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Dynamic neural network switching for active control
of nonlinear systems

Xander Pike and Jordan Cheer®
Institute of Sound and Vibration Research, University of Southampton, Southampton SO17 1BJ, United Kingdom

ABSTRACT:

Feedforward active noise and vibration control systems have been developed for many applications, but are generally
designed using linear digital filters, most typically implementing the filtered reference least mean squares algorithm.
When the system under control exhibits nonlinearities, linear controllers cannot fully capture the system dynamics to
maximize performance. Previous work has shown that neural network (NN) based controllers can improve control
performance in the presence of nonlinearities. However, inferring the outputs of NN controllers can be
computationally expensive, limiting their practicality, particularly when control is required across a range of
nonlinear behaviors. In this paper, a control strategy is proposed where performance is maintained across a nonlinear
range of operation by dynamically switching between a set of smaller, and therefore more efficient, NNs that are
individually trained over specific ranges of the nonlinear system behavior. It is demonstrated via both simulations of
a system with a simple nonlinear stiffness in the primary path and offline simulations using a physical nonlinear
dynamical system in the primary path, that the performance of the proposed switching approach offers a control
performance advantage compared to both a larger generalized individual NN controller and a functional link artificial
neural network based controller.

© 2025 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons

Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1121/10.0037087
(Received 14 January 2025; revised 3 May 2025; accepted 9 June 2025; published online 7 July 2025)

[Editor: Efren Fernandez-Grande]

I. INTRODUCTION

The requirements for the control of unwanted noise and
vibration are becoming increasingly stringent in modern
engineering systems, with higher levels of control perfor-
mance required to address user expectations and to manage
the increasing requirement for lightweight engineering
designs that exacerbate noise and vibration. High frequency
noise and vibration can typically be attenuated effectively
using passive control solutions. However, the control of low
frequency disturbances via passive methods can often
require the implementation of large or heavy systems. By
comparison, active control solutions are typically capable of
achieving effective control at low frequencies, and can ben-
efit from being relatively lightweight and compact.

Historically, feedforward active noise and vibration
control systems have been implemented using linear control
filters and system models. However, it is well understood
that nonlinearities present in either the plant or primary path
of the control system can have a significant impact on con-
trol performance.'™ A wide range of approaches have been
proposed to overcome this limitation, including polynomial,
cross term, or trigonometric expansion of the reference sig-
nal,>® genetic algorithms,” and fuzzy logic-based methods.®
Another methodology that has shown promising results is
the application of machine learning methods to these
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nonlinear control problems. In particular, neural networks
(NNs) are well-motivated for both modeling and control of
nonlinear systems’ due to the fact that they are known to
possess the property of being “universal approximators.”'”

Many different uses of NNs have been studied in the lit-
erature, including system modeling,*''~"* feedforward con-
troller design,*'"'*'® inverse modeling,'® signal prediction
and feedback control,m*25 linear filter selection,26 adaptive
parameter estimation for linear controllers,”**’ frequency-
domain control,?® multichannel controller design,* and sig-
nal classification.>® However, the ability of such NN control
systems to generalize well across a range of system behav-
iors has not been extensively explored in the associated liter-
ature. Nonlinear systems can exhibit rich and varied
behavior as the input excitation changes, so training individ-
ual NNs to achieve acceptable control performance under
such conditions is not straightforward. A training or design
approach that provides effective control performance is
clearly desirable in practical implementations where the
properties of the excitation, and therefore the behavior of
the system nonlinearity, may change over time.

It has previously been demonstrated that it is possible to
train individual NN controllers to produce control perfor-
mance over a range of nonlinear system behaviors that
approaches the performance of identical NN controllers
trained at a single level of nonlinear behavior.>! However,
the performance of such generalized controllers is depen-
dent on the range of nonlinear behavior over which the

©Author(s) 2025.
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controller is trained to perform well, and the size (and there-
fore computational cost of inference) of the network. In this
paper, a possible solution to this problem is proposed where
a set of relatively small NN controllers is trained over dis-
tinct operating ranges, and a simple method of switching
between these controllers to achieve control performance
across a much wider range of operational conditions is pro-
posed.*? Section II describes the simulated nonlinear control
problem that is utilised to initially explore the proposed con-
trol strategy. Section III describes the proposed controller
switching approach, individual controller architecture, and
the adopted training methodology. Section IV presents sim-
ulation results, which explore how the switched-controller
training ranges influence performance and then demonstrate
how the performance of the proposed control architecture
compares to a larger generalized NN and to an adaptive non-
linear controller. Section V presents a study where the pro-
posed switched-controller approach is applied to a physical
nonlinear system, which demonstrates the practicability of
the approach for realistic nonlinearities with more compli-
cated characteristics. Finally, Sec. VI discusses conclusions
from the work.

Il. NONLINEAR CONTROL PROBLEM DEFINITION

A diagram of the simulated nonlinear system to be con-
trolled is presented in Fig. 1. The system consists of a pri-
mary source, generating the unwanted disturbance, and a
secondary source, which is used to cancel the disturbance.
To introduce a nonlinearity into the primary path of the sys-
tem, the primary source is modeled as a Duffing oscillator.
While the type of nonlinearity studied is clearly important,
this type of nonlinearity has been utilized in the first
instance due to its widespread use within the literature to
represent systems with dynamically varying stiffness, as
well as its simplicity, with the aim of ensuring that the
results of this work are not constrained to an overly-specific
problem. Additionally, this system represents a simple use
case for the proposed controller-switching approach, since
the degree of nonlinear behavior of the system is governed
by the magnitude of the system excitation or floor motion,
x(t), which is equivalent to the magnitude of the reference
signal used by the feedforward control in this case. The sec-
ondary source is modeled as a simple harmonic oscillator
such that the plant response is linear.

The displacement of the primary source, y,(f), is
induced by displacement of the floor, x(7), to which it is
attached. While the motion of the secondary source, yj, is
induced by the control force, u(f), which acts upon it. The
equations of motion for the total system can be expressed as

mgy, (1) + k,0(t) + k5L93 (1) + Caé(t) =0, (D
myyy(t) + kpyp(t) + cpy, (1) + Fe(t) = 0, (2)

where 0(t) = y,(t) — x(r) and the remaining variables are
defined in Fig. 1 and Table I. It can be seen from Eq. (1)
that the degree of nonlinearity is dependent on the term that
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FIG. 1. Diagram of the simulated nonlinear system, consisting of a nonlin-
ear primary acoustic source, and a linear secondary source. System parame-
ters are defined in Table I.

is proportional to the nonlinear stiffness, k(a)"*, which
depends on both the motion of the floor, x(¢), and the motion
of the primary mass, y, (7). However, since the motion of the
primary mass is directly dependent on the motion of the
floor, the floor motion, which is used as the reference signal
in the considered feedforward controller, is an effective
measure for the degree of nonlinearity. The parameters that
define the dynamics of the simulated system were selected
such that the two oscillators have unity mass, but distinct
resonance frequencies of 60 and 80 Hz. The damping coeffi-
cients ¢, and ¢, were selected such that each oscillator is
subject to 20% of critical damping, such that the oscillators
are neither significantly underdamped or overdamped.

The two oscillators are assumed to behave as monopole
acoustic sources, with the simplifying assumption that any
pressure measurements are made in the far field. The com-
plex far-field pressure field generated by an acoustic mono-
pole oscillating at an angular frequency w at radius r and
time ¢ can be expressed as

- .0pcK i
pr.0,1) = i LK i) 3)
4rr

TABLE I. Simulated system parameters.
Parameter Symbol Value
Primary source mass m, lkg
Secondary source mass my 1kg
Primary source linear stiffness ka 1.42 x 10° Nm™!
Primary source cubic stiffness KN 1.42 x 10" Nm™
Secondary source stiffness kp 2.53 x 10° Nm !
Primary source damping Ca 151 Nsm ™!
Secondary source damping Ch 201 Nsm ™'

Xander Pike and Jordan Cheer 155

L€:0%:0L G20z Isnbny 02


https://doi.org/10.1121/10.0037087

where Q is the scalar volume velocity of the oscillator, p
and ¢ are the density and speed of sound of the acoustic
medium, respectively, and k = w/c. For a sphere of radius a
oscillating radially with a surface velocity of magnitude Uy,
the volume velocity can be expressed as

Q = 4na’Uy, )
and so Eq. (3) can be rewritten as

2Ugpck .
.a-Uppc el((})t*k!)

2
a~pck _;
prim,t) =i = (LPE it

r - r ﬁ(a,a),t),

(&)

where ii(a,t) = Upe'® is the complex velocity of the surface
of the oscillating sphere. Under the far-field assumption, the
complex pressure and complex source velocity are therefore
related by a magnitude scaling factor of a?pck/r and a phase
change of ©/2 — kr.

In the simulations presented within this paper, x(¢) is
assumed to be a band-limited Gaussian white noise with a
frequency range of [0, 250] Hz. To obtain the pressure pro-
duced by each of the two sources, the source velocity, y,,(7)
or y,(1), is transformed into the frequency domain using a
Discrete  Fourier transform (DFT), multiplied by
i(a*pck/r)e~™* as a function of frequency, and inverse
Fourier transformed to recover the time-domain pressure. It
is assumed that ¢ = 1 for both sources, and the distances
from the primary and secondary sources to the error sensor
are T'pyimary = 2 M and T'secondary = 1 M, respectively. The sys-
tem dynamics are simulated in the time-domain using a 4th
order Runge-Kutta method at a sample rate of f; = 2 kHz.

lll. PROPOSED CONTROLLER DESIGN

As noted in Sec. I, it is challenging to train a single NN
controller with performance that generalizes across a range
of nonlinear behaviors. To overcome this challenge, a
dynamic controller switching approach is proposed here
where a simple switching process is utilized to select the
most suitable controller from a bank of relatively small NN
controllers that have been trained to perform over distinct
operating ranges, as shown by the proposed controller archi-
tecture in Fig. 2. Although this general approach could be
used to maintain control performance when the dynamics of
the system under control change due various factors, the
focus here is on the case where the degree of nonlinear
behavior in the system is determined by the magnitude of
the signal exciting the primary system, as discussed in
Sec. I, which is given by the motion of the floor for the con-
sidered system as shown in Fig. 1. From Fig. 2, it can be
seen that this signal provides the sampled reference signal,
x[n], which is used to both drive the feedforward controller
and determine the selection of the most appropriate control-
ler from the controller bank. Specifically, the selection of
the controller to be used at a given time instant is deter-
mined by comparing an estimate of the root-mean-square
(RMS) of the reference signal, xgpys, to the range of
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reference signal magnitudes over which each controller in
the bank of controllers has been trained. xgyyg is estimated
using a simple moving average process in this paper, the
operation of which is determined by two parameters — #,,qqze
and fguys. tupdae 15 the period between successive calcula-
tions of xgys, and fzys is the length of the window used for
each estimation. This moving average can be expressed as

(6)

where ngys is the number of digital samples in the time
period 7gys. The controller trained over the magnitude range
containing the current estimate of the reference signal RMS
is then utilized to generate the control signal, u[n], for the
following time period, f,p4ae- Effectively, this results in the
weights and biases of the NN being updated dynamically,
depending on changes in the magnitude of the reference sig-
nal. Although more advanced approaches could be used for
the estimation of the RMS, or indeed for selecting the high-
est performing controller adaptively or using a NN as in
Ref. 33 to maximize the control performance, the simple
approach has been utilized here to demonstrate that the per-
formance of the proposed strategy is not strongly reliant on
a complicated estimation approach.

In order to realize the full dynamically switched-
controller described previously, and shown in Fig. 2, it is
necessary to design the individual controllers and to specify
the ranges over which they are trained. The methodology
utilized to train and test the individual controllers is
described in Sec. III A, while consideration of the controller
training ranges is dependent on the specific system and so is
discussed separately in Sec. IV A for the simulated nonlinear
system and in Sec. V for the physical nonlinear system.

A. Individual controller architecture and training

The focus of this work is not on the specific network
architecture of the individual NN controllers, but on the
dynamic switching between controllers. Therefore, all con-
trollers have been implemented as multi-layer perceptron
(MLP) networks. Although alternative controller architec-
tures could be utilized, even with the potential to mix differ-
ent controllers for use over different operational ranges, this
is left for future work. Each MLP controller has an input
layer of size 160, with further increases having a negligible
impact on controller attenuation. Each MLP uses a single
hidden layer, with the number of hidden nodes being vari-
ously explored, but no significant increase in performance
being achieved for the considered system with more than
100 nodes in the hidden layer. A simplified diagram of the
individual MLP controller network is provided in Fig. 3, for
example.

Similarly to a finite impulse response (FIR) filter, as
shown in Fig. 3, the MLP controller takes a tapped delay

Xander Pike and Jordan Cheer
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FIG. 2. Block diagram of the controller switching architecture.

line of the digitally sampled reference signal, x[n], as its
input, which is given by

x[n] = [x[n],x[n — 1],....x[n =N + IHT, 7

and the output is the control signal u[n]. However, the MLP
differs from an FIR filter in that it also contains a “hidden”
layer of values, h[n|, which are calculated from the input
tapped delay line as

h[n] = a(Wx[n] + by), ®)

where W is a matrix of hidden layer weights, b, is a vector
of biases associated with the hidden layer, and ¢() is a non-
linear activation function that allows for the network to gen-
erate nonlinear mappings and has been defined as a
hyperbolic tangent in this case. The network output, u[n], is
then given by

uln) = WIh[n] + b,, )

where w,, is a vector of output weights, and b, is an output
bias. Combining Egs. (8) and (9) then gives the network out-
put as

uln] = wa(Wx[n] + by,) + b,. (10)

1. Controller training

A diagram of the architecture used to train the NN con-
troller is presented in Fig. 4. The training is undertaken

FIG. 3. Block diagram of an example MLP controller network, with an
input tapped delay line size of 2, and 3 nodes in the hidden layer.

J. Acoust. Soc. Am. 158 (1), July 2025

using the generated reference signal, x[n], and the simulated
primary source pressure at the error microphone, p,[n]. To
calculate an estimate of the error signal, a Hankel matrix,
X[n] of size N x L is generated, where N is the tapped delay
line length, or input layer size, of the MLP controller, and L
is the order of the fixed plant model, g, in the discrete time
domain. X[n| can be written as

[ x[n) x[n—1] x[n—N+1]
xln—=1]  x[n-=2] x[n—N]
X[n| =
| x[n—L+1] x[n—L] - x[n—N—-L+2]|
(11

This matrix is passed to the MLP controller, generating a
vector u[n] of length L, which is a tapped delay line of the
control signal generated by the current iteration of the con-
troller. The vector u[n] is subsequently passed to the plant
model, generating an estimate, pj,[n], of the pressure gener-
ated by the secondary source. An estimate of the error signal
at the error microphone can then be calculated via the linear
summation of the primary and estimated secondary source
pressures as é[n] = p,[n] + pp[n]. Each controller is trained
to minimize the mean squared error (MSE) signal, which is
defined as

7=, (12)

where the mean is calculated over 128 instances of the esti-
mation of the error signal, collectively referred to as a mini-
batch. The backpropagation algorithm used to update the
controller weights and biases was the Adam algorithm®*
with parameters o =1 x 107%, f;, =0.9, B, =0.99, and
€ = 1077, These parameters were selected through trial and
error with a view to reaching an effective trade-off between
controller performance and training speed. In all cases, the
plant model used for controller training was an FIR filter
with 160 taps, which was capable of achieving high levels
of modeling accuracy due to the linear nature of the simu-
lated plant response.

Xander Pike and Jordan Cheer 157
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FIG. 4. Block diagram of the controller training method.

To train each network, two sets of 900s of simulated
data were generated. The first of the two datasets was used
for network training, and the second for validation to assess
overfitting. As a result of using this relatively large amount
of training data, considering the size of the networks, there
was no apparent overfitting during the network training, as
assessed via the training and validation losses, and, there-
fore, network regularization techniques were not applied.
Each dataset consists of the reference signal, x[n], which, as
noted previously, is a band-limited Gaussian white noise
with a frequency range of [0, 250] Hz, and the disturbance
signal, p,[n]. In each simulation, the magnitude of the refer-
ence signal, or system excitation, increases linearly over
time so that it covers the targeted training range in each
case. Each update to the weights and biases of the controller
networks was undertaken using an average over a mini-
batch of a tapped delay line of the reference signal and a
sample of the disturbance signal. These mini-batches were
selected randomly from the generated dataset. In each train-
ing step, 1000 such mini-batches were used, and the full net-
work training was undertaken over 500 steps. The term
“step” here is used in place of the typical term “epoch” to
clarify that the full dataset is not used in each training step,
which is explained further in the following.

When training the MLP controllers, it was found that,
for a given controller and training range, if the random
selection of the training data used to update the network
weights and biases had a uniform distribution, then the con-
trol attenuation achieved was approximately equal over the
training range. However, when training a controller at a sin-
gle excitation level, it was found that the maximum control
attenuation achievable is not uniform over excitation level
and, in fact, decreases as the magnitude of the reference sig-
nal increases. This means that when using a uniformly dis-
tributed selection of training data to train the generalized
controllers, their performance approaches the maximum at
the upper end of the training range, but falls below the maxi-
mum at the bottom. For a set of Q training examples with
reference signal magnitudes x4, in the range a < X4, < b,
the probability of training example g being included in a
training batch (up to a normalizing factor) can be defined as

158  J. Acoust. Soc. Am. 158 (1), July 2025

P(q) oc 1077 0ma=a), (13)

where 7y is a factor controlling the shape of the probability
distribution. Modifying the selection of the training data in
this way affects the resultant control attenuation achieved
by the MLP controllers across the training range, and an
appropriate selection of y for a given training range results
in generalized control performance that approaches the max-
imum MLP controller performance across the training
range. This approach has previously been explored.*'

IV. SWITCHED-CONTROLLER TUNING AND
PERFORMANCE

This section presents simulation results demonstrating
the performance of the proposed switch-controller approach.
In the first instance, the effect of the controller training
range on potential performance is explored, and then the
performance of the switched-controller is evaluated. In all
cases, simulated data not utilized in the training phase has
been utilized.

A. Switched-controller training range analysis

A key parameter in designing the switched-controller
system is the selection of the reference signal magnitude
ranges over which each controller is trained. This selection
should consider both the number of training ranges utilized
to cover the overall range of operational conditions and the
relative widths of the training ranges. In terms of the relative
widths of the training ranges, it has been found that if the
overall range is subdivided equally, as shown in the upper
image in Fig. 5, this results in under-performance at lower
magnitude system excitation levels compared to those
trained at higher magnitude levels. This can be related to the
fact that the range of behavior exhibited by the nonlinear
system is broader for a fixed training width at lower refer-
ence signal magnitudes, primarily due to the nature of the
assumed nonlinear stiffness. Motivated by this, it has been
found that subdividing the overall magnitude range such
that the ratio between the widths of neighboring ranges is
constant as the reference signal magnitude increases

Xander Pike and Jordan Cheer
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Equally split range

Range split into subdivisions with increasing width

FIG. 5. Examples showing how the full training range of interest may be
split into equal subdivisions, or subdivisions with increasing width. In the
lower example, the ratio between the widths of neighboring ranges is
constant.

provides more consistent performance across the overall
range. An example of this proposed subdivision of the full
training range is shown in the lower image in Fig. 5.

To explore the effect of varying the number of training
ranges, Fig. 6 shows the generalized performance of MLP
controllers with between 12 and 100 hidden nodes, trained
over subdivisions of three, six, and nine magnitude ranges.
In each case, the black dashed lines represent the maximum
potential control attenuation achievable, which is deter-
mined by using controllers trained and tested at individual
reference signal magnitudes, and the colored lines represent
the generalized performance of the individual controllers
trained over the magnitude ranges denoted by the corre-
sponding colored regions. In both cases, the controllers are
tested using 300s of newly simulated data with a constant
excitation magnitude. From the results presented in Fig. 6(a)
(three training ranges), it can be seen that with three subdivi-
sions, even increasing the number of hidden nodes substan-
tially from 12 to 100 does not achieve a generalized
performance that reaches the estimated maximum perfor-
mance across the full range. Furthermore, the increase in
control performance produced by increasing the number of
hidden nodes from 50 to 100 in this case is minimal, sugges-
ting that a further increase in the number of hidden nodes is
unlikely to significantly improve performance. From the
results presented in Figs. 6(b) (six training ranges) and 6(c)
(nine training ranges), for a subdivision of the overall mag-
nitude range into six and nine training ranges, respectively,
it can be seen that increasing the number of hidden nodes in
the controllers improves their generalized control perfor-
mance and this approaches the estimated maximum perfor-
mance as the number of hidden nodes approaches 100. This
is perhaps a predictable result, as increasing the number of
subdivisions of the full training range approaches the case
where the controllers are each trained at a single level.
However, comparison of the results presented in Figs. 6(b)
and 6(c) illustrates that increasing the number of subdivi-
sions does not necessarily increase the generalized control
attenuation for a given number of hidden nodes. Moreover,
as there is a computational cost and additional time associ-
ated with training each of the individual controllers, it is
clear that for any particular application, there will be some
optimal number of subdivisions of the full training range

J. Acoust. Soc. Am. 158 (1), July 2025

that maximizes generalized control attenuation while mini-
mizing the number of networks required to be trained.
Furthermore, although increasing the number of subdivi-
sions may mean that the individual networks require fewer
hidden nodes, narrow training regions may result in rapid
switching between networks during control, compromising
performance.

B. Switched-controller performance analysis

To test the performance of the switched-controller, the
set of six controllers with 50 hidden nodes described in Sec.
IV A has been utilized since it offers close to maximum per-
formance over the full magnitude range without unnecessar-
ily high training costs. In this instance, the moving average
process utilized to dynamically estimate the magnitude of
the reference signal as described in Sec. III has been imple-
mented with gy and #,,44. set to 0.2s. To test the perfor-
mance of the switched-controllers, a dynamically varying
excitation condition was simulated over 60s. Specifically,
the magnitude of excitation was first slowly increased from
a low to a high value, and then reduced again slowly before
rapidly increasing and decreasing. The control attenuation
achieved by the switched-controller is presented in Fig. 7,
along with the performance achieved by an adaptive normal-
ized-step-size functional link artificial neural network
-based (NSS-FLANN) controller® and a generalized NN
trained across the full range of excitation levels. The func-
tional link artificial neural network (FLANN) based control-
ler has been included to provide a benchmark against a
commonly utilized adaptive nonlinear control algorithm,
while the larger single MLP controller has been included to
demonstrate the performance of the switching approach
compared to simply utilizing a larger network trained across
the full range of operating conditions. From these results, it
can be seen that the switched MLP controller is able to
achieve effective control attenuation across the range of
excitation levels and, as such, closely tracks the maximum
steady-state control attenuation for the MLP denoted by the
dashed black line. In comparison to the larger generalized
MLP controller and the FLANN, the proposed switched
MLP controller achieves a consistently higher level of con-
trol attenuation. The performance is consistently around
10dB above the generalized MLP controller, while utilizing
half the number of hidden nodes and, therefore, a signifi-
cantly reduced computational load. A similar performance
advantage is also achieved compared to the implemented
FLANN, which can also be observed to be relatively slow to
regain effective control attenuation following periods of
high excitation level.

Despite the effective performance of the switched MLP
controller, it is clear from the colored regions in Fig. 7 that
there is occasionally quite rapid switching between control-
lers. It should be noted that this can be addressed by adjust-
ing the #pdue and t,,; parameters used in the RMS
estimation procedure. Specifically, with a fixed update rate
(l‘updm), a trade-off between accuracy and speed of
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FIG. 6. Generalized performance of controllers trained across three, six and nine training ranges. The black dashed lines indicate the maximum performance
achievable by the MLP trained at discrete levels with 100 hidden nodes. The black dotted lines indicate the maximum performance achievable by an FIR
controller trained at discrete levels. The colored lines indicate the generalized performance achieved by the individual controllers trained over the excitation

signal magnitude ranges defined by the corresponding colored region.

estimation can be realized by adjusting #,,,. With a larger
t,ms the rapid switching can be reduced by obtaining a more
accurate estimate of the reference signal RMS, but this will
introduce a delay in the estimate and, therefore, the selection
of the most appropriate controller. In the case of #,p4ar, it is
also possible to reduce controller switching by reducing the
update rate via an increase in f,p4ar, but this would also
reduce the ability of the switched-controller to respond to
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FIG. 7. The control performance achieved when the excitation level, or ref-
erence signal magnitude, varies over time for the proposed switched MLP
controller, a large MLP trained over the full excitation range, and an NSS-
FLANN controller. The MSE control attenuation achieved has been calcu-
lated using a 0.5s moving average. The colored regions represent the
selected controller at the corresponding time instance for the switched-
controller implementation.
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rapid changes in the excitation level. Therefore, both estima-
tion parameters must be tuned for the application, consider-
ing the required speed of controller switching to maximize
control performance. Alternatively, as noted in Sec. III, it is
possible to use a more advanced method of selecting the
appropriate controller at any time instant, either via an adap-
tive approach or in more complicated scenarios via an intel-
ligent approach based on machine learning, as utilized in
Ref. 33, to select the most suitable controller for different
types of noise. That said, it is clear from the results pre-
sented in Fig. 7 that even with the controller switching based
on the simple RMS estimation procedure, performance close
to the steady-state maximum can be achieved.

V. APPLICATION TO THE CONTROL OF A PHYSICAL
NONLINEAR SYSTEM

To further validate the proposed control strategy, its
performance when applied to a physical system with a non-
linear response has been explored. The considered experi-
mental system consisted of a thin aluminum plate clamped
along its edges by a thick aluminum frame, as shown in Fig.
8. The primary excitation was provided by a small electro-
dynamic shaker (Tectonic Elements TEAX19CO0I1-8,
Tectonic Audio Labs, Woodinville, WA) attached to the sur-
face of the plate, which was overdriven to introduce the
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FIG. 8. A photograph of the physical system consisting of a thin aluminum
plate with clamped boundaries and electrodynamic shakers providing the
nonlinear primary source (left) and secondary source (right). (nb. the third
shaker on the left with the same dimensions as the secondary source was
not used in this study.)

physical nonlinearity. The secondary source was provided
by a larger electrodynamic shaker (Tectonic Elements
TEAX32C30-4/B, Tectonic Audio Labs, Woodinville, WA),
which was also attached to the surface of the plate. The error
sensor was provided by an accelerometer, collocated with
the secondary source on the underside of the plate and there-
fore not visible in Fig. 8. The primary source was driven by
low-pass filtered random Gaussian noise, with a cutoff at
250Hz, and this signal was taken as the reference signal.
The system was measured at a sample rate of 2kHz, and the
MLP controllers utilized a hyperbolic tangent activation
function and a reference signal tapped delay line length of
0.15's, corresponding to 300 samples. The estimation of the
reference signal RMS was undertaken using the moving
average approach described in Sec. III, with #,,44e = 0.1 s,
and fgys = 0.5 s in this case. The data used for the training
of the generalized MLP controllers was provided by a mea-
surement of the system excited by a signal that linearly
increased in magnitude from a low level to a high level over
150ss, then decreased in magnitude over a further 150 s back
to the lower magnitude level. The lower level limit was
defined by the noise floor in the system, and the upper limit
was chosen to avoid destroying the electrodynamic shaker.

4 ranges, 40 hidden nodes

MSE attenuation, dB

0.1 0.2 0.3 0.4 0.5 0.6
Reference signal magnitude

The NN training was undertaken following the same meth-
odology as outlined in Sec. IIT A 1.

Figure 9 presents the generalized control attenuation
calculated via offline simulations for the MLP controllers
trained over four ranges with 40 hidden nodes, and nine
ranges with 80 hidden nodes, respectively. As was similarly
noted in the simulation study presented in Sec. IV A, it can
be seen that by increasing the number of training ranges and
hidden nodes beyond four ranges and 40 hidden nodes, only
a small increase in generalized control performance is
achieved. Therefore, the controllers trained over four ranges
with 40 hidden nodes were implemented in the following
evaluation of the switched MLP controller.

As in Sec. IV B, to test the performance of the switched
MLP controller, the excitation signal level was increased
from a low level to a high level and back down again, first
slowly, then quickly. The upper plot in Fig. 10 presents the
results of offline simulations using the measured time-
history of the primary disturbance signal and the measured
system responses, and shows the attenuation in the MSE
achieved by the switched MLP controller, along with the
attenuation achieved by the NSS-FLANN controller and a
larger single MLP controller trained over the full range of
excitation signal levels. These results show that the switched
MLP controller achieves a control performance that is com-
parable to that of the NSS-FLANN controller during the first
5s where the excitation level is low and remains relatively
constant; however, after both the slow and fast decreases in
the excitation signal level (14-19and 24.5-30s), the
switched MLP controller shows a lower level of control
performance. It is possible that this is due to some form
of hysteretic behavior induced by the preceding periods of
high-level excitation, temporarily changing the dynamics
of the system. This is suggested by the fact that during these
periods, the control attenuation shows a slow upward trend
as the original system response returns. This change in
dynamics was not represented in the training data, where the
change in excitation signal level was extremely slow, and
therefore, it is perhaps unsurprising that the MLP controllers
underperform after these changes. To overcome this limita-
tion, rather than retraining the MLP controllers with differ-
ent excitation signal time-histories, a small augmentation
was made to the controller switching approach. Specifically,

9 ranges, 80 hidden nodes
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FIG. 9. Generalized performance of controllers trained across 4 ranges with 40 hidden nodes, and 9 ranges with 80 hidden nodes. The black dashed lines
indicate the maximum performance achievable by the MLP trained at discrete reference signal magnitudes with 80 hidden nodes. The black dotted lines
indicate the maximum performance similarly achievable with an FIR controller.
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FIG. 10. The control performance achieved for the physical nonlinear sys-
tem when the excitation level, or reference signal magnitude, varies over
time for the proposed switched MLP controller, a large MLP trainined over
the full excitation range, and an NSS-FLANN controller. The MSE control
attenuation achieved has been calculated using a 0.5 s moving average. The
colored regions represent the selected controller at the corresponding time
instance for the switched-controller implementation.

an adaptive output gain u was implemented for each MLP
controller, with the gain updated at each sample according
to

Ap < —e[n]g"un], (14)

where g is an FIR filter modeling the system plant, and u[n] is a
tapped delay line of the previous MLP outputs. It may be noted
that, as this update term depends only on the current error signal
sample, an FIR plant model, and a TDL of the MLP output, this
adaptation will typically come at only a small increase in com-
putational cost. Moreover, the output gain associated with each
controller is only updated when that controller is implemented
to avoid unnecessary computation. The MSE attenuation levels
achieved when the switched MLP controller and the larger sin-
gle range MLP controller are implemented with an adaptive out-
put gain are presented in the lower plot of Fig. 10. From these
results, it can be seen that this simple modification produces a
considerable increase in the control performance in both cases.
The switched MLP controller with an adaptive output gain now
closely follows the MLP maximum attenuation curve, while the
larger MLP controller trained over the full range now achieves a
comparable performance to the NSS-FLANN.

VI. CONCLUSIONS

In this paper, a method of switching between a set of
pre-trained MLP controllers to improve the control
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performance achievable for a nonlinear system excited
across a range of levels has been presented. Its potential per-
formance has been demonstrated via a set of discrete-time
simulations representing the active control of noise pro-
duced by a simple nonlinear system, and also via a set of
offline simulations using data measured for a more compli-
cated physical nonlinear system. For the presented switched
MLP controller, a simple RMS estimator of the magnitude
of the reference signal has been used to select from a set of
MLP controllers trained to have near-maximal control per-
formance over a set of system excitation magnitude ranges.
The effect of increasing the number of training ranges on
controller performance has been explored, and the trade-off
between computational cost and performance has been dis-
cussed. In the numerical simulations of the simple nonlinear
system, the switching approach has been shown to achieve
control performance that approximates the maximum
achievable performance as the reference signal magnitude
varies over time. To further validate the proposed control
strategy, an offline control simulation has been undertaken
using measurements of a physical system with a nonlinear
response, which includes both saturation and hysteretic like
nonlinear behaviors. In this more realistic case, the proposed
switched MLP controller achieved control performance that
was significantly lower than the maximum potential attenua-
tion and was outperformed by a well-known adaptive non-
linear control strategy. This was noted to be possibly due to
changes in the system dynamics caused by high excitation
levels, which were not included in the MLP training data.
However, by introducing a simple and computationally effi-
cient adaptive output gain into the MLP controllers, it has
been shown that the performance of the switched MLP con-
troller could be significantly increased, outperforming both
the well-known adaptive nonlinear controller and a single
fixed larger MLP trained across the full range of excitation
levels. An earlier version of this work has been published in
POMA.*
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