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ABSTRACT: Porous materials, such as metal—organic frameworks (MOFs) and porous organic
salts, are promising materials for proton conduction. Recently, we developed a new subclass of
porous materials, isoreticular nonmetal organic frameworks (N-MOFs), which can be designed
using crystal structure prediction (CSP). Here, two porous, isostructural, and water-stable halide
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N-MOFs were prepared and found to show good proton conductivity of up to 1.1 X 107" S cm™ rrﬂ k

at 70 °C and 90% relative humidity. Changing the halides in these N-MOF materials affects the
resulting proton conductivity, as observed in previous studies involving MOFs and lead halides.
Although this is the first study of proton conductivity in N-MOFs, the bromide salt, TTBT.Br,
shows a higher conductivity than most polycrystalline MOFs and porous organic salts,

approaching that of Nafion.

B INTRODUCTION

Materials that exhibit high proton conductivity are important
for the efficient conversion of chemical energy into electrical
energy.l’2 Proton-conducting materials are used in fuel cells,
electrolyzers, batteries, and sensors. Hence, the development of
materials with high proton conductivity is needed to move us
toward a hydrogen economy.

Metal—organic frameworks (MOFs) are a promising class of
materials for proton conduction because of their high surface
areas and tunable structures, which allow the incorporatlon of
various functional groups or guests in the pores.” ® Often, acid
groups, such as phosphonates and sulfonates, are used to tune
MOFs for proton conduction because they can act as proton
transfer sites, thereby increasing performance.”” © Alternatively,
the pores of MOFs can be loaded with molecular acids, such as
H,SO, and H,;PO,, to increase proton conductivity.”

Porous organic salts are a related class of molecular materials
that have shown promise for proton conduction.”~"" Porous
salts are produced by combining organic building blocks
functionalized with acid and base groups.'” A range of acid—
base combinations has been used to form salt frameworks; not
all of these exhibit permanent porosity, but this is not a hard
requirement for proton conduction. One of the best-perform-
ing porous organic salts for proton conductivity was reported
by Bai et al., where a guanidinium arylphosphate showed a
conductivity of 4.38 X 107> S-em™ (90 °C, 90% relative
humidity, RH).® Yan Teng and coworkers reported a series of
porous salts in 2018: CPOS-1, which was permanently porous,
showed one of the highest proton conductivities reported at
that time (1.0 X 1072 S ecm™, 60 °C, 98% RH)."> This team
later incorporated H,SO, into the pores of CPOS-1 to further
enhance its performance to 1.4 X 107> S cm™ (30 °C, 100%
RH)."? Another method that has been used to enhance proton
conductivity in porous organic salts is to form hybrid
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membranes with Nafion.'#'® Zhao et al.'"® demonstrated the
effectiveness of this method when they increased the
performance of iHOF-8 from 5.02 X 107 S ecm™ (100 °C,
98% RH) to 1.6 X 107" S em™ (100 °C, 98% RH) by using
Nafion with the material to form a membrane.

Recently, we reported a series of isostructural salts
(nonmetal organic frameworks, N-MOFs)."” We showed that
these materials exhibit properties that are, in many ways, like
MOFs. For example, they can form isostructural families.
These N-MOFs were formed using organic acids, such as
hydrogen halides, whereby the halide ions are analogous to the
metal nodes in MOFs. These porous molecular crystals were
designed from first principles using crystal structure prediction
(CSP),"*"” which showed that the porous phases observed
experimentally were the thermodynamically most stable crystal
packings available.

Based on these CSP calculations, we speculated that these
porous N-MOFs might have good stability for practical
applications, unlike many metastable frameworks that tend to
collapse and form denser, nonporous structures.'” This was
demonstrated initially for the application of iodine capture.
This thermodynamic stability, coupled with the polar pore
channels in these N-MOFs, prompted us to explore these
materials as proton conductors.
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B RESULTS AND DISCUSSION

Of the three NMOFs reported in our previous study,'’
TTBT.Cl TTBT.Cl (4',4”,4""'-(1,3,5-triazine-2,4,6-triyl)tris-
[[1,1'-biphenyl]-4-amine] chloride) seemed most promising as
a potential proton conductor because it is water stable and
water insoluble, as well as being suggested by CSP to be the
thermodynamically most stable structure. TTBT.Cl also
adsorbs a substantial quantity of water (12.4 mmol g™'), and
water sorption has been shown to improve high proton
conductivity in some materials. Here, we also prepared the
bromide analogue of TTBT.Cl, TTBT.Br. We chose to study
this bromide analogue because previous reports for MOFs and
lead halides have shown that conductivity can be tuned by
varying the halides.””*" CSP suggested that TTBT.Br would
most likely crystallize like TTBT.Cl (Figure lab). The two
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Figure 1. (a) Lattice energy landscape of predicted crystal structures
for TTBT.Br, where each point corresponds to a distinct structure
produced by CSP; data points are colored by NHj--halide close
contacts. The predicted structure corresponding to the experimental
structure is labeled in the image. (b) CSP space-filling packing model
for TTBT.Br showing 1D polar salt pore channels. (c) PXRD
patterns for the experimental material and low-energy CSP structure
for TTBT.Br. (d) CSP space-filling packing model for TTBT.CI
showing 1D polar salt pore channels.

predicted energy-structure landscapes have similar overall
distributions of structures, including spikes corresponding to
low-energy, porous structures that are stabilized by strong
clustering of halide anions around the amine groups on TTBT.
Many of the low-energy predicted crystal structures are
common between the CSP landscapes of TTBT.Cl and
TTBT.Br and one of the low-energy predicted structures for
TTBT.Br being isostructural to the known crystal structure of
TTBT.CI (Figure 1c).

As for TTBT.C], attempts were made to grow single crystals
of TTBT.Br, but the low solubility and rapid crystallization of
this material made it hard to obtain suitable single crystals for
single-crystal diffraction. The structure was therefore con-
firmed by comparing powder X-ray diffraction (PXRD) data
with the predicted PXRD patterns obtained from CSP (Figure
1c). Based on the good agreement in peak positions in the
PXRD and the a_greement of CSP with experimental results in
similar systems,'” we believe that the largest uncertainty in the
predicted structure is in the precise torsion angles of the
biphenyl TTBT arms."”

While the growth of single crystals proved challenging, the
synthesis of TTBT.X (X = Cl, Br) was easily scaled, and
multigram quantities of material could be produced in 30 min
by simple dropwise addition of the respective HX solutions
into a solution of the TTBT linker in tetrahydrofuran. This
resulted in the instant precipitation of TTBT.X, which was
then collected by filtration. After drying the powders, they were
pressed into 8 mm pellets using a pressure of 2 tons for 180 s,
and their stability to water was tested using PXRD (Figure
2ab). Both N-MOF samples showed good stability, so they
were tested for their proton conduction performance. For the
proton conductivity tests, TTBT.Cl and TTBT.Br were tested
from 30—70 °C with relative humidity (RH) in the range of
60—90%. TTBT.CI exhibits poor proton conductivity (107°—
1075 S cm™') under moderate-to-low humidity conditions
(60% RH) (Figure 3a). However, under wetter environments,
the proton conductivity (2.9 X 107> S cm™" at 70 °C, 90% RH)
is comparable to the more conductive organic salts reported so
far (Table 1). The TTBT.Br material performs better,
displaying high proton conductivities of 1.01(3) X 107" S
cm™! at 70 °C, 90% RH. These conductivities are one to 2
orders of magnitude higher than TTBT.CI as measured under
the same temperature/humidity conditions. Indeed, the proton
conductivity of TTBT.Br is close to that of Nafion 117 (7.5 X
1072, S/cm at 60 °C, 98% RH).** As such, TTBT.Br shows
the highest proton conductivity of any polycrystalline organic
salt reported to date. Cao et al.”” recently reported a higher
proton conductivity for a single crystal of a porous salt (iHOF-
16; 0.388 S cm™" at 80 °C, 98% RH), but this high value was
measured along a single crystallographic axis rather than as a
bulk measurement, as here.

The proton conductivity values for TTBT.Br are higher than
those for equivalent polycrystalline pellets of iHOF-16 (2.11 X
1072'S cm™ at 100 °C and 98% RH). The conductivity of
TTBT.Br is also higher than most MOFs, even those
purposely tailored for their proton conductivity (Table 1).
Increasing the degree of humidity significantly reduces the
activation energy for proton transport in TTBT.Cl and
TTBT.Br from 0.84 (9) to 0.69(1) eV and 0.67(2) to
0.33(5) eV, respectively (Figure 3b and d), highlighting that
the transport mechanism is dependent on the water content in
the pores,”* as for other MOFs and salts. Gong et al. showed
previously that changing the halide from CI to Br resulted in
lower performance,”” while Levenson et al.>> showed the
opposite effect. In both of those earlier studies, it was
concluded that it was the halide with the highest water uptake
that gave the better proton conductivity. Our results also show
that proton is sensitive to the water content in the pores. For
this reason, the dry-state porosity (Figure 2a) and water uptake
(Figure 2b) in both N-MOFs were quantified.”'

TTBT.Br absorbs more CO, than TTBT.Cl in the dry state
(Figure 2a). While it is hard to quantify, this might be because
TTBT.Br has greater crystallinity. Indeed, we speculated
earlier'” that TTBT.Cl was partially crystalline based on its
CO, uptake. Water isotherms were collected at 298 K for both
materials (Figure 2b) and TTBT.Br showed a substantially
higher water uptake of 17 mmol g~', compared to 12.5 mmol
g~ ! for TTBT.C], in keeping with its higher CO, uptake. This
higher water content, coupled with greater crystallinity, could
explain the higher proton conductivity of TTBT.Br, even
without any anion effect. However, the strength of the
ammonium halide salt interaction might also play a part in
the conductivity performance, since Gong et al."* proposed
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Figure 2. Stability of (a) TTBT.CI and (b) TTBT.Br pellets over a 48 h period observed using PXRD. (c) CO, isotherms at 273 K for TTBT.CI
and TTBT.Br, showing their permanent porosities. (d) Water isotherms for both N-MOFs at 298 K.
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Figure 3. Proton conductivity of (a) TTBT.Cl and (b) TTBT.Br at different temperatures (30—70 °C) and humidity (60—90%), calculated based
on bulk resistance from the Nyquist plot. Arrhenius plots for activation energies at different relative humidity for (c) TTBT.Cl and (d) TTBT.Br.

that chloride interactions were stronger than bromide
interactions in MOFs, which boosted performance. In these
N-MOFs, it is the bromide analogue, TTBT.Br, that has the
stronger salt interaction with a ApK, of 13.1, while the
TTBT.Cl interaction is weaker (ApK, of 10.7).

B CONCLUSION

In conclusion, we have shown that these first-generation N-
MOF materials have proton conductivity that exceeds that of
other organic salts and most MOFs reported so far (Table 1).
The results show that the halide counterion in the N-MOFs
can modify the proton conductivity, perhaps mostly because
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Table 1. The Best-Performing Polycrystalline Organic Salts
and MOF Proton Conductors Reported to Date”

Proton conductivity

Compound (S em™) Conditions  Reference
Organic salts
TTBT.Br 1.1 X 107! 70 °C, 90%  This
RH work
TTBT.CI 29 X 10 72 70 °C, 90%  This
RH work
UPC-H9 2.68 x 1072 80 °C, 30%  *°
RH
CPOS-2 22 % 1072 60 °C, 98%  *
RH
HOF-GS-11 1.8 X 1072 30 °C, 95%  °
RH
TPMA-3F/MTBPS 1.34 x 1072 90 °C, 95% 7
RH
(CsH,S0,H) 1.18 x 1072 60 °C, 97%  **
(CH,CH,NH) RH
HOF-IPCE-1Pd-NH, 127 x 1073 85°C, 85% ¥
RH
Cage salt 1 1.1 x 1073 30°C, 98%  '°
RH
MOFs
SHSA@MIL-101 3.06 X 107 85°C, 98%
RH
10HSA@MOEF-808- 247 x 107 86 °C, 98%  **
(bSA), RH
[Ni(H,0)4][H,tcba] 2.1 x 1072 80°C, 97% 30
RH
Ti-dobdc—Lil 1.26 X 1072 55°C,90%
RH
[Zn(H20)6][H,tcba) 1.1 x 1072 80 °C, 97%  °
RH
Ti-dobdc—LiCl 9.64 x 1073 55°C,90% '
RH
(Ui0-66-(SO;H),) 82 x 102 80 °C, 90%  **
RH
Ui0-66-(SO;H), 3.7 x 107! 90 °C, 90%
RH
CPO-27-NCSMA 1.0 X 1072 60 °C, 70%  **
RH
MIP-202(Zr) 1.1 x 1072 90 °C, 95%  **
RH
PESA polymer
membrane
Nafion 117 7.5 X 1072 60 °C, 98%

RH

“A standard commercial grade of Nafion (Nafion-117) is included as
a comparison.

the TTBT.Br material is more crystalline and adsorbs more
water. These N-MOF materials showed reasonable stability in
water and no changes in the PXRD patterns observed over
several days at room temperature, which is commensurate with
the predicted thermodynamic stability of these organic crystals,
as anticipated by CSP. At higher temperatures, the crystallinity
began to decrease slightly after 2 days. These are the first
examples of N-MOF materials for proton conductivity; as such,
there is significant scope to further improve their long-term
stability in water and improve proton conductivity perform-
ance.
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