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 A B S T R A C T

Prospect stochastic dominance conditions can be used to compare pairs of uncertain decision alternatives when 
the decision makers’ choice behavior is characterized by cumulative prospect theory, but their preferences are 
not precisely specified. This paper extends the use of prospect stochastic dominance conditions to decision 
settings in which the use of pairwise comparisons is not possible due to large or possibly infinite number 
of decision alternatives (e.g., financial portfolio optimization). In particular, we first establish equivalence 
results between these conditions and the existence of solutions to a specific system of linear inequalities. We 
then utilize these results to develop stochastic optimization models whose feasible solutions are guaranteed to 
dominate a pre-specified benchmark distribution. These models can be used to identify if there exists a decision 
alternative within a set that is preferred to a given benchmark by all decision makers with an S-shaped value 
function and a pair of inverse S-shaped probability weighting functions. Thus, the models offer a flexible tool to 
analyze choice behavior in decision settings that can be modeled as optimization problems. We demonstrate 
the use of the developed models with two empirical applications in financial portfolio diversification and 
procurement optimization.
1. Introduction

Stochastic Dominance (SD) offers a family of well-established cri-
teria for ranking decision alternatives with uncertain outcomes under 
incomplete information on the decision maker’s (DM’s) risk preferences 
(see, e.g., Levy, 2016, for a recent overview). SD-criteria have strong 
decision-theoretic foundations in expected utility theory (EUT; Neu-
mann & Morgenstern, 1944): For instance, if an alternative dominates 
another in the sense of First-order Stochastic Dominance (FSD; Hadar 
& Russell, 1969; Hanoch & Levy, 1969; Quirk & Saposnik, 1962), 
then any expected utility maximizing DM with a non-decreasing utility 
function would prefer the dominating alternative. Similarly, no risk-
averse expected utility maximizing DM with a non-decreasing concave 
utility function would choose a decision alternative that is dominated in 
the sense of Second-order Stochastic Dominance (SSD; Hadar & Russell, 
1969; Hanoch & Levy, 1969; Rothschild & Stiglitz, 1970). Recent 
research efforts have focused on extending the use of SD-criteria from 
pairwise comparisons of decision alternatives to full-fledged stochastic 
optimization. These efforts have resulted in several stochastic optimiza-
tion models in which the outcome distribution of the optimal solution 
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1 This requires that a dominating solution exists in the set of feasible solutions. Moreover, there can be several dominating solutions in which case the optimal 
solution might not be unique.

is guaranteed to stochastically dominate some pre-specified benchmark 
distribution1 (see, e.g., Armbruster & Delage, 2015; Bruni et al., 2017; 
Cesarone & Puerto, 2025; Dentcheva & Ruszczyński, 2003; Kopa et al., 
2018; Kuosmanen, 2004; Liesiö et al., 2020; Post, 2003; Post & Kopa, 
2017; Xu, 2024).

However, it is widely known that actual decision behavior sys-
tematically deviates from that predicted by EUT, which suggests that 
traditional SD-criteria might not accommodate all empirically observed 
preferences. Thus, while traditional SD-criteria offer a solid foundation 
for prescriptive models geared towards decision support, they might 
not be well-suited for behavioral models seeking to describe decision 
behavior. This has motivated the research by Baucells and Heukamp 
(2006) and Levy and Wiener (1998) to develop dominance criteria that 
capture preferences through cumulative prospect theory (CPT; Tversky 
& Kahneman, 1992) rather than EUT. In CPT, the decision maker’s 
risk preferences are captured jointly by (i) an S-shaped value func-
tion that encodes outcomes into gains and losses with regard to a 
certain reference point, and (ii) a pair of inverse S-shaped probability 
weighting functions (PWFs) that transforms cumulative probabilities 
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of the gains and losses into subjective decision weights. The resulting 
Prospect Stochastic Dominance (PSD; Levy & Wiener, 1998) compares 
the outcome distributions of two decision alternatives (prospects) to 
determine if one is preferred to the other by all decision makers with an 
S-shaped value function. In turn, the more general Weighted Prospect 
Stochastic Dominance (PWSD; Baucells & Heukamp, 2006) establishes 
if a prospect is preferred to another by all decision makers with an 
S-shaped value function and a pair of inverse S-shaped PWFs.

Although these existing methods can determine if PSD or PWSD 
holds between a given pair of prospects, they cannot be directly utilized 
in stochastic optimization problems. However, in many decision prob-
lems there does not exist a full list of relevant prospects, but instead 
prospects are implicitly defined as feasible solutions to a system of 
constraints (cf. project combinations satisfying resource constraints). 
In such problems, the number of feasible solutions is often very large 
or infinite, which makes pairwise comparisons of all prospects time-
consuming or even impossible. This gap in the current literature is 
especially significant in view of the fact that a plethora of methods 
have been developed to enable the utilization of EUT-based SD-criteria 
(e.g., FSD and SSD) in stochastic optimization models, and these meth-
ods have found applications in several domains, including financial 
portfolio optimization (e.g., Armbruster & Delage, 2015; Kuosmanen, 
2004), project scheduling (e.g., Gutjahr, 2015) and project portfolio 
selection (e.g., Liesiö et al., 2023).

We address this gap by developing novel stochastic optimization 
models that capture preferences through CPT with incomplete infor-
mation, thereby enhancing the applicability of SD-criteria in analyz-
ing choice behavior. In particular, we first develop results for a dis-
crete state-space that allow to establish PSD and PWSD between two 
prospects by examining their probability distributions in a finite num-
ber of outcome levels. Based on these results, we then develop mixed-
integer linear programming (MILP) models such that any feasible so-
lution to these models is guaranteed to dominate a given benchmark 
prospect (or an outcome distribution) in the sense of PSD or PWSD. 
These models make it possible to identify if there exists a prospect 
within a feasible set which would be preferred to a given benchmark 
prospect by all decision makers with an S-shaped utility function and a 
pair of inverse S-shaped probability weighting functions. Moreover, as 
the models do not impose restrictions on the objective function, they 
can be readily utilized in identifying, for instance, the expected value 
maximizing prospect among those that dominate the benchmark.

The optimization models developed in this paper can be used to 
analyze choice behavior from the perspective of CPT in a broad range of 
problems in finance, operations management, and economics, in which 
prospects (decision alternatives) correspond to feasible solutions of a 
stochastic optimization problem and uncertainties are captured with 
a finite state-space (see, e.g., Cinfrignini et al., 2025; Gustafsson & 
Salo, 2005; Gutjahr, 2015; Harris & Mazibas, 2022; Kopa et al., 2018; 
Kuosmanen, 2004; Sillanpää et al., 2021). We demonstrate the practi-
cal relevance of our methodological contributions with two empirical 
applications in financial portfolio diversification and procurement opti-
mization based on real-world data. In these applications, the developed 
models are used to analyze if the decision makers’ choice of particular 
decision alternatives can be explained by CPT.

The rest of the paper is organized as follows. Section 2 introduces 
the notation and standard definitions required for modeling incom-
plete preference information in decision making under uncertainty. 
Section 3 derives conditions for PSD and PWSD in discrete state-space. 
Section 4 employs these conditions to develop stochastic optimization 
models with PSD and PWSD constraints and Section 5 presents the two 
empirical applications. Section 6 provides some concluding remarks.

2. Decision making under uncertainty and incomplete preference 
information

Let 𝑋 denote a risky prospect, technically a random variable, whose 
support is a subset of the interval [𝑎, 𝑏] and whose cumulative distribu-
tion function (CDF) is denoted by 𝐹 . Under expected utility theory 
𝑋
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(EUT), a decision maker with a utility function 𝑢 prefers prospect 𝑋 if 
its expected utility, given by 

E[𝑢(𝑋)] = ∫

𝑏

𝑎
𝑢(𝑡)𝑑𝐹𝑋 (𝑡), (1)

is higher than the expected utility of other available prospects. Thus, 
the decision maker’s preferences in EUT are captured solely by some 
utility function 𝑢 ∶ [𝑎, 𝑏] → R, which maps each outcome onto a utility 
scale.

Suppose the information on the decision maker’s preferences is 
incomplete in the sense that it is known only that the decision maker 
prefers higher outcomes to lower ones. In this case, these preferences 
cannot be modeled by a single utility function but rather by the set 
of all non-decreasing functions, which we denote by 𝑈1. Even under 
such incomplete preference information, it can be possible to infer the 
decision maker’s choice between a pair of prospects only by comparing 
their CDFs. Specifically, prospect 𝑋 is said to (weakly) dominate2 𝑌  in 
the sense of First-order Stochastic Dominance (FSD) if
E[𝑢(𝑋)] ≥ E[𝑢(𝑌 )] ∀ 𝑢 ∈ 𝑈1 ⇔ 𝐹𝑋 (𝑡) ≤ 𝐹𝑌 (𝑡) ∀ 𝑡 ∈ [𝑎, 𝑏].

If the decision maker is also risk-averse, then his/her utility function 
must be concave. The choice behavior of such decision makers agrees 
with the Second-order Stochastic Dominance (SSD) criterion: Prospect 
𝑋 dominates 𝑌  in the sense of SSD if

E[𝑢(𝑋)] ≥ E[𝑢(𝑌 )] ∀ 𝑢 ∈ 𝑈2 ⇔ ∫

𝑡′

𝑎
𝐹𝑋 (𝑡)𝑑𝑡 ≤ ∫

𝑡′

𝑎
𝐹𝑌 (𝑡)𝑑𝑡 ∀ 𝑡′ ∈ [𝑎, 𝑏],

where 𝑈2 ⊂ 𝑈1 is the set of all non-decreasing concave utility functions.
Although EUT and SSD provide a solid theory of rational decision 

making on top of which decision support models and tools can be built, 
observed decision behavior often deviates from that predicted by EUT 
(see, e.g., Starmer, 2000). This has led to the development of prospect 
theory (Kahneman & Tversky, 1979), and later cumulative prospect 
theory (CPT; Tversky & Kahneman, 1992), which are known to provide 
a more accurate description of choice behavior particularly in small-
scale decision settings compared to EUT (Levy & Levy, 2021; Rabin, 
2000). CPT can be considered as an extension of EUT to incorporate a 
richer representation of decision makers’ risk preferences. First, CPT 
introduces the concept of a reference outcome that divides the out-
comes into gains and losses, for which the decision makers exhibit 
different preferences. Specifically, the utility function is convex over 
losses and concave over gains. Second, CPT uses a pair of probability 
weighting functions to capture the decision makers’ tendency to distort 
probabilities of outcomes. These probability weighting functions are 
applied on the prospect’s cumulative distribution function prior to 
evaluating the expectation of the prospect’s utility.

More formally, CPT assumes that 𝑢 ∈ 𝑈𝑆 , where set 𝑈𝑆 depends 
on the reference outcome 𝑟 ∈ [𝑎, 𝑏] and consists of all non-decreasing 
utility functions 𝑢 ∶ [𝑎, 𝑏] → R that are convex for losses 𝑡 ∈ [𝑎, 𝑟] and 
concave for gains 𝑡 ∈ [𝑟, 𝑏]. Moreover, let 𝑤− and 𝑤+ denote a pair of 
probability weighting functions, i.e., increasing mappings from [0, 1] to 
[0, 1] which satisfy 𝑤−(0) = 𝑤+(0) = 0 and 𝑤−(1) = 𝑤+(1) = 1. Then, 
under CPT the decision maker prefers prospect 𝑋 whose value 

𝑉 𝑤+
𝑤− [𝑢(𝑋)] = ∫

𝑟

𝑎
𝑢(𝑡)𝑑[𝑤−(𝐹𝑋 (𝑡))] + ∫

𝑏

𝑟
𝑢(𝑡)𝑑[−𝑤+(1 − 𝐹𝑋 (𝑡))] (2)

is the highest among all available prospects. Expected utility (1) can be 
viewed as a special case of CPT value (2) since under linear probability 
weighting functions (i.e., 𝑤+(𝑝) = 𝑤−(𝑝) = 𝑝) it holds that

𝑉 𝑤+
𝑤− [𝑢(𝑋)] = ∫

𝑟

𝑎
𝑢(𝑡)𝑑[𝐹𝑋 (𝑡)] + ∫

𝑏

𝑟
𝑢(𝑡)𝑑[−1 + 𝐹𝑋 (𝑡)]

= ∫

𝑏

𝑎
𝑢(𝑡)𝑑𝐹𝑋 (𝑡) = E[𝑢(𝑋)].

2 To be concise we use the term ‘dominance’ in this paper when referring 
to weak dominance.
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Suppose the information on the decision makers’ preferences is 
limited to knowing that they are risk-averse about gains and risk-
seeking about losses, and that they do not distort the probabilities. 
This corresponds to considering all S-shaped utility functions (𝑢 ∈ 𝑈𝑆 ) 
but only linear weighting functions (𝑤+(𝑞) = 𝑤−(𝑞) = 𝑞). If any such 
decision maker prefers one prospect to another, we say that the former 
dominates the latter in the sense of Prospect Stochastic Dominance 
(PSD).

Definition 1 (PSD).  Prospect 𝑋 dominates 𝑌  by PSD, denoted by 
𝑋 ⪰ 𝑌 , if 
𝑉 𝑤+
𝑤− [𝑢(𝑋)] ≥ 𝑉 𝑤+

𝑤− [𝑢(𝑌 )] ∀ 𝑢 ∈ 𝑈𝑆 , (3)

where 𝑤+(𝑞) = 𝑤−(𝑞) = 𝑞 for all 𝑞 ∈ [0, 1].

Establishing PSD between two prospects can be based on the com-
parison of their integrated CDFs for all pairs of gains and losses. This 
result, introduced by Levy and Wiener (1998), is formalized in the 
following proposition.

Proposition 1 (Levy & Wiener, 1998). Let 𝑋 and 𝑌  be prospects. Then

𝑋 ⪰ 𝑌 ⇔ ∫

𝑡+

𝑡−
𝐹𝑋 (𝑡)𝑑𝑡 ≤ ∫

𝑡+

𝑡−
𝐹𝑌 (𝑡)𝑑𝑡 ∀ 𝑎 ≤ 𝑡− ≤ 𝑟 ≤ 𝑡+ ≤ 𝑏.

Levy and Wiener (1998) also show that allowing all convex proba-
bility weighting functions in Definition  1 would result in a dominance 
condition equivalent to that in Proposition  1 (see also Yang, 2019). 
However, empirical evidence from studies estimating the parameters 
of CPT models suggests that the probability weighting functions are 
not convex, but rather inverse S-shaped, i.e., concave for small prob-
abilities and convex for large probabilities (see, e.g., Wakker, 2010). 
This motivates the use of Weighted Prospect Stochastic Dominance 
(PWSD; Baucells & Heukamp, 2006) to compare prospects as it enables 
to determine if a prospect is preferred to another by any decision 
maker with an S-shaped utility function and a pair of inverse S-shaped 
probability weighting functions.

Definition 2 (PWSD).  Prospect 𝑋 dominates 𝑌  by PWSD, denoted by 
𝑋 ⪰𝑐+

𝑐− 𝑌 , if

𝑉 𝑤+
𝑤− [𝑢(𝑋)] ≥ 𝑉 𝑤+

𝑤− [𝑢(𝑌 )] ∀ 𝑢 ∈ 𝑈𝑆 , 𝑤+ ∈ 𝑊 𝑐+ , 𝑤− ∈ 𝑊 𝑐− ,

where 𝑊 𝑐 is the set of all strictly increasing functions 𝑤 ∶ [0, 1] → [0, 1], 
which are convex on [𝑐, 1].

Note that set 𝑊 𝑐 includes also probability weighting functions that 
are concave on some interval [0, 𝑑], although this is not explicitly 
required by the definition. The choice to omit this requirement is mo-
tivated by the fact that when all S-shaped utility functions are allowed, 
considering only those weighting functions in 𝑊 𝑐 that are concave on 
some interval [0, 𝑑] would result in exactly the same dominance relation 
as the one in Definition  2 (see Definition 3 and Proposition 5 of Baucells 
& Heukamp, 2006).

Increasing the values of 𝑐+ and 𝑐− enlarges the sets of feasible 
probability weighting functions 𝑊 𝑐+  and 𝑊 𝑐− , respectively. Thus, if 
dominance between prospects 𝑋 and 𝑌  is established for some values 
of parameters 𝑐+ and 𝑐−, then it will hold also for any smaller values. 
More formally, for all values 𝑐+ ≥ 𝑐+ and 𝑐− ≥ 𝑐− it holds that
𝑋 ⪰𝑐+

𝑐− 𝑌 ⇒ 𝑋 ⪰𝑐+
𝑐− 𝑌 .

Prospect 𝑋 dominates 𝑌  in the sense of PWSD (Definition  2) if and 
only if (i) 𝑋 dominates 𝑌  in the sense of PSD (Definition  1) and (ii) 
𝑋 dominates 𝑌  is the sense of FSD in the tails of the distributions, 
the length of which depends on the values of parameters 𝑐− and 𝑐+. 
This result established by Baucells and Heukamp (2006) is formally 
presented in the following proposition.
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Proposition 2 (Baucells & Heukamp, 2006). Let 𝑋 and 𝑌  be prospects. 
Then 𝑋 ⪰𝑐+

𝑐− 𝑌  if and only if 𝑋 ⪰ 𝑌  and 

𝐹𝑋 (𝑡) ≤ 𝐹𝑌 (𝑡) ∀ 𝑡 ∈ [𝑎, 𝑡𝐿) ∪ [𝑡𝑅, 𝑏], (4)

where 𝑡𝐿 = inf({𝑡 ≤ 𝑟 ∣ 𝐹𝑋 (𝑡) ≥ 𝑐−, 𝐹𝑌 (𝑡) ≥ 𝑐−} ∪ {𝑟}) and 𝑡𝑅 = sup({𝑡 ≥
𝑟 ∣ 𝐹𝑋 (𝑡) ≤ 1 − 𝑐+, 𝐹𝑌 (𝑡) ≤ 1 − 𝑐+} ∪ {𝑟}).

A direct implication of Proposition  2 is that if convexity of the 
probability weighting functions is required on the entire interval [0, 1], 
then PWSD becomes equivalent to PSD. This is because setting 𝑐+ =
𝑐− = 0 yields 𝑡𝐿 = 𝑎 and 𝑡𝑅 = 𝑏, and hence inequality (4) is trivially 
satisfied. In turn, if there are no convexity requirements (i.e., 𝑐+ = 𝑐− =
1), then 𝑡𝐿 = 𝑡𝑅 = 𝑟 and as a result, inequality (4) holds only if prospect 
𝑋 dominates 𝑌  in the sense of FSD. More formally, for any prospects 
𝑋 and 𝑌  it holds that
𝑋 ⪰0

0 𝑌 ⇔ 𝑋 ⪰ 𝑌  and
𝑋 ⪰1

1 𝑌 ⇔ 𝐹𝑋 (𝑡) ≤ 𝐹𝑌 (𝑡) ∀ 𝑡 ∈ [𝑎, 𝑏].

3. Prospect stochastic dominance in discrete state-space

Utilizing PSD and PWSD in stochastic optimization requires devel-
oping conditions for these dominance criteria, in which the integrated 
CDFs of the prospects need to be evaluated only at a finite number of 
different outcome levels. To achieve this we consider a discrete state-
space 𝑆 = {𝑠𝑖 ∣ 𝑖 ∈ 𝑁}, where 𝑁 = {1,… , 𝑛}, consisting of 𝑛 mutually 
exclusive and collectively exhaustive states with the state probabilities 
𝑝 = (𝑝1,… , 𝑝𝑛) ∈ R𝑛

+ such that 
∑𝑛

𝑖=1 𝑝𝑖 = 1. Prospects thus correspond 
to discrete random variables 𝑋 ∶ 𝑆 → [𝑎, 𝑏] ⊂ R, where the interval 
[𝑎, 𝑏] includes possible outcomes of all prospects under consideration. 
We use 𝑥𝑖 = 𝑋(𝑠𝑖) to the denote the state-specific outcome of prospect 
𝑋 in the 𝑖th state. Under a discrete state-space, the expected outcome 
of prospect 𝑋 is given by E[𝑋] =

∑𝑛
𝑖=1 𝑝𝑖𝑥𝑖 and its cumulative density 

function (CDF) by 

𝐹𝑋 (𝑡) = P
({

𝑠𝑖 ∈ 𝑆
|

|

|

|

𝑋(𝑠𝑖) ≤ 𝑡
})

=
∑

𝑖 s.t.
𝑥𝑖∈[𝑎,𝑡]

𝑝𝑖. (5)

Moreover, the integral of the CDF of prospect 𝑋 becomes

𝐹 2
𝑋 (𝑡) = ∫

𝑡

−∞
𝐹𝑋 (𝑡′) 𝑑𝑡′ = ∫

𝑡

𝑎
𝐹𝑋 (𝑡′) 𝑑𝑡′ =

∑

𝑖 s.t.
𝑥𝑖∈[𝑎,𝑡]

𝑝𝑖(𝑡 − 𝑥𝑖)

=
𝑛
∑

𝑖=1
𝑝𝑖 max

{

𝑡 − 𝑥𝑖, 0
}

. (6)

With this notation, we formulate the necessary and sufficient condi-
tions for prospect 𝑋 to dominate prospect 𝑌  by PSD. Under a discrete 
state-space, these conditions are formally established by the following 
theorem.

Theorem 1.  Consider two prospects 𝑋 and 𝑌  and suppose the state-space 
is discrete. Then 𝑋 ⪰ 𝑌  if and only if the following conditions hold:
𝐹 2
𝑌 (𝑡

+) − 𝐹 2
𝑌 (𝑟) ≥ 𝐹 2

𝑋 (𝑡
+) − 𝐹 2

𝑋 (𝑟) for all 𝑡+ ∈
{

𝑦𝑖 ∣ 𝑦𝑖 ≥ 𝑟
} and (7)

𝐹 2
𝑌 (𝑟) − 𝐹 2

𝑌 (𝑡
−) ≥ 𝐹 2

𝑋 (𝑟) − 𝐹 2
𝑋 (𝑡

−) for all 𝑡− ∈
{

𝑥𝑖 ∣ 𝑥𝑖 < 𝑟
}

. (8)

All proofs are presented in Appendix  A. Theorem  1 shows that in 
order to establish whether 𝑋 dominates 𝑌  by PSD in a discrete state-
space, it suffices to evaluate their integrated CDFs only for a finite 
number of outcomes. Specifically, these integrated CDFs need to be 
evaluated at the reference outcome and at those outcomes that corre-
spond either to the gains of the dominated prospect 𝑌  (cf. condition (7)) 
or to the losses of the dominating prospect 𝑋 (cf. condition (8)). This 
result follows from the fact that in a discrete state-space the prospects’ 
integrated CDFs are convex non-decreasing piece-wise linear functions.

Based on Proposition  2, the conditions of Theorem  1 are necessary 
also for PWSD to hold between two prospects. Thus, establishing suffi-
cient conditions for PWSD requires incorporating the comparison of the 
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CDFs across the outcomes in their tails [𝑎, 𝑡𝐿) and [𝑡𝑅, 𝑏] (see inequality 
(4)). Moreover, for these conditions to be relevant in optimization 
models, they should evaluate the CDFs only at a finite number of these 
outcomes. The following theorem formalizes such conditions.

Theorem 2.  Consider two prospects 𝑋 and 𝑌  and suppose the state-space 
is discrete. Denote 𝐹𝑋 (𝑡) =

∑

𝑥𝑖<𝑡
𝑝𝑖 and let (𝑦̃1,… , 𝑦̃𝑛+1) be a permutation 

of (𝑦1,… , 𝑦𝑛, 𝑟) satisfying 𝑦̃1 ≤ 𝑦̃2 ≤ ⋯ ≤ 𝑦̃𝑛+1. Then 𝑋 ⪰𝑐+
𝑐− 𝑌  if and only 

if 𝑋 ⪰ 𝑌  and
𝐹𝑋 (𝑦̃𝑖) ≤ 𝐹𝑌 (𝑦̃𝑖−1) ∀ 𝑖 ∈ {1,… , 𝑛 + 1} 𝑠.𝑡. 𝐹𝑌 (𝑦̃𝑖−1) < 𝑐− and 𝑦̃𝑖 ≤ 𝑟 (9)
𝐹𝑋 (𝑦̃𝑖) ≤ max

{

𝐹𝑌 (𝑦̃𝑖−1), 𝐹𝑌 (𝑟), 1 − 𝑐+
}

∀ 𝑖 ∈ {1,… , 𝑛 + 1}, (10)

where 𝐹𝑌 (𝑦̃0) = 0.

Note that the conditions of Theorem  2 require evaluating the CDFs 
of the two prospects only at outcome levels corresponding to the 
state-specific outcomes of the dominated prospect 𝑌  and the reference 
outcome 𝑟. This is beneficial for developing optimization models that 
identify a prospect 𝑋 dominating a given benchmark 𝑌  by PWSD, 
because in this case the state-specific outcomes 𝑦𝑖 are fixed.

To illustrate the PSD and PWSD conditions in Theorems  1 and 2, 
consider 𝑛 = 10 equally likely states (𝑝𝑖 = 0.1) as well as two prospects 
𝑋 and 𝑌  with the state-specific outcomes 𝑥 = (75, 94, 99, 21, 22, 36, 38,
58, 61, 65) and 𝑦 = (10, 12, 14, 15, 45, 62, 63, 68, 88, 96). Moreover, suppose 
that the reference outcome is 𝑟 = 50. Fig.  1(a) shows the resulting CDFs 
of these two prospects and Fig.  1(b) the integrated CDFs evaluated 
by conditions (7) and (8) of Theorem  1. Based on Fig.  1(b), these 
conditions are satisfied and thus prospect 𝑋 dominates prospect 𝑌  in 
the sense of PSD (i.e., 𝑋 ⪰ 𝑌 ). To establish if PWSD holds for the 
sets of feasible probability weighting functions defined by 𝑐− = 0.15
and 𝑐+ = 0.25, it is sufficient to check if the conditions of Theorem 
2 are satisfied based on the information given in Fig.  1(a). Adding 
the reference outcome 𝑟 = 50 to the vector of state-specific outcomes 
𝑦 results in 𝑦̃ = (10, 12, 14, 15, 45, 50, 62, 63, 68, 88, 96). Since 𝐹𝑌 (𝑦̃2) =
𝐹𝑌 (12) = 0.2 > 𝑐− = 0.15, condition (9) is equivalent to the two 
inequalities 𝐹𝑋 (𝑦̃1) =

∑

𝑥𝑖<𝑦̃1
𝑝𝑖 = 0 ≤ 𝐹𝑌 (𝑦̃0) = 0 and 𝐹𝑋 (𝑦̃2) =

∑

𝑥𝑖<𝑦̃2
𝑝𝑖 = 0 ≤ 𝐹𝑌 (𝑦̃1) = 0.1, which both hold. To confirm that 

condition (10) is satisfied, note that 𝐹𝑋 (𝑦̃𝑖) ≰ 𝐹𝑌 (𝑦̃𝑖−1) only when 𝑖 = 7
(i.e., 𝐹𝑋 (𝑦̃7) = 𝐹𝑋 (62) = 0.6 > 𝐹𝑌 (𝑦̃6) = 𝐹𝑌 (50) = 0.5), but in this case 
𝐹𝑋 (62) = 0.6 < 1 − 𝑐+ = 0.75. Thus, it holds that 𝑋 ⪰0.25

0.15 𝑌 .

4. Optimization models for prospect stochastic dominance

In many decision problems, the set of available prospects is not 
explicitly given as a finite list of decision alternatives, but implicitly 
defined as a set of solutions satisfying a specific system of constraints. 
For instance, potential investment portfolios of financial assets can be 
characterized by a set of vectors of asset weights whose elements sum 
to one. In turn, feasible portfolios of R&D projects correspond to project 
subsets that do not consume more resources than are available. In such 
applications the use of Theorem  1 is often impractical, as it would 
require enumerating all available prospects, the number of which can 
be infinite.

To address this shortcoming, we develop stochastic optimization 
problems to identify if a set of prospects 
X ⊂

{

𝑋 ∶ 𝑆 → [𝑎, 𝑏]
}

(11)

contains some prospect 𝑋 ∈ X that stochastically dominates a pre-
specified benchmark prospect 𝑌  in the sense of PSD or PWSD. We 
also show that these stochastic optimization models can be used to 
identify the prospect that optimizes a suitable objective function among 
those that dominate 𝑌 . As an example, consider the portfolio selection 
problem with 𝑚 base assets whose returns are captured by random 
variables 𝑋1,… , 𝑋𝑚. In this context, the set of portfolio returns would 
correspond to the set of prospects X =

{
∑𝑚

𝑗=1 𝜆𝑗𝑋𝑗 ∣ 𝜆 ∈ R𝑚
+ ,

∑𝑚
𝑗=1 𝜆𝑗 =

1
} when short-selling is not allowed. Consequently, identifying the 
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optimal portfolio that dominates a given benchmark portfolio 𝑌  by PSD 
(PWSD) and yields the highest expected return would thus correspond 
to solving the stochastic optimization problem max𝑋∈X

{

E[𝑋] ∣ 𝑋 ⪰ 𝑌
}

(max𝑋∈X
{

E[𝑋] ∣ 𝑋 ⪰𝑐+
𝑐− 𝑌

}

).

4.1. Formulating prospect stochastic dominance constraints

To utilize Theorem  1 in stochastic optimization with PSD con-
straints, we first present two lemmas formulating its conditions through 
linear constraints. In particular, condition (7) of Theorem  1 states that 
for prospect 𝑋 to dominate prospect 𝑌 , it must hold that 𝐹 2

𝑋 (𝑦𝑖) −
𝐹 2
𝑋 (𝑟) ≤ 𝐹 2

𝑌 (𝑦𝑖) − 𝐹 2
𝑌 (𝑟) for each state-specific outcome 𝑦𝑖 that is a gain. 

The following lemma shows that this condition is satisfied if and only if 
there exists a feasible solution to a specific system of constraints, each 
of which is linear in the state-specific outcomes 𝑥𝑘 of prospect 𝑋.

Lemma 1.  Consider two prospects 𝑋 and 𝑌 . Then condition (7) of 
Theorem  1 holds if and only if there exist ℎ+ ∈ R𝑛+×𝑛

+  and 𝑧+ ∈ {0, 1}𝑛

that satisfy the constraints
ℎ+𝑖𝑘 ≥ 𝑦𝑖 − 𝑥𝑘 −𝑀(1 − 𝑧+𝑘 ) ∀ 𝑖 ∈ 𝑁+, 𝑘 ∈ 𝑁 (12)

ℎ+𝑖𝑘 ≥ 𝑦𝑖 − 𝑟 −𝑀𝑧+𝑘 ∀ 𝑖 ∈ 𝑁+, 𝑘 ∈ 𝑁 (13)
𝑛
∑

𝑘=1
𝑝𝑘ℎ

+
𝑖𝑘 ≤ 𝐹 2

𝑌 (𝑦𝑖) − 𝐹 2
𝑌 (𝑟) ∀ 𝑖 ∈ 𝑁+, (14)

where 𝑀 is a sufficiently large positive constant, 𝑁+ =
{

𝑖 ∈ 𝑁 ∣ 𝑦𝑖 ≥ 𝑟
}

and 𝑛+ = |𝑁+
|.

While a detailed proof of this lemma is presented in Appendix  A, 
we provide a brief summary of its logic here: For an arbitrary 𝑦𝑖 ≥
𝑟, it can be shown that there always exists ℎ+ satisfying constraints 
(12)–(13) such that ∑𝑛

𝑖=1 𝑝𝑘ℎ
+
𝑖𝑘 is equal to 𝐹 2

𝑋 (𝑦𝑖) − 𝐹 2
𝑋 (𝑟), i.e., the RHS 

of condition (7) in Theorem  1. Note that since 𝐹 2
𝑋 (𝑦𝑖) − 𝐹 2

𝑋 (𝑟) is non-
convex with respect to the outcomes of prospect 𝑋, there is a need 
to introduce an auxiliary binary variable 𝑧+𝑘  for each state to indicate 
if the state-specific outcome 𝑥𝑘 is greater than the reference outcome 
𝑟. Moreover, it can be shown that for any ℎ+ satisfying constraints 
(12)–(13), ∑𝑛

𝑖=1 𝑝𝑘ℎ
+
𝑖𝑘 provides an upper bound for 𝐹 2

𝑋 (𝑦𝑖)−𝐹
2
𝑋 (𝑟). As the 

choice of 𝑦𝑖 was arbitrary, it is relatively straightforward to establish 
the lemma from these two results.

Next we develop the second system of linear constraints based on 
condition (8) of Theorem  1. In particular, this condition states that for 
prospect 𝑋 to dominate prospect 𝑌 , it must hold that 𝐹 2

𝑋 (𝑟) − 𝐹 2
𝑋 (𝑥𝑖) ≤

𝐹 2
𝑌 (𝑟) − 𝐹 2

𝑌 (𝑥𝑖) for each state-specific outcome 𝑥𝑖 that is a loss. A key 
difference here compared to condition (7) is that the integrated CDFs 
are evaluated at outcome levels corresponding to the state-specific 
outcomes of the dominating prospect 𝑋 rather than to those of the 
dominated prospect 𝑌 . The resulting system of linear constraints is 
formalized by the following lemma.

Lemma 2.  Consider two prospects 𝑋 and 𝑌 . Then condition (8) of 
Theorem  1 holds if and only if there exist 𝑑− ∈ R𝑛

+, 𝑔− ∈ R𝑛×𝑛
+ , ℎ− ∈ R𝑛×𝑛

+ , 
and 𝑧− ∈ {0, 1}𝑛×𝑛 that satisfy the constraints
𝑑−𝑘 ≥ 𝑟 − 𝑥𝑘 ∀ 𝑘 ∈ 𝑁 (15)

𝑔−𝑖𝑘 ≥ 𝑥𝑖 − 𝑦𝑘 ∀ 𝑖, 𝑘 ∈ 𝑁 (16)

ℎ−𝑖𝑘 ≤ 𝑥𝑖 − 𝑥𝑘 +𝑀(1 − 𝑧−𝑖𝑘) ∀ 𝑖, 𝑘 ∈ 𝑁 (17)

ℎ−𝑖𝑘 ≤ 𝑀𝑧−𝑖𝑘 ∀ 𝑖, 𝑘 ∈ 𝑁 (18)
𝑛
∑

𝑘=1
𝑝𝑘𝑑

−
𝑘 +

𝑛
∑

𝑘=1
𝑝𝑘𝑔

−
𝑖𝑘 −

𝑛
∑

𝑘=1
𝑝𝑘ℎ

−
𝑖𝑘 ≤ 𝐹 2

𝑌 (𝑟) ∀ 𝑖 ∈ 𝑁 𝑠.𝑡. 𝑥𝑖 < 𝑟, (19)

where 𝑀 is a sufficiently large positive constant.
The overall proof strategy here is similar to that of Lemma  1: For 

an arbitrary 𝑥 < 𝑟, rearranging condition (8) of Theorem  1 gives the 
𝑖
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Fig. 1. Illustration of dominance conditions in Theorems  1 and 2. The state-specific outcomes of prospects 𝑋 (blue) and 𝑌  (red) are marked with points, triangles, and diamonds.
constraint 𝐹 2
𝑋 (𝑟) + 𝐹 2

𝑌 (𝑥𝑖) − 𝐹 2
𝑋 (𝑥𝑖) ≤ 𝐹 2

𝑌 (𝑟). Then, it can be shown that 
∑𝑛

𝑘=1 𝑝𝑘𝑑
−
𝑘 +

∑𝑛
𝑘=1 𝑝𝑘𝑔

−
𝑖𝑘 −

∑𝑛
𝑘=1 𝑝𝑘ℎ

−
𝑖𝑘 provides an upper bound for the 

LHS of this constraint for any feasible values of 𝑑−, 𝑔−, ℎ−, 𝑧− satisfying 
constraints (15)–(19), and also that there exist feasible values for which 
this upper bound is tight. The binary decision variables 𝑧−𝑖1,… , 𝑧−𝑖𝑛 are 
needed here to indicate which of the state-specific outcomes 𝑥1,… , 𝑥𝑛
are below the state-specific outcome 𝑥𝑖. As these results hold for any 
𝑥𝑖 < 𝑟, they imply the lemma.

Note that the constraints of Lemmas  1 and 2 are linear in the state-
specific outcomes of prospect 𝑋. Thus, we can readily treat 𝑥𝑖 as a 
decision variable and identify if there exists some prospect in set X (11) 
whose state-specific outcomes satisfy all these constraints when appro-
priate values for the auxiliary decision variables (ℎ+, 𝑧+, 𝑑−, 𝑔−, ℎ−, 𝑧−) 
are chosen. This result is formally established by the following theorem, 
which uses  ⊂ R𝑛 to denote the set of all vectors of state-specific 
outcomes generated by the prospects in set X, i.e., 
 =

{

(𝑥1,… , 𝑥𝑛) = (𝑋(𝑠1),… , 𝑋(𝑠𝑛)) ∈ R𝑛 ∣ 𝑋 ∈ X
}

. (20)

Theorem 3.  Consider a set of prospects X and prospect 𝑌 . Then the 
following statements hold:
(i) If there exists 𝑋 ∈ X such that 𝑋 ⪰ 𝑌 , then there exist ℎ+ ∈ R𝑛+×𝑛

+ , 
𝑧+ ∈ {0, 1}𝑛, 𝑑− ∈ R𝑛

+, 𝑔− ∈ R𝑛×𝑛
+ , ℎ− ∈ R𝑛×𝑛

+ , 𝑧− ∈ {0, 1}𝑛×𝑛, and 
𝜁− ∈ {0, 1}𝑛 that satisfy a system of linear constraints
𝑥𝑘 +𝑀(1 − 𝑧+𝑘 ) + ℎ+𝑖𝑘 ≥ 𝑦𝑖 ∀ 𝑖 ∈ 𝑁+, 𝑘 ∈ 𝑁 (21)

𝑟 +𝑀𝑧+𝑘 + ℎ+𝑖𝑘 ≥ 𝑦𝑖 ∀ 𝑖 ∈ 𝑁+, 𝑘 ∈ 𝑁 (22)
𝑛
∑

𝑝𝑘ℎ
+
𝑖𝑘 ≤ 𝐹 2

𝑌 (𝑦𝑖) − 𝐹 2
𝑌 (𝑟) ∀ 𝑖 ∈ 𝑁+ (23)
𝑘=1
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𝑥𝑘 + 𝑑−𝑘 ≥ 𝑟 ∀ 𝑘 ∈ 𝑁 (24)

𝑥𝑖 − 𝑔−𝑖𝑘 ≤ 𝑦𝑘 ∀ 𝑖, 𝑘 ∈ 𝑁 (25)

𝑥𝑖 − 𝑥𝑘 +𝑀(1 − 𝑧−𝑖𝑘) − ℎ−𝑖𝑘 ≥ 0 ∀ 𝑖, 𝑘 ∈ 𝑁 (26)

𝑀𝑧−𝑖𝑘 − ℎ−𝑖𝑘 ≥ 0 ∀ 𝑖, 𝑘 ∈ 𝑁 (27)

𝑟 − 𝑥𝑖 −𝑀𝜁−𝑖 ≤ 0 ∀ 𝑖 ∈ 𝑁 (28)
𝑛
∑

𝑘=1
𝑝𝑘𝑑

−
𝑘 +

𝑛
∑

𝑘=1
𝑝𝑘𝑔

−
𝑖𝑘 −

𝑛
∑

𝑘=1
𝑝𝑘ℎ

−
𝑖𝑘 −𝑀(1 − 𝜁−𝑖 ) ≤ 𝐹 2

𝑌 (𝑟) ∀ 𝑖 ∈ 𝑁, (29)

where 𝑀 is a sufficiently large positive constant, 𝑁+ =
{

𝑖 ∈ 𝑁 ∣ 𝑦𝑖 ≥
𝑟
} and 𝑛+ = |𝑁+

|.
(ii) Conversely, if there exist 𝑥 ∈  , ℎ+ ∈ R𝑛+×𝑛

+ , 𝑧+ ∈ {0, 1}𝑛, 𝑑− ∈ R𝑛
+, 

𝑔− ∈ R𝑛×𝑛
+ , ℎ− ∈ R𝑛×𝑛

+ , 𝑧− ∈ {0, 1}𝑛×𝑛, and 𝜁− ∈ {0, 1}𝑛 that 
satisfy the system of linear constraints (21)–(29), then there exists 
some prospect 𝑋′ ∈ X such that 𝑋′(𝑠𝑖) = 𝑥𝑖 for all 𝑖 ∈ 𝑁 , and 
𝑋′ ⪰ 𝑌 .

The theorem follows quite directly from the two systems of linear 
constraints presented in Lemmas  1 and 2. However, it also intro-
duces constraint (28) and the binary variables 𝜁1,… , 𝜁𝑛 to indicate 
which of the state-specific outcomes 𝑥1,… , 𝑥𝑛 of prospect 𝑋 are losses, 
i.e., below the reference outcome 𝑟. These binary variables are also in-
corporated into constraint (29) to make it redundant for those outcomes 
𝑥𝑖 that are gains.

The linear system of constraints in Theorem  3 can be readily used to 
formulate stochastic optimization models with PSD constraints. More-
over, since these constraints are linear, they do not give rise to non-
linearities in an optimization model, although they do necessitate the 
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introduction of binary decision variables. For instance, if a stochastic 
optimization model has (i) an objective function which is linear in 
the state-specific outcomes 𝑥 = (𝑥1,… , 𝑥𝑛), and (ii) a set of feasible 
outcomes  (20) defined through linear constraints, then implementing 
PSD constraints results in a MILP formulation. The following corol-
lary demonstrates how the constraints of Theorem  3 can be used to 
formulate a stochastic optimization model that identifies, among all 
prospects dominating the benchmark by PSD, the one yielding the 
highest expected outcome.

Corollary 1. 𝑋∗ is an optimal solution to the optimization prob-
lem max𝑋∈X

{

E[𝑋] ∣ 𝑋 ⪰ 𝑌
} if and only if 𝑥∗ = (𝑥∗1 ,… , 𝑥∗𝑛) =

(𝑋∗(𝑠1),… , 𝑋∗(𝑠𝑛)) is an optimal solution to the optimization problem

max
𝑛
∑

𝑖=1
𝑝𝑖𝑥𝑖 (30)

𝑠.𝑡. (𝑥, ℎ+, 𝑧+, 𝑑−, 𝑔−, ℎ−, 𝑧−, 𝜁−) satisfies constraints (21)–(29)
𝑥 ∈  ,where  is given by (20).

4.2. Incorporating weighted prospect stochastic dominance constraints

In this section, we develop an approach for incorporating PWSD 
constraints into stochastic optimization models. Recall that according 
to Theorem  2, prospect 𝑋 dominates prospect 𝑌  by PWSD, if 𝑋 domi-
nates 𝑌  by PSD and the CDFs of these prospects satisfy two additional 
conditions. Thus, implementing PWSD constraints requires only formu-
lating these additional conditions as linear constraints, because PSD can 
be guaranteed by enforcing the constraints given by Theorem  3.

In order to keep the presentation clear, we assume throughout the 
remainder of this section that the states in 𝑆 = {𝑠1,… , 𝑠𝑛} are indexed 
in an ascending order of the state-specific outcomes of prospect 𝑌 , 
i.e., 𝑦1 ≤ 𝑦2 ≤ ⋯ ≤ 𝑦𝑛 and that one of these state-specific outcomes is 
equal to the reference outcome, i.e., 𝑟 ∈ {𝑦1, 𝑦2,… , 𝑦𝑛}. Note that this 
assumption does not lead to a loss of generality, since the state indexing 
is arbitrary and 𝑆 can be readily augmented with an additional zero-
probability state in which the state-specific outcome of prospect 𝑌  is 
equal to the reference outcome 𝑟. Yet, the assumption avoids the need 
to introduce separate notation for the ordered outcomes as well as to 
duplicate listing of the constraints that are required to hold also for the 
reference outcome. This is exemplified in the following lemma, which 
formalizes the linear constraints that need to hold, in addition to PSD, 
for a prospect to dominate another in the sense of PWSD.

Lemma 3.  Consider two prospects 𝑋 and 𝑌 . Then 𝑋 ⪰𝑐+
𝑐− 𝑌  if and only 

if 𝑋 ⪰ 𝑌  and there exists 𝑧 ∈ {0, 1}𝑛×𝑛 that satisfies the constraints
𝑥𝑘 +𝑀𝑧𝑖𝑘 ≥ 𝑦𝑖 ∀ 𝑖, 𝑘 ∈ 𝑁 (31)
𝑛
∑

𝑘=1
𝑝𝑘𝑧𝑖𝑘 ≤ 𝐹𝑌 (𝑦𝑖−1) ∀ 𝑖 ∈ 𝑁 𝑠.𝑡. 𝐹𝑌 (𝑦𝑖−1) < 𝑐− and 𝑦𝑖 ≤ 𝑟 (32)

𝑛
∑

𝑘=1
𝑝𝑘𝑧𝑖𝑘 ≤ max

{

𝐹𝑌 (𝑦𝑖−1), 𝐹𝑌 (𝑟), 1 − 𝑐+
}

∀ 𝑖 ∈ 𝑁, (33)

where 𝐹𝑌 (𝑦0) = 0 and 𝑀 is a sufficiently large positive constant.
A detailed proof of this lemma is given in Appendix  A, but its logic 

can be elaborated as follows: The binary variables 𝑧𝑖1,… , 𝑧𝑖𝑛 satisfying 
constraint (31) have the property that 𝑧𝑖𝑘 = 1 for all 𝑥𝑘 < 𝑦𝑖. Therefore, 
∑𝑛

𝑘=1 𝑝𝑘𝑧𝑖𝑘 provides an upper bound for 
∑

𝑥𝑘<𝑦𝑖
𝑝𝑖, and moreover, this 

upper bound is tight when 𝑧𝑖𝑘 = 0 for all 𝑥𝑘 ≥ 𝑦𝑖. Since 
∑

𝑥𝑘<𝑦𝑖
𝑝𝑖 is 

equal to the LHSs of both constraints (9) and (10), the lemma follows 
from Theorem  2.

Lemma  3 together with the results of Section 4.1 can be used to 
determine if a set of prospects X contains some prospect 𝑋 dominating 
a given benchmark prospect 𝑌  by PWSD. Specifically, such a PWSD 
dominating prospect exists if and only if the system of linear constraints 
that comprises those in Lemma  3 and in Theorem  3 has a feasible 
solution. This result is formalized by the following theorem.
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Theorem 4.  Consider a set of prospects X and prospect 𝑌 . Then the 
following statements hold:
(i) If there exists 𝑋 ∈ X such that 𝑋 ⪰𝑐+

𝑐− 𝑌 , then there exist ℎ+ ∈ R𝑛+×𝑛
+ , 

𝑧+ ∈ {0, 1}𝑛, 𝑑− ∈ R𝑛
+, 𝑔− ∈ R𝑛×𝑛

+ , ℎ− ∈ R𝑛×𝑛
+ , 𝑧− ∈ {0, 1}𝑛×𝑛, 

𝜁− ∈ {0, 1}𝑛, and 𝑧 ∈ {0, 1}𝑛×𝑛 that satisfy the system of linear 
constraints (21)–(29) and (31)–(33).

(ii) Conversely, if there exist 𝑥 ∈  , ℎ+ ∈ R𝑛+×𝑛
+ , 𝑧+ ∈ {0, 1}𝑛, 𝑑− ∈

R𝑛
+, 𝑔− ∈ R𝑛×𝑛

+ , ℎ− ∈ R𝑛×𝑛
+ , 𝑧− ∈ {0, 1}𝑛×𝑛, 𝜁− ∈ {0, 1}𝑛, and 

𝑧 ∈ {0, 1}𝑛×𝑛 that satisfy the system of linear constraints (21)–(29) 
and (31)–(33), then there exists some prospect 𝑋′ ∈ X such that 
𝑋′(𝑠𝑖) = 𝑥𝑖 for all 𝑖 ∈ 𝑁 , and 𝑋′ ⪰𝑐+

𝑐− 𝑌 .

Since the constraints in Theorem  4 are linear in all decision vari-
ables, they can be used in stochastic optimization models to implement 
PWSD constraints without introducing non-linearities. Corollary  2 pro-
vides a formulation for a stochastic optimization model which identifies 
the expected outcome maximizing prospect among all those in set X
that dominate the benchmark prospect 𝑌  by PWSD.

Corollary 2. 𝑋∗ is an optimal solution to the optimization prob-
lem max𝑋∈X

{

E[𝑋] ∣ 𝑋 ⪰𝑐+
𝑐− 𝑌

} if and only if 𝑥∗ = (𝑥∗1 ,… , 𝑥∗𝑛) =
(𝑋∗(𝑠1),… , 𝑋∗(𝑠𝑛)) is an optimal solution to the optimization problem

max
𝑛
∑

𝑖=1
𝑝𝑖𝑥𝑖

𝑠.𝑡. (𝑥, ℎ+, 𝑧+, 𝑑−, 𝑔−, ℎ−, 𝑧−, 𝜁−, 𝑧) satisfies constraints (21)–(29) and 
(31)–(33)

𝑥 ∈  ,where  is given by (20).

5. Empirical applications

5.1. Application to industry portfolio optimization

This section applies the developed stochastic optimization models 
to financial data to investigate the efficiency of the market portfolio. 
Specifically, we test if diversification across industries makes it possible 
to construct a portfolio that dominates the market portfolio by PSD or 
PWSD. If such PSD dominating portfolios exist, they would be preferred 
over the benchmark market portfolio by all investors with an S-shaped 
utility function. Moreover, if there exists a portfolio dominating the 
benchmark by PWSD, then it would be preferred by all CPT investors 
with an S-shaped utility function and inverse S-shaped probability 
weighting functions contained in sets 𝑊 𝑐+  and 𝑊 𝑐− . However, if such 
benchmark dominating portfolios cannot be identified, then holding the 
market portfolio is a justified optimal investment decision for at least 
some CPT preferences.

We use monthly returns of the Fama–French 49 value-weighted 
industry portfolios as the base assets 𝑋1,… , 𝑋49 and the all-share index 
‘Bench’ from the Center for Research in Security Prices (CRSP) to proxy 
the benchmark market portfolio 𝑌 . ‘Bench’ is a tracking index of the 
value-weighted return of all CRSP firms incorporated in the US and 
listed on the NYSE, AMEX, or NASDAQ exchanges. Therefore, the data 
set includes all monthly asset and benchmark return observations from 
January 1927 to December 2021, spanning a sample period of 95 years 
or 1140 trading months. The descriptive statistics of this data set can 
be found in the online supplementary material.

We deploy a rolling estimation approach with an estimation window 
of 36 months that is shifted forward 12-month at a time. With this 
estimation approach, our data set yields a total of 93 overlapping 3-
year estimation periods 01/1927–12/1929,  01/1928–12/1930, . . . , 
01/2019–12/2021. For each estimation period, we solve three stochas-
tic optimization models in which the state-space is constructed using 
the monthly returns of the base assets 𝑋1,… , 𝑋49 and the benchmark 
market portfolio 𝑌 . The first optimization model identifies the expected 
return maximizing portfolio among those that dominate the benchmark 
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Fig. 2. Inefficiency of the market portfolio 1927–2021.
Note: Excess returns of the optimized portfolios 𝑋∗, 𝑋∗

0.1, and 𝑋∗
0.25 over the benchmark market portfolio 𝑌 . Portfolio 𝑋∗ dominates the benchmark 𝑌  in the sense of PSD and 

portfolios 𝑋∗
0.1 and 𝑋∗

0.25 in the sense of PWSD.
𝑌  in the sense of PSD, when short-selling is not allowed. Formally, 
this model can be expressed as 𝑋∗ ∈ argmax𝑋∈X{E[𝑋] ∣ 𝑋 ⪰ 𝑌

}

, 
where X = {

∑49
𝑗=1 𝜆𝑗𝑋𝑗 ∣ 𝜆 ∈ R49

+ ,
∑49

𝑗=1 𝜆𝑗 = 1} (see Corollary  1 
for the MILP formulation). The second and third optimization models 
identify the expected return maximizing portfolios among those that 
dominate the benchmark 𝑌  in the sense of PWSD with two threshold 
parameter values 𝑐− = 𝑐+ = 0.1 and 𝑐− = 𝑐+ = 0.25. Formally, 
these portfolios are defined as 𝑋∗

0.1 ∈ argmax𝑋∈X
{

E[𝑋] ∣ 𝑋 ⪰0.1
0.1 𝑌

}

and 𝑋∗
0.25 ∈ argmax𝑋∈X

{

E[𝑋] ∣ 𝑋 ⪰0.25
0.25 𝑌

} (see Corollary  2 for the 
MILP formulation). For each estimation period, the geometric mean 
of the monthly risk-free T-bill rates is used as the reference rate 𝑟. 
The expected returns of the three optimal portfolios satisfy E[𝑋∗] ≥
E[𝑋∗

0.1] ≥ E[𝑋∗
0.25], since {𝑋 ∈ X ∣ 𝑋 ⪰ 𝑌 } ⊇ {𝑋 ∈ X ∣ 𝑋 ⪰0.1

0.1 𝑌 } ⊇

{𝑋 ∈ X ∣ 𝑋 ⪰0.25
0.25 𝑌 }.

Fig.  2 shows the excess returns of the optimized portfolios 𝑋∗, 
𝑋∗

0.1, and 𝑋∗
0.25 over the benchmark market portfolio 𝑌  for the years 

1927–2021. Fig.  3 presents the number of base assets included in the 
optimal PSD (𝑋∗) and PWSD (𝑋∗

0.1, 𝑋
∗
0.25) portfolios for each year from 

1927 to 2021. Moreover, Fig.  4 illustrates the range of asset weights 
𝜆𝑗 ∈ [0, 1] for each of the 𝑚 = 49 base assets in the optimal PSD (𝑋∗) and 
PWSD (𝑋∗

0.1, 𝑋
∗
0.25) portfolios over the period 1927–2021 (see online 

supplementary material for visualizations of asset compositions).
These results suggest that the market portfolio is inefficient, as for 

each estimation period it is possible to identify another portfolio that 
dominates the market portfolio in the sense of PSD and PWSD. On 
average, the excess return of portfolio 𝑋∗ is approximately 2% while 
that of portfolios 𝑋∗

0.1 and 𝑋∗
0.25 is around 1.6%–1.7% (see Table  1). 

Overall, we observe a consistent pattern that these excess returns are 
considerably higher during economic or financial downturns in history 
such as the Wall Street Crash (1929), World War II (1939–1945), the 
Eisenhower Recession (1958), the OPEC Oil Price Shock (1973), the 
Energy Crisis (1979), the Doc-com Bubble (2000), and the September 
11 Attacks (2001). Surprisingly, the excess returns do not soar to a new 
record high level during the Subprime Mortgage Crisis (2007–2008), 
which is known to have triggered a devastating worldwide financial 
crisis impacting global economies. In most periods, PSD dominating 
portfolios (𝑋∗) lead to only marginally greater excess returns over the 
benchmark than those dominating it in the sense of PWSD (𝑋∗ , 𝑋∗ ), 
0.1 0.25
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Table 1
Summary statistics of excess returns of benchmark dominating portfolios by PSD (𝑋∗) 
and PWSD (𝑋∗

0.1 , 𝑋
∗
0.25). 

 Excess returns over benchmark (%) Statistics

 Mean Std. Min. Median Max.  
 E [𝑋∗] − E [𝑌 ] 1.949 0.888 0.787 1.702 4.504 
 E [

𝑋∗
0.1

]

− E [𝑌 ] 1.706 0.804 0.589 1.454 4.053 
 E [

𝑋∗
0.25

]

− E [𝑌 ] 1.671 0.783 0.589 1.445 4.053 

although some notably higher returns are observed in late 1920s and 
1970s. Moreover, the larger set of feasible probability weighting func-
tions (𝑐− = 𝑐+ = 0.25) generally results in only a modest decrease in 
the excess returns, but requires a slightly broader diversification across 
the asset universe compared to the smaller set (𝑐− = 𝑐+ = 0.1). In con-
trast, PSD (𝑋∗) portfolios are in general the least diversified compared 
to PWSD (𝑋∗

0.1, 𝑋
∗
0.25) portfolios. Interestingly, industries ‘BldMt’ and 

‘Mach’ are not included in any of the optimal PSD (𝑋∗) or PWSD (𝑋∗
0.1) 

portfolios. In addition, the optimal PSD (𝑋∗) portfolios do not include 
industries ‘Hshld’, ‘Chems’, ‘Steel’, and ‘Trans’ either.

5.2. Application to a multi-period newsvendor problem

This section demonstrates how the developed models can be utilized 
in other application areas apart from financial portfolio optimization to 
analyze if observed decision behavior can be explained by CPT. For this 
purpose we utilize the real-world procurement optimization application 
of Sillanpää et al. (2021), which can be viewed as a multi-period 
newsvendor problem in the area of operations management.

In this application a pulp & paper company decides on the order 
quantities of natural gas to satisfy uncertain demand with minimal 
costs. This decision is complicated by multiple time periods and a piece-
wise linear pricing scheme of the procurement contracts. Originally, Sil-
lanpää et al. (2021) developed a prescriptive stochastic optimization 
model to identify ordering policies that minimize the expected cost. 
This model was deployed to support decision making at the case com-
pany, which had previously been relying on heuristic ordering policies. 
Here, however, we analyze the decision setting from a behavioral 
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Fig. 3. Number of industries (out of 𝑚 = 49) included in the optimal PSD (𝑋∗) and PWSD (𝑋∗
0.1 , 𝑋

∗
0.25) portfolios for each year 1927–2021.
perspective and examine whether these heuristic ordering policies are 
optimal under CPT. This is achieved by utilizing the models developed 
in Section 4 to identify if there exists an ordering policy with a cost 
distribution that dominates the one generated by a specific heuristic 
policy in the sense of PSD or PWSD. If such a dominating policy exists, 
then the heuristic ordering policy cannot be justified by behavioral 
arguments based on CPT, since any CPT value maximizer would prefer 
the dominating policy over the heuristic one. Conversely, if no such 
dominating policy exists, then the heuristic policy would be consistent 
with CPT decision behavior for some S-shaped utility functions and 
inverse S-shaped probability weighting functions.

To formally present the decision setting and related stochastic op-
timization models, let 𝐷𝜏𝜂 denote the random variable capturing the 
demand at the 𝜂:th hour of month 𝜏 ∈ 𝑇 = {1,… , 12}. There are two 
types of procurement contracts: First, the case company can commit to 
ordering a constant fixed quantity 𝑞𝐹  for all hours of the upcoming year 
at a unit price 𝛾𝐹𝜏 , which varies from month to month. Second, the case 
company can commit to ordering quantity 𝑞𝜏 for each hour of month 
𝜏 ∈ 𝑇  with the unit price 𝛾0𝜏 > 𝑐𝐹𝜏 .

The realized costs are contingent on the realized gas demand. 
Specifically, if on a given hour 𝜂 of month 𝜏 the total ordered quantity 
exceeds the gas demand (𝑞𝐹 + 𝑞𝜏 > 𝐷𝜏𝜂), the supplier compensates at a 
rate of 𝛾−𝜏 < 𝛾𝐹𝜏  per unit of unused gas. On the contrary, if the demand 
exceeds the total order, i.e., (𝑞𝐹 + 𝑞𝜏 < 𝐷𝜏𝜂), then any additional gas 
request will be supplied at a higher price. However, this higher price 
depends on the magnitude of the shortage: If the demand exceeds the 
total order by at most (𝛼𝜏 −1)× 100%, the unit price is 𝛾+𝜏 > 𝛾0𝜏 , beyond 
which the unit price is 𝛾∗𝜏 > 𝛾+𝜏 . Thus, for month 𝜏 the total cost is 
captured by the random variable

𝐶𝜏 (𝑞𝐹 , 𝑞𝜏 ) =
∑

𝜂∈𝐻𝜏

max
{

𝛾𝐹𝜏 𝑞𝐹 + 𝛾0𝜏 𝑞𝜏 + 𝛾−𝜏 (𝐷𝜏𝜂 − (𝑞𝐹 + 𝑞𝜏 )), (34)

𝛾𝐹𝜏 𝑞𝐹 + 𝛾0𝜏 𝑞𝜏 + 𝛾+𝜏 (𝐷𝜏𝜂 − (𝑞𝐹 + 𝑞𝜏 )),

𝛾𝐹𝜏 𝑞𝐹 + 𝛾0𝜏 𝑞𝜏 + 𝛾+𝜏 (𝐷𝜏𝜂 − (𝑞𝐹 + 𝑞𝜏 )) + (𝛾∗𝜏 − 𝛾+𝜏 )

× (𝐷𝜏𝜂 − 𝛼𝜏 (𝑞𝐹 + 𝑞𝜏 ))
}

,

where 𝐻  is the index set of hours in month 𝜏 ∈ 𝑇 .
𝜏
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The expected cost minimizing order quantities are thus obtained by 
solving the optimization problem 

max
𝑞𝐹 ,𝑞𝜏≥0

{

E[𝑋]
|

|

|

|

𝑋 = −
∑

𝜏∈𝑇
𝐶𝜏 (𝑞𝐹 , 𝑞𝜏 )

}

. (35)

This problem has an LP formulation when the uncertain demand is 
captured by a discrete state-space (see online supplementary material 
for details). Augmenting this formulation with the constraints and 
decision variables from Theorem  4 gives a MILP formulation for the 
optimization problem 

max
𝑞𝐹 ,𝑞𝜏≥0

{

E[𝑋]
|

|

|

|

𝑋 = −
∑

𝜏∈𝑇
𝐶𝜏 (𝑞𝐹 , 𝑞𝜏 ), 𝑋 ⪰𝑐+

𝑐− 𝑌

}

. (36)

The resulting MILP model makes it possible to identify the expected 
cost minimizing cost distribution 𝑋 that dominates a chosen benchmark 
𝑌  in the sense of PWSD.

To estimate the parameters of the stochastic optimization prob-
lem (36), we utilize the data from year 2015 as reported in Sil-
lanpää et al. (2021). Specifically, for the unit prices 𝛾−𝜏 , 𝛾𝐹𝜏 , 𝛾0𝜏 , 𝛾+𝜏 , 𝛾∗𝜏
we use the cost forecasts from Table 1 of Sillanpää et al. (2021) 
and the value 𝛼𝜏 = 1.15. Furthermore, for each month 𝜏 ∈ 𝑇 , all 
hourly demands 𝐷𝜏𝜂 , 𝜂 ∈ 𝐻𝜏 are assumed to be identically dis-
tributed and to follow a lognormal distribution 𝐷𝜏 . These distributions 
are fitted to the expected demands and the 95%–confidence intervals 
presented in Figure 4 of Sillanpää et al. (2021). The resulting log-
normal distributions have the expected values (E[𝐷1],… ,E[𝐷12]) =
(5.6, 4.6, 4.0, 4.3, 3.4, 4.8, 5.6, 4.3, 5.5, 4.0, 4.2, 4.4) and standard deviations 
(Std[𝐷1],… , Std[𝐷12]) = (1.1, 1.3, 0.8, 1.4, 1.1, 1.9, 2.6, 3.1, 1.1, 0.7, 0.9, 1.1). 
A random sample of 𝑛 = 50 hourly demand time-series (each with 
a length of ∑𝜏∈𝑇 |𝐻𝜏 | = 8760) is drawn from these distributions to 
construct the state-space.

As the benchmark we use the cost distribution generated by the 
heuristic ordering policy that the case company had been practicing 
before deploying stochastic optimization for decision support. Specif-
ically, in this heuristic policy, the fixed order quantity is given by 
𝑞𝐹 = argmin𝑞𝐹

∑

𝜏∈𝑇 (𝛾𝐹𝜏 𝑞𝐹 + 𝛾0𝜏 max{0, E[𝐷𝜏 ] − 𝑞𝐹 }) (see online sup-
plementary material for the LP formulation) and the monthly order 
quantities by 𝑞 = max{0, E[𝐷 ] − 𝑞 }. The resulting benchmark cost 
𝜏 𝜏 𝐹
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Fig. 4. Asset compositions of the optimal PSD (𝑋∗) and PWSD (𝑋∗
0.1 , 𝑋

∗
0.25) portfolios. The gray bars show the minimum and maximum values for 𝜆𝑗 , 𝑗 ∈ {1,… , 49}, across the 

years 1927–2021, and the red crosses denote the average values.
distribution from the heuristic order quantities is thus given by 𝑌 =
−
∑

𝜏∈𝑇 𝐶𝜏 (𝑞𝐹 , 𝑞𝜏 ), where 𝐶𝜏 (⋅) is given by (34).
We solve the stochastic optimization problem (36) using three dif-

ferent sets of probability weighting functions (𝑐− = 𝑐+ ∈ {0, 0.1, 0.25}) 
and two reference outcomes (𝑟 ∈ {0,median(𝑌 )}). Surprisingly, the six 
problems all produce exactly the same optimal ordering policy 𝑞∗𝐹 =
4.2, 𝑞∗ = (1.1, 0, 0, 0, 0, 0, 0.4, 0, 0.9, 0, 0, 0). This optimal policy offers a 
0.5% reduction in the expected costs compared to the heuristic policy 
𝑞𝐹 = 3.4, 𝑞 = (2.2, 1.2, 0.6, 0.9, 0, 1.4, 2.2, 0.9, 2.1, 0.6, 0.8, 1.0). Moreover, 
we find that this optimal policy (𝑞∗𝐹 , 𝑞∗𝜏 ) results in a cost distribution 
(𝑋∗) which first-order stochastically dominates the cost distribution (𝑌 )
produced by the heuristic policy (𝑞𝐹 , 𝑞𝜏 ) (i.e., 𝐹𝑋∗ (𝑡) ≤ 𝐹𝑌 (𝑡) ∀ 𝑡 ∈
R, see Fig.  5). Consequently, the heuristic policy is not optimal for 
any CPT decision maker as the optimal policy (𝑞∗ , 𝑞∗) yields a higher 
𝐹 𝜏
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CPT value for any S-shaped utility function and any pair of inverse 
S-shaped probability weighting functions. More broadly, all decision 
makers whose risk preferences are characterized by non-decreasing 
utility functions would prefer the optimal ordering policy (𝑞∗𝐹 , 𝑞∗𝜏 ) over 
the heuristic one.

6. Discussion and conclusions

In this research, we have developed stochastic optimization models 
for cumulative prospect theory (CPT) that allow incomplete preference 
information. This incomplete information is modeled by utilizing the 
PSD and PWSD criteria which accommodate sets of utility functions and 
probability weighting functions. The developed optimization models 
enable to identify an optimal decision alternative that is preferred to a 
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Fig. 5. Cost distributions of the heuristic ordering policy (𝑌 ) and the optimized ordering policy (𝑋∗).
pre-specified benchmark by all CPT decision makers with an S-shaped 
utility function and a pair of inverse S-shaped probability weight-
ing functions. These contributions complement existing prescriptive 
stochastic optimization models that utilize EUT-based dominance cri-
teria (e.g., SSD), and make it possible to utilize stochastic optimization 
in descriptive behavioral analyses in which CPT describes empirically 
observed decision behavior.

The two reported applications in portfolio diversification and pro-
curement optimization demonstrate that the developed optimization 
models are suitable for analyzing decision settings in which it is imprac-
tical or even impossible to enumerate all feasible decision alternatives. 
In both applications, the developed optimization models identified a 
decision alternative that would be preferred to the benchmark alterna-
tive by a large group of decision makers whose choice behavior agrees 
with CPT. As a result, these benchmark alternatives are not optimal for 
decision makers whose decision behavior is characterized by CPT.

This research opens up several avenues for future research. Firstly, 
the methods developed here should be tested in other empirical applica-
tions in areas such as finance, operations management, and economics 
to analyze if observed decision behavior is consistent with CPT. Sec-
ondly, the potential usefulness of the developed models in prescriptive 
decision support could be explored. For instance, in financial portfo-
lio selection, recommending the expected utility maximizing portfolio 
(for some reasonable choice of a utility function) among those that 
dominate the market portfolio in the sense of PSD or PWSD might 
strike a practical balance between rationality and acceptability from a 
viewpoint of an investor whose preferences are consistent with CPT. 
Thirdly, the optimal solution given by any stochastic optimization 
model utilizing stochastic dominance constraints can be sensitive to the 
benchmark selection. Although the choice of a benchmark depends on 
the application context and the aims of the specific empirical analysis, 
it would be useful to explore further if some general properties of a 
suitable benchmark solution can be identified. Finally, another attrac-
tive approach would be to develop optimization models that avoid 
the need of specifying a benchmark solution by solving the entire set 
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of efficient solutions that are non-dominated in the sense of PSD or 
PWSD. This approach seems promising since recently multiobjective 
optimization models have been successfully applied to identify solu-
tions to stochastic optimization problems that are not dominated by 
any other feasible solutions in the sense of Second- and Third-order 
Stochastic Dominance (Liesiö et al., 2023).

CRediT authorship contribution statement

Peng Xu: Writing – review & editing, Writing – original draft, Visu-
alization, Software, Methodology, Funding acquisition, Formal analysis, 
Conceptualization. Juuso Liesiö: Writing – review & editing, Writing – 
original draft, Visualization, Software, Methodology, Formal analysis, 
Conceptualization.

Acknowledgments

We would like to thank the editor and reviewers for their insightful 
comments and observations that helped us in improving the paper. 
This research was supported by the Foundation for Economic Education 
(Liikesivistysrahasto), Finland [Grant no. 210303]. The computational 
resources on Triton computing cluster provided by the Aalto Science-IT 
project are also acknowledged.

Appendix A. Proofs

Proof of Theorem  1.  By Proposition  1, 𝑋 ⪰ 𝑌  if and only if for any 
𝑡− ≤ 𝑟 and 𝑡+ ≥ 𝑟

0 ≤ ∫

𝑡+

𝑡−
𝐹𝑌 (𝜏)−𝐹𝑋 (𝜏)𝑑𝜏 = ∫

𝑟

𝑡−
𝐹𝑌 (𝜏) − 𝐹𝑋 (𝜏)𝑑𝜏

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
=𝜅

+∫

𝑡+

𝑟
𝐹𝑌 (𝜏) − 𝐹𝑋 (𝜏)𝑑𝜏

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
=𝜂

.

(A.1)
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Note that if 𝜅 < 0 (𝜂 < 0) from some value of 𝑡− (𝑡+), then setting 𝑡+ = 𝑟
(𝑡− = 𝑟) would imply that 𝜅+ 𝜂 < 0. In turn, if 𝜅+ 𝜂 < 0 for some values 
of 𝑡− and 𝑡+, then it holds that 𝜅 < 0 for 𝑡+ or 𝜂 < 0 for 𝑡+. Thus, 𝑋 ⪰ 𝑌
if and only if 𝜅 ≥ 0 and 𝜂 ≥ 0. Substituting ∫ 𝛽

𝛼 𝐹(⋅)(𝑡)𝑑𝑡 = 𝐹 2
(⋅)(𝛽) − 𝐹 2

(⋅)(𝛼)
into (A.1) implies that 𝑋 ⪰ 𝑌  if and only if
𝐹 2
𝑌 (𝑡

+) − 𝐹 2
𝑌 (𝑟) ≥ 𝐹 2

𝑋 (𝑡
+) − 𝐹 2

𝑋 (𝑟) for all 𝑡+ ≥ 𝑟 (A.2)

𝐹 2
𝑌 (𝑟) − 𝐹 2

𝑌 (𝑡
−) ≥ 𝐹 2

𝑋 (𝑟) − 𝐹 2
𝑋 (𝑡

−) for all 𝑡− < 𝑟. (A.3)

Since {𝑦𝑖 ∣ 𝑦𝑖 ≥ 𝑟} ⊆ {𝑡+|𝑡+ ≥ 𝑟} and {𝑥𝑖 ∣ 𝑥𝑖 < 𝑟} ⊆ {𝑡−|𝑡− ≤ 𝑟}, 
conditions (A.2) and (A.3) imply the theorem’s conditions
𝐹 2
𝑌 (𝑡

+) − 𝐹 2
𝑌 (𝑟)

⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟
=𝛾+(𝑡+)

≥ 𝐹 2
𝑋 (𝑡

+) − 𝐹 2
𝑋 (𝑟)

⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟
=𝜙+(𝑡+)

 for all 𝑡+ ∈ {𝑦𝑖 ∣ 𝑦𝑖 ≥ 𝑟}

𝐹 2
𝑌 (𝑟) − 𝐹 2

𝑌 (𝑡
−)

⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟
=𝛾−(𝑡−)

≥ 𝐹 2
𝑋 (𝑟) − 𝐹 2

𝑋 (𝑡
−)

⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟
=𝜙−(𝑡−)

 for all 𝑡− ∈ {𝑥𝑖 ∣ 𝑥𝑖 < 𝑟}.

Thus, what remains to be proven is that in a discrete state-space 
conditions (7) and (8) imply conditions (A.2) and (A.3), respectively. 
These proofs make use of the fact that in a discrete state-space the 
integrated CDFs are non-decreasing convex piece-wise linear functions 
(cf. Eq. (6)).

In the gains domain, we show that if (A.2) does not hold, then 
condition (7) not hold. Assume condition (A.2) does not hold for some 
𝑡∗ ≥ 𝑟, i.e., 𝛾+(𝑡∗) < 𝜙+(𝑡∗). First, if 𝑡∗ < 𝑦+𝑚𝑖𝑛, where 𝑦+𝑚𝑖𝑛 = min{𝑦𝑖|𝑦𝑖 >
𝑟}, we have 𝛾+(𝑦+𝑚𝑖𝑛) − 𝜙+(𝑦+𝑚𝑖𝑛) < 𝛾+(𝑡∗) − 𝜙+(𝑡∗) < 0 as both 𝛾+ and 𝜙+

are non-decreasing convex piece-wise linear functions. Then, condition 
(7) does not hold for 𝑡+ = 𝑦+𝑚𝑖𝑛. Second, if 𝑦+𝑚𝑖𝑛 ≤ 𝑡∗ ≤ 𝑦+𝑚𝑎𝑥, where 
𝑦+𝑚𝑎𝑥 = max{𝑦𝑖|𝑦𝑖 ≥ 𝑟}, there exist 𝑦𝑗 and 𝑦𝑘 such that 𝑡∗ ∈ [𝑦𝑗 , 𝑦𝑘]
and 𝛾+ is linear on [𝑦𝑗 , 𝑦𝑘]. Then, 𝛾+(𝑡∗) < 𝜙+(𝑡∗) implies that either 
𝛾+(𝑦𝑗 ) < 𝜙+(𝑦𝑗 ) or 𝛾+(𝑦𝑘) < 𝜙+(𝑦𝑘), since 𝜙+ is a non-decreasing convex 
function. Hence, condition (7) does not hold for 𝑡+ = 𝑦𝑗 or 𝑡+ = 𝑦𝑘. 
Finally, in case 𝑡∗ > 𝑦+𝑚𝑎𝑥, it holds that 𝛾+(𝑦+𝑚𝑎𝑥) < 𝜙+(𝑦+𝑚𝑎𝑥), since 
𝜕
𝜕𝑡 𝛾

+(𝑡) = 𝐹𝑌 (𝑡) = 1 ≥ 𝐹𝑋 (𝑡) =
𝜕
𝜕𝑡𝜙

+(𝑡) for all 𝑡 > 𝑦+𝑚𝑎𝑥.
In the domain of losses, we show that if (A.3) does not hold, then 

condition (8) does not hold. Assume (A.3) does not hold for some 𝑡∗ < 𝑟, 
i.e., 𝛾−(𝑡∗) < 𝜙−(𝑡∗). First, if 𝑡∗ > 𝑥−𝑚𝑎𝑥, where 𝑥−𝑚𝑎𝑥 = max{𝑥𝑖|𝑥𝑖 < 𝑟}, 
we have 𝛾−(𝑥−𝑚𝑎𝑥) − 𝜙−(𝑥−𝑚𝑎𝑥) < 𝛾−(𝑡∗) − 𝜙−(𝑡∗) < 0 as both 𝛾− and 𝜙−

are non-increasing concave piece-wise linear functions. Then, condition 
(8) does not hold for 𝑡− = 𝑥+𝑚𝑎𝑥. Second, if 𝑥−𝑚𝑖𝑛 ≤ 𝑡∗ ≤ 𝑥−𝑚𝑎𝑥, where 
𝑥−𝑚𝑖𝑛 = min{𝑥𝑖|𝑥𝑖 < 𝑟}, there exist 𝑥𝑗 and 𝑥𝑘 such that 𝑡∗ ∈ [𝑥𝑗 , 𝑥𝑘]
and 𝜙− is linear on [𝑥𝑗 , 𝑥𝑘]. Then, 𝛾−(𝑡∗) < 𝜙−(𝑡∗) implies that either 
𝛾−(𝑥𝑗 ) < 𝜙−(𝑥𝑗 ) or 𝛾−(𝑥𝑘) < 𝜙−(𝑥𝑘), and since 𝜙− is a non-increasing 
concave function. Hence, condition (8) does not hold for 𝑡− = 𝑥𝑗 or 
𝑡− = 𝑥𝑘. Finally, in case 𝑡∗ < 𝑥−𝑚𝑖𝑛, it holds that 𝛾−(𝑥−𝑚𝑖𝑛) < 𝜙−(𝑥−𝑚𝑖𝑛), 
since 𝜕

𝜕𝑡𝜙
−(𝑡) = −𝐹𝑋 (𝑡) = 0 ≥ −𝐹𝑌 (𝑡) =

𝜕
𝜕𝑡 𝛾

−(𝑡) for all 𝑡 < 𝑥−𝑚𝑖𝑛. □

Proof of Theorem  2.  To prove the theorem we need to show that 
inequality (4) of Proposition  2 holds if and only if inequalities (9) and 
(10) hold.

We first prove the ‘if’ part by contra-positive, i.e., if inequality 
(4) of Proposition  2 does not hold, then inequalities (9)–(10) do not 
hold. Assume that inequality (4) of Proposition  2 does not hold, which 
implies that ∃ 𝑡∗ ∈ [𝑎, 𝑡𝐿) ∪ [𝑡𝑅, 𝑏] such that 𝐹𝑋 (𝑡∗) > 𝐹𝑌 (𝑡∗), where 
𝑡𝐿 = inf({𝑡 ≤ 𝑟 ∣ 𝐹𝑋 (𝑡) ≥ 𝑐−, 𝐹𝑌 (𝑡) ≥ 𝑐−} ∪ {𝑟}) and 𝑡𝑅 = sup({𝑡 ≥ 𝑟 ∣
𝐹𝑋 (𝑡) ≤ 1 − 𝑐+, 𝐹𝑌 (𝑡) ≤ 1 − 𝑐+} ∪ {𝑟}). Suppose first that 𝑡∗ ∈ [𝑎, 𝑡𝐿). 
This implies that 𝑡∗ < 𝑟 and min{𝐹𝑋 (𝑡∗), 𝐹𝑌 (𝑡∗)} < 𝑐−, which together 
with 𝐹𝑋 (𝑡∗) > 𝐹𝑌 (𝑡∗), gives 𝐹𝑌 (𝑡∗) < 𝑐−. Choose 𝑙 ∈ {1,… , 𝑛 + 1} such 
that 𝑡∗ ∈ [𝑦̃𝑙−1, 𝑦̃𝑙), then 𝐹𝑌 (𝑦̃𝑙−1) = 𝐹𝑌 (𝑡∗) < 𝑐−. Moreover, since 𝑡∗ < 𝑟, 
we have 𝑦̃𝑙−1 < 𝑟, which together with the assumption that 𝑟 = 𝑦̃𝑖 for 
some 𝑖 ∈ 𝑁 , implies that 𝑦̃𝑙 ≤ 𝑟. Thus, we obtain that 𝐹𝑌 (𝑦̃𝑙−1) < 𝑐− and 
𝑦̃𝑙 ≤ 𝑟, but evaluating the LHS of inequality (9) for index 𝑖 = 𝑙 gives
𝐹𝑋 (𝑦̃𝑙) =

∑

𝑘 s.t. 
𝑥𝑘<𝑦𝑙

𝑝𝑘 ≥
∑

𝑘 s.t. 
𝑥𝑘<𝑡∗

𝑝𝑘 = 𝐹𝑋 (𝑡∗) > 𝐹𝑌 (𝑡∗) = 𝐹𝑌 (𝑦̃𝑙−1),

which implies that inequality (9) is not satisfied.
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Now suppose that 𝑡∗ ∈ [𝑡𝑅, 𝑏]. Then, max{𝐹𝑋 (𝑡∗), 𝐹𝑌 (𝑡∗)} > 1 − 𝑐+, 
which together with 𝐹𝑋 (𝑡∗) > 𝐹𝑌 (𝑡∗), implies 𝐹𝑋 (𝑡∗) > 1−𝑐+. Moreover, 
𝑡∗ ≥ 𝑡𝑅 ≥ 𝑟 implies 𝐹𝑋 (𝑡∗) > 𝐹𝑌 (𝑡∗) ≥ 𝐹𝑌 (𝑟). Choose 𝑙 ∈ {1,… , 𝑛+1} such 
that 𝑡∗ ∈ [𝑦̃𝑙−1, 𝑦̃𝑙). Then, 𝐹𝑌 (𝑦̃𝑙−1) = 𝐹𝑌 (𝑡∗) < 𝐹𝑋 (𝑡∗). Together these 
inequalities imply that 𝐹𝑋 (𝑡∗) > max{𝐹𝑌 (𝑦̃𝑙−1), 𝐹𝑌 (𝑟), 1− 𝑐+}. Evaluating 
the LHS of inequality (10) for index 𝑖 = 𝑙 gives
𝐹𝑋 (𝑦̃𝑙) =

∑

𝑘 s.t. 
𝑥𝑘<𝑦̃𝑙

𝑝𝑘 ≥
∑

𝑘 s.t. 
𝑥𝑘<𝑡∗

𝑝𝑘 = 𝐹𝑋 (𝑡∗) > max{𝐹𝑌 (𝑦̃𝑙−1), 𝐹𝑌 (𝑟), 1 − 𝑐+},

which implies that inequality (10) does not hold.
Next, we prove the ‘only if’ part by assuming that inequality (4) of 

Proposition  2 holds. To show that inequality (9) is satisfied we evaluate 
its LHS for an arbitrary 𝑖 ∈ {1,… , 𝑛 + 1} such that 𝐹𝑌 (𝑦̃𝑖−1) < 𝑐− and 
𝑦̃𝑖 ≤ 𝑟 to obtain
𝐹𝑋 (𝑦̃𝑖) =

∑

𝑘 s.t. 
𝑥𝑘<𝑦̃𝑖

𝑝𝑘 = 𝐹𝑋 (𝑥∗),

where 𝑥∗ = max𝑘{𝑥𝑘|𝑥𝑘 < 𝑦̃𝑖}. By inequality (4) of Proposition  2, it 
holds that 𝐹𝑋 (𝑡) ≤ 𝐹𝑌 (𝑡) ∀ 𝑡 ∈ [𝑎, 𝑡𝐿), where 𝑡𝐿 = inf({𝑡 ≤ 𝑟 ∣ 𝐹𝑋 (𝑡) ≥
𝑐−, 𝐹𝑌 (𝑡) ≥ 𝑐−} ∪ {𝑟}). To confirm that 𝑥∗ ∈ [𝑎, 𝑡𝐿), first suppose that 
𝑡𝐿 = 𝑟. Then, this implies that 𝑡𝐿 = 𝑟 ≥ 𝑦̃𝑖 > 𝑥∗ and thus, 𝑥∗ ∈ [𝑎, 𝑡𝐿). 
Second, suppose that 𝑡𝐿 ≠ 𝑟, which implies 𝑡𝐿 = min{𝑡 ≤ 𝑟 ∣ 𝐹𝑋 (𝑡) ≥
𝑐−, 𝐹𝑌 (𝑡) ≥ 𝑐−}. If 𝑡𝐿 < 𝑦̃𝑖, this would imply that 𝐹𝑌 (𝑡𝐿) ≤ 𝐹𝑌 (𝑦̃𝑖−1) < 𝑐−, 
which contradicts the required condition that 𝐹𝑌 (𝑡𝐿) ≥ 𝑐−. Hence, it 
must hold that 𝑡𝐿 ≥ 𝑦̃𝑖 > 𝑥∗ and thus, 𝑥∗ ∈ [𝑎, 𝑡𝐿). Evaluating inequality 
(4) of Proposition  2 at 𝑡 = 𝑥∗ yields
𝐹𝑋 (𝑥∗) ≤ 𝐹𝑌 (𝑥∗) ≤ sup

𝑡∈[𝑥∗ ,𝑦̃𝑖)
𝐹𝑌 (𝑡) ≤ 𝐹𝑌 (𝑦𝑖−1),

which is the right-hand side of inequality (9).
To show that inequality (10) is satisfied we evaluate its LHS for an 

arbitrary 𝑖 ∈ {1,… , 𝑛 + 1} to obtain
𝐹𝑋 (𝑦̃𝑖) =

∑

𝑘 s.t. 
𝑥𝑘<𝑦̃𝑖

𝑝𝑘 = 𝐹𝑋 (𝑥∗),

where 𝑥∗ = max𝑘{𝑥𝑘|𝑥𝑘 < 𝑦̃𝑖}. Since inequality (4) of Proposition  2 
holds, we have 𝐹𝑋 (𝑡) ≤ 𝐹𝑌 (𝑡) ∀ 𝑡 ∈ [𝑡𝑅, 𝑏], where 𝑡𝑅 = sup({𝑡 ≥ 𝑟 ∣
𝐹𝑋 (𝑡) ≤ 1 − 𝑐+, 𝐹𝑌 (𝑡) ≤ 1 − 𝑐+} ∪ {𝑟}). Suppose 𝑥∗ < 𝑡𝑅. If 𝑡𝑅 > 𝑟, then 
{𝑡 ≥ 𝑟 ∣ 𝐹𝑋 (𝑡) ≤ 1 − 𝑐+, 𝐹𝑌 (𝑡) ≤ 1 − 𝑐+} ≠ ∅ and thus, there exists 
𝑥′ ∈ (𝑥∗, 𝑡𝑅] such that 𝐹𝑋 (𝑥′) ≤ 1 − 𝑐+. Then,
𝐹𝑋 (𝑥∗) ≤ 𝐹𝑋 (𝑥′) ≤ 1 − 𝑐+ ≤ max{𝐹𝑌 (𝑦̃𝑖−1), 𝐹𝑌 (𝑟), 1 − 𝑐+}.

In turn, if 𝑡𝑅 = 𝑟, then (4) implies that 𝐹𝑋 (𝑟) ≤ 𝐹𝑌 (𝑟), which gives
𝐹𝑋 (𝑥∗) ≤ 𝐹𝑋 (𝑡𝑅) = 𝐹𝑋 (𝑟) ≤ 𝐹𝑌 (𝑟) ≤ max{𝐹𝑌 (𝑦̃𝑖−1), 𝐹𝑌 (𝑟), 1 − 𝑐+}.

Finally, if 𝑥∗ ≥ 𝑡𝑅, then (4) implies that 𝐹𝑋 (𝑥∗) ≤ 𝐹𝑌 (𝑥∗), which gives
𝐹𝑋 (𝑥∗) ≤ 𝐹𝑌 (𝑥∗) ≤ sup

𝑡∈[𝑥∗ ,𝑦̃𝑖)
𝐹𝑌 (𝑡) ≤ 𝐹𝑌 (𝑦̃𝑖−1) ≤ max{𝐹𝑌 (𝑦̃𝑖−1), 𝐹𝑌 (𝑟), 1 − 𝑐+}. □

Proof of Lemma  1.  We first show that the value of the right-hand side 
(RHS) of condition (7) in Theorem  1 is equal to the optimal objective 
function value of a MILP problem. Specifically, for any 𝑦𝑖 ∈ [𝑟, 𝑏], the 
RHS of condition (7) in Theorem  1 is equal to
𝐹 2
𝑌 (𝑦𝑖) − 𝐹 2

𝑌 (𝑟) ≥ 𝐹 2
𝑋 (𝑦𝑖) − 𝐹 2

𝑋 (𝑟) =
∑

𝑥𝑘≤𝑦𝑖

𝑝𝑘
(

𝑦𝑖 − 𝑥𝑘
)

−
∑

𝑥𝑘≤𝑟
𝑝𝑘
(

𝑟 − 𝑥𝑘
)

=
𝑛
∑

𝑘=1
𝑝𝑘 max

{

𝑦𝑖 − 𝑥𝑘, 0
}

−
𝑛
∑

𝑘=1
𝑝𝑘 max

{

𝑟 − 𝑥𝑘, 0
}

=
𝑛
∑

𝑘=1
𝑝𝑘

(

max
{

𝑦𝑖 − 𝑥𝑘, 0
}

−max
{

𝑟 − 𝑥 , 0
}

)

. (A.4)
𝑘
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The value of the 𝑘th term in (A.4) falls into one of the three cases: (i) 
If 𝑥𝑘 ≥ 𝑦𝑖 ≥ 𝑟, then both max operators in (A.4) give zeros and hence, 
the value of the 𝑘th term in (A.4) equals zero; (ii) If 𝑦𝑖 ≥ 𝑥𝑘 ≥ 𝑟, then 
the first and second max operators yield 𝑦𝑖 − 𝑥𝑘 and 0, respectively, 
and therefore the value of the 𝑘th term in (A.4) equals 𝑦𝑖 − 𝑥𝑘; (iii) If 
𝑦𝑖 ≥ 𝑟 ≥ 𝑥𝑘, the value of the 𝑘th term in (A.4) is then equal to 𝑦𝑖 − 𝑟. As 
a consequence, Eq. (A.4) reduces to the compact form

𝐹 2
𝑋 (𝑦𝑖) − 𝐹 2

𝑋 (𝑟) =
𝑛
∑

𝑘=1
𝑝𝑘

(

max
{

min
{

𝑦𝑖 − 𝑥𝑘, 𝑦𝑖 − 𝑟
}

, 0
}

)

,

which can then be modeled as a MILP problem by introducing non-
negative continuous decision variables ℎ+𝑖1,… , ℎ+𝑖𝑛 as well as binary 
decision variables 𝑧+1 ,… , 𝑧+𝑛 . In particular, we formulate two constraints 
ℎ+𝑖𝑘 ≥ 𝑦𝑖−𝑥𝑘−𝑀(1−𝑧+𝑘 ) and ℎ+𝑖𝑘 ≥ 𝑦𝑖−𝑟−𝑀𝑧+𝑘 . In each state 𝑘, only one 
of these two constraints binds while the other becomes redundant such 
that 𝑧+𝑘 = 1 if 𝑥𝑘 is greater than 𝑟 or 𝑧+𝑘 = 0 otherwise, for 𝑘 ∈ 𝑁 , where 
𝑁 = {1,… , 𝑛}. Specifically, for any 𝑦𝑖 ≥ 𝑟, the value of 𝐹 2

𝑋 (𝑦𝑖) − 𝐹 2
𝑋 (𝑟)

equals to the optimal objective function value of the MILP problem

min
(ℎ+𝑖1 ,…,ℎ+𝑖𝑛 )∈R

𝑛
+

𝑧+∈{0,1}𝑛

𝑛
∑

𝑘=1
𝑝𝑘ℎ

+
𝑖𝑘 (A.5)

𝑠.𝑡. ℎ+𝑖𝑘 ≥ 𝑦𝑖 − 𝑥𝑘 −𝑀(1 − 𝑧+𝑘 ) ∀ 𝑘 ∈ 𝑁 (A.6)

ℎ+𝑖𝑘 ≥ 𝑦𝑖 − 𝑟 −𝑀𝑧+𝑘 ∀ 𝑘 ∈ 𝑁, (A.7)

where 𝑀 is a sufficiently large positive constant.
We now prove the ‘if’ part. Assume that (ℎ+, 𝑧+) satisfies con-

straints (12)–(14). Then, (ℎ+, 𝑧+) is a feasible solution to MILP problem 
(A.5)–(A.7). Thus, the value of the objective function (A.5) evaluated 
at (ℎ+, 𝑧+) is greater than (or equal to) the value of 𝐹 2

𝑋 (𝑦𝑖) − 𝐹 2
𝑋 (𝑟). 

Since (ℎ+, 𝑧+) satisfies (14), then the value of the objective function 
(A.5) is less than (or equal to) the value of 𝐹 2

𝑌 (𝑦𝑖)−𝐹 2
𝑌 (𝑟). Together, for 

an arbitrary 𝑖 ∈ 𝑁+, where 𝑁+ = {𝑖 ∈ 𝑁 ∣ 𝑦𝑖 ≥ 𝑟}, we obtain
𝐹 2
𝑌 (𝑦𝑖) − 𝐹 2

𝑌 (𝑟) ≥ 𝐹 2
𝑋 (𝑦𝑖) − 𝐹 2

𝑋 (𝑟).

Hence, condition (7) of Theorem  1 holds.
Finally, we prove the ‘only if’ part. Assume that condition (7) of 

Theorem  1 holds, i.e., 𝐹 2
𝑌 (𝑦𝑖)−𝐹 2

𝑌 (𝑟) ≥ 𝐹 2
𝑋 (𝑦𝑖)−𝐹 2

𝑋 (𝑟) for all 𝑦𝑖 ≥ 𝑟. Take 
any 𝑦𝑖 ≥ 𝑟 and let (ℎ+∗, 𝑧+∗) be the optimal solution to MILP problem 
(A.5)–(A.7). Then, the solution clearly satisfies constraints (12)–(13), 
as they are identical to constraints (A.6)–(A.7) and the value of the 
objective function (A.5) is
𝑛
∑

𝑘=1
𝑝𝑘ℎ

+∗
𝑖𝑘 = 𝐹 2

𝑋 (𝑦𝑖) − 𝐹 2
𝑋 (𝑟) ≤ 𝐹 2

𝑌 (𝑦𝑖) − 𝐹 2
𝑌 (𝑟),

which implies that constraint (14) is satisfied. □

Proof of Lemma  2.  We first show that the value of the right-hand side 
(RHS) of condition (8) in Theorem  1 is equal to the optimal objective 
function value of a MILP problem. Specifically, for any 𝑥𝑖 ∈ [𝑎, 𝑟], the 
RHS of condition (8) of Theorem  1 equals, after rearrangement,
𝐹 2
𝑌 (𝑟) ≥ 𝐹 2

𝑋 (𝑟) + 𝐹 2
𝑌 (𝑥𝑖) − 𝐹 2

𝑋 (𝑥𝑖)

=
∑

𝑥𝑘≤𝑟
𝑝𝑘
(

𝑟 − 𝑥𝑘
)

+
∑

𝑦𝑘≤𝑥𝑖

𝑝𝑘
(

𝑥𝑖 − 𝑦𝑘
)

−
∑

𝑥𝑘≤𝑥𝑖

𝑝𝑘
(

𝑥𝑖 − 𝑥𝑘
)

=
𝑛
∑

𝑘=1
𝑝𝑘 max

{

𝑟 − 𝑥𝑘, 0
}

+
𝑛
∑

𝑘=1
𝑝𝑘 max

{

𝑥𝑖 − 𝑦𝑘, 0
}

−
𝑛
∑

𝑘=1
𝑝𝑘 max

{

𝑥𝑖 − 𝑥𝑘, 0
}

. (A.8)

Obviously, the value of the 𝑘th term in (A.8) depends on the joint 
outputs from each of the three max operators. Therefore, in order to 
determine its outcome, Eq. (A.8) can be modeled as a MILP problem 
by introducing non-negative continuous decision variables 𝑑−1 ,… , 𝑑−𝑛 , 
𝑔−𝑖1,… , 𝑔−𝑖𝑛, ℎ−𝑖1,… , ℎ−𝑖𝑛, and binary decision variables 𝑧−𝑖1,… , 𝑧−𝑖𝑛. In par-
ticular, for each decision variable 𝑑−, we construct the constraint 𝑑− ≥
𝑘 𝑘
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𝑟 − 𝑥𝑘 such that 𝑑−𝑘 > 0 if 𝑟 is greater than 𝑥𝑘 or 𝑑−𝑘 = 0 otherwise, for 
𝑘 ∈ 𝑁 , where 𝑁 = {1,… , 𝑛}. Then, for each decision variable 𝑔−𝑖𝑘, we 
establish the constraint 𝑔−𝑖𝑘 ≥ 𝑥𝑖 − 𝑦𝑘 such that 𝑔−𝑖𝑘 is strictly positive if 
𝑥𝑖 is larger than 𝑦𝑘 or otherwise 𝑔−𝑖𝑘 gets zero, for 𝑘 ∈ 𝑁 . Finally, for 
each decision variable ℎ−𝑖𝑘, two constraints ℎ−𝑖𝑘 ≤ 𝑥𝑖−𝑥𝑘+𝑀(1−𝑧−𝑖𝑘) and 
ℎ−𝑖𝑘 ≤ 𝑀𝑧−𝑖𝑘 alternate to bind each state 𝑘 such that ℎ−𝑖𝑘 > 0 and 𝑧−𝑖𝑘 = 1
if 𝑥𝑖 is greater than 𝑥𝑘 or ℎ−𝑖𝑘 = 0 and 𝑧−𝑖𝑘 = 0 otherwise, for 𝑘 ∈ 𝑁 . 
Specifically, for any 𝑥𝑖 < 𝑟, the value of 𝐹 2

𝑋 (𝑟) +𝐹 2
𝑌 (𝑥𝑖) −𝐹 2

𝑋 (𝑥𝑖) is equal 
to the optimal objective function value of the MILP problem

min
𝑑−∈R𝑛+ , (𝑔−𝑖1 ,…,𝑔−𝑖𝑛 )∈R

𝑛
+

(ℎ−𝑖1 ,…,ℎ−𝑖𝑛 )∈R
𝑛
+ , (𝑧−𝑖1 ,…,𝑧−𝑖𝑛 )∈{0,1}

𝑛

𝑛
∑

𝑘=1
𝑝𝑘𝑑

−
𝑘 +

𝑛
∑

𝑘=1
𝑝𝑘𝑔

−
𝑖𝑘 −

𝑛
∑

𝑘=1
𝑝𝑘ℎ

−
𝑖𝑘 (A.9)

𝑠.𝑡. 𝑑−𝑘 ≥ 𝑟 − 𝑥𝑘 ∀ 𝑘 ∈ 𝑁 (A.10)

𝑔−𝑖𝑘 ≥ 𝑥𝑖 − 𝑦𝑘 ∀ 𝑘 ∈ 𝑁 (A.11)

ℎ−𝑖𝑘 ≤ 𝑥𝑖 − 𝑥𝑘 +𝑀(1 − 𝑧−𝑖𝑘) ∀ 𝑘 ∈ 𝑁 (A.12)

ℎ−𝑖𝑘 ≤ 𝑀𝑧−𝑖𝑘 ∀ 𝑘 ∈ 𝑁, (A.13)

where 𝑀 is a sufficiently large positive constant.
We now prove the ‘if’ part. Assume that (𝑑−, 𝑔−, ℎ−, 𝑧−) satisfies 

constraints (15)–(19). Then, (𝑑−, 𝑔−, ℎ−, 𝑧−) is a feasible solution to 
MILP problem (A.9)–(A.13). Thus, the value of the objective function 
(A.9) evaluated at (𝑑−, 𝑔−, ℎ−, 𝑧−) is no less than the value of 𝐹 2

𝑋 (𝑟) +
𝐹 2
𝑌 (𝑥𝑖) − 𝐹 2

𝑋 (𝑥𝑖). Since (𝑑−, 𝑔−, ℎ−, 𝑧−) satisfies (19), then the value of 
the objective function (A.9) is no more than 𝐹 2

𝑌 (𝑟). For an arbitrary 
𝑖 ∈ {𝑖 ∈ 𝑁 ∣ 𝑥𝑖 < 𝑟}, combining these results yields then
𝐹 2
𝑌 (𝑟) ≥ 𝐹 2

𝑋 (𝑟) + 𝐹 2
𝑌 (𝑥𝑖) − 𝐹 2

𝑋 (𝑥𝑖) ⇔ 𝐹 2
𝑌 (𝑟) − 𝐹 2

𝑌 (𝑥𝑖) ≥ 𝐹 2
𝑋 (𝑟) − 𝐹 2

𝑋 (𝑥𝑖).

Therefore, condition (8) of Theorem  1 holds.
Finally, we prove the ‘only if’ part. Assume that condition (8) of 

Theorem  1 holds, i.e., 𝐹 2
𝑌 (𝑟)−𝐹 2

𝑌 (𝑥𝑖) ≥ 𝐹 2
𝑋 (𝑟)−𝐹 2

𝑋 (𝑥𝑖) for all 𝑥𝑖 < 𝑟. Take 
any 𝑥𝑖 < 𝑟 and let (𝑑−∗, 𝑔−∗, ℎ−∗, 𝑧−∗) be the optimal solution to MILP 
problem (A.9)–(A.13). Then, the solution clearly satisfies constraints 
(15)–(18), as they are identical to constraints (A.10)–(A.13) and the 
value of the objective function (A.9) is
𝑛
∑

𝑘=1
𝑝𝑘𝑑

−∗
𝑘 +

𝑛
∑

𝑘=1
𝑝𝑘𝑔

−∗
𝑖𝑘 −

𝑛
∑

𝑘=1
𝑝𝑘ℎ

−∗
𝑖𝑘 = 𝐹 2

𝑋 (𝑟) + 𝐹 2
𝑌 (𝑥𝑖) − 𝐹 2

𝑋 (𝑥𝑖) ≤ 𝐹 2
𝑌 (𝑟)

⇔ 𝐹 2
𝑋 (𝑟) − 𝐹 2

𝑋 (𝑥𝑖) ≤ 𝐹 2
𝑌 (𝑟) − 𝐹 2

𝑌 (𝑥𝑖),

which implies that constraint (19) is satisfied. □

Proof of Theorem  3.  Consider any prospects 𝑋 and 𝑌 . Theorem  1 
together with Lemmas  1 and 2 imply that 𝑋 ⪰ 𝑌  if and only if there 
exist ℎ+ ∈ R𝑛+×𝑛

+ , 𝑧+ ∈ {0, 1}𝑛, 𝑑− ∈ R𝑛
+, 𝑔− ∈ R𝑛×𝑛

+ , ℎ− ∈ R𝑛×𝑛
+ , 

and 𝑧− ∈ {0, 1}𝑛×𝑛 that satisfy constraints (12)–(14), (15)–(18), and 
constraint (19), i.e.,
𝑛
∑

𝑘=1
𝑝𝑘𝑑

−
𝑘 +

𝑛
∑

𝑘=1
𝑝𝑘𝑔

−
𝑖𝑘 −

𝑛
∑

𝑘=1
𝑝𝑘ℎ

−
𝑖𝑘 ≤ 𝐹 2

𝑌 (𝑟) ∀ 𝑖 ∈ {𝑖 ∈ 𝑁 ∣ 𝑥𝑖 < 𝑟}.

Since this constraint needs to hold for losses only, we modify it by 
adding an extra term to obtain 
𝑛
∑

𝑘=1
𝑝𝑘𝑑

−
𝑘 +

𝑛
∑

𝑘=1
𝑝𝑘𝑔

−
𝑖𝑘 −

𝑛
∑

𝑘=1
𝑝𝑘ℎ

−
𝑖𝑘 −𝑀(1 − 𝜁−𝑖 ) ≤ 𝐹 2

𝑌 (𝑟) ∀ 𝑖 ∈ 𝑁, (A.14)

where the new binary variables 𝜁−1 ,… , 𝜁−𝑛  indicate which of the state-
specific outcomes 𝑥1,… , 𝑥𝑛 are losses (i.e., below the reference outcome 
𝑟). This can be implemented by introducing the additional constraints 
𝑟 − 𝑥𝑖 ≤ 𝑀𝜁−𝑖 ∀ 𝑖 ∈ {1,… , 𝑛}, (A.15)

which ensure that 𝜁𝑖 = 1 if 𝑥𝑖 < 𝑟. The set of constraints (12)–(14), 
(15)–(18), (A.14) and (A.15) is equivalent to constraints (21)–(29). 
This equivalence directly implies that statement (i) holds. Together 
with the fact that for any 𝑥 ∈  , there exists 𝑋′ ∈ X such that 
(𝑋′(𝑠1),… , 𝑋′(𝑠𝑛)) = (𝑥1,… , 𝑥𝑛) (see (20)), the equivalence implies that 
statement (ii) holds. □
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Proof of Corollary  1.  We first prove the ‘if’ part. If 𝑥 = (𝑥1,… , 𝑥𝑛) =
(𝑋(𝑠1),… , 𝑋(𝑠𝑛)) is an optimal solution to optimization problem (30), 
then random variable 𝑋 by Theorem  3 is a feasible solution to
max𝑋∈X{E[𝑋] ∣ 𝑋 ⪰ 𝑌 }. Assume now by contradiction that 𝑋 is 
not optimal to max𝑋∈X{E[𝑋] ∣ 𝑋 ⪰ 𝑌 }. Then, there must exist 
another feasible solution 𝑋′ that yields a higher objective function 
value such that E[𝑋′] > E

[

𝑋
]

. Then, by Theorem  3, 𝑥′ = (𝑥′1,… , 𝑥′𝑛) =
(𝑋′(𝑠1),… , 𝑋′(𝑠𝑛)) is a feasible solution to (30), and moreover, it yields 
the objective function value ∑𝑛

𝑖=1 𝑝𝑖𝑥
′
𝑖 = E[𝑋′] > E[𝑋] =

∑𝑛
𝑖=1 𝑝𝑖𝑥𝑖, 

which is contradictory to the assumption that 𝑥 is the optimal solution 
to (30). Hence, 𝑋 is an optimal solution to max𝑋∈X{E[𝑋] ∣ 𝑋 ⪰ 𝑌 }.

Then, we prove the ‘only if’ part. Assume that random variable 𝑋
is an optimal solution to max𝑋∈X{E[𝑋] ∣ 𝑋 ⪰ 𝑌 }. Then, by Theorem  3, 
𝑥 = (𝑥1,… , 𝑥𝑛) = (𝑋(𝑠1),… , 𝑋(𝑠𝑛)) is a feasible solution to optimization 
problem (30). Now assume by contradiction that 𝑥 is not optimal 
to (30), then there must exist another feasible solution 𝑥′ such that 
∑𝑛

𝑖=1 𝑝𝑖𝑥
′
𝑖 >

∑𝑛
𝑖=1 𝑝𝑖𝑥𝑖. Then, by Theorem  3, random variable 𝑋′ such 

that (𝑋′(𝑠1),… , 𝑋′(𝑠𝑛)) = (𝑥′1,… , 𝑥′𝑛), is also a feasible solution to 
max𝑋∈X{E[𝑋] ∣ 𝑋 ⪰ 𝑌 } and E[𝑋′] =

∑𝑛
𝑖=1 𝑝𝑖𝑥

′
𝑖 >

∑𝑛
𝑖=1 𝑝𝑖𝑥𝑖 = E[𝑋], 

which contradicts to the assumption that 𝑋 is the optimal solution to 
max𝑋∈X{E[𝑋] ∣ 𝑋 ⪰ 𝑌 }. Thus, 𝑥 is an optimal solution to (30). □

Proof of Lemma  3.  Based on Theorem  2 it is sufficient to prove that 
its inequalities (9) and (10) hold if and only if there exists 𝑧 ∈ {0, 1}𝑛×𝑛

that satisfies constraints (31)–(33). Since we have assumed that 𝑟 ∈
{𝑦1,… , 𝑦𝑛} and 𝑦1 ≤ 𝑦2 ≤,… ,≤ 𝑦𝑛−1 ≤ 𝑦𝑛, we have 𝑦̃ = 𝑦, which implies 
that the right-hand sides of constraints (32) and (33) are equal to those 
of inequalities (9) and (10), respectively.

First, assume (9) and (10) hold. Then, construct 𝑧 ∈ {0, 1}𝑛×𝑛 such 
that

𝑧𝑖,𝑘 =

{

1,  if 𝑥𝑘 < 𝑦𝑖
0,  otherwise ∀ 𝑖, 𝑘 ∈ 𝑁.

Clearly, 𝑧 satisfies constraint (31). Moreover, ∑𝑛
𝑘=1 𝑝𝑘𝑧𝑖𝑘 =

∑

𝑥𝑘<𝑦𝑖
𝑝𝑘 =

𝐹𝑋 (𝑦𝑖) for all 𝑖 ∈ 𝑁 . This implies that the left-hand sides of (32) and 
(33) are equal to those of constraints (9) and (10). Thus, 𝑧 satisfies 
constraints (32) and (33).

Second, assume that there exists 𝑧 ∈ {0, 1}𝑛×𝑛 that satisfies con-
straints (31)–(33). Satisfying constraint (31) requires that 𝑧𝑖𝑘 = 1 for 
each 𝑖, 𝑘 ∈ 𝑁 such that 𝑥𝑘 < 𝑦𝑖. This implies that for each 𝑖 ∈ 𝑁 , 
∑𝑛

𝑘=1 𝑝𝑘𝑧𝑖𝑘 ≥
∑

𝑥𝑘<𝑦𝑖
𝑝𝑘 = 𝐹𝑋 (𝑦𝑖) and therefore the left-hand sides of 

(32) and (33) are greater than those of inequalities (9) and (10). Thus, 
inequalities (9) and (10) are satisfied. □

Proof of Theorem  4.  (i) Assume there exists 𝑋 ∈ X such that 
𝑋 ⪰𝑐+

𝑐− 𝑌 . Lemma  3 implies that there exists 𝑧 ∈ {0, 1}𝑛×𝑛 satisfying 
constraints (31)–(33) and 𝑋 ⪰ 𝑌 . Based on statement (i) of Theorem 
3, 𝑋 ⪰ 𝑌  implies that there exist ℎ+ ∈ R𝑛+×𝑛

+ , 𝑧+ ∈ {0, 1}𝑛, 𝑑− ∈ R𝑛
+, 

𝑔− ∈ R𝑛×𝑛
+ , ℎ− ∈ R𝑛×𝑛

+ , 𝑧− ∈ {0, 1}𝑛×𝑛, and 𝜁− ∈ {0, 1}𝑛 that satisfy 
constraints (21)–(29). Together these imply that constraints (21)–(29) 
and (31)–(33) are satisfied.

(ii) Assume there exist 𝑥 ∈  , ℎ+ ∈ R𝑛+×𝑛
+ , 𝑧+ ∈ {0, 1}𝑛, 𝑑− ∈ R𝑛

+, 
𝑔− ∈ R𝑛×𝑛

+ , ℎ− ∈ R𝑛×𝑛
+ , 𝑧− ∈ {0, 1}𝑛×𝑛, 𝜁− ∈ {0, 1}𝑛, and 𝑧 ∈ {0, 1}𝑛×𝑛

that satisfy constraints (21)–(29) and (31)–(33). Based on statement 
(ii) of Theorem  3, there exists 𝑋′ ∈ X such that 𝑋′ ⪰ 𝑌  and 
(𝑋′(𝑠1),… , 𝑋′(𝑠𝑛)) = (𝑥1,… , 𝑥𝑛). Lemma  3 then implies that 𝑋′ ⪰𝑐+

𝑐−
𝑌 . □

Proof of Corollary  2.  The proof of Corollary  2 is omitted for brevity 
as it is similar to that of Corollary  1. □

Appendix B. Supplementary data

Supplementary material related to this article can be found online 
at https://doi.org/10.1016/j.ejor.2025.08.013.
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