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Dynamic neural network switching for active control
of nonlinear systems

Xander Pike and Jordan Cheera)

Institute of Sound and Vibration Research, University of Southampton, Southampton SO17 1BJ, United Kingdom

ABSTRACT:
Feedforward active noise and vibration control systems have been developed for many applications, but are generally

designed using linear digital filters, most typically implementing the filtered reference least mean squares algorithm.

When the system under control exhibits nonlinearities, linear controllers cannot fully capture the system dynamics to

maximize performance. Previous work has shown that neural network (NN) based controllers can improve control

performance in the presence of nonlinearities. However, inferring the outputs of NN controllers can be

computationally expensive, limiting their practicality, particularly when control is required across a range of

nonlinear behaviors. In this paper, a control strategy is proposed where performance is maintained across a nonlinear

range of operation by dynamically switching between a set of smaller, and therefore more efficient, NNs that are

individually trained over specific ranges of the nonlinear system behavior. It is demonstrated via both simulations of

a system with a simple nonlinear stiffness in the primary path and offline simulations using a physical nonlinear

dynamical system in the primary path, that the performance of the proposed switching approach offers a control

performance advantage compared to both a larger generalized individual NN controller and a functional link artificial

neural network based controller.
VC 2025 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons
Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1121/10.0037087
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I. INTRODUCTION

The requirements for the control of unwanted noise and

vibration are becoming increasingly stringent in modern

engineering systems, with higher levels of control perfor-

mance required to address user expectations and to manage

the increasing requirement for lightweight engineering

designs that exacerbate noise and vibration. High frequency

noise and vibration can typically be attenuated effectively

using passive control solutions. However, the control of low

frequency disturbances via passive methods can often

require the implementation of large or heavy systems. By

comparison, active control solutions are typically capable of

achieving effective control at low frequencies, and can ben-

efit from being relatively lightweight and compact.

Historically, feedforward active noise and vibration

control systems have been implemented using linear control

filters and system models. However, it is well understood

that nonlinearities present in either the plant or primary path

of the control system can have a significant impact on con-

trol performance.1–4 A wide range of approaches have been

proposed to overcome this limitation, including polynomial,

cross term, or trigonometric expansion of the reference sig-

nal,5,6 genetic algorithms,7 and fuzzy logic-based methods.8

Another methodology that has shown promising results is

the application of machine learning methods to these

nonlinear control problems. In particular, neural networks

(NNs) are well-motivated for both modeling and control of

nonlinear systems9 due to the fact that they are known to

possess the property of being “universal approximators.”10

Many different uses of NNs have been studied in the lit-

erature, including system modeling,4,11–15 feedforward con-

troller design,4,11,16–18 inverse modeling,19 signal prediction

and feedback control,20–25 linear filter selection,26 adaptive

parameter estimation for linear controllers,24,27 frequency-

domain control,28 multichannel controller design,29 and sig-

nal classification.30 However, the ability of such NN control

systems to generalize well across a range of system behav-

iors has not been extensively explored in the associated liter-

ature. Nonlinear systems can exhibit rich and varied

behavior as the input excitation changes, so training individ-

ual NNs to achieve acceptable control performance under

such conditions is not straightforward. A training or design

approach that provides effective control performance is

clearly desirable in practical implementations where the

properties of the excitation, and therefore the behavior of

the system nonlinearity, may change over time.

It has previously been demonstrated that it is possible to

train individual NN controllers to produce control perfor-

mance over a range of nonlinear system behaviors that

approaches the performance of identical NN controllers

trained at a single level of nonlinear behavior.31 However,

the performance of such generalized controllers is depen-

dent on the range of nonlinear behavior over which thea)Email: j.cheer@soton.ac.uk

154 J. Acoust. Soc. Am. 158 (1), July 2025 VC Author(s) 2025.

ARTICLE...................................

 20 August 2025 10:40:31

https://orcid.org/0000-0002-0552-5506
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1121/10.0037087
mailto:j.cheer@soton.ac.uk
http://crossmark.crossref.org/dialog/?doi=10.1121/10.0037087&domain=pdf&date_stamp=2025-07-07


controller is trained to perform well, and the size (and there-

fore computational cost of inference) of the network. In this

paper, a possible solution to this problem is proposed where

a set of relatively small NN controllers is trained over dis-

tinct operating ranges, and a simple method of switching

between these controllers to achieve control performance

across a much wider range of operational conditions is pro-

posed.32 Section II describes the simulated nonlinear control

problem that is utilised to initially explore the proposed con-

trol strategy. Section III describes the proposed controller

switching approach, individual controller architecture, and

the adopted training methodology. Section IV presents sim-

ulation results, which explore how the switched-controller

training ranges influence performance and then demonstrate

how the performance of the proposed control architecture

compares to a larger generalized NN and to an adaptive non-

linear controller. Section V presents a study where the pro-

posed switched-controller approach is applied to a physical

nonlinear system, which demonstrates the practicability of

the approach for realistic nonlinearities with more compli-

cated characteristics. Finally, Sec. VI discusses conclusions

from the work.

II. NONLINEAR CONTROL PROBLEM DEFINITION

A diagram of the simulated nonlinear system to be con-

trolled is presented in Fig. 1. The system consists of a pri-

mary source, generating the unwanted disturbance, and a

secondary source, which is used to cancel the disturbance.

To introduce a nonlinearity into the primary path of the sys-

tem, the primary source is modeled as a Duffing oscillator.

While the type of nonlinearity studied is clearly important,

this type of nonlinearity has been utilized in the first

instance due to its widespread use within the literature to

represent systems with dynamically varying stiffness, as

well as its simplicity, with the aim of ensuring that the

results of this work are not constrained to an overly-specific

problem. Additionally, this system represents a simple use

case for the proposed controller-switching approach, since

the degree of nonlinear behavior of the system is governed

by the magnitude of the system excitation or floor motion,

xðtÞ, which is equivalent to the magnitude of the reference

signal used by the feedforward control in this case. The sec-

ondary source is modeled as a simple harmonic oscillator

such that the plant response is linear.

The displacement of the primary source, yaðtÞ, is

induced by displacement of the floor, xðtÞ, to which it is

attached. While the motion of the secondary source, yb, is
induced by the control force, uðtÞ, which acts upon it. The

equations of motion for the total system can be expressed as

ma€yaðtÞ þ kahðtÞ þ kNLa h3ðtÞ þ ca _hðtÞ ¼ 0; (1)

mb€ybðtÞ þ kbybðtÞ þ cb _ybðtÞ þ FcðtÞ ¼ 0; (2)

where hðtÞ ¼ yaðtÞ � xðtÞ and the remaining variables are

defined in Fig. 1 and Table I. It can be seen from Eq. (1)

that the degree of nonlinearity is dependent on the term that

is proportional to the nonlinear stiffness, k að ÞNL, which

depends on both the motion of the floor, xðtÞ, and the motion

of the primary mass, yaðtÞ. However, since the motion of the

primary mass is directly dependent on the motion of the

floor, the floor motion, which is used as the reference signal

in the considered feedforward controller, is an effective

measure for the degree of nonlinearity. The parameters that

define the dynamics of the simulated system were selected

such that the two oscillators have unity mass, but distinct

resonance frequencies of 60 and 80Hz. The damping coeffi-

cients ca and cb were selected such that each oscillator is

subject to 20% of critical damping, such that the oscillators

are neither significantly underdamped or overdamped.

The two oscillators are assumed to behave as monopole

acoustic sources, with the simplifying assumption that any

pressure measurements are made in the far field. The com-

plex far-field pressure field generated by an acoustic mono-

pole oscillating at an angular frequency x at radius r and

time t can be expressed as

~pðr;x; tÞ ¼ i
Qqck
4pr

eiðxt�krÞ; (3)

FIG. 1. Diagram of the simulated nonlinear system, consisting of a nonlin-

ear primary acoustic source, and a linear secondary source. System parame-

ters are defined in Table I.

TABLE I. Simulated system parameters.

Parameter Symbol Value

Primary source mass ma 1 kg

Secondary source mass mb 1 kg

Primary source linear stiffness ka 1:42� 105 Nm�1

Primary source cubic stiffness kNLa 1:42� 1014 Nm�3

Secondary source stiffness kb 2:53� 105 Nm�1

Primary source damping ca 151 Nsm�1

Secondary source damping cb 201 Nsm�1
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where Q is the scalar volume velocity of the oscillator, q
and c are the density and speed of sound of the acoustic

medium, respectively, and k ¼ x=c. For a sphere of radius a
oscillating radially with a surface velocity of magnitude U0,

the volume velocity can be expressed as

Q ¼ 4pa2U0; (4)

and so Eq. (3) can be rewritten as

~pðr;x; tÞ ¼ i
a2U0qck

r
eiðxt�krÞ ¼ i

a2qck
r

e�ikr~uða;x; tÞ;
(5)

where ~uða; tÞ ¼ U0e
ixt is the complex velocity of the surface

of the oscillating sphere. Under the far-field assumption, the

complex pressure and complex source velocity are therefore

related by a magnitude scaling factor of a2qck=r and a phase
change of p=2� kr.

In the simulations presented within this paper, xðtÞ is

assumed to be a band-limited Gaussian white noise with a

frequency range of [0, 250] Hz. To obtain the pressure pro-

duced by each of the two sources, the source velocity, _yaðtÞ
or _ybðtÞ, is transformed into the frequency domain using a

Discrete Fourier transform (DFT), multiplied by

iða2qck=rÞe�ikr as a function of frequency, and inverse

Fourier transformed to recover the time-domain pressure. It

is assumed that a ¼ 1 for both sources, and the distances

from the primary and secondary sources to the error sensor

are rprimary ¼ 2 m and rsecondary ¼ 1 m, respectively. The sys-

tem dynamics are simulated in the time-domain using a 4th

order Runge-Kutta method at a sample rate of fs ¼ 2 kHz.

III. PROPOSED CONTROLLER DESIGN

As noted in Sec. I, it is challenging to train a single NN

controller with performance that generalizes across a range

of nonlinear behaviors. To overcome this challenge, a

dynamic controller switching approach is proposed here

where a simple switching process is utilized to select the

most suitable controller from a bank of relatively small NN

controllers that have been trained to perform over distinct

operating ranges, as shown by the proposed controller archi-

tecture in Fig. 2. Although this general approach could be

used to maintain control performance when the dynamics of

the system under control change due various factors, the

focus here is on the case where the degree of nonlinear

behavior in the system is determined by the magnitude of

the signal exciting the primary system, as discussed in

Sec. II, which is given by the motion of the floor for the con-

sidered system as shown in Fig. 1. From Fig. 2, it can be

seen that this signal provides the sampled reference signal,

x[n], which is used to both drive the feedforward controller

and determine the selection of the most appropriate control-

ler from the controller bank. Specifically, the selection of

the controller to be used at a given time instant is deter-

mined by comparing an estimate of the root-mean-square

(RMS) of the reference signal, xRMS, to the range of

reference signal magnitudes over which each controller in

the bank of controllers has been trained. xRMS is estimated

using a simple moving average process in this paper, the

operation of which is determined by two parameters – tupdate
and tRMS. tupdate is the period between successive calcula-

tions of xRMS, and tRMS is the length of the window used for

each estimation. This moving average can be expressed as

xRMS n½ � ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Xn

i¼n�nRMSþ1

x2 i½ �

nRMS

vuuuut
; (6)

where nRMS is the number of digital samples in the time

period tRMS. The controller trained over the magnitude range

containing the current estimate of the reference signal RMS

is then utilized to generate the control signal, u[n], for the
following time period, tupdate. Effectively, this results in the

weights and biases of the NN being updated dynamically,

depending on changes in the magnitude of the reference sig-

nal. Although more advanced approaches could be used for

the estimation of the RMS, or indeed for selecting the high-

est performing controller adaptively or using a NN as in

Ref. 33 to maximize the control performance, the simple

approach has been utilized here to demonstrate that the per-

formance of the proposed strategy is not strongly reliant on

a complicated estimation approach.

In order to realize the full dynamically switched-

controller described previously, and shown in Fig. 2, it is

necessary to design the individual controllers and to specify

the ranges over which they are trained. The methodology

utilized to train and test the individual controllers is

described in Sec. III A, while consideration of the controller

training ranges is dependent on the specific system and so is

discussed separately in Sec. IVA for the simulated nonlinear

system and in Sec. V for the physical nonlinear system.

A. Individual controller architecture and training

The focus of this work is not on the specific network

architecture of the individual NN controllers, but on the

dynamic switching between controllers. Therefore, all con-

trollers have been implemented as multi-layer perceptron

(MLP) networks. Although alternative controller architec-

tures could be utilized, even with the potential to mix differ-

ent controllers for use over different operational ranges, this

is left for future work. Each MLP controller has an input

layer of size 160, with further increases having a negligible

impact on controller attenuation. Each MLP uses a single

hidden layer, with the number of hidden nodes being vari-

ously explored, but no significant increase in performance

being achieved for the considered system with more than

100 nodes in the hidden layer. A simplified diagram of the

individual MLP controller network is provided in Fig. 3, for

example.

Similarly to a finite impulse response (FIR) filter, as

shown in Fig. 3, the MLP controller takes a tapped delay
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line of the digitally sampled reference signal, x½n�, as its

input, which is given by

x n½ � ¼ x n½ �; x n� 1½ �;…; x n� N þ 1½ �� �T
; (7)

and the output is the control signal u[n]. However, the MLP

differs from an FIR filter in that it also contains a “hidden”

layer of values, h½n�, which are calculated from the input

tapped delay line as

h n½ � ¼ rðWx n½ � þ bhÞ; (8)

where W is a matrix of hidden layer weights, bh is a vector

of biases associated with the hidden layer, and rð•Þ is a non-
linear activation function that allows for the network to gen-

erate nonlinear mappings and has been defined as a

hyperbolic tangent in this case. The network output, u[n], is
then given by

u n½ � ¼ wT
oh n½ � þ bo; (9)

where wo is a vector of output weights, and bo is an output

bias. Combining Eqs. (8) and (9) then gives the network out-

put as

u n½ � ¼ wT
orðWx n½ � þ bhÞ þ bo: (10)

1. Controller training

A diagram of the architecture used to train the NN con-

troller is presented in Fig. 4. The training is undertaken

using the generated reference signal, x[n], and the simulated

primary source pressure at the error microphone, pa½n�. To
calculate an estimate of the error signal, a Hankel matrix,

X½n� of size N � L is generated, where N is the tapped delay

line length, or input layer size, of the MLP controller, and L
is the order of the fixed plant model, ĝ, in the discrete time

domain. X½n� can be written as

X n½ � ¼

x n½ � x n� 1½ � � � � x n�Nþ 1½ �
x n� 1½ � x n� 2½ � � � � x n�N½ �

..

. ..
. . .

. ..
.

x n�Lþ 1½ � x n�L½ � � � � x n�N�Lþ 2½ �

2
666666664

3
777777775
:

(11)

This matrix is passed to the MLP controller, generating a

vector u½n� of length L, which is a tapped delay line of the

control signal generated by the current iteration of the con-

troller. The vector u½n� is subsequently passed to the plant

model, generating an estimate, p̂b ½n�, of the pressure gener-

ated by the secondary source. An estimate of the error signal

at the error microphone can then be calculated via the linear

summation of the primary and estimated secondary source

pressures as ê½n� ¼ pa½n� þ p̂b ½n�. Each controller is trained

to minimize the mean squared error (MSE) signal, which is

defined as

J ¼ ê2 n½ �; (12)

where the mean is calculated over 128 instances of the esti-

mation of the error signal, collectively referred to as a mini-

batch. The backpropagation algorithm used to update the

controller weights and biases was the Adam algorithm34

with parameters a ¼ 1� 10�4, b1 ¼ 0:9, b2 ¼ 0:99, and

� ¼ 10�7. These parameters were selected through trial and

error with a view to reaching an effective trade-off between

controller performance and training speed. In all cases, the

plant model used for controller training was an FIR filter

with 160 taps, which was capable of achieving high levels

of modeling accuracy due to the linear nature of the simu-

lated plant response.

FIG. 2. Block diagram of the controller switching architecture.

FIG. 3. Block diagram of an example MLP controller network, with an

input tapped delay line size of 2, and 3 nodes in the hidden layer.
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To train each network, two sets of 900 s of simulated

data were generated. The first of the two datasets was used

for network training, and the second for validation to assess

overfitting. As a result of using this relatively large amount

of training data, considering the size of the networks, there

was no apparent overfitting during the network training, as

assessed via the training and validation losses, and, there-

fore, network regularization techniques were not applied.

Each dataset consists of the reference signal, x[n], which, as
noted previously, is a band-limited Gaussian white noise

with a frequency range of [0, 250] Hz, and the disturbance

signal, pa½n�. In each simulation, the magnitude of the refer-

ence signal, or system excitation, increases linearly over

time so that it covers the targeted training range in each

case. Each update to the weights and biases of the controller

networks was undertaken using an average over a mini-

batch of a tapped delay line of the reference signal and a

sample of the disturbance signal. These mini-batches were

selected randomly from the generated dataset. In each train-

ing step, 1000 such mini-batches were used, and the full net-

work training was undertaken over 500 steps. The term

“step” here is used in place of the typical term “epoch” to

clarify that the full dataset is not used in each training step,

which is explained further in the following.

When training the MLP controllers, it was found that,

for a given controller and training range, if the random

selection of the training data used to update the network

weights and biases had a uniform distribution, then the con-

trol attenuation achieved was approximately equal over the

training range. However, when training a controller at a sin-

gle excitation level, it was found that the maximum control

attenuation achievable is not uniform over excitation level

and, in fact, decreases as the magnitude of the reference sig-

nal increases. This means that when using a uniformly dis-

tributed selection of training data to train the generalized

controllers, their performance approaches the maximum at

the upper end of the training range, but falls below the maxi-

mum at the bottom. For a set of Q training examples with

reference signal magnitudes xmag in the range a < xmag < b,
the probability of training example q being included in a

training batch (up to a normalizing factor) can be defined as

PðqÞ / 10�cðxmag�aÞ; (13)

where c is a factor controlling the shape of the probability

distribution. Modifying the selection of the training data in

this way affects the resultant control attenuation achieved

by the MLP controllers across the training range, and an

appropriate selection of c for a given training range results

in generalized control performance that approaches the max-

imum MLP controller performance across the training

range. This approach has previously been explored.31

IV. SWITCHED-CONTROLLER TUNING AND
PERFORMANCE

This section presents simulation results demonstrating

the performance of the proposed switch-controller approach.

In the first instance, the effect of the controller training

range on potential performance is explored, and then the

performance of the switched-controller is evaluated. In all

cases, simulated data not utilized in the training phase has

been utilized.

A. Switched-controller training range analysis

A key parameter in designing the switched-controller

system is the selection of the reference signal magnitude

ranges over which each controller is trained. This selection

should consider both the number of training ranges utilized

to cover the overall range of operational conditions and the

relative widths of the training ranges. In terms of the relative

widths of the training ranges, it has been found that if the

overall range is subdivided equally, as shown in the upper

image in Fig. 5, this results in under-performance at lower

magnitude system excitation levels compared to those

trained at higher magnitude levels. This can be related to the

fact that the range of behavior exhibited by the nonlinear

system is broader for a fixed training width at lower refer-

ence signal magnitudes, primarily due to the nature of the

assumed nonlinear stiffness. Motivated by this, it has been

found that subdividing the overall magnitude range such

that the ratio between the widths of neighboring ranges is

constant as the reference signal magnitude increases

FIG. 4. Block diagram of the controller training method.
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provides more consistent performance across the overall

range. An example of this proposed subdivision of the full

training range is shown in the lower image in Fig. 5.

To explore the effect of varying the number of training

ranges, Fig. 6 shows the generalized performance of MLP

controllers with between 12 and 100 hidden nodes, trained

over subdivisions of three, six, and nine magnitude ranges.

In each case, the black dashed lines represent the maximum

potential control attenuation achievable, which is deter-

mined by using controllers trained and tested at individual

reference signal magnitudes, and the colored lines represent

the generalized performance of the individual controllers

trained over the magnitude ranges denoted by the corre-

sponding colored regions. In both cases, the controllers are

tested using 300 s of newly simulated data with a constant

excitation magnitude. From the results presented in Fig. 6(a)

(three training ranges), it can be seen that with three subdivi-

sions, even increasing the number of hidden nodes substan-

tially from 12 to 100 does not achieve a generalized

performance that reaches the estimated maximum perfor-

mance across the full range. Furthermore, the increase in

control performance produced by increasing the number of

hidden nodes from 50 to 100 in this case is minimal, sugges-

ting that a further increase in the number of hidden nodes is

unlikely to significantly improve performance. From the

results presented in Figs. 6(b) (six training ranges) and 6(c)

(nine training ranges), for a subdivision of the overall mag-

nitude range into six and nine training ranges, respectively,

it can be seen that increasing the number of hidden nodes in

the controllers improves their generalized control perfor-

mance and this approaches the estimated maximum perfor-

mance as the number of hidden nodes approaches 100. This

is perhaps a predictable result, as increasing the number of

subdivisions of the full training range approaches the case

where the controllers are each trained at a single level.

However, comparison of the results presented in Figs. 6(b)

and 6(c) illustrates that increasing the number of subdivi-

sions does not necessarily increase the generalized control

attenuation for a given number of hidden nodes. Moreover,

as there is a computational cost and additional time associ-

ated with training each of the individual controllers, it is

clear that for any particular application, there will be some

optimal number of subdivisions of the full training range

that maximizes generalized control attenuation while mini-

mizing the number of networks required to be trained.

Furthermore, although increasing the number of subdivi-

sions may mean that the individual networks require fewer

hidden nodes, narrow training regions may result in rapid

switching between networks during control, compromising

performance.

B. Switched-controller performance analysis

To test the performance of the switched-controller, the

set of six controllers with 50 hidden nodes described in Sec.

IVA has been utilized since it offers close to maximum per-

formance over the full magnitude range without unnecessar-

ily high training costs. In this instance, the moving average

process utilized to dynamically estimate the magnitude of

the reference signal as described in Sec. III has been imple-

mented with tRMS and tupdate set to 0.2 s. To test the perfor-

mance of the switched-controllers, a dynamically varying

excitation condition was simulated over 60 s. Specifically,

the magnitude of excitation was first slowly increased from

a low to a high value, and then reduced again slowly before

rapidly increasing and decreasing. The control attenuation

achieved by the switched-controller is presented in Fig. 7,

along with the performance achieved by an adaptive normal-

ized-step-size functional link artificial neural network

-based (NSS-FLANN) controller35 and a generalized NN

trained across the full range of excitation levels. The func-

tional link artificial neural network (FLANN) based control-

ler has been included to provide a benchmark against a

commonly utilized adaptive nonlinear control algorithm,

while the larger single MLP controller has been included to

demonstrate the performance of the switching approach

compared to simply utilizing a larger network trained across

the full range of operating conditions. From these results, it

can be seen that the switched MLP controller is able to

achieve effective control attenuation across the range of

excitation levels and, as such, closely tracks the maximum

steady-state control attenuation for the MLP denoted by the

dashed black line. In comparison to the larger generalized

MLP controller and the FLANN, the proposed switched

MLP controller achieves a consistently higher level of con-

trol attenuation. The performance is consistently around

10 dB above the generalized MLP controller, while utilizing

half the number of hidden nodes and, therefore, a signifi-

cantly reduced computational load. A similar performance

advantage is also achieved compared to the implemented

FLANN, which can also be observed to be relatively slow to

regain effective control attenuation following periods of

high excitation level.

Despite the effective performance of the switched MLP

controller, it is clear from the colored regions in Fig. 7 that

there is occasionally quite rapid switching between control-

lers. It should be noted that this can be addressed by adjust-

ing the tupdate and trms parameters used in the RMS

estimation procedure. Specifically, with a fixed update rate

(tupdateÞ, a trade-off between accuracy and speed of

FIG. 5. Examples showing how the full training range of interest may be

split into equal subdivisions, or subdivisions with increasing width. In the

lower example, the ratio between the widths of neighboring ranges is

constant.
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estimation can be realized by adjusting trms. With a larger

trms the rapid switching can be reduced by obtaining a more

accurate estimate of the reference signal RMS, but this will

introduce a delay in the estimate and, therefore, the selection

of the most appropriate controller. In the case of tupdate, it is
also possible to reduce controller switching by reducing the

update rate via an increase in tupdate, but this would also

reduce the ability of the switched-controller to respond to

rapid changes in the excitation level. Therefore, both estima-

tion parameters must be tuned for the application, consider-

ing the required speed of controller switching to maximize

control performance. Alternatively, as noted in Sec. III, it is

possible to use a more advanced method of selecting the

appropriate controller at any time instant, either via an adap-

tive approach or in more complicated scenarios via an intel-

ligent approach based on machine learning, as utilized in

Ref. 33, to select the most suitable controller for different

types of noise. That said, it is clear from the results pre-

sented in Fig. 7 that even with the controller switching based

on the simple RMS estimation procedure, performance close

to the steady-state maximum can be achieved.

V. APPLICATION TO THE CONTROL OFA PHYSICAL
NONLINEAR SYSTEM

To further validate the proposed control strategy, its

performance when applied to a physical system with a non-

linear response has been explored. The considered experi-

mental system consisted of a thin aluminum plate clamped

along its edges by a thick aluminum frame, as shown in Fig.

8. The primary excitation was provided by a small electro-

dynamic shaker (Tectonic Elements TEAX19C01-8,

Tectonic Audio Labs, Woodinville, WA) attached to the sur-

face of the plate, which was overdriven to introduce the

FIG. 6. Generalized performance of controllers trained across three, six and nine training ranges. The black dashed lines indicate the maximum performance

achievable by the MLP trained at discrete levels with 100 hidden nodes. The black dotted lines indicate the maximum performance achievable by an FIR

controller trained at discrete levels. The colored lines indicate the generalized performance achieved by the individual controllers trained over the excitation

signal magnitude ranges defined by the corresponding colored region.

FIG. 7. The control performance achieved when the excitation level, or ref-

erence signal magnitude, varies over time for the proposed switched MLP

controller, a large MLP trained over the full excitation range, and an NSS-

FLANN controller. The MSE control attenuation achieved has been calcu-

lated using a 0.5 s moving average. The colored regions represent the

selected controller at the corresponding time instance for the switched-

controller implementation.
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physical nonlinearity. The secondary source was provided

by a larger electrodynamic shaker (Tectonic Elements

TEAX32C30-4/B, Tectonic Audio Labs, Woodinville, WA),

which was also attached to the surface of the plate. The error

sensor was provided by an accelerometer, collocated with

the secondary source on the underside of the plate and there-

fore not visible in Fig. 8. The primary source was driven by

low-pass filtered random Gaussian noise, with a cutoff at

250Hz, and this signal was taken as the reference signal.

The system was measured at a sample rate of 2 kHz, and the

MLP controllers utilized a hyperbolic tangent activation

function and a reference signal tapped delay line length of

0.15 s, corresponding to 300 samples. The estimation of the

reference signal RMS was undertaken using the moving

average approach described in Sec. III, with tupdate ¼ 0:1 s,

and tRMS ¼ 0:5 s in this case. The data used for the training

of the generalized MLP controllers was provided by a mea-

surement of the system excited by a signal that linearly

increased in magnitude from a low level to a high level over

150 s, then decreased in magnitude over a further 150 s back

to the lower magnitude level. The lower level limit was

defined by the noise floor in the system, and the upper limit

was chosen to avoid destroying the electrodynamic shaker.

The NN training was undertaken following the same meth-

odology as outlined in Sec. III A 1.

Figure 9 presents the generalized control attenuation

calculated via offline simulations for the MLP controllers

trained over four ranges with 40 hidden nodes, and nine

ranges with 80 hidden nodes, respectively. As was similarly

noted in the simulation study presented in Sec. IVA, it can

be seen that by increasing the number of training ranges and

hidden nodes beyond four ranges and 40 hidden nodes, only

a small increase in generalized control performance is

achieved. Therefore, the controllers trained over four ranges

with 40 hidden nodes were implemented in the following

evaluation of the switched MLP controller.

As in Sec. IVB, to test the performance of the switched

MLP controller, the excitation signal level was increased

from a low level to a high level and back down again, first

slowly, then quickly. The upper plot in Fig. 10 presents the

results of offline simulations using the measured time-

history of the primary disturbance signal and the measured

system responses, and shows the attenuation in the MSE

achieved by the switched MLP controller, along with the

attenuation achieved by the NSS-FLANN controller and a

larger single MLP controller trained over the full range of

excitation signal levels. These results show that the switched

MLP controller achieves a control performance that is com-

parable to that of the NSS-FLANN controller during the first

5 s where the excitation level is low and remains relatively

constant; however, after both the slow and fast decreases in

the excitation signal level (14–19 and 24.5–30 s), the

switched MLP controller shows a lower level of control

performance. It is possible that this is due to some form

of hysteretic behavior induced by the preceding periods of

high-level excitation, temporarily changing the dynamics

of the system. This is suggested by the fact that during these

periods, the control attenuation shows a slow upward trend

as the original system response returns. This change in

dynamics was not represented in the training data, where the

change in excitation signal level was extremely slow, and

therefore, it is perhaps unsurprising that the MLP controllers

underperform after these changes. To overcome this limita-

tion, rather than retraining the MLP controllers with differ-

ent excitation signal time-histories, a small augmentation

was made to the controller switching approach. Specifically,

FIG. 8. A photograph of the physical system consisting of a thin aluminum

plate with clamped boundaries and electrodynamic shakers providing the

nonlinear primary source (left) and secondary source (right). (nb. the third

shaker on the left with the same dimensions as the secondary source was

not used in this study.)

FIG. 9. Generalized performance of controllers trained across 4 ranges with 40 hidden nodes, and 9 ranges with 80 hidden nodes. The black dashed lines

indicate the maximum performance achievable by the MLP trained at discrete reference signal magnitudes with 80 hidden nodes. The black dotted lines

indicate the maximum performance similarly achievable with an FIR controller.
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an adaptive output gain l was implemented for each MLP

controller, with the gain updated at each sample according

to

Dl / �e n½ �gTu n½ �; (14)

where g is an FIR filter modeling the system plant, and u½n� is a
tapped delay line of the previous MLP outputs. It may be noted

that, as this update term depends only on the current error signal

sample, an FIR plant model, and a TDL of the MLP output, this

adaptation will typically come at only a small increase in com-

putational cost. Moreover, the output gain associated with each

controller is only updated when that controller is implemented

to avoid unnecessary computation. The MSE attenuation levels

achieved when the switched MLP controller and the larger sin-

gle range MLP controller are implemented with an adaptive out-

put gain are presented in the lower plot of Fig. 10. From these

results, it can be seen that this simple modification produces a

considerable increase in the control performance in both cases.

The switched MLP controller with an adaptive output gain now

closely follows the MLP maximum attenuation curve, while the

larger MLP controller trained over the full range now achieves a

comparable performance to the NSS-FLANN.

VI. CONCLUSIONS

In this paper, a method of switching between a set of

pre-trained MLP controllers to improve the control

performance achievable for a nonlinear system excited

across a range of levels has been presented. Its potential per-

formance has been demonstrated via a set of discrete-time

simulations representing the active control of noise pro-

duced by a simple nonlinear system, and also via a set of

offline simulations using data measured for a more compli-

cated physical nonlinear system. For the presented switched

MLP controller, a simple RMS estimator of the magnitude

of the reference signal has been used to select from a set of

MLP controllers trained to have near-maximal control per-

formance over a set of system excitation magnitude ranges.

The effect of increasing the number of training ranges on

controller performance has been explored, and the trade-off

between computational cost and performance has been dis-

cussed. In the numerical simulations of the simple nonlinear

system, the switching approach has been shown to achieve

control performance that approximates the maximum

achievable performance as the reference signal magnitude

varies over time. To further validate the proposed control

strategy, an offline control simulation has been undertaken

using measurements of a physical system with a nonlinear

response, which includes both saturation and hysteretic like

nonlinear behaviors. In this more realistic case, the proposed

switched MLP controller achieved control performance that

was significantly lower than the maximum potential attenua-

tion and was outperformed by a well-known adaptive non-

linear control strategy. This was noted to be possibly due to

changes in the system dynamics caused by high excitation

levels, which were not included in the MLP training data.

However, by introducing a simple and computationally effi-

cient adaptive output gain into the MLP controllers, it has

been shown that the performance of the switched MLP con-

troller could be significantly increased, outperforming both

the well-known adaptive nonlinear controller and a single

fixed larger MLP trained across the full range of excitation

levels. An earlier version of this work has been published in

POMA.36
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