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Switched neural network active control

Feedforward active noise and vibration control systems have been developed for many
applications, but are generally designed using linear digital filters, most typically im-
plementing the Filtered reference Least Mean Squares (FxLMS) algorithm. When the
system under control exhibits nonlinearities, linear controllers cannot fully capture
the system dynamics to maximize performance. Previous work has shown that Neu-
ral Network (NN) based controllers can improve control performance in the presence
of nonlinearities. However, inferring the outputs of NN controllers can be computa-
tionally expensive, limiting their practicality, particularly when control is required
across a range of nonlinear behaviors. In this paper, a control strategy is proposed
where performance is maintained across a nonlinear range of operation by dynam-
ically switching between a set of smaller, and therefore more efficient, NNs that
are individually trained over specific ranges of the nonlinear system behavior. It is
demonstrated via both simulations of a system with a simple nonlinear stiffness in
the primary path and offline simulations using a physical nonlinear dynamical system
in the primary path, that the performance of the proposed switching approach offers
a control performance advantage compared to both a larger generalized individual

NN controller and a Functional Link Artificial NN (FLANN) based controller.
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Switched neural network active control

I. INTRODUCTION

The requirements for the control of unwanted noise and vibration are becoming increas-
ingly stringent in modern engineering systems, with higher levels of control performance re-
quired to address user expectations and to manage the increasing requirement for lightweight
engineering designs that exacerbate noise and vibration. High frequency noise and vibra-
tion can typically be attenuated effectively using passive control solutions. However, the
control of low frequency disturbances via passive methods can often require the implemen-
tation of large or heavy systems. By comparison, active control solutions are typically ca-
pable of achieving effective control at low frequencies, and can benefit from being relatively

lightweight and compact.

Historically, feedforward active noise and vibration control systems have been imple-
mented using linear control filters and system models. However, it is well understood that
nonlinearities present in either the plant or primary path of the control system can have a sig-
nificant impact on control performance'™. A wide range of approaches have been proposed
to overcome this limitation, including polynomial, cross-term or trigonometric expansion of
the reference signal®®, genetic algorithms” and fuzzy logic-based methods®. Another method-
ology that has shown promising results is the application of machine learning methods to
these nonlinear control problems. In particular, Neural Networks (NNs) are well-motivated
for both modeling and control of nonlinear systems” due to the fact that they are known to

possess the property of being ‘universal approximators’'.
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Switched neural network active control

Many different uses of NNs have been studied in the literature, including system

4,11-15

modeling 4,11,16-18

, feedforward controller design , inverse modeling'’, signal predic-

tion and feedback control?’ ", linear filter selection®®, adaptive parameter estimation for

24,27

linear controllers’?”, frequency-domain control®, multichannel controller design®’, and

signal classification®

. However, the ability of such NN control systems to generalize well
across a range of system behaviors has not been extensively explored in the associated
literature. Nonlinear systems can exhibit rich and varied behavior as the input excitation
changes, so training individual NNs to achieve acceptable control performance under such
conditions is not straightforward. A training or design approach that provides effective
control performance is clearly desirable in practical implementations where the properties

of the excitation, and therefore the behavior of the system nonlinearity, may change over

time.

It has previously been demonstrated that it is possible to train individual NN controllers
to produce control performance over a range of nonlinear system behaviors that approaches
the performance of identical NN controllers trained at a single level of nonlinear behavior®!.
However, the performance of such generalized controllers is dependent on the range of nonlin-
ear behavior over which the controller is trained to perform well, and the size (and therefore
computational cost of inference) of the network. In this paper, a possible solution to this
problem is proposed where a set of relativity small NN controllers are trained over distinct
operating ranges and a simple method of switching between these controllers to achieve
control performance across a much wider range of operational conditions is proposed'. Sec-
tion II describes the simulated nonlinear control problem that is utilised to initially explore

4
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Switched neural network active control

the proposed control strategy. Section III describes the proposed controller switching ap-
proach, individual controller architecture and the adopted training methodology. Section
[V presents simulation results, which explore how the switched-controller training ranges
influence performance and then demonstrate how the performance of the proposed control
architecture compares to a larger generalized NN and to an adaptive nonlinear controller.
Section V presents a study where the proposed switched-controller approach is applied to
a physical nonlinear system, which demonstrates the practicability of the approach for re-
alistic nonlinearities with more complicated characteristics. Finally, Section VI discusses

conclusions from the work.

II. NONLINEAR CONTROL PROBLEM DEFINITION

A diagram of the simulated nonlinear system to be controlled is presented in Figure 1. The
system consists of a primary source, generating the unwanted disturbance, and a secondary
source, which is used to cancel the disturbance. To introduce a nonlinearity into the primary
path of the system, the primary source is modeled as a Duffing oscillator. While the type
of nonlinearity studied is clearly important, this type of nonlinearity has been utilized in
the first instance due to its widespread use within the literature to represent systems with
dynamically varying stiffness, as well as its simplicity, with the aim of ensuring that the
results of this work are not constrained to an overly-specific problem. Additionally, this
system represents a simple use case for the proposed controller-switching approach, since
the degree of nonlinear behavior of the system is governed by the magnitude of the system

excitation or floor motion, x(t), which is equivalent to the magnitude of the reference signal

5
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g1 used by the feedforward control in this case. The secondary source is modeled as a simple

&2 harmonic oscillator such that the plant response is linear.

Secondary source O

ya(t)}---» e \\\
e SE BT e

Primary source

FIG. 1. Diagram of the simulated nonlinear system, consisting of a nonlinear primary acoustic

source, and a linear secondary source. System parameters are defined in Table I.

83

84

& The displacement of the primary source, y,(t), is induced by motion of the floor, x(t),
ss to which it is attached. While the motion of the secondary source is induced by the control
&7 force, u(t), which acts upon it. The equations of motion for the total system can be expressed
88 as

Mafia(t) + kaB(t) + ENLO3 (1) + c0(t) = 0 (1)

89

mydis(t) + Koy (t) + ot (t) + Fo(t) =0 (2)

o where 0(t) = y,(t) — x(t) and the remaining variables are defined in Figure 1 and Table I. It

a1 can be seen from equation 1 that the degree of nonlinearity is dependent on the term that
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is proportional to the nonlinear stiffness, k:(a)N L which depends on both the motion of the
floor, z(t), and the motion of the primary mass, y,(t). However, since the motion of the
primary mass is directly dependent on the motion of the floor, the floor motion, which is
used as the reference signal in the considered feedforward controller, is an effective measure
for the degree of nonlinearity. The parameters that define the dynamics of the simulated
system were selected such that the two oscillators have unity mass, but distinct resonance
frequencies of 60 Hz and 80 Hz. The damping coefficients ¢, and ¢, were selected such that
each oscillator is subject to 20% of critical damping, such that the oscillators are neither
significantly underdamped or overdamped.

The two oscillators are assumed to behave as monopole acoustic sources, with the sim-
plifying assumption that any pressure measurements are made in the far field. The complex
far-field pressure field generated by an acoustic monopole oscillating at an angular frequency

w at radius r and time ¢ can be expressed as

~ Qka i(wt—kr
p(r,w,t) :Zwe( bk )a (3)

where Q) is the scalar volume velocity of the oscillator, p and c¢ are the density and speed of
sound of the acoustic medium respectively, and k = . For a sphere of radius a oscillating

radially with a surface velocity of magnitude Uy, the volume velocity can be expressed as
Q = 47ra’U, (4)

and so equation 3 can be rewritten as

2Uppck 20ck .
p(r,w,t) = § 0P iwt—kr) i%e_’krﬂ(a,w, t) (5)
r r
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where (a, t) = Upe™' is the complex velocity of the surface of the oscillating sphere. Under

the far-field assumption, the complex pressure and complex source velocity are therefore

a?pck
r

related by a magnitude scaling factor of and a phase change of /2 — kr.

TABLE 1. Simulated system parameters

Parameter Symbol Value
Primary source mass mg 1kg
Secondary source mass my 1kg

Primary source linear stiffness  k, 1.42 x 10° Nm ™!

Primary source cubic stiffness &N 1.42 x 10'* Nm—3

Secondary source stiffness ky 2.53 x 10> Nm~!
Primary source damping Ca 151 Nsm~!
Secondary source damping Cp 201 Nsm™!

In the simulations presented within this paper, z(t) is assumed to be a band-limited
Gaussian white noise with a frequency range of [0, 250] Hz. To obtain the pressure produced
by each of the two sources, the source velocity, ¢,(t) or 7,(t), is transformed into the frequency

domain using a Discrete Fourier Transform (DFT), multiplied by 7;“2%5]‘76_“”

as a function
of frequency, and inverse Fourier transformed to recover the time-domain pressure. It is

assumed that a = 1 for both sources, and the distances from the primary and secondary

sources to the error sensor are 7primary = 2 M and Tsecondary = 1 M, respectively. The system

8
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dynamics are simulated in the time-domain using a 4th order Runge-Kutta method at a

sample rate of f; = 2 kHz.

III. PROPOSED CONTROLLER DESIGN

As noted in the Section I, it is challenging to train a single NN controller with performance
that generalizes across a range of nonlinear behaviors. To overcome this challenge, a dynamic
controller switching approach is proposed here where a simple switching process is utilized
to select the most suitable controller from a bank of relatively small NN controllers that have
been trained to perform over distinct operating ranges, as shown by the proposed controller
architecture in Figure 2. Although this general approach could be used to maintain control
performance when the dynamics of the system under control change due various factors, the
focus here is on the case where the degree of nonlinear behavior in the system is determined
by the magnitude of the signal exciting the primary system, as discussed in Section II, which
is given by the motion of the floor for the considered system as shown in Figure 1. From
Figure 2 it can be seen that this signal provides the sampled reference signal, x[n], which
is used to both drive the feedforward controller and determine the selection of the most
appropriate controller from the controller bank. Specifically, the selection of the controller
to be used at a given time instant is determined by comparing an estimate of the RMS of the
reference signal, x gy, to the range of reference signal magnitudes over which each controller
in the bank of controllers has been trained. xgjss is estimated using a simple moving average
process in this paper, the operation of which is determined by two parameters — tpdqe and
trRMS- tupdate 15 the period between successive calculations of xrarg, and trag is the length

9
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of the window used for each estimation. This moving average can be expressed as

xRMS \/ZZ =n— nRMs-i-l [Z] (6)

NRrMS

where ngyss is the number of digital samples in the time period tgp;s. The controller trained
over the magnitude range containing the current estimate of the reference signal RMS is then
utilized to generate the control signal, u[n], for the following time period, ¢,pgate. Effectively,
this results in the weights and biases of the NN being updated dynamically, depending
on changes in the magnitude of the reference signal. Although more advanced approaches
could be used for the estimation of the RMS, or indeed for selecting the highest performing
controller adaptively or using a neural network as in** to maximize the control performance,
the simple approach has been utilized here to demonstrate that the performance of the

proposed strategy is not strongly reliant on a complicated estimation approach.

Controller Bank Pa [n]

C ”Qm
C%@@ ﬁ. System Plant prln] e[n]

'L controller
\ 4
Moving Average Controller
RMS Selection

FIG. 2. Block diagram of the controller switching architecture.

In order to realize the full dynamically switched controller described above, and shown
in Figure 2, it is necessary to design the individual controllers and to specify the ranges
over which they are trained. The methodology utilized to train and test the individual

10
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Switched neural network active control

controllers is described in Section [1I A, whilst consideration of the controller training ranges
is dependent on the specific system and so is discussed separately in Section IV A for the

simulated nonlinear system and in Section V for the physical nonlinear system.

A. Individual Controller Architecture and Training

The focus of this work is not on the specific network architecture of the individual NN
controllers, but on the dynamic switching between controllers. Therefore, all controllers
have been implemented as Multi-Layer Perceptron (MLP) networks. Although alternative
controller architectures could be utilized, even with the potential to mix different controllers
for use over different operational ranges, this is left for future work. Each MLP controller
has an input layer of size 160, with further increases having a negligible impact on controller
attenuation. Each MLP uses a single hidden layer with the number of hidden nodes being
variously explored, but no significant increase in performance being achieved for the con-
sidered system with more than 100 nodes in the hidden layer. A simplified diagram of the
individual MLP controller network is provided in Figure 3 for example.

Similarly to a Finite Impulse Response (FIR) filter, as shown in Figure 3, the MLP
controller takes a tapped delay line of the digitally sampled reference signal, x[n|, as its
input, which is given by

T
x[n] = z[n],xn —1],...;2[n — L+ 1]| > (7)
and the output is the control signal u[n]. However, the MLP differs from an FIR filter in
that it also contains a ‘hidden’ layer of values, h[n], which are calculated from the input

11
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FIG. 3. Block diagram of an example MLP controller network, with an input tapped delay line

size of 2, and 3 nodes in the hidden layer.

tapped delay line as

h[n] = o(Wx[n| + by,) (8)

where W is a matrix of hidden layer weights, by, is a vector of biases associated with the
hidden layer, and o(e) is a nonlinear activation function that allows for the network to
generate nonlinear mappings and has been defined as a hyperbolic tangent in this case. The

network output, u[n], is then given by
u[n] = wlh[n] + b, 9)

where w, is a vector of output weights, and b, is an output bias. Combining equations &8

and 9 then gives the network output as

uln] = wro(Wx[n] + by,) + b,. (10)

1. Controller training

A diagram of the architecture used to train the NN controller is presented in Figure 4. The

training is undertaken using the generated reference signal, x[n], and the simulated primary

12
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source pressure at the error microphone, p,[n|. To calculate an estimate of the error signal,
a Hankel matrix, X|[n| of size N x L is generated, where N is the tapped delay line length,
or input layer size, of the MLP controller, and L is the order of the fixed plant model, g, in

the discrete time domain. X[n] can be written as

x[n] zn—1] ... zn—N+1]

zin—1] zn-2] ... z[n — N]

zn—L+1] z[n—L] ... z[n — N — L+ 2]

This matrix is passed to the MLP controller, generating a vector u[n| of length L which is
a tapped delay line of the control signal generated by the current iteration of the controller.
The vector u[n] is subsequently passed to the plant model, generating an estimate, py[n], of
the pressure generated by the secondary source. An estimate of the error signal at the error
microphone can then be calculated via the linear summation of the primary and estimated
secondary source pressures as, €[n| = po[n] + py[n]. Each controller is trained to minimize

the mean squared error (MSE) signal, which is defined as

J = é2[n] (12)

D>

where the mean is calculated over 128 instances of the estimation of the error signal, col-
lectively referred to as a mini-batch. The backpropagation algorithm used to update the
controller weights and biases was the Adam algorithm®! with parameters o = 1 x 1074,
B1 = 0.9, B, = 0.99, and € = 10~7. These parameters were selected through trial and error
with a view to reaching an effective trade-off between controller performance and training

13
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speed. In all cases, the plant model used for controller training was an FIR filter with 160

24 taps, which was capable of achieving high levels of modeling accuracy due to the linear

205
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217

nature of the simulated plant response.

Plant Model

\

0 IR u[n]
Generation

FIG. 4. Block diagram of the controller training method.

To train each network, two sets of 900 s of simulated data were generated. The first
of the two datasets was used for network training, and the second for validation to assess
overfitting. As a result of using this relatively large amount of training data considering
the size of the networks, there was no apparent overfitting during the network training,
as assessed via the training and validation losses, and, therefore, network regularization
techniques were not applied. Each dataset consists of the reference signal, x[n], which as
noted above is a band-limited Gaussian white noise with a frequency range of [0,250] Hz,
and the disturbance signal, p,[n]. In each simulation, the magnitude of the reference signal,
or system excitation, increases linearly over time so that it covers the targeted training
range in each case. Each update to the weights and biases of the controller networks was

14
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undertaken using an average over a mini-batch of a tapped delay line of the reference signal,
and a sample of the disturbance signal. These mini-batches were selected randomly from
the generated data set. In each training step, 1000 such mini-batches were used, and the
full network training was undertaken over 500 steps. The term ‘step’ here is used in place
of the typical term ‘epoch’ to clarify that the full dataset is not used in each training step,
which is explained further below.

When training the MLP controllers it was found that, for a given controller and training
range, if the random selection of the training data used to update the network weights and
biases had a uniform distribution, then the control attenuation achieved was approximately
equal over the training range. However, when training a controller at a single excitation
level, it was found that the maximum control attenuation achievable is not uniform over
excitation level and in fact decreases as the magnitude of the reference signal increases.
This means that when using a uniformly distributed selection of training data to train the
generalized controllers, their performance approaches the maximum at the upper end of
the training range, but falls below the maximum at the bottom. For a set of N training
examples with reference signal magnitudes z,,q4 in the range a < 44 < b, the probability
of training example ¢ being included in a training batch (up to a normalizing factor) can be

defined as

P(q) o< 1077 (wmas=a) (13)

where v is a factor controlling the shape of the probability distribution. Modifying the
selection of the training data in this way affects the resultant control attenuation achieved by

the MLP controllers across the training range, and an appropriate selection of v for a given

15
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training range results in generalized control performance that approaches the maximum
MLP controller performance across the training range. This approach has previously been

explored in®!.

IV. SWITCHED CONTROLLER TUNING AND PERFORMANCE

This section presents simulation results demonstrating the performance of the proposed
switch-controller approach. In the first instance the effect of the controller training range
on potential performance is explored and then the performance of the switched-controller is

evaluated. In all cases, simulated data not utilized in the training phase has been utilized.

A. Switched controller training range analysis

A key parameter in designing the switched-controller system is the selection of the ref-
erence signal magnitude ranges over which each controller is trained. This selection should
consider both the number of training ranges utilized to cover the overall range of operational
conditions and the relative widths of the training ranges. In terms of the relative widths
of the training ranges, it has been found that if the overall range is subdivided equally, as
shown in the upper image in Figure 5, this results in under-performance at lower magnitude
system excitation levels compared to those trained at higher magnitude levels. This can be
related to the fact that the range of behavior exhibited by the nonlinear system is broader
for a fixed training width at lower reference signal magnitudes, primarily due to the nature
of the assumed nonlinear stiffness. Motivated by this, it has been found that subdividing
the overall magnitude range such that the ratio between the widths of neighboring ranges is

16
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constant as the reference signal magnitude increases provides more consistent performance
across the overall range. An example of this proposed subdivision of the full training range
is shown in the lower image in Figure 5.

Equally split range

Range split into subdivisions with increasing width

FIG. 5. Examples showing how the full training range of interest may be split into equal subdivi-
sions, or subdivisions with increasing width. In the lower example, the ratio between the widths

of neighboring ranges is constant.

To explore the effect of varying the number of training ranges, Figure 6 shows the generalized
performance of MLP controllers with between 12 and 100 hidden nodes, trained over subdivi-
sions of three, six and nine magnitude ranges. In each case, the black dashed lines represent
the maximum potential control attenuation achievable, which is determined by using con-
trollers trained and tested at individual reference signal magnitudes, and the colored lines
represent the generalized performance of the individual controllers trained over the magni-
tude ranges denoted by the corresponding colored regions. In both cases, the controllers are
tested using 300 s of newly simulated data with a constant excitation magnitude. From the
results presented in Figure 6(a) Three training ranges it can be seen that with three subdi-
visions, even increasing the number of hidden nodes substantially from 12 to 100 does not

17
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achieve a generalized performance that reaches the estimated maximum performance across
the full range. Furthermore, the increase in control performance produced by increasing the
number of hidden nodes from 50 to 100 in this case is minimal, suggesting that a further in-
crease in the number of hidden nodes is unlikely to significantly improve performance. From
the results presented in Figures 6(b) Six training ranges and 6(c) Nine training ranges for
a subdivision of the overall magnitude range into six and nine training ranges respectively,
it can be seen that increasing the number of hidden nodes in the controllers improves their
generalized control performance and this approaches the estimated maximum performance
as the number of hidden nodes approaches 100. This is perhaps a predictable result, as in-
creasing the number of subdivisions of the full training range approaches the case where the
controllers are each trained at a single level. However, comparison of the results presented in
Figures 6(b) Six training ranges and 6(c) Nine training ranges illustrates that increasing the
number of subdivisions does not necessarily increase the generalized control attenuation for
a given number of hidden nodes. Moreover, as there is a computational cost and additional
time associated with training each of the individual controllers, it is clear that for any partic-
ular application there will be some optimal number of subdivisions of the full training range
that maximizes generalized control attenuation whilst minimizing the number of networks
required to be trained. Furthermore, although increasing the number of subdivisions may
mean that the individual networks require fewer hidden nodes, narrow training regions may

result in rapid switching between networks during control, compromising performance.

18
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FIG. 6. Generalized performance of controllers trained across three, six and nine training ranges.
The black dashed lines indicate the maximum performance achievable by the MLP trained at
discrete levels with 100 hidden nodes. The black dotted lines indicate the maximum performance
achievable by an FIR controller trained at discrete levels. The colored lines indicate the generalized
performance achieved by the individual controllers trained over the excitation signal magnitude

ranges defined by the corresponding colored region.

204 B. Switched controller performance analysis

205 To test the performance of the switched controller, the set of six controllers with 50
26 hidden nodes described in Section IV A has been utilized, since it offers close to maximum
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performance over the full magnitude range without unnecessarily high training costs. In this
instance, the moving average process utilized to dynamically estimate the magnitude of the
reference signal as described in Section III has been implemented with ¢pag and typgece set
to 0.2 s. To test the performance of the switched controllers, a dynamically varying excita-
tion condition was simulated over 60 s. Specifically, the magnitude of excitation was first
slowly increased from a low to a high value, and then reduced again slowly before rapidly
increasing and decreasing. The control attenuation achieved by the switched-controller is
presented in Figure 7, along with the performance achieved by an adaptive Normalized-
Step-Size FLANN-based (NSS-FLANN) controller®” and a generalized NN trained across
the full range of excitation levels. The FLANN-based controller has been included to pro-
vide a benchmark against a commonly utilized adaptive nonlinear control algorithm, whilst
the larger single MLP controller has been included to demonstrate the performance of the
switching approach compared to simply utilizing a larger network trained across the full
range of operating conditions. From these results it can be seen that the switched MLP con-
troller is able to achieve effective control attenuation across the range of excitation levels and
as such closely tracks the maximum steady-state control attenuation for the MLP denoted
by the dashed black line. In comparison to the larger generalized MLP controller and the
FLANN, the proposed switched MLP controller achieves a consistently higher level of con-
trol attenuation. The performance is consistently around 10 dB above the generalized MLP
controller, whilst utilizing half the number of hidden nodes and, therefore, a significantly

reduce computational load. A similar performance advantage is also achieved compared to
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the implemented FLANN, which can also be observed to be relatively slow to regain effective

control attenuation following periods of high excitation level.

Despite the effective performance of the switched MLP controller, it is clear from the col-
ored regions in Figure 7 that there is occasionally quite rapid switching between controllers.
It should be noted that this can be addressed by adjusting the ¢,pdase and ¢,,,s parameters
used in the RMS estimation procedure. Specifically, with a fixed update rate (fupdate), &
trade-off between accuracy and speed of estimation can be realized by adjusting ¢,,,;. With
a larger t,.,s the rapid switching can be reduced by obtaining a more accurate estimate of
the reference signal RMS, but this will introduce a delay in the estimate and, therefore,
the selection of the most appropriate controller. In the case of t,pgate it is also possible to
reduce controller switching by reducing the update rate via an increase in t,,4q, but this
would also reduce the ability of the switched-controller to respond to rapid changes in the
excitation level. Therefore, both estimation parameters must be tuned for the application
considering the required speed of controller switching to maximize control performance. Al-
ternatively, as noted in Section III, it is possible to use a more advanced method of selecting
the appropriate controller at any time instant, either via an adaptive approach or in more
complicated scenarios via an intelligent approach based on machine learning, as utilized in**
to select the most suitable controller for different types of noise. That said, it is clear from
the results presented in Figure 7 that even with the controller switching based on the simple

RMS estimation procedure performance close to the steady-state maximum can be achieved.
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== Maximum steady-state control attenuation - MLP
o T —— NSS-FLANN

T g0 { —— MLP - 100 hidden nodes - 1 training range

3 —— MLP - 50 hidden nodes - 6 training ranges

FIG. 7. The control performance achieved when the excitation level, or reference signal magnitude,
varies over time for the proposed switched MLP controller, a large MLP trained over the full
excitation range, and an NSS-FLANN controller. The MSE control attenuation achieved has been
calculated using a 0.5 s moving average. The colored regions represent the selected controller at

the corresponding time instance for the switched-controller implementation.

V. APPLICATION TO THE CONTROL OF A PHYSICAL NONLINEAR SYS-

TEM

To further validate the proposed control strategy, its performance when applied to a
physical system with a nonlinear response has been explored. The considered experimental
system consisted of a thin aluminum plate clamped along its edges by a thick aluminum
frame, as shown in Figure 8. The primary excitation was provided by a small electrody-
namic shaker (Tectonic Elements TEAX19C01-8) attached to the surface of the plate, which
was overdriven to introduce the physical nonlinearity. The secondary source was provided
by a larger electrodynamic shaker (Tectonic Elements TEAX32C30-4/B), which was also
attached to the surface of the plate. The error sensor was provided by an accelerometer, col-
located with the secondary source on the underside of the plate and therefore not visible in

Figure 8. The primary source was driven by low-pass filtered random Gaussian noise, with a
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cutoff at 250 Hz, and this signal was taken as the reference signal. The system was measured
at a sample rate of 2 kHz, and the MLP controllers utilized a hyperbolic tangent activation
function and a reference signal tapped delay line length of 0.15 seconds, corresponding to
300 samples. The estimation of the reference signal RMS was undertaken using the moving
average approach described in Section III, with t,p4ete = 0.1 s, and tgrays = 0.5 s in this
case. The data used for the training of the generalized MLP controllers was provided by a
measurement of the system excited by a signal that linearly increased in magnitude from a
low level to a high level over 150 seconds, then decreased in magnitude over a further 150 s
back to the lower magnitude level. The lower level limit was defined by the noise floor in the
system and the upper limit was chosen to avoid destroying the electrodynamic shaker. The

NN training was undertaken following the same methodology as outlined in Section IIT A 1.

FIG. 8. A photograph of the physical system consisting of a thin aluminum plate with clamped
boundaries and electrodynamic shakers providing the nonlinear primary source (left) and secondary
source (right). (nb. the third shaker on the left with the same dimensions as the secondary source

was not used in this study).
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Figure 9 presents the generalized control attenuation calculated via offline simulations
for the MLP controllers trained over 4 ranges with 40 hidden nodes, and 9 ranges with 80
hidden nodes, respectively. As was similarly noted in the simulation study presented in
Section IV A, it can be seen that by increasing the number of training ranges and hidden
nodes beyond 4 ranges and 40 hidden nodes, only a small increase in generalized control
performance is achieved. Therefore, the controllers trained over 4 ranges with 40 hidden

nodes were implemented in the following evaluation of the switched MLP controller.

4 ranges, 40 hidden nodes 9 ranges, 80 hidden nodes

MSE attenuation, dB

0.1 0.2 0.3 0.4 0.5 0.6 0.1 0.2 0.3 0.4 0.5 0.6
Reference signal magnitude Reference signal magnitude

FIG. 9. Generalized performance of controllers trained across 4 ranges with 40 hidden nodes,
and 9 ranges with 80 hidden nodes. The black dashed lines indicate the maximum performance
achievable by the MLP trained at discrete reference signal magnitudes with 80 hidden nodes. The

black dotted lines indicate the maximum performance similarly achievable with an FIR controller.

As in Section IV B, to test the performance of the switched MLP controller the excitation
signal level was increased from a low level to a high level and back down again, first slowly,
then quickly. The upper plot in Figure 10 presents the results of offline simulations using the
measured time-history of the primary disturbance signal and the measured system responses,
and shows the attenuation in the MSE achieved by the switched MLP controller, along with
the attenuation achieved by the NSS-FLANN controller and a larger single MLP controller
trained over the full range of excitation signal levels. These results show that the switched
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MLP controller achieves a control performance that is comparable to that of the NSS-
FLANN controller during the first 5 s where the excitation level is low and remains relatively
constant; however, after both the slow and fast decreases in the excitation signal level (14—
19 s and 24.5-30 s), the switched MLP controller shows a lower level of control performance.
It is possible that this is due to some form of hysteretic behavior induced by the preceding
periods of high-level excitation temporarily changing the dynamics of the system. This is
suggested by the fact that during these time periods, the control attenuation shows a slow
upward trend as the original system response returns. This change in dynamics was not
represented in the training data, where the change in excitation signal level was extremely
slow, and therefore it is perhaps unsurprising that the MLP controllers underperform after
these changes. To overcome this limitation, rather than retraining the MLP controllers with
different excitation signal time-histories, a small augmentation was made to the controller
switching approach. Specifically, an adaptive output gain p was implemented for each MLP

controller, with the gain updated at each sample according to
Ap o< —e[n]gTuln] (14)

where g is an FIR filter modeling the system plant, and u[n] is a tapped delay line of
the previous MLP outputs. It may be noted that, as this update term depends only on
the current error signal sample, an FIR plant model and a TDL of the MLP output, this
adaptation will typically come at only a small increase in computational cost. Moreover,
the output gain associated with each controller is only updated when that controller is
implemented to avoid unnecessary computation. The MSE attenuation levels achieved when
the switched MLP controller and the larger single range MLP controller are implemented
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with an adaptive output gain are presented in the lower plot of Figure 10. From these results
it can be seen that this simple modification produces a considerable increase in the control
performance in both cases. The switched MLP controller with an adaptive output gain
now closely follows the MLP maximum attenuation curve, whilst the larger MLP controller

trained over the full range now achieves a comparable performance to the NSS-FLANN.

Controller switching only

MSE attenuation, dB

SE attenuation, dB

== Maximum steady-state control attenuation - MLP
—— NSS-FLANN

—— MLP - 80 hidden nodes - 1 training range

—— MLP - 40 hidden nodes - 4 training ranges

FIG. 10. The control performance achieved for the physical nonlinear system when the excitation
level, or reference signal magnitude, varies over time for the proposed switched MLP controller,
a large MLP trainined over the full excitation range, and an NSS-FLANN controller. The MSE
control attenuation achieved has been calculated using a 0.5 s moving average. The colored regions
represent the selected controller at the corresponding time instance for the switched-controller

implementation.
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VI. CONCLUSIONS

In this paper, a method of switching between a set of pre-trained MLP controllers to
improve the control performance achievable for a nonlinear system excited across a range
of levels has been presented. Its potential performance has been demonstrated via a set
of discrete-time simulations representing the active control of noise produced by a simple
nonlinear system and also via a set of offline simulations using data measured for a more
complicated physical nonlinear system. For the presented switched MLP controller , a sim-
ple RMS estimator of the magnitude of the reference signal has been used to select from
a set of MLP controllers trained to have near-maximal control performance over a set of
system excitation magnitude ranges. The effect of increasing the number of training ranges
on controller performance has been explored, and the trade-off between computational cost
and performance has been discussed. In the numerical simulations of the simple nonlinear
system, the switching approach has been shown to achieve control performance that approx-
imates the maximum achievable performance as the reference signal magnitude varies over
time. To further validate the proposed control strategy, an offline control simulation has
been undertaken using measurements of a physical system with a nonlinear response, which
includes both saturation and hysteretic like nonlinear behaviors. In this more realistic case,
the proposed switched MLP controller achieved control performance that was significantly
lower than the maximum potential attenuation and was outperformed by a well-known adap-
tive nonlinear control strategy. This was noted to be possibly due to changes in the system
dynamics caused by high excitation levels which were not included in the MLP training data.
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However, by introducing a simple and computationally efficient adaptive output gain into
the MLP controllers, it has been shown that the performance of the switched MLP controller
could be significantly increased, outperforming both the well-known adaptive nonlinear con-

troller and a single fixed larger MLP trained across the full range of excitation levels.
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