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Abstract— Autonomous driving requires an understanding
of the static environment from sensor data. Learned Bird’s-
Eye View (BEV) encoders are commonly used to fuse mul-
tiple inputs, and a vector decoder predicts a vectorized map
representation from the latent BEV grid. However, traditional
map construction models provide deterministic point estimates,
failing to capture uncertainty and the inherent ambiguities
of real-world environments, such as occlusions and missing
lane markings. We propose MapDiffusion, a novel generative
approach that leverages the diffusion paradigm to learn the full
distribution of possible vectorized maps. Instead of predicting a
single deterministic output from learned queries, MapDiffusion
iteratively refines randomly initialized queries, conditioned on
a BEV latent grid, to generate multiple plausible map samples.
This allows aggregating samples to improve prediction accu-
racy and deriving uncertainty estimates that directly correlate
with scene ambiguity. Extensive experiments on the nuScenes
dataset demonstrate that MapDiffusion achieves state-of-the-
art performance in online map construction, surpassing the
baseline by 5% in single-sample performance. We further
show that aggregating multiple samples consistently improves
performance along the ROC curve, validating the benefit of
distribution modeling. Additionally, our uncertainty estimates
are significantly higher in occluded areas, reinforcing their
value in identifying regions with ambiguous sensor input. By
modeling the full map distribution, MapDiffusion enhances
the robustness and reliability of online vectorized HD map
construction, enabling uncertainty-aware decision-making for
autonomous vehicles in complex environments.

I. INTRODUCTION

The safe operation of an autonomous driving system
requires an accurate and complete representation of the static
infrastructure surrounding the vehicle. This map representa-
tion must be derived in real-time from sensor information
(i.e., online map construction) to react to the current real-
world scenario. Also, most autonomous driving systems
require the map in vectorized form for use in their planning
system, since a vectorized representation provides instance-
level information and spatial consistency [1-3] However,
the task of vectorized online map construction is inherently
challenging due to the ambiguity of the real world. A wide
lane may be a single lane or two lanes with missing mark-
ings, intersections often lack explicit lane definitions, and
construction zones introduce temporary changes that may
contradict the original lane layout. Additionally, occlusions
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Fig. 1: Overview of the diffusion forward and backward
processes on vectorized HD maps used in MapDiffusion.

caused by other vehicles or roadside obstacles increase
ambiguity. Committing to a single interpretation in such
scenarios can be misleading and potentially unsafe.

Previous approaches to online mapping perform determin-
istic construction of a map from the provided sensor data. For
this, they commonly use learned Bird’s-Eye View (BEV) en-
coders to fuse information from multiple camera views into a
joint latent space. For the decoder, initial approaches focused
on predicting a raster map representation [4-7], while more
recent approaches directly predict vectorized representations
[1, 2, 8]. In both cases, previous deterministic models commit
to a single interpretation for a given input. In an ambiguous
traffic scene, this map prediction may be incorrect, leading to
unsafe decisions. We argue that capturing the full distribution
is required to consider all plausible map configurations in
downstream decision-making. While a few works investigate
diffusion for map construction, unlike our work, they either
operate on raster representations [9, 10] or just do refinement
of initial proposals [11]. Instead, we propose the use of
full generative diffusion for vectorized High-Definition (HD)
map construction. We introduce a novel graph diffusion de-
coder that denoises randomly initialized queries conditioned
on camera features from the latent BEV grid. MapDiffusion
learns the full vector map distribution and therefore can
generate plausible samples to capture the ambiguity of the
real world. Furthermore, we show that the variance between
the sampling results can serve as a measure of uncertainty
in the constructed online map, providing an effective way to
capture ambiguity in the real world.

The primary contributions of this paper are as follows:
• We propose the use of generative diffusion for the

task of online vectorized HD map construction and
implement a new model, MapDiffusion, that performs
denoising conditioned on a latent BEV grid.

• We investigate the variance of the sampling output by
interpreting it as a measure of uncertainty and find a
significant increase of 31% in occluded areas.



• We conduct extensive experiments on the nuScenes
dataset, demonstrating a 5 % relative improvement in
single-sample performance and further improvements
by aggregating multiple samples.

II. RELATED WORK

A. Online HD Map Construction

In autonomous driving, static elements such as roads,
lane dividers, and pedestrian crossings are typically repre-
sented in a map. Recent work has made notable progress
in constructing a map representation online directly from
sensor data. Typically, a learned BEV encoder is used to
fuse information from multiple camera views into a joint
representation. The first works on learned BEV encoders
predict a raster map by treating it as a segmentation task,
i.e., a pixel-wise classification of map elements [4-7].

Starting with VectorMapNet [1], more recent approaches
construct end-to-end HD maps by directly predicting the vec-
torized map elements. MapTR [12] addresses the ambiguity
of selecting a discrete set of points to model geometries.
It employs permutation-equivalent modeling to stabilize the
learning process. StreamMapNet [8] uses a powerful 6-layer
transformer decoder that performs temporal aggregation by
streaming queries from the previous frame. AugMapNet [13]
adds dense spatial supervision for improved structure of the
latent space. SQD-MapNet [14] injects a few noise-perturbed
GT queries from the previous frame during training. A query
denoising module is added to improve temporal consistency.
We use the general idea of query denoising in the context of
a diffusion framework. In contrast, during our training, we
only use noise-perturbed GT queries from the current frame
and execute the full decoder iteratively to learn sampling
from random Gaussian noise.

B. Diffusion Models

Generative modeling can generate complex objects in a
domain, e.g., high-fidelity image synthesis, video genera-
tion, and natural language processing [15-18]. The diffusion
process can be controlled by conditioning on additional
information [19, 20]. We leverage generative modeling to
sample from a probability distribution over vectorized maps
conditioned on sensor data encoded in a BEV grid B.

Denoising Diffusion Probabilistic Models (DDPMs) [15]
model a Markovian forward process, q, that transforms x into
Gaussian noise over multiple diffusion time steps t. Figure 1
visualizes this for a vectorized HD map with x0 being
the vectorized map and xT being polylines with random
coordinates. A denoising prediction network with weights θ
learns the reverse process pθ(xt, t, B), where the latent BEV
grid B serves as condition to guide the prediction. Once
trained on a distribution, the diffusion model can generate
samples from that distribution.

C. Diffusion Models for Mapping

As a first application, the diffusion paradigm has been used
to generate 3D occupancy maps [21-24], capturing the three-
dimensional geometric structure of the surroundings. Other

works [25-27] use diffusion models conditioned on aerial
images or other geospatial context to generate semantic map
layers for various use cases. More recently, works have begun
to explore diffusion models to construct online raster maps
from on-road camera views. DiffMap [9] leverages a latent
diffusion model and enhances the generated raster map by
integrating structured priors inherent in map segmentation
masks. DifFUSER [10] extends the diffusion paradigm to
both 3D object detection and raster map prediction. In con-
trast to the above works, our approach applies the diffusion
paradigm to directly predict vectorized map elements.

A new research topic is diffusion-based generation of
vector representations. DiffusionDet [18] and DiffBEV [28]
apply the diffusion paradigm to object detection and generate
vectorized bounding boxes. They condition the diffusion
process on the image and BEV space, respectively. House-
Diffusion [29] performs diffusion to generate vectorized
floor plans, using similar techniques to our work, but for
a different learning task. To our knowledge, the only work
that uses diffusion for online vectorized map construction
is PolyDiffuse [11]. Its Guided Set Diffusion Model uses a
guidance network to manage noise injection and maintain
unique representations for the diffusion model, enabling ac-
curate polygonal shape reconstruction of floor plans and HD
maps. However, they use diffusion as a refinement step on top
of coarse predictions from existing map construction models,
correcting structural errors and enhancing the accuracy of
the predicted polylines. Unlike MapDiffusion, their overall
accuracy remains heavily dependent on the performance of
the baseline model, and their method cannot be used to
generate diverse samples from the learned distribution.

D. Uncertainty Estimation

Gu et al. [30] extend methods for online map construction
with uncertainty estimation. Instead of predicting the vector-
ized coordinates, they predict the parameters of a Laplace
distribution for each polyline point. To show the benefit
of predicting a map distribution, they evaluate its use in a
trajectory prediction model and find up to 15% improved
prediction performance. We follow this argument and pro-
duce uncertainty estimates from the sampling variance of our
diffusion process. By considering multiple samples, we not
only rely on one set of predicted polylines, yielding denser
spatial uncertainty estimates.

Diffusion models have successfully been used for uncer-
tainty estimation in other domains. CARD [31] is a diffusion-
based approach that uses conditional generative models to
uncover predictive distributions, hence capturing the uncer-
tainty. Du and Li [32] also use diffusion for uncertainty
estimation and apply this to active domain adaptation.

In the context of trajectory prediction, uncertainty is inher-
ently present in the task due to its multi-modal distribution.
MotionDiffuser [33] uses controllable diffusion to sample
plausible trajectories. To the best of our knowledge, we are
the first to leverage diffusion-based sampling to estimate the
uncertainty of online map construction.
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Fig. 2: Illustration of MapDiffusion approach based on schematic traffic scene with an occluded camera view on the ego’s
left. MapDiffusion uses generative diffusion to predict samples of map distribution from camera images. The samples show
plausible predictions for the occluded area on the ego’s left (differences are indicated with dashed lines). The variance across
samples is used as spatial uncertainty estimation, yielding high uncertainty in the occluded area (in orange on the right).

III. APPROACH

A. Problem Statement
Let I = {i1, . . . , im} be the set of image frames from

the m monocular cameras mounted on the ego vehicle.
Moreover, for a given scene, let Pdiv, Pbound, and Pped

be the sets of polylines representing lane dividers, lane
boundaries, and pedestrian crossings, respectively, with a
polyline, P = [(xj , yj)]

NP

j=1, being a sequence of NP points.
Let M = (Pdiv,Pbound,Pped) be the local HD map with the
ego vehicle at the origin. The goal is to find a function f that
returns an estimate of the local HD map, M̂, for a given set
of image frames I , i.e. M̂ = f (I). Additionally, the goal is
to provide a function U that provides an uncertainty estimate
for M̂ at a Cartesian location (x, y) ∈ R2. This uncertainty
estimate provides a fuzzy, qualitative indicator of confidence
for the predicted map at each location in the scene based on
the perceived ambiguity at that location.

B. MapDiffusion
We propose MapDiffusion, a novel model that leverages

generative diffusion to sample map predictions. An overview
of our approach is shown in Figure 2. MapDiffusion can
generate samples from the learned map distribution M. The
variance across generated map samples M̂ serves as spatial
uncertainty estimate U . In the figure, the camera view to the
left is blocked by a delivery truck. MapDiffusion can sam-
ple plausible map configurations with high variance in the
occluded area. Consequently, U suggests a high uncertainty
in that area. The following sections cover various aspects of
our MapDiffusion approach.

1) Model Architecture: MapDiffusion uses StreamMap-
Net [8] as reference architecture; the high-level architecture
of both models is shown in Figure 3. Both use a learned BEV
encoder to generate a latent representation of the camera
features. We leverage a DETR-style transformer decoder [34]
that performs query refinement conditioned on the latent
representation of the BEV grid. We adapt the decoder to
a diffusion framework such that the denoising decoder starts
with random polylines as input and progressively performs
denoising through an iterative refinement process.

2) Training Process and Noise Scheduler: Figure 3c
shows an overview of the training process. During training,
a noise scheduler performs the forward process q. The
Noise Scheduler determines the noise added to the GT at
each diffusion time step t. As visualized in Figure 1, we
perform q and pθ in vector space. The denoising decoder
uses an embedding of the time step t as an additional
input to condition its prediction on the noise step. It is
trained to minimize the error between pθ(q(x0, t), t, B) and
x0 for all t ∈ [0, T ], which is visualized “Line Loss” in
Figure 3c. Prediction of the class score is excluded from
the diffusion process and instead performed in the final step,
which enables diffusion to happen purely in the vector space.
The overall training is a joint optimization of the diffusion
process and the classification task.

3) Diffusion Conditioning: MapDiffusion conditions the
diffusion process on a latent BEV grid B to guide the
denoising process by camera features. This ensures that the
generated map prediction is not only a plausible map, but
also consistent with what is visible in the camera images I .
To integrate this additional context, we employ deformable
cross-attention [35] to have the denoising decoder query the
latent BEV grid.

4) Query Padding: The DETR-style decoder [34] operates
with a fixed number of l queries, each corresponding to either
a map element in the output, or the “no object” class. During
the training of MapDiffusion, the GT map elements serve
as a starting point, and the forward process q is applied to
initialize the queries. However, the GT contains a variable
number of map elements, typically fewer than l, so padding
is required for the queries. Padding with Gaussian noise
performs best based on our ablation study (see Section IV-
G.3).

5) Temporal Aggregation in Decoder: MapDiffusion uses
the BEV-space temporal aggregation on the encoder side
from StreamMapNet [8]. StreamMapNet additionally uses
temporal aggregation in the vector decoder by incorporating
refined queries from the previous temporal step into the
second layer of the decoder. In our diffusion decoder, we opt
not to use the refined queries from the previous temporal step
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Fig. 3: Overview of StreamMapNet, MapDiffusion during inference, and MapDiffusion during training, with box colors
indicating explicit representations (green), latent representations (blue), computation modules (white), and losses (orange).

so that map predictions are generated purely from random
noise. While this misses out on past object-space information
to improve the consistency of the predicted map elements
over time, it simplifies the architecture and preserves the
original concept of diffusion.

6) Sampling: The sampling process follows Denoising
Diffusion Implicit Model (DDIM) [36], which allows gener-
ating high-quality map predictions with only a few diffusion
steps. The sampling process is shown in Figure 3b. The
BEV encoder at the bottom is only calculated once for
efficiency. The resultant latent BEV grid is used to condition
the denoising decoder. The denoising decoder refines the
vectorized polyline prediction through k diffusion steps.
Additionally, filtering of the output is performed during
inference. Specifically, outputs with a score below τ are
dropped and randomly initialized for the next inference step.
This prevents the model from having to deal with suboptimal
initializations.

C. Aggregating Samples for Refined Prediction and Uncer-
tainty Estimation

During inference, for a given set of camera images I ,
we sample n map predictions from the map distribution.
We use different aggregation strategies to get to a refined
prediction and to generate an uncertainty estimation. To
get the distribution of the predicted local HD map, we
generate n samples of map predictions, denoted as M̂i, for
i ∈ [1, 2, . . . , n]. It is important to note that the number of
samples n is different from the number of diffusion steps k
performed to generate one sample. We present an aggregation
strategy to get a refined prediction as well as an uncertainty
estimate.

1) Sample Aggregation as Refined Prediction: We aggre-
gate n samples to obtain a refined prediction from a map
distribution. Since the aggregation of sets of polylines is
non-trivial, we perform aggregation in raster space, which
is sufficient to demonstrate our point. For each predicted
sample i from n samples and class c ∈ C, let P̂i

c denote
the set of predicted polylines corresponding to class c and
let Si

c represent the associated confidence scores. A polyline
indexed by j, P̂i

c[j], is converted into a rasterized map, and
each location is weighted by its corresponding score Si

c[j].
All polylines for class c are summed to produce the weighted

raster Ri
c ∈ RH×W :

Ri
c(x, y) =

|P̂i
c|∑

j=1

Si
c[j]Rasterize(P̂i

c[j]). (1)

Aggregation of the class probability distributions requires
spatial smoothness, so a Gaussian kernel, G ∈ Rg×g , is
applied to the weighted raster Ri

c. Due to potential overlap
of different polylines, the resulting values are clipped to the
range [0, 1] to obtain a class probability map Di

c:

Di
c(x, y) = min(1, G ∗ Ri

c(x, y)), (2)

where ∗ denotes the convolution operation.
The aggregated class probability distribution is given by

the mean probability per class at location (x, y) as:

Dc(x, y) =
1

n

n∑
i=1

Di
c(x, y). (3)

To generate a refined prediction from the distribution, the
scores are thresholded with a binarization threshold b.

2) Sample Variance as Uncertainty Estimation: Accord-
ing to the problem statement, we need an uncertainty esti-
mation that captures the ambiguity of the real world. Our
diffusion model can generate diverse samples that capture
the multi-modality of the map distribution. Given n samples
from our model for a given set of images I , we can leverage
the sample variance to compute a spatial uncertainty. For
simplicity, we construct an uncertainty estimate at each spa-
tial location (x, y) of a predefined grid, U ∈ RH×W , based
on the total variance across class scores at that location.
Specifically, we first compute the per-location variance, σ2

c ,
by calculating the variance across the n samples of Di

c. Then
we compute the per-location uncertainty map by summing
the variances across all classes:

U(x, y) =
∑
c∈C

σ2
c (x, y). (4)

This formulation provides a spatially-resolved uncertainty
estimate, where higher values of U indicate greater variability
in class predictions across samples, highlighting regions of
increased uncertainty in the local HD map. The values of
U are derived from variance measures and are not normal-
ized; consequently, they should be interpreted as qualitative
indicators.



IV. EXPERIMENTS

A. Dataset and Evaluation Metrics

We conduct our experiments on the nuScenes dataset [37],
which provides data points at 2 Hz. Each data point includes
images from six monocular cameras, I , and vectorized
GT sets (i.e., Pdiv, Pbound, and Pped for lane dividers,
lane boundaries, and pedestrian crossings, respectively). We
use the StreamMapNet training and validation split with-
out geospatial overlaps [8]. The graph decoding task is
evaluated using Average Precision (AP) and mean Average
Precision (mAP). For single-sample and n-sample rasterized
predictions, we measure the True Positive Rate (TPR) and
False Positive Rate (FPR) for various operational points and
compare them using the Receiver Operating Characteristic
(ROC) curve, and Area Under the Curve (AUC). Inference
time is measured in Frames Per Second (FPS).

B. Experimental Setup

We adopt the StreamMapNet training configuration with
24 epochs and a batch size of 1. The model is trained
in parallel on 8 NVIDIA V100 GPUs. For optimization,
we employ the AdamW optimizer with a cosine annealing
schedule and a learning rate of 2 × 10−4. The dimensions
of the BEV grid are set to 100 × 50, covering a perception
range of 60m×30m. For diffusion, we choose a cosine noise
scheduler and set T = 1000. Inference uses η = 0.5 and
k = 5 diffusion steps. For experiments generating multiple
samples, we set n = 10. The Rasterize operator uses pixel
width 1 on polylines with prediction score > 0.4. The
Gaussian filter uses g = 5 (3m) and σ = 1 (0.6m).

C. Baseline Models

We use StreamMapNet [8] as reference architecture and
primary baseline. Other baselines include PolyDiffuse [11],
the only diffusion-based method for online vectorized map
construction, SQD-MapNet [14], which performs a similar
strategy of denoising on queries, and common methods for
vectorized map construction, including VectorMapNet [1],
MapTR [12], MapTRv2 [2], MapVR [38], and MGMap [39].

D. Quantitative Results of Model

Table I shows the qualitative results. MapDiffusion
reaches 35.6% mAP, a 5.3% relative improvement over
the StreamMapNet baseline with 33.8% mAP. Notably, this
performance is achieved despite MapDiffusion operating
without learned queries and lacking temporal aggregation
in the decoder, underscoring its efficacy in generating high-
quality map samples under these constraints. The model
remains highly efficient, achieving real-time performance at
8.0 FPS with five diffusion steps. In a single-step configura-
tion, it matches StreamMapNet with 12.8 FPS. MapDiffusion
also outperforms common baselines including VectorMapNet
[1], MapTR [12], MapTRv2 [2], MapVR [38], and MGMap
[39]. We run the public implementation of SQD-MapNet
[14] on the new nuScenes split with batch size 1 and
get 33.1% mAP, which ranks it below our MapDiffusion
approach. PolyDiffuse [11] did not release code to reproduce

Table I: Performance of MapDiffusion compared to various
baselines at perception range 60m×30m on nuScenes split
without geospatial overlap [8]. ∗ results from [8], all other
results are reproduced. AP thresholds are {0.5, 1.0, 1.5}.

Method APped APdiv APbound mAP

VectorMapNet∗ [1] 15.8 17.0 21.2 18.0
MapTR [12] 7.5 23.0 35.8 22.1
MapVR [38] 10.1 22.6 35.7 22.8
MGMap [39] 7.9 25.6 37.4 23.7
MapTRv2 [2] 16.2 28.7 44.8 29.9
SQD-MapNet [14] 31.6 27.4 40.4 33.1
StreamMapNet [8] 31.2 27.3 42.9 33.8
MapDiffusion (ours) 32.9 31.4 42.4 35.6

the results on the new nuScenes split, but they report a result
below StreamMapNet on the original split. Given our 5.3%
relative improvement over StreamMapNet, we assume from
transitive reasoning that MapDiffusion outperforms PolyD-
iffuse. Very recent works reach beyond the performance of
StreamMapNet (e.g., MapQR [40], HIMap [41]), but do not
report results on the new nuScenes split. This work intends to
show the general possibility of using diffusion for generative
map construction and the benefit of deriving an uncertainty
estimate. Most importantly, our paradigm can be applied to
these works as well.

E. Aggregating Samples

All previous results were calculated from one sample.
Experiments below show the benefit of multiple samples.

1) Refined Prediction: Using the rasterized predicted class
distribution Dc and the rasterized GT map M, we compute
the True Positive Rate and False Positive Rate for different
binarization thresholds b. The resulting ROC curves for
n = 1 and n = 10 are visualized in Figure 4. The aggregated
prediction from 10 samples is strictly better along the curve,
confirming the hypothesized benefit of sampling multiple
predictions from the distribution. Accordingly, the AUC is
0.89 for n = 1 and 0.92 for n = 10, indicating a 3.4% rela-
tive improvement from aggregating multiple samples. Please
note that while this improvement is notable, we perform
this evaluation primarily to show the information gain by
generating multiple samples from the full distribution. The
true value lies in considering all plausible map configurations
in the downstream planning module for more robust and
uncertainty-aware decision-making.

2) Uncertainty and Visibility: We aim to show that the
uncertainty maps U from our approach correspond to am-
biguity in the real world. In that case, U is expected to
estimate high uncertainty for areas that are not visible, for
example, due to a vehicle occluding the camera’s field of
view. We compute the spatial relation between our estimated
uncertainty maps and GT visibility masks. Since nuScenes
does not provide visibility masks directly, we generate them
from the Occ3D dataset [42], which provides occupancy
maps for the nuScenes dataset. We exclude the ground layer
and occupancy of type “flat” and project the 3D voxels
into 2D BEV based on whether any of the voxels in the
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z direction are occluded. Finally, we perform ray-tracing
on the 2D projection to calculate our visibility masks. For
our evaluation, we calculate the mean uncertainty per traffic
scene separately for visible areas and invisible areas and
compare them. We consider pixels that are visible (based on
the visibility map) or part of the drivable road surface (based
on the dense raster GT). The distribution of the variances,
which we use as uncertainty estimates, is shown in Figure 5.
The mean uncertainty for the visible area is 0.0063. For the
invisible area, it is 0.0082, which is 31% higher. We conduct
a one-sided t-test and find that uncertainty in invisible areas
is significantly higher than in visible areas (α = 0.01,
p < 0.001). It is important to note that the MapDiffusion
model performs temporal aggregation in BEV space and
hence has access to more spatial features than currently
visible, reducing the uncertainty in invisible areas that were
visible in previous time steps. Therefore, the relation between
uncertainty and visibility is assumed to be even higher for a
model with no temporal aggregation.

F. Qualitative Results

Figure 6 shows qualitative results for two traffic scenes.
Multiple map construction samples are visualized for each
traffic scene to illustrate the sampling variance. The predicted

Table II: Ablation on Diffusion Parameters k, η, τ .

Steps k η τ FPS APped APdiv APbound mAP

1 0.5 0.5 12.8 32.3 30.8 42.5 35.2
2 0.5 0.5 11.1 32.3 31.4 42.5 35.4
3 0.5 0.5 9.9 32.9 31.2 42.5 35.5
4 0.5 0.5 8.8 32.9 31.5 42.5 35.6
5 0.5 0.5 8.0 32.9 31.4 42.4 35.6

5 0.1 0.5 8.0 32.7 31.3 42.3 35.4
5 0.3 0.5 8.0 32.6 31.2 42.3 35.4
5 0.5 0.5 8.0 32.9 31.4 42.4 35.6
5 0.7 0.5 8.0 32.6 31.4 42.4 35.5
5 0.9 0.5 8.0 32.5 31.3 42.4 35.4

5 0.5 0.1 8.0 30.9 27.8 39.3 32.7
5 0.5 0.3 8.0 32.5 31.2 42.3 35.3
5 0.5 0.5 8.0 32.9 31.4 42.4 35.6
5 0.5 0.7 8.0 33.0 31.1 42.3 35.5
5 0.5 0.9 8.0 32.7 30.6 42.1 35.1

Table III: Ablation on query padding strategies. Models were
trained for 12 epochs with a pretrained, frozen BEV encoder.

Padding APped APdiv APbound mAP

Repeat 23.6 22.8 35.8 27.4
Zero 25.2 28.3 37.8 30.5
Smooth 24.8 27.8 38.1 30.2
Gaussian 26.3 27.8 38.6 30.9
Uniform 25.0 27.7 37.3 30.0

map demonstrates high accuracy in visible areas, validating
its state-of-the-art quantitative performance. In both scenes,
the variance across sampled map predictions is high in
occluded areas, showcasing the relation between uncertainty
and perceptual ambiguity.

G. Ablation Studies

We perform ablation studies to examine the efficacy of
design decisions, including choice of diffusion parameters,
pretraining of the BEV encoder, and padding strategies.

1) Diffusion Parameters: We evaluate the number of
diffusion steps, the η parameter in DDIM sampling [36],
and the query threshold τ . The results are shown in Table II.
For the number of steps, we see better performance on the
map construction task with more diffusion steps, saturating
at around 5. The number of diffusion steps has an effect
on the runtime since it requires sequential execution of the
denoising module, a typical downside of diffusion models.
Our approach addresses this issue by excluding the learned
BEV encoder from the diffusion process, so the latent BEV
grid only has to be computed once. On an NVIDIA A10
GPU, performing an additional denoising step adds around
12ms. This is a +15% increase from the baseline inference
time that has just one decoder pass. The five diffusion steps
necessary to achieve saturated performance increase the total
time by 60%, achieving 8.0 FPS. It is important that only the
number of diffusion steps k increases the latency. Sampling
the distribution with n predictions can be done in parallel.

The η parameter has only a minor influence, and we get
the best results for η = 0.5. The query threshold τ , which
determines which queries are kept for the next diffusion
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(a) Occlusion from the delivery truck on the ego’s left is shown with
orange circles and results in different bound predictions. Occlusion
from the white van on the ego’s front-right is shown with pink circles
and results in varying div and ped predictions.
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(b) Occlusion from parked cars on the ego’s right is shown with or-
ange circles and results in different bound predictions. The occluded
intersection at the ego’s back-right is shown with pink circles and
results in varying bound and ped predictions.

Fig. 6: Two qualitative results of MapDiffusion. The top two rows show the 6 camera views. The third row shows the GT
(left), uncertainty U (center), and occlusion (right) maps. The bottom rows show 3 predicted samples M̂1:3, where green is
bound, red is div, and blue is ped.

step, has a stronger impact. Keeping almost all queries
(τ = 0.1) has the worst performance with 32.7% mAP.
The best performance reaches 35.6% mAP for τ = 0.5.
Dropping most queries (τ = 0.9) degrades performance
again to 35.1% mAP. Overall, given an mAP of around
35% for most settings, we find that MapDiffusion is robust
to hyperparameter choices. While even one diffusion step
already reaches a good result, more steps are expected to
increase sample variance, which is beneficial for capturing
the full distribution and also generating U . Based on the
ablation results, we choose the number of diffusion steps to
be 5, η = 0.5, and τ = 0.5.

2) Pretraining of BEV Encoder: We assess the benefit of
pretraining the BEV encoder. First, we train the full MapDif-
fusion model with randomly initialized weights, reaching
35.6% mAP. We then train a new MapDiffusion model with
the frozen pre-trained BEV encoder. While the optimization
is faster with a pre-trained BEV encoder (25.7% mAP
vs. 17.5% mAP after 6 epochs, and convergence around
12 epochs), the resulting model reaches only 31.7% mAP.
Hence, we opt for training from scratch for all final ex-
periments. We use the pretraining method exclusively for
ablations, such as ablating the padding strategy, and train
for 12 epochs there for efficiency reasons.

3) Padding Strategy: We compare the following strategies
for query padding. “Repeat”: repeats existing polylines,
“Zero”: zero values for all additional polylines, “Smooth”:
smooth random polylines (both straight and curved) or
polygons (e.g., elliptical shapes), “Gaussian”: Gaussian noise
with µ = 0.5 and σ = 0.25 clipped to [0,1] (range of
normalized GT), and “Uniform”: uniform noise with the
boundaries [0, 1]. For efficiency, we train them with a pre-
trained BEV encoder for 12 epochs (see Section IV-G.2).

The results are shown in Table III. “Gaussian” performs best.
“Zero”, “Smooth”, and “Uniform” perform reasonably well.
“Repeat” surprisingly performs much worse, likely due to
the model confusing the multiple accurate polylines.

V. CONCLUSION

MapDiffusion is a novel approach that leverages gener-
ative diffusion for online vectorized HD map construction
in autonomous driving. By integrating a diffusion-based de-
noising decoder with a learned BEV encoder, MapDiffusion
predicts multiple plausible map representations from noisy
initial queries. This sampling of the map distribution can also
provide spatial uncertainty estimates. Experiments on the
nuScenes dataset demonstrated that MapDiffusion achieves
state-of-the-art performance, with a relative improvement of
5% over the StreamMapNet baseline, even without access
to queries that are learned or temporally aggregated from
the previous frame. Additionally, by sampling outputs, our
approach enhances prediction accuracy and generates useful
uncertainty maps. Ablation studies revealed optimal config-
urations for diffusion parameters, query padding strategies,
and the impact of pretraining the BEV encoder. Moreover, we
showed that the uncertainty maps generated by MapDiffusion
estimate significantly higher uncertainty in invisible areas,
highlighting their practical relevance for real-world appli-
cations. In conclusion, MapDiffusion establishes the new
state of the art for online map construction on nuScenes
and emphasizes the potential of generative diffusion models
in online mapping tasks, proving their ability to enhance
accuracy, reliability, and robustness. This generic framework
can be applied to other models, improving their performance
while providing valuable uncertainty estimates, paving the
way for safer and more robust autonomous driving systems.
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