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Switched neural network active control

Feedforward active noise and vibration control systems have been developed for many1

applications, but are generally designed using linear digital filters, most typically im-2

plementing the Filtered reference Least Mean Squares (FxLMS) algorithm. When the3

system under control exhibits nonlinearities, linear controllers cannot fully capture4

the system dynamics to maximize performance. Previous work has shown that Neu-5

ral Network (NN) based controllers can improve control performance in the presence6

of nonlinearities. However, inferring the outputs of NN controllers can be computa-7

tionally expensive, limiting their practicality, particularly when control is required8

across a range of nonlinear behaviors. In this paper, a control strategy is proposed9

where performance is maintained across a nonlinear range of operation by dynam-10

ically switching between a set of smaller, and therefore more efficient, NNs that11

are individually trained over specific ranges of the nonlinear system behavior. It is12

demonstrated via both simulations of a system with a simple nonlinear stiffness in13

the primary path and offline simulations using a physical nonlinear dynamical system14

in the primary path, that the performance of the proposed switching approach offers15

a control performance advantage compared to both a larger generalized individual16

NN controller and a Functional Link Artificial NN (FLANN) based controller.17
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I. INTRODUCTION18

The requirements for the control of unwanted noise and vibration are becoming increas-19

ingly stringent in modern engineering systems, with higher levels of control performance re-20

quired to address user expectations and to manage the increasing requirement for lightweight21

engineering designs that exacerbate noise and vibration. High frequency noise and vibra-22

tion can typically be attenuated effectively using passive control solutions. However, the23

control of low frequency disturbances via passive methods can often require the implemen-24

tation of large or heavy systems. By comparison, active control solutions are typically ca-25

pable of achieving effective control at low frequencies, and can benefit from being relatively26

lightweight and compact.27

Historically, feedforward active noise and vibration control systems have been imple-28

mented using linear control filters and system models. However, it is well understood that29

nonlinearities present in either the plant or primary path of the control system can have a sig-30

nificant impact on control performance1–4. A wide range of approaches have been proposed31

to overcome this limitation, including polynomial, cross-term or trigonometric expansion of32

the reference signal5,6, genetic algorithms7 and fuzzy logic-based methods8. Another method-33

ology that has shown promising results is the application of machine learning methods to34

these nonlinear control problems. In particular, Neural Networks (NNs) are well-motivated35

for both modeling and control of nonlinear systems9 due to the fact that they are known to36

possess the property of being ‘universal approximators’10.37
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Many different uses of NNs have been studied in the literature, including system38

modeling4,11–15, feedforward controller design4,11,16–18, inverse modeling19, signal predic-39

tion and feedback control20–25, linear filter selection26, adaptive parameter estimation for40

linear controllers24,27, frequency-domain control28, multichannel controller design29, and41

signal classification30. However, the ability of such NN control systems to generalize well42

across a range of system behaviors has not been extensively explored in the associated43

literature. Nonlinear systems can exhibit rich and varied behavior as the input excitation44

changes, so training individual NNs to achieve acceptable control performance under such45

conditions is not straightforward. A training or design approach that provides effective46

control performance is clearly desirable in practical implementations where the properties47

of the excitation, and therefore the behavior of the system nonlinearity, may change over48

time.49

It has previously been demonstrated that it is possible to train individual NN controllers50

to produce control performance over a range of nonlinear system behaviors that approaches51

the performance of identical NN controllers trained at a single level of nonlinear behavior31.52

However, the performance of such generalized controllers is dependent on the range of nonlin-53

ear behavior over which the controller is trained to perform well, and the size (and therefore54

computational cost of inference) of the network. In this paper, a possible solution to this55

problem is proposed where a set of relativity small NN controllers are trained over distinct56

operating ranges and a simple method of switching between these controllers to achieve57

control performance across a much wider range of operational conditions is proposed1. Sec-58

tion II describes the simulated nonlinear control problem that is utilised to initially explore59
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the proposed control strategy. Section III describes the proposed controller switching ap-60

proach, individual controller architecture and the adopted training methodology. Section61

IV presents simulation results, which explore how the switched-controller training ranges62

influence performance and then demonstrate how the performance of the proposed control63

architecture compares to a larger generalized NN and to an adaptive nonlinear controller.64

Section V presents a study where the proposed switched-controller approach is applied to65

a physical nonlinear system, which demonstrates the practicability of the approach for re-66

alistic nonlinearities with more complicated characteristics. Finally, Section VI discusses67

conclusions from the work.68

II. NONLINEAR CONTROL PROBLEM DEFINITION69

A diagram of the simulated nonlinear system to be controlled is presented in Figure 1. The70

system consists of a primary source, generating the unwanted disturbance, and a secondary71

source, which is used to cancel the disturbance. To introduce a nonlinearity into the primary72

path of the system, the primary source is modeled as a Duffing oscillator. While the type73

of nonlinearity studied is clearly important, this type of nonlinearity has been utilized in74

the first instance due to its widespread use within the literature to represent systems with75

dynamically varying stiffness, as well as its simplicity, with the aim of ensuring that the76

results of this work are not constrained to an overly-specific problem. Additionally, this77

system represents a simple use case for the proposed controller-switching approach, since78

the degree of nonlinear behavior of the system is governed by the magnitude of the system79

excitation or floor motion, x(t), which is equivalent to the magnitude of the reference signal80
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used by the feedforward control in this case. The secondary source is modeled as a simple81

harmonic oscillator such that the plant response is linear.82

FIG. 1. Diagram of the simulated nonlinear system, consisting of a nonlinear primary acoustic

source, and a linear secondary source. System parameters are defined in Table I.

83

84

The displacement of the primary source, ya(t), is induced by motion of the floor, x(t),85

to which it is attached. While the motion of the secondary source is induced by the control86

force, u(t), which acts upon it. The equations of motion for the total system can be expressed87

as88

maÿa(t) + kaθ(t) + kNL
a θ3(t) + caθ̇(t) = 0 (1)

89

mbÿb(t) + kbyb(t) + cbẏb(t) + Fc(t) = 0 (2)

where θ(t) = ya(t)−x(t) and the remaining variables are defined in Figure 1 and Table I. It90

can be seen from equation 1 that the degree of nonlinearity is dependent on the term that91

6



Switched neural network active control

is proportional to the nonlinear stiffness, k(a)
NL, which depends on both the motion of the92

floor, x(t), and the motion of the primary mass, ya(t). However, since the motion of the93

primary mass is directly dependent on the motion of the floor, the floor motion, which is94

used as the reference signal in the considered feedforward controller, is an effective measure95

for the degree of nonlinearity. The parameters that define the dynamics of the simulated96

system were selected such that the two oscillators have unity mass, but distinct resonance97

frequencies of 60 Hz and 80 Hz. The damping coefficients ca and cb were selected such that98

each oscillator is subject to 20% of critical damping, such that the oscillators are neither99

significantly underdamped or overdamped.100

The two oscillators are assumed to behave as monopole acoustic sources, with the sim-101

plifying assumption that any pressure measurements are made in the far field. The complex102

far-field pressure field generated by an acoustic monopole oscillating at an angular frequency103

ω at radius r and time t can be expressed as104

p̃(r, ω, t) = i
Qρck

4πr
ei(ωt−kr), (3)

where Q is the scalar volume velocity of the oscillator, ρ and c are the density and speed of105

sound of the acoustic medium respectively, and k = ω
c
. For a sphere of radius a oscillating106

radially with a surface velocity of magnitude U0, the volume velocity can be expressed as107

Q = 4πa2U0 (4)

and so equation 3 can be rewritten as108

p̃(r, ω, t) = i
a2U0ρck

r
ei(ωt−kr) = i

a2ρck

r
e−ikrũ(a, ω, t) (5)
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where ũ(a, t) = U0e
iωt is the complex velocity of the surface of the oscillating sphere. Under109

the far-field assumption, the complex pressure and complex source velocity are therefore110

related by a magnitude scaling factor of a2ρck
r

and a phase change of π/2− kr.111

TABLE I. Simulated system parameters

Parameter Symbol Value

Primary source mass ma 1 kg

Secondary source mass mb 1 kg

Primary source linear stiffness ka 1.42× 105 Nm−1

Primary source cubic stiffness kNL
a 1.42× 1014 Nm−3

Secondary source stiffness kb 2.53× 105 Nm−1

Primary source damping ca 151 Nsm−1

Secondary source damping cb 201 Nsm−1

112

113

In the simulations presented within this paper, x(t) is assumed to be a band-limited114

Gaussian white noise with a frequency range of [0, 250] Hz. To obtain the pressure produced115

by each of the two sources, the source velocity, ẏa(t) or ẏb(t), is transformed into the frequency116

domain using a Discrete Fourier Transform (DFT), multiplied by ia
2ρck
r

e−ikr as a function117

of frequency, and inverse Fourier transformed to recover the time-domain pressure. It is118

assumed that a = 1 for both sources, and the distances from the primary and secondary119

sources to the error sensor are rprimary = 2 m and rsecondary = 1 m, respectively. The system120
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dynamics are simulated in the time-domain using a 4th order Runge-Kutta method at a121

sample rate of fs = 2 kHz.122

III. PROPOSED CONTROLLER DESIGN123

As noted in the Section I, it is challenging to train a single NN controller with performance124

that generalizes across a range of nonlinear behaviors. To overcome this challenge, a dynamic125

controller switching approach is proposed here where a simple switching process is utilized126

to select the most suitable controller from a bank of relatively small NN controllers that have127

been trained to perform over distinct operating ranges, as shown by the proposed controller128

architecture in Figure 2. Although this general approach could be used to maintain control129

performance when the dynamics of the system under control change due various factors, the130

focus here is on the case where the degree of nonlinear behavior in the system is determined131

by the magnitude of the signal exciting the primary system, as discussed in Section II, which132

is given by the motion of the floor for the considered system as shown in Figure 1. From133

Figure 2 it can be seen that this signal provides the sampled reference signal, x[n], which134

is used to both drive the feedforward controller and determine the selection of the most135

appropriate controller from the controller bank. Specifically, the selection of the controller136

to be used at a given time instant is determined by comparing an estimate of the RMS of the137

reference signal, xRMS, to the range of reference signal magnitudes over which each controller138

in the bank of controllers has been trained. xRMS is estimated using a simple moving average139

process in this paper, the operation of which is determined by two parameters – tupdate and140

tRMS. tupdate is the period between successive calculations of xRMS, and tRMS is the length141
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of the window used for each estimation. This moving average can be expressed as142

xRMS[n] =

√∑n
i=n−nRMS+1 x

2[i]

nRMS

(6)

where nRMS is the number of digital samples in the time period tRMS. The controller trained143

over the magnitude range containing the current estimate of the reference signal RMS is then144

utilized to generate the control signal, u[n], for the following time period, tupdate. Effectively,145

this results in the weights and biases of the NN being updated dynamically, depending146

on changes in the magnitude of the reference signal. Although more advanced approaches147

could be used for the estimation of the RMS, or indeed for selecting the highest performing148

controller adaptively or using a neural network as in33 to maximize the control performance,149

the simple approach has been utilized here to demonstrate that the performance of the150

proposed strategy is not strongly reliant on a complicated estimation approach.151

FIG. 2. Block diagram of the controller switching architecture.

152

153

In order to realize the full dynamically switched controller described above, and shown154

in Figure 2, it is necessary to design the individual controllers and to specify the ranges155

over which they are trained. The methodology utilized to train and test the individual156
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controllers is described in Section IIIA, whilst consideration of the controller training ranges157

is dependent on the specific system and so is discussed separately in Section IVA for the158

simulated nonlinear system and in Section V for the physical nonlinear system.159

A. Individual Controller Architecture and Training160

The focus of this work is not on the specific network architecture of the individual NN161

controllers, but on the dynamic switching between controllers. Therefore, all controllers162

have been implemented as Multi-Layer Perceptron (MLP) networks. Although alternative163

controller architectures could be utilized, even with the potential to mix different controllers164

for use over different operational ranges, this is left for future work. Each MLP controller165

has an input layer of size 160, with further increases having a negligible impact on controller166

attenuation. Each MLP uses a single hidden layer with the number of hidden nodes being167

variously explored, but no significant increase in performance being achieved for the con-168

sidered system with more than 100 nodes in the hidden layer. A simplified diagram of the169

individual MLP controller network is provided in Figure 3 for example.170171

Similarly to a Finite Impulse Response (FIR) filter, as shown in Figure 3, the MLP172

controller takes a tapped delay line of the digitally sampled reference signal, x[n], as its173

input, which is given by174

x[n] =

[
x[n], x[n− 1], . . . , x[n− L+ 1]

]T

, (7)

and the output is the control signal u[n]. However, the MLP differs from an FIR filter in175

that it also contains a ‘hidden’ layer of values, h[n], which are calculated from the input176

11



Switched neural network active control

FIG. 3. Block diagram of an example MLP controller network, with an input tapped delay line

size of 2, and 3 nodes in the hidden layer.

tapped delay line as177

h[n] = σ(Wx[n] + bh) (8)

where W is a matrix of hidden layer weights, bh is a vector of biases associated with the178

hidden layer, and σ(•) is a nonlinear activation function that allows for the network to179

generate nonlinear mappings and has been defined as a hyperbolic tangent in this case. The180

network output, u[n], is then given by181

u[n] = wT
o h[n] + bo (9)

where wo is a vector of output weights, and bo is an output bias. Combining equations 8182

and 9 then gives the network output as183

u[n] = wT
o σ(Wx[n] + bh) + bo. (10)

1. Controller training184

A diagram of the architecture used to train the NN controller is presented in Figure 4. The185

training is undertaken using the generated reference signal, x[n], and the simulated primary186
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source pressure at the error microphone, pa[n]. To calculate an estimate of the error signal,187

a Hankel matrix, X[n] of size N × L is generated, where N is the tapped delay line length,188

or input layer size, of the MLP controller, and L is the order of the fixed plant model, ĝ, in189

the discrete time domain. X[n] can be written as190

X[n] =



x[n] x[n− 1] . . . x[n−N + 1]

x[n− 1] x[n− 2] . . . x[n−N ]

...
...

. . .
...

x[n− L+ 1] x[n− L] . . . x[n−N − L+ 2]


. (11)

This matrix is passed to the MLP controller, generating a vector u[n] of length L which is191

a tapped delay line of the control signal generated by the current iteration of the controller.192

The vector u[n] is subsequently passed to the plant model, generating an estimate, p̂b[n], of193

the pressure generated by the secondary source. An estimate of the error signal at the error194

microphone can then be calculated via the linear summation of the primary and estimated195

secondary source pressures as, ê[n] = pa[n] + p̂b[n]. Each controller is trained to minimize196

the mean squared error (MSE) signal, which is defined as197

J = ê2[n] (12)

where the mean is calculated over 128 instances of the estimation of the error signal, col-198

lectively referred to as a mini-batch. The backpropagation algorithm used to update the199

controller weights and biases was the Adam algorithm34 with parameters α = 1 × 10−4,200

β1 = 0.9, β2 = 0.99, and ϵ = 10−7. These parameters were selected through trial and error201

with a view to reaching an effective trade-off between controller performance and training202
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speed. In all cases, the plant model used for controller training was an FIR filter with 160203

taps, which was capable of achieving high levels of modeling accuracy due to the linear204

nature of the simulated plant response.205

FIG. 4. Block diagram of the controller training method.

206

207

To train each network, two sets of 900 s of simulated data were generated. The first208

of the two datasets was used for network training, and the second for validation to assess209

overfitting. As a result of using this relatively large amount of training data considering210

the size of the networks, there was no apparent overfitting during the network training,211

as assessed via the training and validation losses, and, therefore, network regularization212

techniques were not applied. Each dataset consists of the reference signal, x[n], which as213

noted above is a band-limited Gaussian white noise with a frequency range of [0, 250] Hz,214

and the disturbance signal, pa[n]. In each simulation, the magnitude of the reference signal,215

or system excitation, increases linearly over time so that it covers the targeted training216

range in each case. Each update to the weights and biases of the controller networks was217
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undertaken using an average over a mini-batch of a tapped delay line of the reference signal,218

and a sample of the disturbance signal. These mini-batches were selected randomly from219

the generated data set. In each training step, 1000 such mini-batches were used, and the220

full network training was undertaken over 500 steps. The term ‘step’ here is used in place221

of the typical term ‘epoch’ to clarify that the full dataset is not used in each training step,222

which is explained further below.223

When training the MLP controllers it was found that, for a given controller and training224

range, if the random selection of the training data used to update the network weights and225

biases had a uniform distribution, then the control attenuation achieved was approximately226

equal over the training range. However, when training a controller at a single excitation227

level, it was found that the maximum control attenuation achievable is not uniform over228

excitation level and in fact decreases as the magnitude of the reference signal increases.229

This means that when using a uniformly distributed selection of training data to train the230

generalized controllers, their performance approaches the maximum at the upper end of231

the training range, but falls below the maximum at the bottom. For a set of N training232

examples with reference signal magnitudes xmag in the range a < xmag < b, the probability233

of training example q being included in a training batch (up to a normalizing factor) can be234

defined as235

P (q) ∝ 10−γ(xmag−a) (13)

where γ is a factor controlling the shape of the probability distribution. Modifying the236

selection of the training data in this way affects the resultant control attenuation achieved by237

the MLP controllers across the training range, and an appropriate selection of γ for a given238
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training range results in generalized control performance that approaches the maximum239

MLP controller performance across the training range. This approach has previously been240

explored in31.241

IV. SWITCHED CONTROLLER TUNING AND PERFORMANCE242

This section presents simulation results demonstrating the performance of the proposed243

switch-controller approach. In the first instance the effect of the controller training range244

on potential performance is explored and then the performance of the switched-controller is245

evaluated. In all cases, simulated data not utilized in the training phase has been utilized.246

A. Switched controller training range analysis247

A key parameter in designing the switched-controller system is the selection of the ref-248

erence signal magnitude ranges over which each controller is trained. This selection should249

consider both the number of training ranges utilized to cover the overall range of operational250

conditions and the relative widths of the training ranges. In terms of the relative widths251

of the training ranges, it has been found that if the overall range is subdivided equally, as252

shown in the upper image in Figure 5, this results in under-performance at lower magnitude253

system excitation levels compared to those trained at higher magnitude levels. This can be254

related to the fact that the range of behavior exhibited by the nonlinear system is broader255

for a fixed training width at lower reference signal magnitudes, primarily due to the nature256

of the assumed nonlinear stiffness. Motivated by this, it has been found that subdividing257

the overall magnitude range such that the ratio between the widths of neighboring ranges is258
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constant as the reference signal magnitude increases provides more consistent performance259

across the overall range. An example of this proposed subdivision of the full training range260

is shown in the lower image in Figure 5.261

FIG. 5. Examples showing how the full training range of interest may be split into equal subdivi-

sions, or subdivisions with increasing width. In the lower example, the ratio between the widths

of neighboring ranges is constant.

262

263

To explore the effect of varying the number of training ranges, Figure 6 shows the generalized264

performance of MLP controllers with between 12 and 100 hidden nodes, trained over subdivi-265

sions of three, six and nine magnitude ranges. In each case, the black dashed lines represent266

the maximum potential control attenuation achievable, which is determined by using con-267

trollers trained and tested at individual reference signal magnitudes, and the colored lines268

represent the generalized performance of the individual controllers trained over the magni-269

tude ranges denoted by the corresponding colored regions. In both cases, the controllers are270

tested using 300 s of newly simulated data with a constant excitation magnitude. From the271

results presented in Figure 6(a) Three training ranges it can be seen that with three subdi-272

visions, even increasing the number of hidden nodes substantially from 12 to 100 does not273
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achieve a generalized performance that reaches the estimated maximum performance across274

the full range. Furthermore, the increase in control performance produced by increasing the275

number of hidden nodes from 50 to 100 in this case is minimal, suggesting that a further in-276

crease in the number of hidden nodes is unlikely to significantly improve performance. From277

the results presented in Figures 6(b) Six training ranges and 6(c) Nine training ranges for278

a subdivision of the overall magnitude range into six and nine training ranges respectively,279

it can be seen that increasing the number of hidden nodes in the controllers improves their280

generalized control performance and this approaches the estimated maximum performance281

as the number of hidden nodes approaches 100. This is perhaps a predictable result, as in-282

creasing the number of subdivisions of the full training range approaches the case where the283

controllers are each trained at a single level. However, comparison of the results presented in284

Figures 6(b) Six training ranges and 6(c) Nine training ranges illustrates that increasing the285

number of subdivisions does not necessarily increase the generalized control attenuation for286

a given number of hidden nodes. Moreover, as there is a computational cost and additional287

time associated with training each of the individual controllers, it is clear that for any partic-288

ular application there will be some optimal number of subdivisions of the full training range289

that maximizes generalized control attenuation whilst minimizing the number of networks290

required to be trained. Furthermore, although increasing the number of subdivisions may291

mean that the individual networks require fewer hidden nodes, narrow training regions may292

result in rapid switching between networks during control, compromising performance.293
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(a) Three training ranges (b) Six training ranges

(c) Nine training ranges

FIG. 6. Generalized performance of controllers trained across three, six and nine training ranges.

The black dashed lines indicate the maximum performance achievable by the MLP trained at

discrete levels with 100 hidden nodes. The black dotted lines indicate the maximum performance

achievable by an FIR controller trained at discrete levels. The colored lines indicate the generalized

performance achieved by the individual controllers trained over the excitation signal magnitude

ranges defined by the corresponding colored region.

B. Switched controller performance analysis294

To test the performance of the switched controller, the set of six controllers with 50295

hidden nodes described in Section IVA has been utilized, since it offers close to maximum296
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performance over the full magnitude range without unnecessarily high training costs. In this297

instance, the moving average process utilized to dynamically estimate the magnitude of the298

reference signal as described in Section III has been implemented with tRMS and tupdate set299

to 0.2 s. To test the performance of the switched controllers, a dynamically varying excita-300

tion condition was simulated over 60 s. Specifically, the magnitude of excitation was first301

slowly increased from a low to a high value, and then reduced again slowly before rapidly302

increasing and decreasing. The control attenuation achieved by the switched-controller is303

presented in Figure 7, along with the performance achieved by an adaptive Normalized-304

Step-Size FLANN-based (NSS-FLANN) controller35 and a generalized NN trained across305

the full range of excitation levels. The FLANN-based controller has been included to pro-306

vide a benchmark against a commonly utilized adaptive nonlinear control algorithm, whilst307

the larger single MLP controller has been included to demonstrate the performance of the308

switching approach compared to simply utilizing a larger network trained across the full309

range of operating conditions. From these results it can be seen that the switched MLP con-310

troller is able to achieve effective control attenuation across the range of excitation levels and311

as such closely tracks the maximum steady-state control attenuation for the MLP denoted312

by the dashed black line. In comparison to the larger generalized MLP controller and the313

FLANN, the proposed switched MLP controller achieves a consistently higher level of con-314

trol attenuation. The performance is consistently around 10 dB above the generalized MLP315

controller, whilst utilizing half the number of hidden nodes and, therefore, a significantly316

reduce computational load. A similar performance advantage is also achieved compared to317
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the implemented FLANN, which can also be observed to be relatively slow to regain effective318

control attenuation following periods of high excitation level.319

Despite the effective performance of the switched MLP controller, it is clear from the col-320

ored regions in Figure 7 that there is occasionally quite rapid switching between controllers.321

It should be noted that this can be addressed by adjusting the tupdate and trms parameters322

used in the RMS estimation procedure. Specifically, with a fixed update rate (tupdate), a323

trade-off between accuracy and speed of estimation can be realized by adjusting trms. With324

a larger trms the rapid switching can be reduced by obtaining a more accurate estimate of325

the reference signal RMS, but this will introduce a delay in the estimate and, therefore,326

the selection of the most appropriate controller. In the case of tupdate it is also possible to327

reduce controller switching by reducing the update rate via an increase in tupdate, but this328

would also reduce the ability of the switched-controller to respond to rapid changes in the329

excitation level. Therefore, both estimation parameters must be tuned for the application330

considering the required speed of controller switching to maximize control performance. Al-331

ternatively, as noted in Section III, it is possible to use a more advanced method of selecting332

the appropriate controller at any time instant, either via an adaptive approach or in more333

complicated scenarios via an intelligent approach based on machine learning, as utilized in33
334

to select the most suitable controller for different types of noise. That said, it is clear from335

the results presented in Figure 7 that even with the controller switching based on the simple336

RMS estimation procedure performance close to the steady-state maximum can be achieved.337
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FIG. 7. The control performance achieved when the excitation level, or reference signal magnitude,

varies over time for the proposed switched MLP controller, a large MLP trained over the full

excitation range, and an NSS-FLANN controller. The MSE control attenuation achieved has been

calculated using a 0.5 s moving average. The colored regions represent the selected controller at

the corresponding time instance for the switched-controller implementation.

V. APPLICATION TO THE CONTROL OF A PHYSICAL NONLINEAR SYS-338

TEM339

To further validate the proposed control strategy, its performance when applied to a340

physical system with a nonlinear response has been explored. The considered experimental341

system consisted of a thin aluminum plate clamped along its edges by a thick aluminum342

frame, as shown in Figure 8. The primary excitation was provided by a small electrody-343

namic shaker (Tectonic Elements TEAX19C01-8) attached to the surface of the plate, which344

was overdriven to introduce the physical nonlinearity. The secondary source was provided345

by a larger electrodynamic shaker (Tectonic Elements TEAX32C30-4/B), which was also346

attached to the surface of the plate. The error sensor was provided by an accelerometer, col-347

located with the secondary source on the underside of the plate and therefore not visible in348

Figure 8. The primary source was driven by low-pass filtered random Gaussian noise, with a349
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cutoff at 250 Hz, and this signal was taken as the reference signal. The system was measured350

at a sample rate of 2 kHz, and the MLP controllers utilized a hyperbolic tangent activation351

function and a reference signal tapped delay line length of 0.15 seconds, corresponding to352

300 samples. The estimation of the reference signal RMS was undertaken using the moving353

average approach described in Section III, with tupdate = 0.1 s, and tRMS = 0.5 s in this354

case. The data used for the training of the generalized MLP controllers was provided by a355

measurement of the system excited by a signal that linearly increased in magnitude from a356

low level to a high level over 150 seconds, then decreased in magnitude over a further 150 s357

back to the lower magnitude level. The lower level limit was defined by the noise floor in the358

system and the upper limit was chosen to avoid destroying the electrodynamic shaker. The359

NN training was undertaken following the same methodology as outlined in Section IIIA 1.360

FIG. 8. A photograph of the physical system consisting of a thin aluminum plate with clamped

boundaries and electrodynamic shakers providing the nonlinear primary source (left) and secondary

source (right). (nb. the third shaker on the left with the same dimensions as the secondary source

was not used in this study).
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Figure 9 presents the generalized control attenuation calculated via offline simulations361

for the MLP controllers trained over 4 ranges with 40 hidden nodes, and 9 ranges with 80362

hidden nodes, respectively. As was similarly noted in the simulation study presented in363

Section IVA, it can be seen that by increasing the number of training ranges and hidden364

nodes beyond 4 ranges and 40 hidden nodes, only a small increase in generalized control365

performance is achieved. Therefore, the controllers trained over 4 ranges with 40 hidden366

nodes were implemented in the following evaluation of the switched MLP controller.367

FIG. 9. Generalized performance of controllers trained across 4 ranges with 40 hidden nodes,

and 9 ranges with 80 hidden nodes. The black dashed lines indicate the maximum performance

achievable by the MLP trained at discrete reference signal magnitudes with 80 hidden nodes. The

black dotted lines indicate the maximum performance similarly achievable with an FIR controller.

As in Section IVB, to test the performance of the switched MLP controller the excitation368

signal level was increased from a low level to a high level and back down again, first slowly,369

then quickly. The upper plot in Figure 10 presents the results of offline simulations using the370

measured time-history of the primary disturbance signal and the measured system responses,371

and shows the attenuation in the MSE achieved by the switched MLP controller, along with372

the attenuation achieved by the NSS-FLANN controller and a larger single MLP controller373

trained over the full range of excitation signal levels. These results show that the switched374

24



Switched neural network active control

MLP controller achieves a control performance that is comparable to that of the NSS-375

FLANN controller during the first 5 s where the excitation level is low and remains relatively376

constant; however, after both the slow and fast decreases in the excitation signal level (14–377

19 s and 24.5–30 s), the switched MLP controller shows a lower level of control performance.378

It is possible that this is due to some form of hysteretic behavior induced by the preceding379

periods of high-level excitation temporarily changing the dynamics of the system. This is380

suggested by the fact that during these time periods, the control attenuation shows a slow381

upward trend as the original system response returns. This change in dynamics was not382

represented in the training data, where the change in excitation signal level was extremely383

slow, and therefore it is perhaps unsurprising that the MLP controllers underperform after384

these changes. To overcome this limitation, rather than retraining the MLP controllers with385

different excitation signal time-histories, a small augmentation was made to the controller386

switching approach. Specifically, an adaptive output gain µ was implemented for each MLP387

controller, with the gain updated at each sample according to388

∆µ ∝ −e[n]gTu[n] (14)

where g is an FIR filter modeling the system plant, and u[n] is a tapped delay line of389

the previous MLP outputs. It may be noted that, as this update term depends only on390

the current error signal sample, an FIR plant model and a TDL of the MLP output, this391

adaptation will typically come at only a small increase in computational cost. Moreover,392

the output gain associated with each controller is only updated when that controller is393

implemented to avoid unnecessary computation. The MSE attenuation levels achieved when394

the switched MLP controller and the larger single range MLP controller are implemented395
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with an adaptive output gain are presented in the lower plot of Figure 10. From these results396

it can be seen that this simple modification produces a considerable increase in the control397

performance in both cases. The switched MLP controller with an adaptive output gain398

now closely follows the MLP maximum attenuation curve, whilst the larger MLP controller399

trained over the full range now achieves a comparable performance to the NSS-FLANN.400

FIG. 10. The control performance achieved for the physical nonlinear system when the excitation

level, or reference signal magnitude, varies over time for the proposed switched MLP controller,

a large MLP trainined over the full excitation range, and an NSS-FLANN controller. The MSE

control attenuation achieved has been calculated using a 0.5 s moving average. The colored regions

represent the selected controller at the corresponding time instance for the switched-controller

implementation.
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VI. CONCLUSIONS401

In this paper, a method of switching between a set of pre-trained MLP controllers to402

improve the control performance achievable for a nonlinear system excited across a range403

of levels has been presented. Its potential performance has been demonstrated via a set404

of discrete-time simulations representing the active control of noise produced by a simple405

nonlinear system and also via a set of offline simulations using data measured for a more406

complicated physical nonlinear system. For the presented switched MLP controller , a sim-407

ple RMS estimator of the magnitude of the reference signal has been used to select from408

a set of MLP controllers trained to have near-maximal control performance over a set of409

system excitation magnitude ranges. The effect of increasing the number of training ranges410

on controller performance has been explored, and the trade-off between computational cost411

and performance has been discussed. In the numerical simulations of the simple nonlinear412

system, the switching approach has been shown to achieve control performance that approx-413

imates the maximum achievable performance as the reference signal magnitude varies over414

time. To further validate the proposed control strategy, an offline control simulation has415

been undertaken using measurements of a physical system with a nonlinear response, which416

includes both saturation and hysteretic like nonlinear behaviors. In this more realistic case,417

the proposed switched MLP controller achieved control performance that was significantly418

lower than the maximum potential attenuation and was outperformed by a well-known adap-419

tive nonlinear control strategy. This was noted to be possibly due to changes in the system420

dynamics caused by high excitation levels which were not included in the MLP training data.421
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However, by introducing a simple and computationally efficient adaptive output gain into422

the MLP controllers, it has been shown that the performance of the switched MLP controller423

could be significantly increased, outperforming both the well-known adaptive nonlinear con-424

troller and a single fixed larger MLP trained across the full range of excitation levels.425
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