∈ CK is

2-dimensional, then it is 1-neighbourly and Theorem 6.3 implies that

ΩZKI
∈ ∏(P ∪ T ). Since each KI ∈ CK is 1-dimensional or 2-dimensional, Theorem

5.5 implies that ΩZK ∈ ∏(P ∪ T ).

As an example of Theorem 6.4 which contains torsion, let K be the 6-vertex

triangulation of RP2. In this case, K is a 1-neighbourly simplicial complex whose

homology contains 2-torsion, and so the decomposition in Theorem 6.4 will contain

indecomposable 2-torsion spaces. In (LMR), 1-neighbourly, 2-dimensional simplicial

complexes which have arbitrarily large torsion in homology are constructed.

Therefore, the loop space of a moment-angle complex associated to a 2 dimensional

simplicial complex can contain arbitrarily large torsion in homology. In the case that

each |KI | has torsion free homology, where KI ∈ CK, we obtain the following.

Corollary 6.5. Let K be a 2-dimensional simplicial complex. Suppose that H∗(|KI |; Z) is

torsion free for all KI ∈ CK. Then ΩZK ∈ ∏P . □

7 Loop space decompositions of certain moment-angle

complexes after localisation

In this section, we use the argument in Theorem 6.3 to show that for a simplicial

complex K under certain conditions on the full subcomplexes KI ∈ CK, there is a finite

set of primes P for which ΩZK ∈ ∏P localised away from P. This set of primes is
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controlled purely by the underlying simplicial complex. Recall that a simplicial

complex K is rationally Golod if all products and higher Massey products in

H∗(ZK; Q) are trivial.

Theorem 7.1. Let K be a simplicial complex such that KI is rationally Golod for all KI ∈ CK.

For KI ∈ CK, let KI be kI-neighbourly, and let M = maxKI∈CK
{|I|+ dim(KI)− 2k I}.

Localise away from primes p f 1
2 M and primes p appearing as p-torsion in H∗(|KI |; Z) for

any KI ∈ CK. Then ΩZK ∈ ∏P .

Proof. First, note that Theorem 5.5 holds p-locally for any prime p. By Theorem 5.5, it

suffices to show ΩZKI
∈ ∏P for each KI ∈ CK, after localisation away from primes

p f 1
2 M and primes p appearing as p-torsion in H∗(|KI |; Z) for any KI ∈ CK. Consider

ZKI
, where KI ∈ CK. By assumption, KI is rationally Golod. Therefore, by Proposition

2.4 and Proposition 2.5, there is a rational homotopy equivalence

ZKI
≃
∨

J¦I

Σ1+|J||KJ |.

Since each wedge summand is a suspension, ZKI
is rationally a wedge of spheres. It

can be shown using Proposition 2.5 that ZKI
is (2k I + 2)-connected, and has

dimension 1 + |I|+ dim(KI). Therefore, by Lemma 2.3, localised away from

p f
1

2
(1 + |I|+ dim(KI)− (2k I + 2) + 1) =

1

2
(|I|+ dim(KI)− 2k I) f

1

2
M

and those primes p appearing as p-torsion in H∗(|KJ |; Z), ZKI
is homotopy equivalent

to a wedge of spheres. The Hilton-Milnor theorem then implies that ΩZKI
∈ ∏P .

Repeating this argument for each KI ∈ CK, by Lemma 5.5, ΩZKI
∈ ∏P when

localised away from primes p f 1
2 M and any primes appearing as p-torsion in

H∗(|KI |; Z) for each KI ∈ CK.

Theorem 7.1 has interesting connections to a problem posed by McGibbon and

Wilkerson. Recall from the Introduction that a space X is called rationally elliptic if it

has finitely many rational homotopy groups. Otherwise, it is called rationally

hyperbolic. McGibbon and Wilkerson (MW) showed that any finite, simply connected,

rationally elliptic space X has ΩX ∈ ∏P , after localising at a sufficiently large prime.

A consequence of a decomposition of this form pointed out is that the Steenrod

algebra acts trivially on H∗(ΩX; Z/pZ) at almost all primes p. They asked the extent

to which this holds for rationally hyperbolic spaces. Theorem 7.1 gives an analogous

result for the moment-angle complexes in Theorem 7.1.

Corollary 7.2. Let K be a simplicial complex such that KI is rationally Golod for all KI ∈ CK.

Then at all but finitely many p, the Steenrod algebra acts trivially on H∗(ΩZK; Z/pZ).
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One particular family of examples is when K is a 2-dimensional simplicial complex,

Lemma 6.1 implies that every KI ∈ CK is rationally Golod, and so we obtain the

following.

Corollary 7.3. Let K be a 2-dimensional simplicial complex. Then at all but finitely many

primes p, the Steenrod algebra acts trivially on H∗(ΩZK; Z/pZ).

It was shown in (BBCG2) that the moment-angle complex associated to K is rationally

elliptic if and only if the minimal missing faces of K are mutually disjoint. In

particular, if K is a simplicial complex such that there is a vertex which is not adjacent

to two other vertices, then ZK is rationally hyperbolic. Corollary 7.3 can be used to

generate infinitely many rationally hyperbolic examples for which the answer to the

question of McGibbon and Wilkerson is affirmative. One other point to note is that the

set of primes for which the decomposition of rationally elliptic spaces given by

McGibbon and Wilkerson holds is not explicit. The conditions on K in Theorem 7.1

give an explicit set of primes for which such a decomposition holds for ΩZK. Also,

this set of primes can certainly be enlarged depending on the combinatorics of K. For

example, if K is a 2-dimensional simplicial complex such that H∗(|KI |; Z) is torsion

free for all KI ∈ CK, Corollary 6.5 implies that such a decomposition holds integrally.
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Chapter 4

Paper 3 - Polyhedral products

associated to pseudomanifolds

1 Introduction

Polyhedral products are subspaces of the Cartesian product, the properties of which

are governed by an underlying simplicial complex. They unify various constructions

across mathematics, such as complements of complex coordinate subspace

arrangements in combinatorics, intersections of quadrics in complex geometry and

classifying spaces of graph products of groups in geometric group theory.

Understanding their homotopy theory has implications in all these areas. In this

paper, we study the homotopy theory of polyhedral products associated to a family of

simplicial complexes known as pseudomanifolds.

Let K be a simplicial complex on the vertex set [m] = {1, 2, · · · , m}. For 1 f i f m, let

(Xi, Ai) be a pair of pointed CW-complexes, where Ai is a pointed CW-subcomplex of

Xi. Let (X, A) = {(Xi, Ai)}
m
i=1 be the sequence of pairs. For each simplex σ ∈ K, let

(X, A)σ be defined by

(X, A)σ =
m

∏
i=1

Yi where Yi =





Xi i ∈ σ

Ai i /∈ σ.

The polyhedral product determined by (X, A) and K is

(X, A)K =
⋃

σ∈K

(X, A)σ ¦
m

∏
i=1

Xi.

A particularly important special case is when (Xi, Ai) = (D2, S1) for all i. These

polyhedral products are called moment-angle complexes, and are denoted ZK.
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One aspect of the homotopy theory of polyhedral products that has been the subject of

intense study recently is the homotopy type of their based loop spaces. Let ∏P be the

collection of H-spaces homotopy equivalent to a finite type product of spheres and

loops on spheres. If X is a simply-connected space, there are advantages to knowing

that ΩX ∈ ∏P : it means the homology of ΩX is torsion-free, the Steenrod algebra

acts trivially on the mod-p cohomology of ΩX for any prime p, and if the factors in

the decomposition of ΩX are explicit, then the homotopy groups of X are known to

the same extent as the homotopy groups of spheres. Various families of polyhedral

products have been shown to have their loop space in ∏P , including flag complexes

(PT; V), graphs (St1), 2-dimensional simplicial complexes with torsion free homology

(St2) and certain polyhedral join products (E). In this paper, we focus on the case

when K is the triangulation of a sphere.

If K is the triangulation of a sphere, then ZK has the structure of a manifold, and is

known as a moment-angle-manifold. The diffeomorphism type of ZK is known for an

important family of triangulations. If P is a simple polytope obtained from a simplex

by iterated vertex cuts and K is the dual of the boundary of P, then ZK is

diffeomorphic to a connected sum of products of two spheres. This statement

originated in work of MacGavran (M) pre-dating polyhedral products, took a

spectacular leap forward in work of Bosio and Meersseman (BM) and Gitler and

López de Medrano (GLdM) on intersections of quadrics, and culminated in the

solution of a conjecture in (GLdM) by Chen, Fan and Wang (CFW). However, very

little is known about even the homotopy type of moment-angle manifolds for

triangulations of spheres outside this family.

In this paper we develop new methods to study the homotopy type of ΩZK for a

combinatorial generalisation of triangulations of spheres known as pseudomanifolds.

The collection of pseudomanifolds include triangulations of manifolds. We establish

criteria for when a polyhedral product of the form (CA, A)K with K a pseudomanifold

has Ω(CA, A)K ∈ ∏P . In particular, we prove the following.

Theorem 1.1. If K is the triangulation of a connected, orientable, closed surface on [m], then

ΩZK ∈ ∏P .

This includes the case when K is a triangulation of S2. We also obtain an analogous

result when K is a triangulation of S3.

Theorem 1.2. Let K be a triangulation of S3 on [m]. Then ΩZK ∈ ∏P .

The argument proving Theorem 1.2 breaks into two cases, one of which can be

generalised to certain triangulations of any odd dimensional sphere. A simplicial

complex is k-neighbourly if every set of k + 1 vertices spans a simplex. A triangulation

K of S2n+1 is neighbourly if K is n-neighbourly.



2. Preliminary material 71

Theorem 1.3. If K is a neighbourly triangulation of S2n+1 on [m] with n g 1, then

ΩZK ∈ ∏P .

The methods used to prove Theorems 1.1, 1.2 and 1.3 involve a new approach to

studying how the homotopy type of a polyhedral product is affected by the removal

of a maximal face. This is likely to be of wider use. It is inspired by how certain

simply-connected manifolds (not necessarily moment-angle manifolds) have their

loop spaces retracting off the loops of the associated punctured manifold (T), and

makes use of key properties proved in (St1; St2) that generate retractions of looped

polyhedral products with respect to ∏P .

The authors would like to thank the referees for numerous helpful comments which

helped to improve the paper. In particular, it was pointed out that some of our results

hold for more general neighbourly triangulations of spheres.

2 Preliminary material

This section collects some preliminary combinatorial and homotopy theoretic

information.

Pseudomanifolds. A simplicial complex K of dimension n is called pure if every

simplex is contained in at least one n-simplex. To any pure simplicial complex K of

dimension n, there is an associated graph D(K) called the dual graph of K. The vertices

of D(K) are given by the n-simplices of K, and two vertices in D(K) are adjacent if and

only if their respective faces in K intersect over a face of codimension one.

A simplicial complex K of dimension n is called a weak pseudomanifold with boundary if

every face of codimension one is contained in either one or two maximal faces. The

boundary of a weak pseudomanifold K is the simplicial complex whose maximal faces

are given by the codimension one faces of K which are contained in exactly one

maximal face. If the boundary is empty then K is a weak pseudomanifold.

A simplicial complex K is a pseudomanifold of dimension n if: (i) it is a pure simplicial

complex of dimension n, (ii) it is a weak pseudomanifold, and (iii) D(K) is a

connected graph. The definition of a pseudomanifold with boundary is analogous.

Triangulations of manifolds are examples of pseudomanifolds.

Two combinatorial statements. We first describe a general graph theoretic result. For

a graph G, let V(G) be the vertex set of G. For a vertex v in a graph G, the degree of v,

denoted degG(v), is the number of edges incident to v.
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Lemma 2.1. Let G be a connected simple graph on m vertices, and let n ∈ N. Suppose

degG(v) f n for all v ∈ V(G) and there exists a vertex w ∈ V(G) such that degG(w) < n.

Then there exists an ordering of the vertices v1, · · · , vm such that degG(v1) < n and

degG\{v1,··· ,vi−1}
(vi) < n for 2 f i f m.

Proof. The proof is by induction on the number of vertices. Suppose |V(G)| f n. The

maximum degree of a vertex in such a graph is n − 1, and so any ordering of the

vertices suffices in this case.

Suppose that |V(G)| = k > n and the result is true for all connected graphs H with

|V(H)| < k. Let v1 be a vertex of G such that degG(v1) < n. Since G is connected,

degG(v1) g 1. Consider G \ v1. By hypothesis, degG(v) f n for each vertex v ∈ G \ v1,

so degG\v1
(v) f n. Moreover, since degG(v1) g 1, there exists a vertex v ∈ G \ v1

which is adjacent to v1 in G. It follows that degG\v1
(v) < n. There are two cases to

consider. If G \ v1 is connected, then the inductive hypothesis implies there is an

ordering of the vertices v2, · · · , vm of G \ v1 such that the statement holds. Therefore,

the ordering v1, · · · , vm implies the result is true for G.

If G \ v1 is disconnected, denote by C1, · · · , Cl the connected components of G \ v1,

and let Ci have di vertices. Let x ∈ Ci and y ∈ Cj, where i ̸= j. Since G is connected

and G \ v1 is disconnected, any path between x and y must pass through v1. It follows

that in G, for each 1 f i f l, the vertex v1 must be adjacent to some vertex ci ∈ Ci,

implying that degG\v1
(ci) < n. Therefore, each Ci is a connected graph with strictly

less vertices than G which satisfies the hypotheses in the statement of the lemma. The

inductive hypothesis implies that there is an ordering of the vertices ci1 , · · · , cidi
of Ci

such that the result holds for Ci. The ordering of the vertices

v1, c11
, · · · , c1d1

, · · · , cl1 , · · · , cldk
therefore implies the result is true for G.

Next, we describe a pushout decomposition for certain simplicial complexes K. Let

σ ∈ K be a maximal face and let ∂σ be the boundary of σ. Let K\σ be the simplicial

complex K with the interior of the face σ removed.

Lemma 2.2. Let K be a simplicial complex and let σ be a maximal face of K. There exists a

subcomplex L of K such that there is a pushout

∂σ ∩ L ∂σ

L K \ σ

with ∂σ ∩ L ̸= ∂σ if and only if there exists a face τ ∈ ∂σ with |τ| = |σ| − 1 which is

maximal in K \ σ. Moreover, L can be chosen to be K \ {σ, τ} when it exists.
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Proof. Suppose that L exists but all maximal faces τ with respect to ∂σ are not

maximal in K \ σ. This implies there is a face γτ ∈ K \ σ such that τ ¢ γτ. Since τ is

maximal with respect to ∂σ, the pushout implies that γτ must be contained in L,

which in turn implies that τ ∈ L. This is true for all maximal faces τ ∈ ∂σ, so

∂σ ∩ L = ∂σ, which is a contradiction.

Conversely, let τ be a maximal face with respect to ∂σ which is also maximal with

respect to K \ σ. Define L = K \ {σ, τ}. By definition, ∂σ ∩ L = ∂σ \ τ ̸= ∂σ. Now let

γ ∈ K \ σ be such that γ /∈ ∂σ. Since τ is maximal in K \ σ, we have τ /∈ γ, implying

that γ ∈ L.

Remark 2.3. It is worth noting for what comes in the next section that if σ has

dimension d g 1 then K \ σ has the same vertex set as K. If σ has dimension d g 2

then L = K \ {σ, τ} also has the same vertex set as K.

Spaces in ∏P . Recall that ∏P is the collection of H-spaces that are homotopy

equivalent to a finite type product of spheres and loops on spheres. We state some

properties of the collection ∏P that will be needed. In (St1, Theorem 3.10) it was

shown that the property of being in ∏P is preserved by retractions.

Theorem 2.4. Let X ∈ ∏P and A be a space which retracts off X. Then A ∈ ∏P . □

One source of retractions in the context of polyhedral products come from the

following result from (DS). If K is a simplicial complex on the vertex set [m] and

I ¦ [m] then the full subcomplex KI of K on I is the subcomplex of K consisting of the

faces of K whose vertices are all in I.

Lemma 2.5. If K is a simplicial complex, and KI is a full subcomplex of K, then (X, A)KI

retracts off (X, A)K. □

We next describe two collections of polyhedral products that are in ∏P . Let W be the

collection of topological spaces that are homotopy equivalent to a finite type wedge of

spheres. The first result was proved in (St1, Theorem 1.1) and the second in (St2,

Corollary 6.5).

Theorem 2.6. Let K be a 1-dimensional simplicial complex on [m]. Let A1, · · · , Am be spaces

such that ΣAi ∈ W . Then Ω(CA, A)K ∈ ∏P . □

Theorem 2.7. Let K be a 2-dimensional simplicial complex on [m]. Let A1, · · · , Am be spaces

such that ΣAi ∈ W . If H∗(|L|) is torsion free for all full subcomplexes L of K with complete

1-skeleton, then Ω(CA, A)K ∈ ∏P . □

If a space X ∈ W , then the Hilton-Milnor theorem implies ΩX ∈ ∏P . A result we

will use to show that a space is in W is the following from (H, Example 4C.2).
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Lemma 2.8. If X is a simply connected space with cells in two consecutive dimensions and

H∗(X) is torsion free, then X ∈ W . □

Finally, in (St1, Theorem 4.1) it was shown that ∏P is closed under pushouts over full

subcomplexes.

Theorem 2.9. Let K be a simplicial complex defined as the pushout

L K1

K2 K

where either L = ∅ or L is a proper full subcomplex of K1 and K2. If ΣAi ∈ W for all i,

Ω(CA, A)K1 ∈ ∏P and Ω(CA, A)K2 ∈ ∏P , then Ω(CA, A)K ∈ ∏P . □

A homotopy pushout. It will be important to identify the homotopy type of a certain

homotopy pushout. For spaces X and Y, the right half-smash of X and Y, denoted

X ìY, is the quotient (X × Y)/(∗ × Y).

Lemma 2.10. Suppose that there is a homotopy pushout

A × B D × B

C Q

∗×1

f

where the restriction of f to B is null homotopic. Let f ′ : A ì B −→ C be the quotient map

and let E be its homotopy cofibre. Then there is a homotopy equivalence Q ≃ (D ì B) ( E.

Proof. Since the restriction of f to B is null homotopic, and the map ∗ × 1 is the

identity on B, the space B can be collapsed out of the diagram to give a homotopy

pushout

A ì B D ì B

C Q.

∗ì1

f

The map ∗ì 1 is null homotopic. Thus the previous homotopy pushout can be

expanded to a diagram of iterated homotopy pushouts

A ì B ∗ D ì B

C E Q.

f ′

Here, in the left square the homotopy pushout of f ′ and the constant map is the

homotopy cofibre of f ′, which is E, and in the right square, the homotopy pushout can
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be identified as Q since the outer rectangle is also a homotopy pushout. The right

square itself now identifies Q as (D ì B) ( E.

3 The effect on polyhedral products of removing certain

maximal faces

Let K be a simplicial complex on the vertex set [m] and let σ ∈ K be a maximal face.

Let K\σ be K with the interior of the face σ removed. Observe that ∂σ ¦ K\σ and

there is a pushout of simplicial complexes

∂σ σ

K \ σ K.

(3.1)

The inclusion K \ σ −→ K induces a map of polyhedral products

(CA, A)K\σ −→ (CA, A)K. In this section, conditions are given for when this map has

a right homotopy inverse. Moreover, (CA, A)K is shown to be a wedge summand of

(CA, A)K\σ and the complementary wedge summand is identified.

Suppose that σ has dimension d g 2 and there exists a face τ ∈ ∂σ with |τ| = |σ| − 1

which is maximal in K \ σ. Let L = K \ {σ, τ} and note that ∂σ ∩ L ̸= ∂σ. Combining

Lemma 2.2 and (3.1), there is an iterated pushout of simplicial complexes

∂σ ∩ L ∂σ σ

L K \ σ K.

(3.2)

As the dimension of σ is at least 2, by Remark 2.3, L, K \ σ and K all have the same

vertex set. If σ ̸= K then σ has a smaller vertex set than K, and we regard both σ and

∂σ as simplicial complexes on the vertex set [m], giving ghost vertices which we

denote by 1 f i f m with i /∈ σ. By (GT, Proposition 3.1), the iterated pushout of

simplicial complexes in (3.2) implies that there is an iterated pushout of polyhedral

products

(CA, A)∂σ∩L × ∏
i/∈σ

Ai (CA, A)∂σ × ∏
i/∈σ

Ai (CA, A)σ × ∏
i/∈σ

Ai

(CA, A)L (CA, A)K\σ (CA, A)K

i′×1

f

i×1

(3.3)
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where i′ is induced by the inclusion ∂σ ∩ L → ∂σ, i is induced by the inclusion

∂σ −→ σ and f is induced by the inclusion ∂σ ∩ L → ∂σ. We first show that i′ is null

homotopic.

Lemma 3.1. Let σ be a maximal face of K of dimension d g 2. Suppose there exists a face

τ ∈ ∂σ with |τ| = |σ| − 1 which is maximal in K \ σ and let L = K \ {σ, τ}. Then the map

of polyhedral products (CA, A)∂σ∩L i′
→ (CA, A)∂σ induced by the inclusion ∂σ ∩ L → ∂σ is

null homotopic.

Proof. By definition of L, ∂σ ∩ L = ∂σ \ τ. Therefore, we show that the map of

polyhedral products

(CA, A)∂σ\τ → (CA, A)∂σ

induced by ∂σ \ τ → ∂σ is null homotopic.

Let v be the vertex of ∂σ not contained in τ. Then ∂σ \ τ = v ∗ ∂τ. By definition of the

polyhedral product, there are homotopy equivalences,

(CA, A)∂σ\τ ∼= (CA, A)∂τ × CAv ≃ (CA, A)∂τ,

and the map (CA, A)∂σ\τ → (CA, A)∂σ, up to these homotopy equivalences, becomes

the map induced by the inclusion ∂τ → ∂σ. However, τ ∈ ∂σ, and so this map factors

as ∂τ → τ → ∂σ. By definition, (CA, A)τ is contractible, and so the map induced by

∂τ → ∂σ is null homotopic.

This allows us to give a decomposition of (CA, A)K\σ in terms of (CA, A)K.

Theorem 3.2. Let K be a simplicial complex and σ be a maximal face of K. Suppose there

exists a face τ ∈ ∂σ with |τ| = |σ| − 1 which is maximal in K \ σ. Then the map

(CA, A)K\σ −→ (CA, A)K has a right homotopy inverse and there is a homotopy equivalence

(CA, A)K\σ ≃

(
(CA, A)∂σ

ì∏
i/∈σ

Ai

)
( (CA, A)K.

Proof. From the left square of (3.3), there is a pushout of polyhedral products

(CA, A)∂σ∩L × ∏
i/∈σ

Ai (CA, A)∂σ × ∏
i/∈σ

Ai

(CA, A)L (CA, A)K\σ.

i′×1

f

Since ∂σ ∩ L ̸= ∂σ, Lemma 3.1 implies that i′ is null homotopic. Since L and K \ σ have

the same vertex set, L has no ghost vertices. Therefore, by (GT, Proposition 3.4), the
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restriction of f to ∏i/∈σ Ai is null homotopic. Thus Lemma 2.10 implies that there is a

homotopy equivalence

(CA, A)K\σ ≃

(
(CA, A)∂σ

ì∏
j/∈σ

Aj

)
( E (3.4)

where E is the homotopy cofibre of f ′ : (CA, A)∂σ∩L
ì ∏i/∈σ Ai −→ (CA, A)L.

The next step is to identify E. By (3.3), there is an iterated diagram of pushouts of

polyhedral products

(CA, A)∂σ∩L × ∏
i/∈σ

Ai (CA, A)∂σ × ∏
i/∈σ

Ai (CA, A)σ × ∏
i/∈σ

Ai

(CA, A)L (CA, A)K\σ (CA, A)K.

i′×1

f

i×1

Since (CA, A)σ is contractible, this diagram of iterated pushouts is equivalent up to

homotopy to the iterated diagram of homotopy pushouts

(CA, A)∂σ∩L × ∏
i/∈σ

Ai (CA, A)∂σ × ∏
i/∈σ

Ai ∏
i/∈σ

Ai

(CA, A)L (CA, A)K\σ (CA, A)K

i′×1

f

π2

where π2 is the projection. As noted above, the restriction of f to ∏i/∈σ Ai is null

homotopic, so all the vertical maps restrict trivially to ∏i/∈σ Ai, implying that this

factor may be collapsed out to give an iterated diagram of homotopy pushouts

(CA, A)∂σ∩L
ì ∏

i/∈σ
Ai (CA, A)∂σ

ì ∏
i/∈σ

Ai ∗

(CA, A)L (CA, A)K\σ (CA, A)K

i′ì1

f ′
(3.5)

In particular, all three vertical maps have the same homotopy cofibre. By definition,

the homotopy cofibre of f ′ is E, while the right vertical map clearly has (CA, A)K as its

homotopy cofibre. Thus E ≃ (CA, A)K and therefore from (3.4) there is a homotopy

equivalence

(CA, A)K\σ ≃

(
(CA, A)∂σ

ì∏
j/∈σ

Aj

)
( (CA, A)K.

Further, the right homotopy inverse for (CA, A)K\σ −→ E, together with the bottom

row of (3.5), gives a composite E −→ (CA, A)K\σ −→ (CA, A)K that is a homotopy

equivalence. Thus the map (CA, A)K\σ −→ (CA, A)K has a right homotopy

inverse.
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4 Polyhedral products associated to pseudomanifolds with

boundary

In order to study polyhedral products associated to pseudomanifolds, we first

consider the case with non-trivial boundary. The results will be used frequently in

subsequent sections when the boundary is empty. For a simplicial complex K, and an

integer t g 0, let Kt be the t-skeleton of K. If K has dimension n, we apply the results

from the previous section in order to show that (CA, A)K retracts off (CA, A)Kn−1

under certain hypotheses.

Theorem 4.1. Let K be an n-dimensional, pure, weak pseudomanifold with boundary having

ℓ maximal faces σ1, · · · , σℓ. Suppose that each connected component of D(K) contains a

vertex of degree strictly less than n + 1. Then there is a homotopy equivalence

(CA, A)Kn−1
≃

ℓ∨

i=1

(
(CA, A)∂σi

ì ∏
j/∈σi

Aj

)
( (CA, A)K

and the map of polyhedral products (CA, A)Kn−1
→ (CA, A)K induced by the inclusion

Kn−1 → K has a right homotopy inverse.

Proof. Applying Lemma 2.1 to each connected component of D(K) and relabelling the

maximal faces if necessary, we can assume σ1 has degree strictly less than n + 1 in

D(K), and for 2 f i f ℓ, σi has degree strictly less than n + 1 in D(K) \ {σ1, · · · , σi−1}.

Define K0 = K, and for 1 f i f ℓ, define Ki = K \ {σ1, · · · , σi}. Observe that by

definition, Kℓ = Kn−1. There is a sequence of inclusions

Kn−1 = Kℓ → Kℓ−1 → · · · → K1 → K0 = K,

which factors the inclusion of Kn−1 into K.

We show that for each i, the map of polyhedral products (CA, A)Ki → (CA, A)Ki−1

induced by the inclusion Ki → Ki−1 has a right homotopy inverse. Since σi has degree

strictly less than n + 1 in D(K) \ {σ1, · · · , σi−1}, there exists a face τ ∈ ∂σi with

|τ| = |σi| − 1 which is contained in only one maximal face, namely σi. In particular, τ

is maximal in Ki = Ki−1 \ σi. Hence, Theorem 3.2 implies there is a homotopy

equivalence

(CA, A)Ki ≃

(
(CA, A)∂σi

ì ∏
j/∈σi

Aj

)
( (CA, A)Ki−1 ,

and the map of polyhedral products (CA, A)Ki → (CA, A)Ki−1 induced by the

inclusion Ki → Ki−1 has a right homotopy inverse. The homotopy equivalence

asserted by the theorem then follows by induction.
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Theorem 4.1 has a homological consequence that will be important in Section 6.

Proposition 4.2. Let K be an n-dimensional, pure, weak pseudomanifold with boundary.

Suppose that each connected component of D(K) contains a vertex of degree strictly less than

n + 1. Let A1, · · · , Am be spaces such that H∗(Ai) is torsion free for all i. Then

H∗((CA, A)K) is torsion free if and only if H∗((CA, A)Kn−1
) is torsion free.

Proof. If H∗((CA, A)Kn−1
) is torsion free then, by Theorem 4.1, (CA, A)K retracts off

(CA, A)Kn−1
, implying that H∗((CA, A)K) is torsion free.

Now suppose that H∗((CA, A)K) is torsion free. By Theorem 4.1, there is a homotopy

equivalence

(CA, A)Kn−1
≃

ℓ∨

i=1

(
(CA, A)∂σi

ì ∏
j/∈σi

Aj

)
( (CA, A)K,

where σ1, . . . , σℓ are maximal faces of K. By assumption, H∗((CA, A)K) is torsion free,

so to show that H∗((CA, A)Kn−1
) is torsion free it suffices to show that

H∗((CA, A)∂σi ì ∏j/∈σℓ
Aj) is torsion free for 1 f i f ℓ. Let σi = {j1, · · · , jn}. By (IK3,

Theorem 1.7) or (GT, Theorem 1.1), there is a homotopy equivalence

(CA, A)∂σi ≃ Σn−1Aj1 ' · · · ' Ajn .

In particular, (CA, A)∂σi is a suspension. In general, if A is a suspension then there is a

homotopy equivalence A ì B ≃ A ( (A ' B), so in our case there is a homotopy

equivalence

(CA, A)∂σi
ì ∏

j/∈σi

Aj ≃ (CA, A)∂σi ( ((CA, A)∂σi ' ∏
j/∈σi

Aj).

By hypothesis, each H∗(Ai) is torsion free, so the reduced Künneth theorem implies

that both H∗((CA, A)∂σi) and H∗((CA, A)∂σi ' ∏
j/∈σi

Aj) are torsion free, and hence

H∗((CA, A)∂σi ì ∏
j/∈σi

Aj) is torsion free.

Theorem 4.1 can also be used to give coarse decompositions of the loop spaces of

polyhedral products associated to pseudomanifolds with boundary in low

dimensions.

Theorem 4.3. Let K be a pure, weak pseudomanifold with boundary of dimension n on [m],

and let A1, · · · , Am be spaces such that ΣAi ∈ W for all i. Suppose that each connected

component of D(K) contains a vertex of degree strictly less than n + 1. If n = 1, n = 2, or

n = 3 and H∗(|L|) is torsion free for all subcomplexes L of K with complete 1-skeleton, then

Ω(CA, A)K ∈ ∏P .
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Proof. If n = 1, then Theorem 2.6 implies Ω(CA, A)K ∈ ∏P , so assume n g 2. By

Theorem 4.1, (CA, A)K retracts off (CA, A)Kn−1
, and so Ω(CA, A)K retracts off

Ω(CA, A)Kn−1
. By Theorem 2.4, to show Ω(CA, A)K ∈ ∏P it suffices to show that

Ω(CA, A)Kn−1
∈ ∏P . But Theorem 2.6 when n = 2 and Theorem 2.7 when n = 3

imply that Ω(CA, A)Kn−1
∈ ∏P .

5 Polyhedral products associated to pseudomanifolds

The results from the previous section are applied to certain classes of

pseudomanifolds. In particular, we show that loop spaces of certain polyhedral

products associated to surfaces are in ∏P . We start with a general statement giving

conditions for when a polyhedral product has its loop space in ∏P .

Theorem 5.1. Let K be a simplicial complex on [m] that does not have a complete 1-skeleton.

Let A1, · · · , Am be spaces such that ΣAi ∈ W for all i ∈ [m]. If Ω(CA, A)K\i ∈ ∏P for all

i ∈ [m] then Ω(CA, A)K ∈ ∏P .

Proof. For a vertex v ∈ K, let N(v) be the set of vertices adjacent to v in the 1-skeleton

of K. Since K does not have a complete 1-skeleton, there exists a vertex v such that

v ∪ N(V) ̸= K0. By (St1, Lemma 4.4), there is a pushout of simplicial complexes

KN(v) Kv∪N(v)

K \ v K.

If Ω(CA, A)K\v ∈ ∏P and Ω(CA, A)Kv∪N(v) ∈ ∏P then Theorem 2.9 implies that

Ω(CA, A)K ∈ ∏P .

By assumption, Ω(CA, A)K\v ∈ ∏P . For Ω(CA, A)Kv∪N(v) , since v ∪ N(v) ̸= K0, there

exists a vertex w such that v ∪ N(v) is a full subcomplex of K \ w. By Lemma 2.5,

(CA, A)v∪N(v) retracts off (CA, A)K\w, and so Ω(CA, A)v∪N(v) retracts off

Ω(CA, A)K\w. By assumption, Ω(CA, A)K\w ∈ ∏P , and so Theorem 2.4 implies that

Ω(CA, A)v∪N(v) ∈ ∏P .

Theorem 5.1 will be used to show that low dimensional pseudomanifolds which do

not have a complete 1-skeleton have their associated polyhedral products in ∏P . To

do this, we first show that if K is a pseudomanifold, then K \ i satisfies the hypotheses

of Theorem 4.1.

Lemma 5.2. Let K be a pseudomanifold of dimension n on [m]. For any i ∈ [m], K \ i is a

pure simplicial complex of dimension n, a weak pseudomanifold with boundary, and each

connected component of D(K \ i) contains a vertex of degree strictly less than n + 1.
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Proof. First, we show that K \ i is pure of dimension n. Suppose σ is a maximal face of

K \ i of dimension k < n. By assumption, K is pure of dimension n so σ must be

contained in some maximal simplex σ′ ∈ K with i ∈ σ′. Since i /∈ σ, there must exist a

codimension one face τ ¢ σ′ such that σ ¦ τ and i /∈ τ. Moreover K is a

pseudomanifold, and so in K, τ is contained in two maximal faces, σ′ and σ′′.

However, since σ′ contains i and τ is of codimension one, σ′′ does not contain i, and

therefore σ′′ ∈ K \ i. Since σ ¦ τ, this implies σ ¢ σ′′, which is a contradiction. Thus

every maximal face of K \ i has dimension n, implying that K \ i is pure of dimension

n.

Next, we show that K \ i is a weak pseudomanifold with boundary. Let τ be a

codimension one face of K \ i. In K, since K is a pseudomanifold, τ is contained in two

maximal faces, σ and σ′. At most one of σ and σ′ contains the vertex i, otherwise

σ = τ ∪ {i} = σ′. Therefore one of σ and σ′ is in K \ i. Hence, τ is contained in either

one or two maximal faces in K \ i. We now show that the boundary of K \ i is

non-empty. Since K is pure, the vertex i must be contained in at least one maximal face

σ′′ in K. Hence, if τ′ is the codimension one face of σ′′ which does not contain i, then it

follows that τ′ is contained in the boundary of K \ i.

Finally, we show that each connected component of D(K \ i) contains a vertex of

degree strictly less than n + 1. Since K is a pseudomanifold of dimension n, each

maximal face contains n + 1 codimension one faces, each of which is contained in two

distinct maximal faces. Therefore, each vertex in D(K) has degree n + 1. The graph

D(K \ i) is obtained from D(K) by removing vertices corresponding to maximal faces

of K containing the vertex i. If D(K \ i) is connected, then since D(K) is connected,

there must exist a vertex in D(K \ i) which is adjacent to at least one of the vertices

removed from D(K). Therefore, there must exist a vertex in D(K \ i) with degree

strictly less than n + 1. Now suppose D(K \ i) is disconnected, and let x, y ∈ D(K \ i)

be two vertices in different connected components. Since D(K) is connected and

D(K \ i) is disconnected, any path in D(K) between x and y must pass through one of

the vertices removed from D(K) to obtain D(K \ i). Therefore, for each connected

component of D(K \ i), there must exist a vertex v such that v is adjacent to at least

one of the vertices removed from D(K). Hence, v has degree strictly less than n + 1 in

D(K \ i).

Theorem 5.3. Let K be either a 2-dimensional pseudomanifold or a 3-dimensional

pseudomanifold such that H∗(|L|) is torsion free for all full subcomplexes L of K with complete

1-skeleton. Suppose that K is on the vertex set [m] and A1, · · · , Am are spaces such that

ΣAi ∈ W for all i ∈ [m]. If K does not have complete 1-skeleton then Ω(CA, A)K ∈ ∏P .

Proof. For all i ∈ [m], Lemma 5.2 implies K \ i satisfies the hypotheses of Theorem 4.3.

Therefore, Ω(CA, A)K\i ∈ ∏P for all i ∈ [m]. Since K does not have a complete

1-skeleton, Theorem 5.1 implies that Ω(CA, A)K ∈ ∏P .
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A special case of pseudomanifolds of dimension 2 are connected, orientable, closed

surfaces. In this case, we can give a complete picture of Ω(CA, A)K without the

assumption on the 1-skeleton.

Theorem 5.4. Let K be the triangulation of a connected, orientable, closed surface on [m]. Let

A1, · · · , Am be spaces such that ΣAi ∈ W . Then Ω(CA, A)K ∈ ∏P .

Proof. Since K is the triangulation of a connected, orientable, closed surface, for each

I ¦ [m], |KI | embeds into R3. By (H, Corollary 3.46), this implies that H∗(|KI |) is

torsion free. Therefore, Theorem 2.7 implies that Ω(CA, A)K ∈ ∏P .

A special case of Theorem 5.4 proves Theorem 1.1.

Proof of Theorem 1.1. Take each pair (CAi, Ai) in Theorem 5.4 to be (D2, S1).

6 Loop space decompositions of moment-angle manifolds

In this section, we specialise to moment-angle complexes associated to triangulations

of spheres, all of which are pseudomanifolds. If K is a triangulation of S2 then

ΩZK ∈ ∏P by Theorem 1.1. We will prove an analogous result if K is a triangulation

of S3. To start, we consider more general properties of a family of odd dimensional

sphere triangulations called neighbourly triangulations. Let K be a triangulation of Sn

on [m]. In this case, ZK has the structure of a manifold of dimension m + n + 1 (BP,

Theorem 4.1.4) which is 2-connected.

Pseudomanifolds and the minimally non-Golod property. An important algebraic

condition on simplicial complexes is the notion of Golodness. A simplicial complex K

on [m] is called Golod if all cup products and higher Massey products in H∗(ZK) are

trivial, and K is minimally non-Golod if K \ i is Golod for all i ∈ [m]. For example, if ZK

is a suspension, or a co-H-space, then all cup products and higher Massey products

vanish in H∗(ZK), implying that K is Golod.

We focus our attention on a special family of odd dimensional sphere triangulations.

Recall from the Introduction that a simplicial complex K is called k-neighbourly if every

set of k + 1 vertices spans a simplex. A triangulation K of a sphere S2n+1 is called

neighbourly if K is n-neighbourly. It was shown in (L, Proposition 3.6) that if K is the

boundary of a dual polytope and neighbourly, then K is minimally non-Golod. Gitler

and Lopez de Medrano (GLdM, Theorem 1.3) showed that in this case the

corresponding ZK is diffeomorphic to a connected sum of sphere products, with two

spheres in each product. We give an anaologue of Limonchenko’s result that holds for

any n-neighbourly (2n + 1)-dimensional pseudomanifold. This requires a suspension
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splitting of moment-angle complexes from (BBCG, Corollary 2.23), known as the

BBCG decomposition.

Theorem 6.1. Let K be a simplicial complex. There is a homotopy equivalence

ΣZK ≃
∨

I /∈K

Σ2+|I||KI |

that is natural for inclusions of simplicial complexes. □

The BBCG decomposition for ΣZK “desuspends” if there is a homotopy equivalence

ZK ≃
∨

I /∈K

Σ1+|I||KI |.

Observe that if the BBCG decomposition desuspends then ZK is a suspension, and so

is Golod.

Theorem 6.2. Let K be a pseudomanifold on [m] of dimension 2n + 1. If K is n-neighbourly

then the BBCG decomposition for ΣZK\i desuspends for all i ∈ [m]. Consequently, K is either

Golod or minimally non-Golod.

Proof. By (IK2, Theorem 1.3), for any simplicial complex K, ZK is a co-H space if and

only if the BBCG decomposition desuspends. Hence, it suffices to show that ZK\i is a

co-H space for all i ∈ [m]. Since K is a pseudomanifold, Lemma 5.2 implies K \ i

satisfies the hypotheses of Theorem 4.1, implying that ZK\i retracts off Z(K\i)2n . The

simplicial complex (K \ i)2n is an n-neighbourly, 2n-dimensional simplicial complex,

so by (IK2, Theorem 1.6), the BBCG decomposition for ΣZ(K\i)2n desuspends. Thus

Z(K\i)2n is a suspension. As ZK\i retracts off Z(K\i)2n , ZK\i is therefore a co-H space.

If K is a triangulation of Sn, we can characterise when K is Golod. If K = ∂∆n+1, then

Theorem 6.1 implies that ZK has one non-trivial homology group, and therefore has

no nontrivial cup products or Massey products, implying that K is Golod. If

K ̸= ∂∆n+1, then Theorem 6.1 implies that a minimal missing face corresponds to a Z

summand in Hi(ZK), where i < m + n + 1. If x ∈ Hi(ZK) generated this summand,

then as ZK is a manifold, Poincaré duality implies there is a class y ∈ Hm+n+1−i(ZK)

such that x ∪ y ̸= 0. Thus H∗(ZK) has non-trivial cup products, implying that K is not

Golod. Therefore, we obtain the following.

Lemma 6.3. If K is a triangulation of Sn then K is Golod if and only if K = ∂∆n+1. □

Neighbourly trianglulations of S2n+1. To start, let K be a triangulation of Sn on [m].

Let ZK be the (m + n)-skeleton of ZK. There is a homotopy cofibration

Sn+m f
→ ZK → ZK
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where f attaches the (m + n + 1)-cell to ZK. We aim for a decomposition of ZK under

certain hypotheses. These hypotheses will be satisfied when K is a neighbourly

triangulation of an odd dimensional sphere. First, we determine the homology of ZK.

Proposition 6.4. Let K be a triangulation of Sn on [m]. There are isomorphisms

H∗(ZK) ∼=
⊕

I /∈K

H∗(Σ
1+|I||KI |) H∗(ZK) ∼=

⊕

I /∈K,I ̸=[m]

H∗(Σ
1+|I||KI |).

Proof. The first isomorphism follows from Theorem 6.1. For the second, one

summand has been deleted, corresponding to I = [m]. When I = [m] then KI = K.

Since K is a triangulation of a sphere, |K| = Sn, so Σ1+|[m]||K| ≃ Sm+n+1. This accounts

for the generator in Hm+n+1(ZK). As ZK is the (m + n)-skeleton of ZK, the second

isomorphism follows.

In case the BBCG decomposition for ΣZK\i desuspends for each i ∈ [m] we can

decompose ZK.

Proposition 6.5. Let K be a triangulation of Sn on [m]. If the BBCG decomposition for ΣZK\i

desuspends for all i ∈ [m], then K is Golod when K = ∂∆n−1 or minimally non-Golod when

K ̸= ∂∆n−1, and there is a homotopy equivalence

ZK ≃
∨

I /∈K,I ̸=[m]

Σ1+|I||KI |.

Proof. The BBCG decomposition for ΣZK is

ΣZK ≃
∨

I /∈K

Σ2+|I||KI |.

Consider the map ZK\i −→ ZK induced by the inclusion K \ i −→ K. The naturality of

the BBCG decomposition implies that the decomposition of ΣZK\i may be obtained by

restricting the decomposition for ΣZK to those full subcomplexes KI with I /∈ K and

i /∈ I. As the BBCG decomposition for ΣZK\i desuspends by hypothesis, we obtain a

homotopy equivalence

ZK\i ≃
∨

I /∈K,i/∈I

Σ1+|I||KI |.

Taking the wedge sum of the inclusion maps ZK\i −→ ZK over all i ∈ [m] then gives a

map
m∨

i=1

( ∨

I /∈K,i/∈I

Σ1+|I||KI |

)
−→ ZK.

Observe that the index set on the left accounts for all I /∈ K except for an instance of I

that contains each i ∈ [m], of which there is only one, I = [m]. However, the index set
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may include multiple copies of the same wedge summand. Restricting to a single

copy for each instance of I /∈ K, I ̸= [m], we obtain a map

g :
∨

I /∈K,I ̸=[m]

Σ1+|I||KI | −→ ZK

whose suspension induces the inclusion of all wedge summands in the BBCG

decomposition of ZK except for the I = [m] summand. In particular, g induces an

injection in homology. As each wedge summand Σ1+|I||KI | has dimension < m + n + 1

for I ̸= [m], the map g factors through the (m + n)-skeleton ZK of ZK to give a map

g′ :
∨

I /∈K,I ̸=[m]

Σ1+|I||KI | −→ ZK.

Since g induces an injection in homology, so does g′. The description of H∗(ZK) in

Proposition 6.4 therefore implies that g′ must induce an isomorphism in homology,

and hence g′ is a homotopy equivalence by Whitehead’s Theorem.

We will show that Proposition 6.5 holds when K is a neighbourly triangulation of

S2n+1. In this case, the decomposition of ZK can be refined. The following argument is

essentially due to Gitler and Lopez de Medrano (GLdM), and the authors thank a

referee for pointing out the following result holds for all neighbourly triangulations of

S2n+1, rather than just S3.

Theorem 6.6. If K is a neighbourly triangulation of S2n+1 on [m] with n g 1 then the

simplicial complex K is Golod when K = ∂∆2n+2, or minimally non-Golod when K ̸= ∂∆2n+2.

Moreover, ZK ∈ W .

Proof. Consider the real moment-angle complex RZK := (D1, S0)K associated to K,

which is a closed topological manifold of dimension 2n + 2 (BP, Theorem 4.1.7). By

(BBCG, Corollary 2.24), there is a homotopy equivalence

ΣRZK ≃
∨

I /∈K

Σ2|KI |. (6.6)

Since K is a neighbourly triangulation of S2n+1, each full subcomplex KI has

Hk(|KI |) = 0 for all k < n. It follows from (6.6) that RZK is n-connected. By Poincaré

duality, the reduced homology of RZK is non-trivial only in degrees n + 1 and 2n + 2.

Therefore since H2n+2(RZK) ∼= Z and K = S2n+1, (6.6) implies that for all I ¦ [m] with

I ̸= [m], H̃k(|KI |) can be non-trivial if and only if k = n. Hence either |KI | is

contractible or homotopy equivalent to a wedge of Sn’s. In particular, each such

Σ|KI | ∈ W .
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Combining Theorem 6.2, Lemma 6.3, and Proposition 6.5, we then obtain the desired

result.

Now we can prove Theorem 1.3, which states that if K is a neighbourly triangulation

of S2n+1 then ΩZK ∈ P.

Proof of Theorem 1.3. Theorem 6.6 implies that ZK ∈ W . The Hilton-Milnor theorem

then implies that ΩZK ∈ ∏P . Using the fact that ZK is a manifold, by (T, Example

5.4), the inclusion ZK → ZK has a right homotopy inverse after looping. Hence,

Theorem 2.4 implies that ΩZK ∈ ∏P .

Triangulations of S3. Now we specialise to any triangulation K of S3 and prove

Theorem 1.2, which states that ΩZK ∈ ∏P . This splits into two cases, the first where

K has a complete 1-skeleton, and the second where it does not. The first case follows

from Theorem 1.3 and the second requires a preliminary homological result from (Si,

Lemma 3.4.12) on the homology of ZK. We provide a proof for completeness.

Lemma 6.7. Let K be a triangulation of S3 on [m]. Then H∗(ZK) is torsion free. □

Proof. Since K is a triangulation of S3, H∗(|K|) is torsion free. If I ¦ [m] with I ̸= [m],

|KI | embeds into S3 \ {pt} ∼= R3, and so by (H, Corollary 3.46), H∗(|KI |) is torsion

free. Therefore, Proposition 6.4 implies that H∗(ZK) is torsion free.

We can now prove Theorem 1.2.

Proof of Theorem 1.2. By Lemma 6.7, H∗(ZK) is torsion free, so Theorem 6.1 implies

that H∗(|KI |) is torsion free for all I ¦ [m]. If the 1-skeleton of K is not a complete

graph, then Theorem 5.3 implies that ΩZK ∈ ∏P .

If the 1-skeleton is a complete graph, then Theorem 1.3 implies ΩZK ∈ ∏P .

Remark 6.8. By a result of Cai (C, Corollary 2.10), ZK is a manifold if and only if K is a

generalised homology sphere. It would be interesting to know if these results also

hold when K is a generalised homology sphere, but not a triangulation of a sphere.

Remark 6.9. Not every triangulation K of a sphere will result in ΩZK ∈ P. For

example, let L be the 6-vertex triangulation of RP2. By (GPTW, Example 3.3), there is

a homotopy equivalence

ZL ≃ W ( Σ7RP2, (6.7)

where W ∈ W . As in (LW, Theorem 3.2), one can construct a triangulation of S4

containing L as a full subcomplex by applying certain stellar subdivisions to ∂∆5. Let

K be such a triangulation. By Lemma 2.5 and (6.7), Σ7RP2 retracts off ZK, and so
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ΩΣ7RP2 retracts off ΩZK. This implies that H∗(ΩZK) contains 2-torsion and so

ΩZK /∈ ∏P .

Quasitoric manifolds. Theorem 1.2 will be applied in Proposition 6.11 to show similar

results for certain manifolds known as quasitoric manifolds. As in (DJ), a

2n-dimensional manifold has a locally standard Tn-action if locally it is the standard

action of Tn on Cn. A quasitoric manifold over an n-dimensional simple polytope P is a

closed, smooth 2n-dimensional manifold M that has a smooth locally standard

Tn-action for which the orbit space M/Tn is homeomorphic to P as a manifold with

corners.

Let P be an n-dimensional simple polytope with m facets, and let K = ∂P∗ be the dual

of the boundary of P. The simplicial complex K is a triangulation of Sn−1, and

therefore ZK is a moment-angle manifold. By (BP, Proposition 7.3.12), a quasitoric

manifold M of dimension 2n arises as a quotient M ∼= ZK/Tm−n for some subtorus

Tm−n ¦ Tm that acts freely on the corresponding moment-angle complex ZK. The

quotient description of M implies that there is a principal Tm−n-fibration

Tm−n −→ ZK −→ M. (6.8)

The following lemma is well known to experts in the area.

Lemma 6.10. Let M be a quasi-toric manifold of dimension 2n associated to a polytope P of

dimension n. Let K = ∂P∗. Then there is a homotopy equivalence ΩM ≃ Tm−n × ΩZK.

Proof. Consider the homotopy fibration ΩM
r

−→ Tm−n −→ ZK induced by (6.8). By

(BP, Proposition 4.3.5 (a)), ZK is 2-connected. Therefore r induces an isomorphism on

π1. Each Z generator of π1(ΩM) is the Hurewicz image of a map S1 −→ ΩM, and the

loop space structure allows these to be multiplied together to obtain a map

s : Tm−n −→ ΩM. The composite r ◦ s therefore induces an isomorphism on π1. As

Tm−n is an Eilenberg-Mac Lane space, this implies r ◦ s is a homotopy equivalence.

Thus ΩM ≃ Tm−n × ΩZK.

Proposition 6.11. If M is a quasitoric manifold of dimension 4, 6 or 8, then ΩM ∈ ∏P .

Proof. If M is 2n-dimensional with m facets then, by Lemma 6.10, there is a homotopy

equivalence ΩM ≃ Tm−n × ΩZK, where K is the dual of the boundary of an

n-dimensional polytope. To show that ΩM ∈ ∏P , it therefore suffices to show that

ΩZK ∈ ∏P . But the hypotheses that M has dimension 4, 6 or 8 implies that K is a

triangulation of S1, S2 or S3 respectively. Theorem 2.6 in the first case, Theorem 1.1 in

the second case, and Theorem 1.2 in the third case imply that ΩZK ∈ ∏P , as

required.
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conjecture of S. Gilter and S. López de Medrano, Sci. China Math. 63 (2020),

2079-2088.

[DJ] M.W. Davis and T. Januszkiewicz, Convex polytopes, Coxeter orbifolds and

torus actions, Duke Math. J. 62 (1991), 417-452.

[DS] G. Denham and A.I. Suciu, Moment-angle Complexes, Monomial Ideals and

Massey Products, Pure Appl. Math. Q. 3 (2007), 25-60.

[E] B. Eldridge, Loop spaces of polyhedral products associated with the

polyhedral join product, arXiv:2410.19676.
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