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ABSTRACT

Neuroimaging plays a significant role in understanding the neurophysiology of Tourette syndrome (TS), in particu-
lar the main symptom, tics, and the urges associated with them. Premonitory urge is thought to be a negative 
reinforcer of tic expression in TS. Tic expression during neuroimaging is most often required as an overt marker of 
increased urge-to-tic, which can lead to considerable head movement, and thus data loss. This study aims to 
identify the brain regions involved in urge in healthy subjects using multi-echo functional magnetic resonance 
imaging (fMRI) and a timing-free approach to localise the blood-oxygen level-dependent (BOLD) response asso-
ciated with the urge-to-act without information of when these events occur. Blink suppression is an analogous 
behaviour that can be expressed overtly in the MRI scanner which gives rise to an urge like those described by 
individuals with TS. We examined the urge-to-blink in 20 healthy volunteers with an experimental paradigm includ-
ing two conditions, “Okay to blink” and “Suppress blinking”, to identify brain regions involved in blink suppres-
sion. Multi-echo fMRI data were analysed using a novel approach to investigate the BOLD signal correlated with 
the build-up of the urge-to-blink that participants continuously reported using a rollerball device. In addition, we 
used the method of multi-echo paradigm free mapping (MESPFM) to identify these regions without prior specifi-
cation of task timings. Subjective urge scores were correlated with activity in the right posterior and ventral-
anterior insula as well as the mid-cingulate and occipital cortices. Whereas blink suppression was associated with 
activation in the dorsolateral prefrontal cortex, cerebellum, right dorsal-anterior insula, mid-cingulate cortex, and 
thalamus. These findings illustrate that different insula subregions contribute to the urge-for-action and suppres-
sion networks. The MESPFM approach showed co-activation of the right insula and cingulate cortex. The MESPFM 
activation maps showed the highest overlap with activation associated with blink suppression, as identified using 
general linear model analysis, demonstrating that activity associated with suppression can be determined without 
prior knowledge of task timings.
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1.  INTRODUCTION

In contrast to other movement disorders, many individu-
als with Tourette syndrome (TS) can temporarily suppress 
their tics (Robertson, 2011). However, the majority expe-
rience unpleasant sensations that build up in intensity 
until the tic is released (Kwak et al., 2003; Leckman et al., 
1993). These urges can manifest as sensations such as 
pressure, itching, numbness, or aching (Kwak et  al., 
2003; Woods et  al., 2005), and are often used in 
behavioural therapies to predict and pre-empt tics (Azrin 
& Nunn, 1973). One key mechanistic question is whether 
tics are voluntary and function to alleviate premonitory 
urge (PU) (Leckman et al., 1993), which could act as a 
negative reinforcer of tic behaviour (Capriotti et al., 2014), 
or whether urges arise due to the act of suppression, 
much like the sensation experienced when suppressing a 
yawn (Jackson et al., 2011).

Previous research into the generation of tics and PU 
has suggested the involvement of separate networks. A 
functional magnetic resonance imaging (fMRI) study by 
Bohlhalter et al. (2006) showed that the primary senso-
rimotor cortex and the cerebellum are active at tic onset, 
whereas the insula and premotor regions are active just 
before a tic, suggesting either an involvement in PU or in 
movement preparation.

It has been theorised that the urge-to-act may involve 
a loop comprising the anterior insula, the mid-cingulate 
cortex (MCC), and the mid-insula (Jackson et al., 2011), 
where activation of this pathway would lead to urge sen-
sation, initiation of an action in response to the urge and 
finally assessment of whether the urge has been fulfilled. 
Research into addictive behaviours such as smoking has 
shown that patients with brain injuries involving the insula 
were more likely to report a reduction in the urge-to-
smoke compared with smokers with damage in other loci 
(Naqvi et  al., 2007). Furthermore, sensations such as 
scratching, numbness, and warmth in distinct body parts 
can be elicited with direct stimulation of the contralateral 
insula (Penfield & Faulk, 1955). A recent study found that 
the grey matter volume of voxels in the posterior right 
insula showed a negative association with motor tic 
severity scores, whereas a region in the anterior dorsal/
mid insula was positively correlated with PU scores, sug-
gesting that different portions of the insula may have dif-
ferent roles in tics and urges (Jackson et al., 2020). The 
anterior insula is known to be involved in interoceptive 
processing; thus, PU may manifest due to increased 
awareness of internal sensations (Craig, 2002, 2009). 
Similarly, it has been proposed that the mid-insula has a 
role in subjective feelings relating to movement and, 
therefore, could establish whether the urge-to-act has 
been fulfilled (Craig, 2009; Jackson et  al., 2011). How-

ever, complex motor responses can be evoked by stimu-
lation of the anterior MCC, which demonstrates that the 
region could have a role in the execution of actions per-
formed in response to an urge (Caruana et  al., 2018; 
Jackson et al., 2011).

The neural correlates of the urge-to-move have also 
been investigated in healthy participants with experi-
mental paradigms involving the suppression of com-
mon behaviours such as blinking and yawning (Berman 
et al., 2012; Lerner et al., 2009; Mazzone et al., 2010; 
Nahab et al., 2009; Yoon et al., 2005). These behaviours 
give rise to an urge similar to those described by TS 
patients (Berman et al., 2012; Botteron et al., 2019). A 
variety of areas including the cingulate cortex, insulae, 
prefrontal cortex (PFC), and temporal gyri have shown 
activation associated with urges (Berman et al., 2012; 
Lerner et al., 2009; Mazzone et al., 2010; Nahab et al., 
2009; Yoon et  al., 2005). Using a meta-analytic 
approach, Jackson et al. (2011) revealed that there is 
an overlap in activity in the MCC and the right insula 
during the urge-to-act in healthy participants for a vari-
ety of behaviours and the urge-to-tic in patients. There-
fore, when investigating the network involved in PU, 
blinking can be used for analogous investigation in 
healthy controls (Jackson et al., 2011).

The issue with investigating PU is their temporal cor-
relation with motor preparation. Usually in fMRI studies 
looking at the neural correlates of TS, tics are identified 
post hoc using video recordings (Bohlhalter et al., 2006; 
Neuner et al., 2014), which is subjective and time con-
suming. Regions involved in the urge-to-tic can then be 
identified by looking at regions that are active just before 
a tic, but this will also identify regions involved in tic 
generation (Bohlhalter et al., 2006; Neuner et al., 2014). 
Furthermore, a high proportion of fMRI data are lost 
during tics, for example, due to concomitant head jerks 
(Bohlhalter et al., 2006; Neuner et al., 2014), however, if 
participants are asked to suppress their tics, there 
would be no overt marker of increased urge-to-tic, and 
mechanisms involved in tic suppression will be present 
in the results.

To separate the networks involved in urge and action 
suppression, we investigated the urge-to-blink in healthy 
controls performing a blink suppression paradigm. Sub-
jects were asked to continuously rate feelings of urge so 
that the blood-oxygen level-dependent (BOLD) signal 
could be modelled with a general linear model (GLM) 
based on these subjective ratings, which will allow us to 
identify a network associated with the urge. We also 
compared “Okay to blink” and blink suppression blocks 
to highlight regions involved in action suppression, where 
we expected to show activation in the right inferior frontal 
gyrus (IFG) (Aron et al., 2004, 2014).
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Nevertheless, using a conventional GLM approach will 
involve averaging across many trials to increase the 
signal-to-noise ratio (SNR). This assumes that the 
response is the same for every trial and that the timings 
are known a priori to establish the hypothesised model 
for the fMRI signal. In practice, events such as tics and 
urges are spontaneous and vary in duration as well as in 
phenotype across time and between participants.

To overcome these assumptions, we also analysed 
fMRI data with a paradigm free mapping (PFM) approach 
where the neuronal activity underlying single-trial BOLD 
events is estimated without prior knowledge of event tim-
ings or durations by solving a haemodynamic deconvolu-
tion (inverse) problem (Caballero Gaudes et  al., 2013; 
Uruñuela et al., 2023). PFM works by deconvolving the 
measured data using a template haemodynamic response 
function (HRF) to estimate the times of the activity induc-
ing signal; it takes advantage of the physiologically 
informed linear dependence of the BOLD response with 
the echo time to enhance its performance. In conven-
tional analysis you would use your task to define your 
activity inducing signal and convolve it with a template 
HRF to model the expected BOLD signal. This analysis 
can only reveal the activations that occur at the hypothe-
sised timings of the task events. Instead, using the esti-
mated times of activity inducing signal, we can pull out 
the activation maps associated with time points in a 
data-driven manner.

It is expected that both the conventional and PFM 
analyses will detect regions previously identified as 
being part of the urge network including the MCC and 
right insula (Jackson et al., 2011). If the same regions 
can be identified without specification of task timings, 
this would validate the use of PFM in fMRI studies that 
aim to characterise urge networks in disorders such as 
TS. This is important for TS research as, due to the 
caveats of movement during conventional neuroimag-
ing, moments of heightened urge cannot be identified, 
and networks involved in the urge-to-tic and tic sup-
pression cannot be disentangled. PFM could allow 
these networks to be separated without the need for 
continuous urge ratings.

The primary aim of this study was to disentangle the 
anatomical correlates of the urge-to-blink from those of 
action suppression by identifying the BOLD signal cor-
related with the build-up of the urge-to-blink that partici-
pants continuously reported using a rollerball device. The 
secondary aim of this study was to validate the use of a 
multi-echo sparse paradigm free mapping (MESPFM) 
algorithm (Caballero-Gaudes et al., 2019) to blindly iden-
tify the underlying neuronal-related activity during a blink 
suppression paradigm, before applying it to covert 
responses such as the urge-to-tic.

2.  METHODS

2.1.  Participants

Twenty-two healthy participants were screened for con-
traindications for MRI, use of medication and history of 
neurological or psychiatric disorders. One participant 
(male, 21 years old, right-handed) was excluded before 
data analysis due to a technical issue which led to the 
loss of the fMRI data, and one participant (female, 
28 years old, right-handed) was excluded during analysis 
due to excessive movement. Handedness for the remain-
ing 20 subjects (13 female, mean age (± standard devia-
tion (SD))  =  28  ±  5.2  years) was determined using the 
Edinburgh Handedness Inventory (18 right-handed, 2 
ambidextrous; mean  =  (± standard deviation (SD))  = 
80 ± 31.7, range = -35 to 100) (Oldfield, 1971). Subjects 
gave informed consent and the study received local eth-
ics committee approval.

2.2.  fMRI task

All subjects underwent three 7-minute fMRI runs of the 
same task. The experimental task was based on a previ-
ous study by Brandt et  al. (2016) which recorded real-
time urge ratings and was implemented in Psychopy2 
(1.83.04) (Peirce et al., 2019). Eyeblinks during each run 
were captured with an MR-compatible camera “12M-i” 
with integrated LED light mounted on the head coil (MRC 
systems GmbH) (half frame rate  =  60  Hz). A projected 
screen displaying the task was visible by a mirror posi-
tioned above the participants’ eyes (Fig. 1). For the first 
30  seconds, an instruction was displayed to move an 
MR-compatible trackball (Cambridge Research Systems) 
(sampling rate of 10 Hz) randomly using their right hand 
(“Random”). This was followed by alternating 60-second 
runs of “Okay to blink” and “Suppress.” During these 
conditions, participants continuously rated their urge-to-
blink on a scale of 0–100 while following instructions to 
either blink normally or to suppress their blinks, respec-
tively. The “Random” baseline was repeated during the 
last 30 seconds of the run. Participants were instructed 
to pay attention to the instructions displayed at the top of 
the screen and during the “Suppress” condition to return 
to suppressing their blinks should any escape blinks 
occur (Berman et  al., 2012; Lerner et  al., 2009; Stern 
et al., 2020). Previous studies have shown that 60 sec-
onds of action suppression is achievable and induces 
feelings of urge (Lerner et al., 2009; Stern et al., 2020). 
The order of “Okay to blink” and “Suppress” blocks was 
randomly counterbalanced to reduce order effects, with 
50% of participants starting with suppression following 
the initial baseline. In each run, there were two blocks of 
“Random,” three blocks of “Okay to blink,” and three 
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blocks of “Suppress.” All participants moved the track-
ball using their right hand regardless of hand dominance.

SPSS version 27.0 was used for statistical analysis of 
behavioural data. Differences between blocks were cal-
culated using paired t-tests. The behavioural blink data 
did not meet the assumptions for parametric testing and, 
therefore, a Wilcoxon signed-rank test was used. The 
level for significance was one-tailed due to the directional 
hypothesis that suppression blocks would result in fewer 
blinks. Alpha level was set to p ≤ 0.05.

Before image analysis, the urge data were down-
sampled from 10 to 1  Hz and then standardised to 
Z-scores, through mean subtraction and division by the 
standard deviation. This process was completed for the 
random and experimental conditions for each run in each 
subject separately.

2.3.  Temporal relationship between urge and blinks

To investigate whether urge intensity was associated with 
the likelihood of blink occurrence, we followed a method 
similar to that of Brandt et al. (2016). The Z-scores were 
calculated using the urge data from each run separately 
after the data were down-sampled from 10 to 1 Hz. For 
the binary logistic regression, the urge Z-scores were 
concatenated across participants into separate okay to 
blink and suppress timeseries. Blink occurrence per sec-
ond was binarized such that the occurrence of a blink 
was recorded rather than the number of blinks.

To look at the changes in urge around a blink, we 
extracted 5  seconds before and after each blink. The 
blinks for the initial 5  seconds of each block were dis-
carded to allow the level of urge to adjust and the last 
5 seconds of blinks were discarded so that the average 
urge around blinks would not be affected by the change 
in the block. These data were averaged to give a single 
timeseries for each participant for the suppression and 

okay to blink blocks separately. The peak latency, skew-
ness, and excess kurtosis of these distributions were 
investigated using two-tailed one-sample t-tests to 
investigate the temporal characteristics of urge using 
MATLAB (MATLAB R2020a, Mathworks, Natick, MA). 
Where data failed tests for normality, a Wilcoxon signed-
rank test was used. Curvilinear regression analysis was 
applied using SPSS version 27.0, to investigate whether 
the average urge intensities (Z-score) around the blink in 
each condition followed a quadratic relationship.

2.4.  Image acquisition

The fMRI data were acquired using a Philips 3T Ingenia 
MRI scanner (Philips Healthcare, Best, The Netherlands) 
with a 32-channel head coil situated in the Sir Peter Man-
sfield Imaging Centre, Nottingham UK. FMRI data were 
acquired with a T2*-weighted multi-echo gradient-echo 
echo-planar imaging sequence with the following param-
eters: matrix size = 64 x 64; FOV = 192 x 192 x 135 mm3; 
45 slices; in-plane resolution  =  3  mm; multiband fac-
tor = 3; SENSE reduction factor p = 1.8 in right-left direc-
tion; TR = 1800 ms; TEs = 12/35/58 ms; flip angle = 80°; 
bandwidth  =  2150.8  kHz. The functional T2*-weighted 
scan was followed by a structural T1-weighted MP2RAGE 
image scan acquired using matrix size  =  256  x  256, 
FOV = 192 x 192 x 135 mm, 1 x 1 x 1 mm3 isotropic res-
olution, TR = 7.1 ms, TE = 3.11 ms, TI = 706/3061 ms, flip 
angle = 80°.

2.5.  Image preprocessing

Runs with an absolute mean displacement above 
1.5 mm were discarded, resulting in all three runs from 
one participant (female, 28 years old, right-handed), two 
runs from one participant, and one run from five partici-
pants being removed from the analysis. One further run 

Fig. 1.  The real-time urge task display. A figure displaying the real-time urge monitor, as seen by participants while they 
continuously reported their urge-to-blink in the scanner. Urge was rated on a scale of 0–100 and instructions for each 
condition are displayed above. The trajectory of the urge rating moves from right to left, with the most recent urge rating 
for each condition shown on the left-hand side of the screen. In this example, urge drops to 0 after the onset of the “Okay 
to blink” condition and urge gradually increases from 0 after the onset of the “Suppress condition.”
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from one participant was removed due to loss of video 
data meaning that blink timings could not be defined. 
This left a total of 52 fMRI runs. The SNR of the fMRI 
timeseries (tSNR) for each run was calculated using in-
house scripts (MATLAB R2018b, Mathworks, Natick, 
MA) to assess data quality (see Supplementary A of the 
Supplementary Materials).

The first echo for each fMRI run was realigned to 
account for head motion using MCFLIRT (FMRIB’s linear 
image registration tool) using the middle volume as the 
reference (Jenkinson et al., 2002). This same transforma-
tion was then applied to datasets the second and third 
echo images. Subsequently, using Tedana (version 
0.0.12), all echoes were linearly combined with weights 
based on the voxelwise T2* parameters (Posse et  al., 
1999) and this “optimally combined” dataset was input to 
multi-echo independent component analysis (ME-ICA) 
with the Akaike information criterion (AIC) method being 
used to select the number of independent components 
(DuPre et al., 2021; Kundu et al., 2012, 2013). Rica was 
used to visualise and manually classify any components 
that had been misclassified or labelled as non-classified 
by Tedana (Uruñuela, 2021). After that Tedana was rerun 
using a list of the manually accepted components for 
denoising purposes.

The resulting individual denoised echo datasets were 
then pre-processed using FSL (FMRIB software library) 
(Jenkinson et al., 2012). Pre-processing involved the use 
of a high-pass filter to remove any signals below 
0.0083  Hz from the fMRI data. Images were spatially 
smoothed using a Gaussian kernel of 5 mm FWHM (full 
width at half maximum) to increase the SNR and to 
account for any major anatomical differences between 
subjects. Following pre-processing, the first echo data-
set was normalised to MNI152 space and the same 
transformation was then applied to the second and third 
echoes. Finally, a nuisance regression step was applied 
in AFNI (Cox, 1996) to each echo dataset and the opti-
mally combined dataset to remove physiological fluctua-
tions and low frequency trends that were not removed by 
Tedana. Nuisance regressors included the first four Leg-
endre polynomials and the first five principal components 
of CSF voxels within the lateral ventricles, which were 
identified after erosion of the corresponding tissue-
segmented T1-w image (Behzadi et al., 2007), and com-
puted before spatial transformation to MNI152 space and 
spatial smoothing (Caballero-Gaudes & Reynolds, 2017).

2.6.  Standard general linear model analyses

For the standard image analysis, the three echoes were 
combined with T2* weights to generate an optimally 
combined dataset (Kundu et  al., 2012; Posse et  al., 

1999). Within the FSL GLM design matrix (Supplemen-
tary Materials, Fig. SB.1), five regressors-of-interest 
were defined. Three boxcar regressors were used to 
define the onset and durations of each “Random,” “Sup-
press,” and “Okay to blink” block. A parametric regres-
sor was defined for the standardised (Z-score) urge 
scores for the experimental period, after removal of the 
urge scores in the random baseline. A three-column for-
mat was used with the onset time, duration (one urge 
rating per second), and Z-score. An additional regressor 
was used to define the onset times and durations for 
blinks. All regressors were convolved with a double-
gamma HRF. Temporal derivative regressors were also 
included for each of the 5 regressors of interest, for a 
total of 10 regressors in the model.

In the first-level analysis, data from each run for each 
subject were analysed separately (see Fig. SB.1 in the 
Supplementary Materials for an example design matrix). 
Contrasts were set up to compare the “Okay to blink” 
and “Suppress” blocks (“Suppress” > “Okay” & “Okay” > 
“Suppress”), and the experimental blocks where urge 
was rated continuously were compared with the baseline 
“Random” condition to account for activity related to 
moving of the rollerball (“Urge”  >  “Random” & “Ran-
dom” > “Urge”). In addition, the activity relating to blinks 
and parametric urge regressor was compared to sepa-
rate the activity relating to the blink from that of high urge 
(“Urge” > “Blink” & “Blink” > “Urge”). At the second level, 
results from the first-level analysis were averaged across 
runs for each subject. Finally, at the third level, mixed 
effects analysis was used to average across subjects. 
The results were corrected at the cluster level with a 
cluster-defining Z threshold of 3.2 (corresponding to 
p = 0.001) and a cluster p threshold of p < 0.05 (Gaussian 
Random Field theory for multiple comparisons correc-
tion). Regions were identified using the Harvard–Oxford 
cortical and subcortical structural atlases, as well as the 
cerebellar atlas in MNI152 space after normalisation with 
FLIRT (FMRIB’s linear image registration tool). Conjunc-
tion analysis was used to identify whether any voxels 
were overlapping in the thresholded Z-statistical maps 
for the “Urge”  >   “Random” and “Suppress”  >  “Okay” 
contrasts.

2.7.  Multi-echo sparse paradigm free mapping

Assuming a linear time invariant system, the BOLD 
response is assumed to be the neuronal signal convolved 
with the HRF (+ noise) (Poldrack et al., 2011). PFM works 
by deconvolving the fMRI signal using the HRF via regu-
larised least-squares estimation to estimate the neuronal-
related signal at each voxel (Fig.  2) (Caballero Gaudes 
et al., 2013; Uruñuela et al., 2020). In this work, a version 
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of PFM tailored for multi-echo fMRI data (multi-echo 
sparse paradigm free mapping, MESPFM), which consid-
ers the linear dependence of the BOLD response with the 
echo times, was used (Caballero-Gaudes et al., 2019).

The MESPFM analysis was run using the 3dMEPFM 
command implemented in AFNI (Cox, 1996; Cox & Hyde, 
1997). The signal percentage change for each echo was 
calculated by dividing the detrended data by the mean of 
the voxel data on a voxel-by-voxel basis. Before the anal-
ysis with MESPFM, the data relating to the random base-
line at the beginning and end of each run were removed, 
so that only the six 1-minute blocks of alternating blink 
suppression and rest remained.

For MESPFM, the regularisation parameter was 
selected using the Bayesian Information Criterion (BIC) 
(Caballero-Gaudes et al., 2019) according to the goodness 
of fit of the estimated model. Specifically, BIC will intro-
duce an increasing penalty for more events being included 
in the model to prevent overfitting (Dziak et al., 2020). The 
HRF used for the deconvolution was the SPM canonical 
HRF (Penny et al., 2007), and the model only considered 
changes in the transverse relaxation rate (R2*).

A surrogate dataset was created by shuffling the data 
from the six 1-minute blocks of alternating blink suppres-
sion and rest, before the signal percentage change was 
calculated. This created a new dataset with the same 
temporal (and spectral) distribution as the original data-
set but without the temporal relationships between the 
timepoints, which could act as a null distribution. This 
shuffled dataset was analysed with the same MESPFM 
algorithm as the original dataset.

2.8.  Activation timeseries

Following MESPFM, we removed the activity of spurious 
voxels via spatiotemporal clustering using a sliding win-
dow approach. The sliding window consisted of three 
data points: the current data point and those either side. 
The current data point at each voxel was then substituted 
as the value of the largest absolute value within that win-
dow. The 3dmerge -1clust AFNI (Cox, 1996; Cox & Hyde, 
1997) function was used to cluster neighbouring voxels, 

with a minimum cluster size of 10. The spatiotemporal 
clustering mask was then applied to the original data to 
remove spurious, isolated activations that are likely false 
activations.

The output of MESPFM is a 4D dataset with the esti-
mated neuronal-related activity underlying the BOLD 
response that has the same number of timepoints as the 
input dataset. To summarise these results in time and find 
the instances with the most relevant activity, we compute 
an Activation Time Series (ATS) (Gaudes et al., 2011) which 
is defined here as the number of voxels where the decon-
volved signal has a negative coefficient (i.e., producing a 
positive BOLD response based on the multi-echo model) 
at a given timepoint. A detected event or activation is 
defined when the ATS exceeds the number of voxels of an 
ATS computed from the surrogate dataset.

If an activation event detected by MESPFM in the 
original dataset exhibits a larger amplitude than those 
seen in the surrogate dataset, then it is unlikely to have 
happened by chance. This threshold was defined as the 
median amplitude of the surrogate activation timeseries 
for that run.

The right insula was selected as our region of interest 
(ROI) due to its frequent identification in studies exploring 
the neural correlates of urge and its hypothesised role in 
the urge-to-act (Berman et al., 2012; Jackson et al., 2011; 
Lerner et al., 2009; Mazzone et al., 2010; Nahab et al., 
2009; Yoon et al., 2005). If there is contribution from dif-
ferent subregions within the right insula, then we may be 
able to tease these subregions and any separable co-
activations apart during clustering, following the 
MESPFM. While the MCC is commonly identified as a 
region involved in the urge-to-act, its hypothesised role in 
the selection of an action in response to urge rather than 
in the urge sensation itself means it would be a less ideal 
candidate for ROI analysis (Jackson et al., 2011). To note, 
the maps identified as coactivating with the right insula 
do not necessarily show high functional connectivity with 
the insula across the entire duration of the paradigm. 
They do have high levels of functional connectivity at 
these specific timepoints which are hypothesised to be 
times where urge is increased.

Fig. 2.  Estimation of the activation timeseries. Paradigm free mapping (PFM) involves deconvolving the measured fMRI 
signal to estimate the activity-inducing signal using a haemodynamic response function (HRF) template (Uruñuela et al., 
2023). (Figure based on flowchart from Uruñuela et al. (2023)).
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The mask of the right insula was created based on 
insula parcels from the Schaefer 1000 parcels 17 network 
atlas (Schaefer et  al., 2018). Finally, we selected those 
peaks that had a higher number of activated voxels within 
the ROI compared with the shuffled dataset as any peaks 
higher than this are unlikely to have happened by chance.

2.9.  K-means clustering

Clustering was used to identify any patterns in the 
MESPFM activation maps associated with the selected 
ATS peaks to reveal their shared spatial response. The 
input was the matrix of pairwise spatial distances 
between the activation maps associated with the selected 
ATS peaks. The metric used for calculating these pair-
wise distances was the Euclidean distance. This would 
help us to group together coactive regions. K-means 
clustering aims to separate the data into k clusters, here 
k was chosen using consensus clustering (Wu et  al., 
2015). The selected ATS maps would be assigned to the 
cluster that minimised the distance between the data 
points and their cluster centroids.

For the consensus clustering, k-means clustering was 
applied to 80% of the data with k values in the range 2 to 
15 with 100 iterations per k. The k with the highest con-
sensus value was selected. The consensus value is the 
average proportion of times that any pair of data points 
was assigned to the same cluster across the runs, giving 
a value between 0 and 1.

The K-means algorithm was run 50 times with different 
centroid seeds with the number of clusters determined 
by the consensus clustering. Finally, the voxelwise 
Z-scores for the activation maps for each cluster were 
calculated using Z-normalisation in space (i.e., subtract-
ing the mean of the ∆R2* (change in 1/T2*) values across 
the brain and dividing by the corresponding standard 
deviation).

We then compared the MEPFM cluster maps with the 
urge, suppression, and blink GLM-based maps to iden-
tify which they most closely represented. To do this, the 
Z-score maps of the identified MESPFM clusters were 
multiplied by -1 to account for the fact that the MESPFM 
estimates changes in R2* rather than the BOLD signal 
since negative changes in R2* generate a positive BOLD 
response, and vice versa. Next the MESPFM cluster 
Z-score maps were thresholded at Z = 3.2 to make them 
comparable with the GLM-based maps (“Sup-
press” > “Okay to blink,” “Blinks,” “Urge” > “Random”). 
Then, conjunction analysis was used to identify whether 
any voxels were overlapping. The highest overlap 
between the GLM-based masks and the MESPFM-
cluster mask was used to determine which GLM-based 
map the cluster represented the most. The percentage of 

overlapping voxels within the GLM-based masks, the 
Jaccard index, and the Dice coefficient are reported.

3.  BEHAVIOURAL RESULTS

All blinks in each run were first annotated by one rater, 
then a random 60-second block from each run was anno-
tated by a second rater using ELAN (MH, IM, KD), with an 
average agreement of 95.51%  ±  10.13 (mean  ±  SD)  
(Brugman & Russel, 2004; ELAN, 2019). Any blink dis-
crepancies were discussed until agreement was achieved 
for all blink occurrences. The average number of blinks 
per minute in the “Okay to blink” condition was 
31.20 ± 3.63 (mean ± standard error of the mean (SEM)), 
while in the suppression condition this was significantly 
lower with 5.12 ±  0.81 blinks per minute (t

(20)  =  -4.249, 
p < 0.001). The average urge per minute was 22.79% ± 4.00 
and 55.62% ±  3.42 for “Okay to blink” and “Suppress” 
blocks, respectively. The difference between the urge in 
the two conditions was highly significant (t(20) = -10.901, 
p < 0.001). These findings indicate that participants suc-
cessfully followed instructions to suppress blinks and that 
this was associated with an increased urge-to-blink.

Figure 3 shows examples of runs from two different 
representative subjects, where urge is shown to rise 
during the period of suppression, and suddenly decrease 
after “escape” blinks. However, while for some subjects 
urge flattened throughout periods where blinking was 
okay (Fig.  3B), others reported small increases in urge 
before the blinks (Fig. 3A), although the magnitude this 
reached before a blink was released was lower than that 
seen in the suppression blocks.

3.1.  Temporal relationship between urge and blinks

A binary logistic regression showed that only 0.6% of the 
variance in blink occurrence during “Okay to blink” could 
be explained by changes in subjective urge ratings (Cox 
& Snell R2 = 0.006, χ2(1) = 53.667, p < 0.001; Exp(B) = 0.806, 
Wald(1)  =  107.279, p  <  0.001). Due to the scarcity of 
blinks in the “Suppress” condition, all instances of blinks 
were classified as outliers by the model and so the data 
were not appropriate for this type of analysis.

A curvilinear regression showed that the mean urge 
around blinks followed a significant quadratic distribution 
over time in the “Suppress” condition (F(2,8) = 26.192, 
p < 0.001, Adjusted R2 = 0.834; Estimated urge = 0.948 
– 0.038 * (time to blink) – 0.019 * (time to blink)2) (Fig. 4). 
While the Adjusted R2 value was higher for the quadratic 
model compared with the linear model in the “Okay to 
blink” condition, the F-statistic was lower, and the qua-
dratic term was not significant. Therefore, the mean urge 
around blinks in the “Okay to blink” condition is better 



8

M.S. Houlgreave, E. Uruñuela, C. Caballero-Gaudes et al.	 Imaging Neuroscience, Volume 3, 2025

explained by a linear distribution (F(1,9)  =  41.412, 
p < 0.001, Adjusted R2 = 0.802; Estimated urge = -0.646 
– 0.017 * (time to blink).

In the “Okay to blink” condition, urge intensity peaked 
significantly before the blink (-3.55  seconds  ±  2.52 
(mean ± sd), z(19) = -3.68, p < 0.001), whereas in the “Sup-
press” condition, urge peaked at blink onset (0.56  sec-
onds ± 2.87, z(17) = 0.89, p > 0.05) (Fig. 4). There was no 
significant skew in the suppression condition (0.01 ± 0.75, 
t(17) = 0.06, p > 0.05), whereas in the free blinking condi-
tion, urges were slower to decrease than they were to 
increase before the peak (0.78  ±  0.62, z(19)  =  3.58, 
p < 0.001). While there was no significant kurtosis in the 

“Okay to blink” condition (2.84  ±  0.98, z(19)  =  -1.57, 
p > 0.05), the distribution of urge around the blink in the 
suppression condition was broader than that of a normal 
distribution (2.16 ± 1.27, z(17) = -2.90, p < 0.01). Two sub-
jects were not included in the curvilinear regression and 
the temporal characteristics analysis for the “Suppress” 
condition due to having no “escape” blinks.

4.  STANDARD GENERAL LINEAR MODEL RESULTS

Locations of clusters local maxima for all GLM compari-
sons are defined within Supplementary C of the Supple-
mentary Materials.

Fig. 3.  The association between the urge-to-blink and blinking. Graphs displaying blink timings for individual task 
runs from two representative participants alongside their subjective urge rating across time. Panel (A) shows that some 
participants felt increases in urge even in “Okay to Blink” blocks, whereas panel (B) shows that some participants only felt 
urge during suppression blocks.
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4.1.  Block analysis

For the contrast of “Suppress” > “Okay to blink” blocks, 
increased activation associated with blink suppression is 
expected to be identified. Significant activations were 
identified with peaks in the dorsolateral prefrontal cortex 
(DLPFC), lateral occipital cortex, cerebellum, opercular 
cortices, supramarginal gyrus (SMG), and posterior cin-
gulate (PCC) (Fig. 5). Notably, significant activations were 
found in the left primary somatosensory cortex, MCC, 
supplementary motor area (SMA), and bilateral insulae. 
When contrasting “Okay to blink” > “Suppress” blocks, 

clusters were identified in the frontal orbital cortex, lateral 
occipital cortex, PCC, middle frontal gyrus, and a small 
area in the cerebellum (Fig. 5).

4.2.  Urge analysis

For the contrast of the parametric “Urge” regressor> 
“Random” block, significant activations were identified in 
the medial occipital cortex, opercular cortex, ACC, bilat-
eral insulae, and cerebellum (Fig.  5). When contrasting 
“Random” > “Urge,” clusters were identified in the bilat-
eral sensorimotor cortices, lateral occipital cortex, cere-

Fig. 4.  The distribution of mean urge per second around a blink at time 0. Error bars show the standard deviation.

Fig. 5.  BOLD response associated with blink suppression, urge-to-blink, and blinking. Statistical maps overlaid onto the 
MNI152 brain showing significant activations for the (top) “Suppress” >  “Okay” (red), “Okay” > “Suppress” (blue); (middle) 
“Urge” > “Random” (red), “Random” > “Urge” (blue); (bottom) “Blink” > “Urge”; (red) contrast. Statistical maps were 
thresholded at Z = 3.2 (p < 0.05). For activations for “Urge” and “Blink” alone, see Supplementary B of the Supplementary 
Materials).
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bellum, left thalamus, opercular cortex, and insulae 
(Fig. 5). These contrasts are expected to identify regions 
showing activation associated with urge while removing 
any activations caused by the movement of the rollerball.

In Figure 6, the activations associated with the con-
trast “Urge” > “Random” are visualised alongside those 
associated with “Suppress”  >  “Okay to blink” and 
“Blink”  >  ”Urge” showing an overlap between blinking 
and suppression in the MCC and SMA, while the anterior 
cingulate cortex (ACC) is associated with the urge-to-
blink. Notably, there is a differentiation in insula involve-
ment with a dorsal-anterior portion involved in suppression 
and blinking, a central portion involvement in blinking and 
posterior and ventral-anterior regions being active during 
feelings of urge-to-blink (Fig. 6).

4.3.  Blink analysis

For the contrast “Blinks” > “Urge,” there were significant 
activations in the medial occipital cortex, MCC, opercular 
cortex, insulae, DLPFC, SMA, and left primary sensorim-
otor cortex (Fig.  5). No regions were identified by the 
“Urge” > “Blinks” contrast. This contrast was expected to 
identify regions involved in blinking itself, without activa-

tion associated with the increased urge to blink at these 
timepoints.

4.4.  Conjunction analysis

Figure 7 shows the overlap between the significant acti-
vations in the “Urge” > “Random” and “Suppress” > “Okay 
to blink” contrasts. Voxels were identified in the MCC, 
right DLPFC, right superior SMG, right angular gyrus, left 
postcentral gyrus, bilateral anterior insulae, right opercu-
lar cortex, right precuneous, left lateral occipital cortex, 
and left VI in the cerebellum.

4.5.  Post hoc general linear model analysis

Post hoc analysis was performed to determine whether 
the mean activation correlated with the self-reported 
urge-to-blink, and the mean activation during suppres-
sion blocks was significantly different in terms of insula 
and cingulate activation (“Urge”  >  “Suppress”, “Sup-
press” > “Urge”). Notably, the results shown in Figure 8 
demonstrate that the posterior and ventral anterior insula, 
as well as the anterior cingulate cortex are significantly 
more active during urge than during suppression. There 

Fig. 6.  Separate networks for urge-to-act and action suppression. Masks of significant activation for the 
“Suppress” > “Okay” (green), “Urge” > “Random” (pink) and “Blink” > “Urge” (blue) contrasts overlaid onto the MNI152 
brain.

Fig. 7.  Voxels active during both the urge-to-blink and suppression. Masks of significant activation for the 
“Suppress” > “Okay” (green) and “Urge” > “Random” (pink) contrasts with overlapping voxels in yellow, overlaid onto the 
MNI152 brain.
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is, however, no significant difference in activation of the 
MCC, dorsal anterior insula, or mid-insula.

5.  MULTI-ECHO SPARSE PARADIGM FREE  
MAPPING RESULTS

Figure  9 illustrates the detection of BOLD activation 
within the right insula obtained in a single run from a rep-
resentative subject. Figure  9A shows the interpolated 
urge scores and blink frequencies per TR. Activation 
peaks within the right insula (selected ROI) which surpass 
the threshold are shown in Figure 9B. It is worth noting 
that not all the runs showed right insula activation sur-
passing the threshold set by the shuffled dataset (see 
Supplementary D of the Supplementary Materials).

Consensus clustering determined that three clusters 
gave the most stable solution at the group level with a 
consensus value of 0.60140. The thresholded K-means 
cluster maps (k = 3) are shown in Figures 10, 11, and 12 
(Z = ±3.2). The positive, binarized K-means output maps 
are shown in Figure 13 (Z = 3.2).

The thresholded activation map for Cluster 1 reveals 
significant positive activation in the SMA, paracingulate 
cortex, ACC, bilateral insulae, bilateral frontal opercular 
cortices, right IFG pars opercularis, bilateral frontal orbital 
cortices, right postcentral gyrus, right superior parietal 
lobule, and both medial and lateral occipital areas. Signif-
icant negative activation localised to the left medial fron-
tal gyrus (MFG), left lateral occipital cortex, precuneous, 
and the PCC. Similarly, Cluster 2 involves positive activa-
tion of the SMA, paracingulate cortex, right insula, right 
frontal opercular cortex, bilateral IFG pars opercularis, 
right frontal orbital cortex, bilateral superior frontal gyri 

(SFG), right MFG, bilateral DLPFC, left postcentral gyrus, 
bilateral superior parietal lobules, and both medial and 
lateral occipital areas. Negative activation was seen 
within the left lateral occipital cortex, precuneous, and 
PCC. Finally, Cluster 3 shows positive activation in the 
SMA, paracingulate cortex, ACC, right insula, bilateral 
frontal opercular cortices, bilateral SFG, bilateral DLPFC, 
left sensorimotor cortex, bilateral superior parietal lobule, 
and both medial and lateral occipital regions. Negative 
activation was seen within the precuneous, PCC, left lat-
eral occipital cortex, left prefrontal gyrus, and the SFG.

Positive activation was identified in the SMA, paracin-
gulate cortex, ACC, bilateral insulae, and both medial 
and lateral occipital areas. Statistical maps were thresh-
olded at Z = ±3.2 (p < 0.05).

Positive activation was identified in the SMA, paracin-
gulate cortex, right insula, bilateral DLPFC, and both 
medial and lateral occipital areas. Statistical maps were 
thresholded at Z = ±3.2 (p < 0.05).

Positive activation was identified in the SMA, paracin-
gulate cortex, ACC, right insula, bilateral DLPFC, and 
both medial and lateral occipital regions. Statistical maps 
were thresholded at Z = ±3.2 (p < 0.05).

The three MESPFM cluster maps show positive acti-
vation within the right dorsal-anterior insula, paracingu-
late cortex, SMA, and medial and lateral occipital cortices 
(Fig.  13). Figure 13 illustrates the results from both the 
MESPFM analysis and the conventional GLM analysis. 
The largest overlap between the three thresholded 
MESPFM cluster maps was with the regions shown to be 
active during suppression (Table  1), where the overlap 
was defined as the percentage of overlapping voxels 
within the GLM-based masks.

Fig. 8.  Comparison of urge-to-act and suppression networks. Masks of significant activation for the “Suppress” > “Urge” 
(maroon) and “Urge” > “Suppress” (light blue) contrasts overlaid onto the MNI152 brain.
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Fig. 9.  The activation timeseries from a representative subject. (A) The interpolated urge scores and blink frequencies per 
TR. (B) All positive BOLD (negative R2*) activations within the right insula with the threshold set by the shuffled dataset.

Fig. 10.  Cluster map 1 identified using multi-echo sparse paradigm free mapping.
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6.  DISCUSSION

This fMRI study investigated the urge-to-blink using both 
a conventional general linear model analysis with a para-
metric model of subjective urge ratings and an MESPFM 
approach. The aim was to disentangle the anatomical 
correlates of the urge-to-blink from those of action sup-
pression and to validate whether MESPFM can be used 
to identify neuronal activity in an action suppression par-
adigm without prior specification of urge time courses.

6.1.  Behavioural relationships between urge and 
blinks

Previous attempts to model the urge-to-blink have either 
employed a sawtooth model (Berman et al., 2012), where 
urge builds up linearly across the suppression block 
before decreasing at the end of the block, or an event-

related model (Botteron et  al., 2019), where urge 
decreases following escape blinks in the suppression 
block. Here, the representative examples of continuous 
urge ratings during the task show that blinking, particu-
larly during suppression blocks, causes a temporary 
decrease in urge intensity. Therefore, although sawtooth 
models are likely better at approximating urge compared 
with a block analysis (Berman et al., 2012), they are still 
too simplistic as they do not capture the complex tempo-
ral characteristics of the urge, for example, they do not 
consider escape blinks during suppression. More recent 
models that take account of these “escape” blinks, such 
as the event-related approach suggested by Botteron 
et al. (2019), more accurately represent real-time urge rat-
ings. If applied to fMRI data, the model could theoreti-
cally identify neural correlates of the urge-to-blink 
relatively well. However, this approach would not be 

Fig. 11.  Cluster map 2 identified using multi-echo sparse paradigm free mapping.

Fig. 12.  Cluster map 3 identified using multi-echo sparse paradigm free mapping.
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appropriate in the analysis of the urge-to-tic where overt 
expression of the behaviour would be suppressed during 
scanning, highlighting the need for continuous urge rat-
ing or alternative modelling and analysis approaches.

Results from the curvilinear regression demonstrated 
a quadratic relationship between urge and blinks (see 
Fig.  4), indicating that urge increases during suppres-
sion but diminishes after the blink. This is further sup-
ported by the urge peaking at blink onset. However, the 
“Okay to blink” blocks showed a significant linear rela-
tionship and urge did not peak at blink onset. Further-
more, blink occurrence could not be predicted by the 

urge score in “Okay to blink” blocks. This result is con-
sistent with the interpretation that in the case of blinking 
in healthy participants, urge arises due to the act of sup-
pression. Brandt et  al. (2016) found a significant qua-
dratic distribution of urge and that the peak in urge was 
coincident with blinks and tics in both the free to blink/
tic and suppress conditions. The increase in urge during 
the free to blink blocks was smaller in than the suppres-
sion blocks, whereas the urge-to-tic at tic onset was 
comparable in both conditions. Their results also show 
that the urge-to-tic arises ~10  seconds before the tic 
occurs in both conditions, suggesting that perhaps the 

Fig. 13.  Comparison of the masks generated during the multi-echo sparse paradigm free mapping (Clusters 1–3) and the 
conventional general linear model analysis (Suppression, Urge, Blink) (thresholded at Z = 3.2).
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urge-to-tic does not arise due to the act of suppression, 
in contrast to our findings here related to the urge-to-
blink. This suggests that physiological and pathological 
urges may differ in how they arise, although this hypoth-
esis requires further investigation.

6.2.  Neural correlates of the urge-to-blink

The regions identified using the urge parametric model 
included the insulae and ACC. These regions are com-
monly implicated in studies of urge; therefore, the right 
insula and cingulate cortex are thought to be key nodes 
in the urge network (Jackson et al., 2011).

Activation of the insula has been linked to various urge 
sensations, such as those related to ticcing (Bohlhalter 
et al., 2006; Neuner et al., 2014; Zouki et al., 2024), blink-
ing (Abi-Jaoude et al., 2018; Berman et al., 2012; Lerner 
et al., 2009), and yawning (Jackson et al., 2011). Patients 
with obsessive compulsive disorder (OCD) show 
increased insula activity during early blink suppression 
compared with controls (Stern et al., 2020). Furthermore, 
PU severity has shown a negative association with the 
volume of left insular grey matter thickness in TS patients 
(Draper et al., 2016).

Subregions of the insula are thought to have differing 
functions (Kelly et al., 2012; Kurth et al., 2010). The pos-
terior insula has a role in the initial processing of both 
noxious and non-noxious somatosensory stimuli 
(Ostrowsky et  al., 2002), whereas the anterior insula 
integrates information from several functional systems 
to bring about interoceptive awareness (Craig, 2009; 
Kurth et al., 2010). In agreement with this concept of a 
functional division, our data suggest that the posterior 
insula is involved in the processing of urge sensations 
as has been theorised previously (Tinaz et  al., 2015). 
Information is thought to flow in a hierarchical fashion 
from the posterior insula to the anterior insula, with ini-
tial sensory processing in the posterior portion and pro-

gressive integration of information in the anterior portion 
to give a final representation that incorporates all the 
task information (Craig, 2009; Craig et al., 2000). Here, 
the ventral-anterior insula was also associated with 
urge, and this subregion has been shown to be linked 
with emotional processing (Kelly et  al., 2012; Kurth 
et al., 2010). Similarly, stimulation of the pregenual ACC 
has been shown to induce emotional, interoceptive, and 
autonomic experiences (Caruana et al., 2018). Both the 
right ventral-anterior insula and the ACC were identified 
in a recent study investigating the overlap between 
regions involved in physiological urge and a network of 
regions which show structural alterations in individuals 
with TS (Zouki et  al., 2024). Previous analyses of the 
functional connectivity of the insula have indicated that 
the ventral-anterior subregion is connected to the ros-
tral ACC within a limbic network that is associated with 
emotional salience detection (Cauda et al., 2011). How-
ever, the posterior insula is connected to sensorimotor 
regions within a network involved in response selection 
(Cauda et  al., 2011). Therefore, it is possible that 
somatosensory urges are processed by the posterior 
insula, and through integration of information in the 
ventral-anterior insula and ACC, these urges become 
emotionally salient, which perhaps draws attention to 
their uncomfortable nature. Meanwhile, functional con-
nections between the posterior insula and sensorimotor 
regions, including the MCC and SMA, may lead to either 
the continuation of suppression or to the release of a 
blink in response to the urge sensation.

Along with the previously described regions, the medial 
occipital cortex was also shown to be active during feel-
ings of urge and during blinks. We conjecture that this acti-
vation is specific to the urge-to-blink rather than the 
general urge network. Activation of the occipital cortex has 
been seen in previous studies looking at the urge-to-blink 
(Berman et al., 2012; Stern et al., 2020; Yoon et al., 2005), 
but it has not been described in relation to other forms of 

Table 1.  A table showing the overlaps of the MESPFM-cluster masks with the GLM-based cluster masks as shown by 
the percentage overlap, the Jaccard index, and the Dice coefficient.

GLM-based suppression 
cluster

GLM-based urge 
cluster

GLM-based blink 
cluster

MESPFM cluster 1 % overlap: 7.2% 2.0% 4.5%
Jaccard Index: 0.06 0.02 0.04
Dice Coefficient: 0.12 0.04 0.08

MESPFM cluster 2 % overlap: 6.0% 1.7% 2.5%
Jaccard Index: 0.05 0.02 0.02
Dice Coefficient: 0.10 0.03 0.04

MESPFM cluster 3 % overlap: 8.0% 1.1% 2.7%
Jaccard Index: 0.07 0.01 0.02
Dice Coefficient: 0.13 0.02 0.05

The largest overlap for each MESPFM cluster is highlighted in bold.
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the urge-to-act (Bohlhalter et  al., 2006; Jackson et  al., 
2011). This activation could be due to a loss of visual input 
during blinks (Nakano et al., 2013). However, as activation 
of this region is also seen when blinking in the dark (Golan 
et al., 2018), we suggest that there might be a combined 
effect of the medial occipital cortex receiving motor effer-
ents when a blink is likely to occur, for instance, when the 
urge-to-blink is high (Bristow et al., 2005).

We assumed that the regions which showed greater 
activity in the “Random” > “Urge” contrast were associ-
ated purely with the movement of the trackball device. As 
such, this was used as an active baseline to tease apart 
activity related to urge from that of movement. However, 
participants moved the trackball more during the random 
condition than they did during the experimental blocks, 
and as such, this active baseline was not perfect. The 
higher activity seen in the cortical and cerebellar (lobules 
I–VI and VIII; Guell et al., 2018) sensorimotor regions in 
the “Random”  >  “Urge” contrast was likely due to this 
increased movement of the trackball.

6.3.  Neural correlates of action suppression

A meta-analysis looking at the neural correlates of 
response inhibition identified the IFG (pars opercularis), 
SMG, SMA, MCC, and bilateral insulae among other 
regions involved in action suppression (Zhang et  al., 
2017). These regions were also found to be active in our 
“Suppress” > “Okay” contrast, and the network bears a 
striking resemblance to the executive control network 
(Beckmann et al., 2005). The “Suppress” > “Okay” con-
trast also identified the dorsolateral PFC, which is thought 
to be involved in cognitive control (Miller & Cohen, 2001) 
and has previously been shown to be active to a higher 
degree in TS patients compared with healthy controls 
during blink inhibition (Mazzone et al., 2010). Therefore, 
this area may coordinate regions in a top-down manner 
to achieve the goal of blink suppression (Miller & Cohen, 
2001). We also see that the activation of the insula/oper-
culum extends into the IFG (pars opercularis), which is 
not surprising given its central role in the motor response 
inhibition network (Aron et al., 2004, 2014). More recently, 
Abi-Jaoude et al. (2018) found that the left DLPFC and 
left IFG showed higher activity in participants with fewer 
“escape” blinks, suggesting the regions play a role in 
successful suppression.

In addition, the cerebellum is hypothesised to have a 
complementary role in motor inhibition (Picazio & Koch, 
2015). A transcranial magnetic stimulation study showed 
that a conditioning pulse to the right lateral cerebellum 
5–7 ms before electrical stimulation of the left motor cor-
tex resulted in a decrease in motor evoked potential 
amplitude (Ugawa et  al., 1995). In contrast, the higher 

cerebellar activity in lobules I–VI and VIII during suppres-
sion could be due to more variation in the urges being 
reported during these blocks, in comparison with when 
blinking was okay, meaning more hand movement was 
required to rate them (Guell et al., 2018).

As previously mentioned, the anterior insula is involved 
in multimodal integration and salience (Craig, 2009; Kurth 
et al., 2010). The activation seen during suppression was 
in the dorsal-anterior segment, which has been associ-
ated with cognitive processing (Kelly et al., 2012; Kurth 
et al., 2010). Notably, in a meta-analysis by Kurth et al. 
(2010), the dorsal-anterior region was the site which was 
commonly active across task modalities except senso-
rimotor tasks. Therefore, it may be that suppression of an 
action involves integration of task information so that the 
automatic response to blink during periods of increased 
discomfort can be inhibited in blocks of suppression.

The insula and ACC (which includes the MCC in older 
descriptions) are theorised to be the limbic sensory and 
motor regions, respectively (Craig, 2009; Craig et  al., 
2000), and are commonly co-active in studies of urge 
(Abi-Jaoude et al., 2018; Berman et al., 2012; Bohlhalter 
et  al., 2006; Jackson et  al., 2011; Lerner et  al., 2009; 
Mazzone et  al., 2010). The MCC has previously been 
suggested to have a role in selecting an action in response 
to urge sensations, as intra-cortical stimulation of the 
MCC induces complex motor responses (Caruana et al., 
2018; Jackson et  al., 2011). Movement can also be 
evoked through stimulation of the SMA (Fried et  al., 
1991), and in some cases, it also induces feelings of urge, 
which may explain why its activation has frequently been 
associated with blink suppression (Berman et al., 2012; 
Lerner et al., 2009). Interestingly, when “Urge” and “Sup-
press” were directly compared during our post-hoc anal-
ysis, there was no significant difference in the activation 
of the dorsal anterior insula, MCC and SMA. This sup-
ports the idea that the MCC and SMA have a role in 
determining whether to continue suppressing or release 
a blink in instances of high urge. These regions were also 
shown to be active during blinks. Blinks in suppression 
blocks may involve more influence from these pre-motor 
regions (Berman et al., 2012). This could be investigated 
in the future through a comparison of blinks in suppress 
and free to blink conditions. Alternatively, activation of 
these regions during “Suppress” blocks could relate to 
the effort participants exert to keep their eyes open 
(Lerner et al., 2009).

6.4.  Neural correlates of blinking

Insula activation during blinks was restricted to the dorsal 
anterior insula and the mid-insula. As previously men-
tioned, the dorsal anterior activation might be linked with 
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task-related integration of information, such as whether 
blinking was “allowed” during the task block (Kurth et al., 
2010). We hypothesise that the mid-insula activation is 
linked to the movement and sensory aspects of blinking 
due to its perceived role in somesthesis (Kelly et al., 2012; 
Kurth et al., 2010).

The DLPFC was active during blinks, which may relate 
to the task focusing on blinking and deciding when to 
blink in relation to this. This region is more active during 
self-initiated blinks and, therefore, may relate to a con-
scious decision to blink (Van Eimeren et al., 2001). The 
DLPFC has not been identified in previous studies look-
ing at the regions associated with blinking during a blink 
suppression paradigm (Berman et al., 2012; Lerner et al., 
2009; Mazzone et al., 2010; Yoon et al., 2005), but most 
studies did not include event-related analysis of blinks 
and no studies have required participants to focus on 
their urges to give subjective ratings.

6.5.  Validation of MESPFM

Using MESPFM, neuronal activation was identified within 
the right insula, cingulate areas, SMA, and medial occip-
ital cortex. These regions were found to be commonly 
active during suppression when data were analysed 
using the conventional GLM parametric approach.

The three clusters found with MESPFM showed simi-
lar activation of the right anterior insula and cingulate 
regions. The right insula was chosen as our region of 
interest for the estimation of the activation timeseries due 
to its consistent activation in fMRI studies of urge (Berman 
et  al., 2012; Jackson et  al., 2011; Lerner et  al., 2009). 
Using a conventional analysis approach, we demon-
strated that different portions of the right insula were 
active during suppression, urge, and blinks. This is also 
shown in the activation timeseries obtained with MESPFM 
(shown in the Supplementary Materials), where activa-
tions of the right insula were seen throughout the experi-
ment regardless of task block. As the chosen activation 
maps relate to the activation seen during the correspond-
ing timepoint, we cannot separate suppression from feel-
ings of urge if they happen simultaneously. Interestingly, 
we demonstrated that urge peaks at blink onset in the 
“Suppression” blocks but not in the “Okay to blink” 
blocks, suggesting that in healthy participants, the urge-
to-blink arises due to the act of suppression. Based on 
the results seen in our standard GLM analysis, separate 
subdivisions of the insula could be used in future as 
refined ROIs to estimate MESPFM activation timeseries 
to examine whether it is possible to categorise cluster 
activation relating to suppression, urge, and blinking sep-
arately (Kurth et al., 2010). As this work is a precursor for 
research looking at the urge-to-tic, it would be useful to 

see whether the same subdivisions of the insula can be 
identified during a tic suppression paradigm when anal-
ysed using the conventional GLM approach.

Furthermore, the regions identified using the MESPFM 
approach are tighter than those identified using the con-
ventional GLM approach, due to the low number of peaks 
identified because of the higher spatial and temporal 
specificity of MESPFM compared with the conventional 
GLM approach. Enhancing the sensitivity of the MESPFM 
algorithm to detect BOLD events, while preserving spec-
ificity, would lead to the identification of more peaks in 
the activation timeseries. This would give us more data 
across subjects and runs, and potentially facilitate the 
differentiation between urge and suppression networks, 
eliminating the requirement for continuous subjective 
urge ratings. Its performance can also improve by using 
subject-specific HRF models previously estimated from 
additional data or implementing an informed basis func-
tion model to account for variability in the shape of the 
HRF. Furthermore, recent advancements in the MESPFM 
algorithm now incorporate the stability selection tech-
nique, eliminating the selection of the regularisation 
parameter utilised for estimating the activity-inducing 
signal (here, BIC was used, ensuring high specificity). 
These improvements demonstrate an increase in sensi-
tivity, while maintaining the specificity of the activation 
events detected by the algorithm (Uruñuela et al., 2024).

6.6.  Limitations

While the sample size of 20 participants is similar to or 
larger than previous fMRI studies investigating urge, it 
may limit the generalisability and replicability of these 
findings.

The “Suppress” block (60s) and event-related paramet-
ric modulation of urge (one per second) have different time 
frames and as such this may make interpretation of these 
results difficult. Here we speculate that the contrast of 
“Suppress” versus “Okay to blink” would identify regions 
involved in blink suppression, while the contrast of “Urge” 
verses “Random” would identify regions where the activity 
is modulated with urge. However, we acknowledge that 
suppression is not necessarily sustained for the duration 
of the block as escape blinks are present in the data.

7.  CONCLUSION

In summary, this study suggests that the urge-to-act net-
work is composed of regions involved in sensory pro-
cessing and salience, while the action suppression 
network includes regions involved in executive control 
and response inhibition. The main findings are that sepa-
rable regions within the insula contribute to different  
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networks and there is a network overlap in the MCC and 
SMA that may act to determine when to perform a sup-
pressed motor action. These are novel findings stemming 
from continuous measurement of urge, which allowed the 
two networks to be separated. However, the movement 
involved in this continuous urge rating affected the results 
due to activation of sensorimotor regions, meaning that 
we could not reliably ascertain whether these regions 
have a unique role in urge. Furthermore, the act of rating 
the urge itself could have affected how the participants 
experienced urge and, therefore, the BOLD response 
associated with it.

This study also validates the use of MESPFM as a 
timing-free approach to analyse fMRI data collected 
during action suppression paradigms where the event 
timings are unknown as might be the case during tic sup-
pression in TS patients. Using the MESPFM approach, 
we were able to identify regions previously identified as 
being involved in the urge-to-act. The clusters identified 
with MESPFM showed an overlap with the regions 
involved in action suppression as shown by conventional 
analysis of the same data. Therefore, in future this 
approach could be used where the regions involved in 
urge and suppression could be identified without the 
need for subjective urge ratings.
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