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Prospect stochastic dominance conditions can be used to compare pairs of uncertain decision alternatives when
the decision makers’ choice behavior is characterized by cumulative prospect theory, but their preferences are
not precisely specified. This paper extends the use of prospect stochastic dominance conditions to decision
settings in which the use of pairwise comparisons is not possible due to large or possibly infinite number
of decision alternatives (e.g., financial portfolio optimization). In particular, we first establish equivalence
results between these conditions and the existence of solutions to a specific system of linear inequalities. We
then utilize these results to develop stochastic optimization models whose feasible solutions are guaranteed to
dominate a pre-specified benchmark distribution. These models can be used to identify if there exists a decision
alternative within a set that is preferred to a given benchmark by all decision makers with an S-shaped value
function and a pair of inverse S-shaped probability weighting functions. Thus, the models offer a flexible tool to
analyze choice behavior in decision settings that can be modeled as optimization problems. We demonstrate
the use of the developed models with two empirical applications in financial portfolio diversification and
procurement optimization.

1. Introduction is guaranteed to stochastically dominate some pre-specified benchmark

distribution! (see, e.g., Armbruster & Delage, 2015; Bruni et al., 2017;

Stochastic Dominance (SD) offers a family of well-established cri-
teria for ranking decision alternatives with uncertain outcomes under
incomplete information on the decision maker’s (DM’s) risk preferences
(see, e.g., Levy, 2016, for a recent overview). SD-criteria have strong
decision-theoretic foundations in expected utility theory (EUT; Neu-
mann & Morgenstern, 1944): For instance, if an alternative dominates
another in the sense of First-order Stochastic Dominance (FSD; Hadar
& Russell, 1969; Hanoch & Levy, 1969; Quirk & Saposnik, 1962),
then any expected utility maximizing DM with a non-decreasing utility
function would prefer the dominating alternative. Similarly, no risk-
averse expected utility maximizing DM with a non-decreasing concave
utility function would choose a decision alternative that is dominated in
the sense of Second-order Stochastic Dominance (SSD; Hadar & Russell,
1969; Hanoch & Levy, 1969; Rothschild & Stiglitz, 1970). Recent
research efforts have focused on extending the use of SD-criteria from
pairwise comparisons of decision alternatives to full-fledged stochastic
optimization. These efforts have resulted in several stochastic optimiza-
tion models in which the outcome distribution of the optimal solution
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Cesarone & Puerto, 2025; Dentcheva & Ruszczynski, 2003; Kopa et al.,
2018; Kuosmanen, 2004; Liesio et al., 2020; Post, 2003; Post & Kopa,
2017; Xu, 2024).

However, it is widely known that actual decision behavior sys-
tematically deviates from that predicted by EUT, which suggests that
traditional SD-criteria might not accommodate all empirically observed
preferences. Thus, while traditional SD-criteria offer a solid foundation
for prescriptive models geared towards decision support, they might
not be well-suited for behavioral models seeking to describe decision
behavior. This has motivated the research by Baucells and Heukamp
(2006) and Levy and Wiener (1998) to develop dominance criteria that
capture preferences through cumulative prospect theory (CPT; Tversky
& Kahneman, 1992) rather than EUT. In CPT, the decision maker’s
risk preferences are captured jointly by (i) an S-shaped value func-
tion that encodes outcomes into gains and losses with regard to a
certain reference point, and (ii) a pair of inverse S-shaped probability
weighting functions (PWFs) that transforms cumulative probabilities

1 This requires that a dominating solution exists in the set of feasible solutions. Moreover, there can be several dominating solutions in which case the optimal

solution might not be unique.
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of the gains and losses into subjective decision weights. The resulting
Prospect Stochastic Dominance (PSD; Levy & Wiener, 1998) compares
the outcome distributions of two decision alternatives (prospects) to
determine if one is preferred to the other by all decision makers with an
S-shaped value function. In turn, the more general Weighted Prospect
Stochastic Dominance (PWSD; Baucells & Heukamp, 2006) establishes
if a prospect is preferred to another by all decision makers with an
S-shaped value function and a pair of inverse S-shaped PWFs.

Although these existing methods can determine if PSD or PWSD
holds between a given pair of prospects, they cannot be directly utilized
in stochastic optimization problems. However, in many decision prob-
lems there does not exist a full list of relevant prospects, but instead
prospects are implicitly defined as feasible solutions to a system of
constraints (cf. project combinations satisfying resource constraints).
In such problems, the number of feasible solutions is often very large
or infinite, which makes pairwise comparisons of all prospects time-
consuming or even impossible. This gap in the current literature is
especially significant in view of the fact that a plethora of methods
have been developed to enable the utilization of EUT-based SD-criteria
(e.g., FSD and SSD) in stochastic optimization models, and these meth-
ods have found applications in several domains, including financial
portfolio optimization (e.g., Armbruster & Delage, 2015; Kuosmanen,
2004), project scheduling (e.g., Gutjahr, 2015) and project portfolio
selection (e.g., Liesio et al., 2023).

We address this gap by developing novel stochastic optimization
models that capture preferences through CPT with incomplete infor-
mation, thereby enhancing the applicability of SD-criteria in analyz-
ing choice behavior. In particular, we first develop results for a dis-
crete state-space that allow to establish PSD and PWSD between two
prospects by examining their probability distributions in a finite num-
ber of outcome levels. Based on these results, we then develop mixed-
integer linear programming (MILP) models such that any feasible so-
lution to these models is guaranteed to dominate a given benchmark
prospect (or an outcome distribution) in the sense of PSD or PWSD.
These models make it possible to identify if there exists a prospect
within a feasible set which would be preferred to a given benchmark
prospect by all decision makers with an S-shaped utility function and a
pair of inverse S-shaped probability weighting functions. Moreover, as
the models do not impose restrictions on the objective function, they
can be readily utilized in identifying, for instance, the expected value
maximizing prospect among those that dominate the benchmark.

The optimization models developed in this paper can be used to
analyze choice behavior from the perspective of CPT in a broad range of
problems in finance, operations management, and economics, in which
prospects (decision alternatives) correspond to feasible solutions of a
stochastic optimization problem and uncertainties are captured with
a finite state-space (see, e.g., Cinfrignini et al., 2025; Gustafsson &
Salo, 2005; Gutjahr, 2015; Harris & Mazibas, 2022; Kopa et al., 2018;
Kuosmanen, 2004; Sillanpaé et al., 2021). We demonstrate the practi-
cal relevance of our methodological contributions with two empirical
applications in financial portfolio diversification and procurement opti-
mization based on real-world data. In these applications, the developed
models are used to analyze if the decision makers’ choice of particular
decision alternatives can be explained by CPT.

The rest of the paper is organized as follows. Section 2 introduces
the notation and standard definitions required for modeling incom-
plete preference information in decision making under uncertainty.
Section 3 derives conditions for PSD and PWSD in discrete state-space.
Section 4 employs these conditions to develop stochastic optimization
models with PSD and PWSD constraints and Section 5 presents the two
empirical applications. Section 6 provides some concluding remarks.

2. Decision making under uncertainty and incomplete preference
information

Let X denote a risky prospect, technically a random variable, whose
support is a subset of the interval [a, b] and whose cumulative distribu-
tion function (CDF) is denoted by Fy. Under expected utility theory
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(EUT), a decision maker with a utility function u prefers prospect X if
its expected utility, given by

b
E[M(X)]=/ u(t)d Fx (1), @

is higher than the expected utility of other available prospects. Thus,
the decision maker’s preferences in EUT are captured solely by some
utility function u : [a,b] - R, which maps each outcome onto a utility
scale.

Suppose the information on the decision maker’s preferences is
incomplete in the sense that it is known only that the decision maker
prefers higher outcomes to lower ones. In this case, these preferences
cannot be modeled by a single utility function but rather by the set
of all non-decreasing functions, which we denote by U'. Even under
such incomplete preference information, it can be possible to infer the
decision maker’s choice between a pair of prospects only by comparing
their CDFs. Specifically, prospect X is said to (weakly) dominate® Y in
the sense of First-order Stochastic Dominance (FSD) if

Eu(X)] > Eu(Y)]Vu e U' & Fy(t) < Fy() V 1 € [a, b].

If the decision maker is also risk-averse, then his/her utility function
must be concave. The choice behavior of such decision makers agrees
with the Second-order Stochastic Dominance (SSD) criterion: Prospect
X dominates Y in the sense of SSD if

' 4
Eu(X)] > Eu)]Vue U’ e / Fy(t)ydt < / Fy(t)ydt ¥ t' € [a,bl,

where U? c U! is the set of all non-decreasing concave utility functions.

Although EUT and SSD provide a solid theory of rational decision
making on top of which decision support models and tools can be built,
observed decision behavior often deviates from that predicted by EUT
(see, e.g., Starmer, 2000). This has led to the development of prospect
theory (Kahneman & Tversky, 1979), and later cumulative prospect
theory (CPT; Tversky & Kahneman, 1992), which are known to provide
a more accurate description of choice behavior particularly in small-
scale decision settings compared to EUT (Levy & Levy, 2021; Rabin,
2000). CPT can be considered as an extension of EUT to incorporate a
richer representation of decision makers’ risk preferences. First, CPT
introduces the concept of a reference outcome that divides the out-
comes into gains and losses, for which the decision makers exhibit
different preferences. Specifically, the utility function is convex over
losses and concave over gains. Second, CPT uses a pair of probability
weighting functions to capture the decision makers’ tendency to distort
probabilities of outcomes. These probability weighting functions are
applied on the prospect’s cumulative distribution function prior to
evaluating the expectation of the prospect’s utility.

More formally, CPT assumes that u € US, where set US depends
on the reference outcome r € [a, b] and consists of all non-decreasing
utility functions u : [a,b] — R that are convex for losses 7 € [a,r] and
concave for gains ¢ € [r, b]. Moreover, let w~ and w* denote a pair of
probability weighting functions, i.e., increasing mappings from [0, 1] to
[0, 1] which satisfy w~(0) = w*(0) = 0 and w(1) = w*(1) = 1. Then,
under CPT the decision maker prefers prospect X whose value

r b
VI [u(X)) = / u()d[w™ (Fy ()] +/ u@®d[—w* (1 = Fx(0)] (2)

is the highest among all available prospects. Expected utility (1) can be
viewed as a special case of CPT value (2) since under linear probability
weighting functions (i.e., w*(p) = w™(p) = p) it holds that

r b
VT lu(X)] = / u()d[Fy ()] + / u(t)d[—1 + Fy (t)]

b
/ u(t)d Fy (1) = E[u(X)].

2 To be concise we use the term ‘dominance’ in this paper when referring
to weak dominance.
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Suppose the information on the decision makers’ preferences is
limited to knowing that they are risk-averse about gains and risk-
seeking about losses, and that they do not distort the probabilities.
This corresponds to considering all S-shaped utility functions (u € U")
but only linear weighting functions (w*(q) = w™(¢) = ¢). If any such
decision maker prefers one prospect to another, we say that the former
dominates the latter in the sense of Prospect Stochastic Dominance
(PSD).

Definition 1 (PSD).
X >Y,if

Prospect X dominates Y by PSD, denoted by

VA Tu(X0] 2 VE u(¥)] Y u € US, 3

where wt(q) = w(q) = q for all g € [0, 1].

Establishing PSD between two prospects can be based on the com-
parison of their integrated CDFs for all pairs of gains and losses. This
result, introduced by Levy and Wiener (1998), is formalized in the
following proposition.

Proposition 1 (Levy & Wiener, 1998). Let X and Y be prospects. Then

r+ +
XZY@/ FX(t)dtS/
= =

Levy and Wiener (1998) also show that allowing all convex proba-
bility weighting functions in Definition 1 would result in a dominance
condition equivalent to that in Proposition 1 (see also Yang, 2019).
However, empirical evidence from studies estimating the parameters
of CPT models suggests that the probability weighting functions are
not convex, but rather inverse S-shaped, i.e., concave for small prob-
abilities and convex for large probabilities (see, e.g., Wakker, 2010).
This motivates the use of Weighted Prospect Stochastic Dominance
(PWSD; Baucells & Heukamp, 2006) to compare prospects as it enables
to determine if a prospect is preferred to another by any decision
maker with an S-shaped utility function and a pair of inverse S-shaped
probability weighting functions.

Fy(dtVa<t <r<tt<b.

Definition 2 (PWSD). Prospect X dominates Y by PWSD, denoted by
X =y, if

VX)) 2 VE M Y u e US, wr e W', w™ e W,

where W¢ is the set of all strictly increasing functions w : [0,1] — [0, 1],
which are convex on [c, 1].

Note that set W ¢ includes also probability weighting functions that
are concave on some interval [0,d], although this is not explicitly
required by the definition. The choice to omit this requirement is mo-
tivated by the fact that when all S-shaped utility functions are allowed,
considering only those weighting functions in W that are concave on
some interval [0, d] would result in exactly the same dominance relation
as the one in Definition 2 (see Definition 3 and Proposition 5 of Baucells
& Heukamp, 2006).

Increasing the values of ¢* and ¢~ enlarges the sets of feasible
probability weighting functions W*<* and W<, respectively. Thus, if
dominance between prospects X and Y is established for some values
of parameters ¢* and ¢, then it will hold also for any smaller values.
More formally, for all values ¢* > é* and ¢~ > ¢~ it holds that

x>lysxxlvy.

Prospect X dominates Y in the sense of PWSD (Definition 2) if and
only if (i) X dominates Y in the sense of PSD (Definition 1) and (ii)
X dominates Y is the sense of FSD in the tails of the distributions,
the length of which depends on the values of parameters ¢~ and c*.
This result established by Baucells and Heukamp (2006) is formally
presented in the following proposition.
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Proposition 2 (Baucells & Heukamp, 2006). Let X and Y be prospects.
Then X zgf Y ifand only if X > Y and

Fy(t) < Fy(®) YV t € [a, 1) U [k, b), ©))

where t* =inf({t <r | Fy(t) > ¢~, Fy(f) > ¢~} U {r}) and t® = sup({t >
rlFx(M<1—ct, Fy(<1-ct}ufr).

A direct implication of Proposition 2 is that if convexity of the
probability weighting functions is required on the entire interval [0, 1],
then PWSD becomes equivalent to PSD. This is because setting ¢t =
¢~ = 0 yields t* = a and tR = b, and hence inequality (4) is trivially
satisfied. In turn, if there are no convexity requirements (i.e., ¢t = ¢
1), then t© = R = r and as a result, inequality (4) holds only if prospect
X dominates Y in the sense of FSD. More formally, for any prospects
X and Y it holds that

X>)Y & X >V and
X =Y & Fy(t) < Fy() V 1 € [a,b].

3. Prospect stochastic dominance in discrete state-space

Utilizing PSD and PWSD in stochastic optimization requires devel-
oping conditions for these dominance criteria, in which the integrated
CDFs of the prospects need to be evaluated only at a finite number of
different outcome levels. To achieve this we consider a discrete state-
space S = {s; | i € N}, where N = {1, ...,n}, consisting of n mutually
exclusive and collectively exhaustive states with the state probabilities
p = (p1,...,p,) € R such that ELI p; = 1. Prospects thus correspond
to discrete random variables X : S — [a,b] C R, where the interval
[a, b] includes possible outcomes of all prospects under consideration.
We use x; = X(s;) to the denote the state-specific outcome of prospect
X in the ith state. Under a discrete state-space, the expected outcome
of prospect X is given by E[X] = Y, p;x; and its cumulative density
function (CDF) by

Fy () =]P’<{s,- €es ' X(s;) sz}) =Y 5)
x:eS[::t]
Moreover, the integral of the CDF of prospect X becomes
t t
Fﬁ(z):/ Fx () dt’ =/ Fx(') dt’ = Z pit —x;)
x;ESf::I]
n
= Zp,- max{t - X, O}. 6)
i=1

With this notation, we formulate the necessary and sufficient condi-
tions for prospect X to dominate prospect Y by PSD. Under a discrete
state-space, these conditions are formally established by the following
theorem.

Theorem 1. Consider two prospects X and Y and suppose the state-space
is discrete. Then X > Y if and only if the following conditions hold:

@)
®

All proofs are presented in Appendix A. Theorem 1 shows that in
order to establish whether X dominates Y by PSD in a discrete state-
space, it suffices to evaluate their integrated CDFs only for a finite
number of outcomes. Specifically, these integrated CDFs need to be
evaluated at the reference outcome and at those outcomes that corre-
spond either to the gains of the dominated prospect Y (cf. condition (7))
or to the losses of the dominating prospect X (cf. condition (8)). This
result follows from the fact that in a discrete state-space the prospects’
integrated CDFs are convex non-decreasing piece-wise linear functions.

Based on Proposition 2, the conditions of Theorem 1 are necessary
also for PWSD to hold between two prospects. Thus, establishing suffi-
cient conditions for PWSD requires incorporating the comparison of the

F2(r*) — FX(r) 2 FA(r*) = F2(r) for all t* € {y; | y; 2 r} and
F2(r)— F2(7) 2 F2(r) = F2() forall = € {x; | x; <r}.
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CDFs across the outcomes in their tails [a, ") and [¢%, b] (see inequality
(4)). Moreover, for these conditions to be relevant in optimization
models, they should evaluate the CDFs only at a finite number of these
outcomes. The following theorem formalizes such conditions.

Theorem 2. Consider two prospects X and Y and suppose the state-space

is discrete. Denote Fy(t) =Y, _, p; and let (3, ..., ¥,,,) be a permutation

of (¥1s..., ¥, 1) satisfying y; < j, < -+ < §,41. Then X z;’f Y if and only
if X >Y and

EyG)<FyGipVie{l,....n+ 1} st. FyG_)<c and 5, <r  (9)
Fyx@) <max {Fy(,_,). Fy(r), 1=c*} Vie{l,..,n+1}, (10)

where Fy (j,) = 0.

Note that the conditions of Theorem 2 require evaluating the CDFs
of the two prospects only at outcome levels corresponding to the
state-specific outcomes of the dominated prospect Y and the reference
outcome r. This is beneficial for developing optimization models that
identify a prospect X dominating a given benchmark Y by PWSD,
because in this case the state-specific outcomes y; are fixed.

To illustrate the PSD and PWSD conditions in Theorems 1 and 2,
consider n = 10 equally likely states (p; = 0.1) as well as two prospects
X and Y with the state-specific outcomes x = (75,94,99, 21,22, 36, 38,
58,61,65) and y = (10, 12, 14, 15,45, 62, 63, 68, 88,96). Moreover, suppose
that the reference outcome is r = 50. Fig. 1(a) shows the resulting CDFs
of these two prospects and Fig. 1(b) the integrated CDFs evaluated
by conditions (7) and (8) of Theorem 1. Based on Fig. 1(b), these
conditions are satisfied and thus prospect X dominates prospect Y in
the sense of PSD (i.e., X > Y). To establish if PWSD holds for the
sets of feasible probability weighting functions defined by ¢~ = 0.15
and ¢t = 0.25, it is sufficient to check if the conditions of Theorem
2 are satisfied based on the information given in Fig. 1(a). Adding
the reference outcome r = 50 to the vector of state-specific outcomes
y results in j (10,12, 14, 15,45,50,62, 63, 68, 88,96). Since Fy(j,) =
Fy(12) = 02 > ¢~ 0.15, condition (9) is equivalent to the two
inequalities Fy(j,) = Y<p Pi = 0 < Fy() = 0 and Fy(y) =
Zx,<)72 pi =0 < F@) = 01, wh~ich both hold. To confirm that
condition (10) is satisfied, note that Fy(j;,) £ Fy(5,_;) only when i =7
(i.e., Fy(57) = Fx(62) = 0.6 > Fy(j) = Fy(50) = 0.5), but in this case

Fy(62)=0.6 < 1 — ¢ =0.75. Thus, it holds that X =3 Y.

4. Optimization models for prospect stochastic dominance

In many decision problems, the set of available prospects is not
explicitly given as a finite list of decision alternatives, but implicitly
defined as a set of solutions satisfying a specific system of constraints.
For instance, potential investment portfolios of financial assets can be
characterized by a set of vectors of asset weights whose elements sum
to one. In turn, feasible portfolios of R&D projects correspond to project
subsets that do not consume more resources than are available. In such
applications the use of Theorem 1 is often impractical, as it would
require enumerating all available prospects, the number of which can
be infinite.

To address this shortcoming, we develop stochastic optimization
problems to identify if a set of prospects

Xc{X :5-[abl} an

contains some prospect X € X that stochastically dominates a pre-
specified benchmark prospect Y in the sense of PSD or PWSD. We
also show that these stochastic optimization models can be used to
identify the prospect that optimizes a suitable objective function among
those that dominate Y. As an example, consider the portfolio selection
problem with m base assets whose returns are captured by random
variables X, ..., X,,. In this context, the set of portfolio returns would
correspond to the set of prospects X = {27':1 LX; | ARy, XL 4 =
1} when short-selling is not allowed. Consequently, identifying the
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optimal portfolio that dominates a given benchmark portfolio Y by PSD
(PWSD) and yields the highest expected return would thus correspond
to solving the stochastic optimization problem maxyx {E[X]| X > Y}
(maxyex {E[X]| X = Y}).

4.1. Formulating prospect stochastic dominance constraints

To utilize Theorem 1 in stochastic optimization with PSD con-
straints, we first present two lemmas formulating its conditions through
linear constraints. In particular, condition (7) of Theorem 1 states that
for prospect X to dominate prospect Y, it must hold that F)Z((y,-) -
F2(r) < F2(y,) — F2(r) for each state-specific outcome y, that is a gain.
The following lemma shows that this condition is satisfied if and only if
there exists a feasible solution to a specific system of constraints, each
of which is linear in the state-specific outcomes x, of prospect X.

Lemma 1. Consider two prospects X and Y. Then condition (7) of
Theorem 1 holds if and only if there exist h* € R’}:x" and z*+ € {0,1}"
that satisfy the constraints

h?}'(Zyi—xk—M(l—zZ)VieN'*,kGN (12)
h;Zy[—r—MzZViGNJr,keN (13)
n
Y pehf < FR(y)— Fi() Vi€ N*, 14)
k=1

where M is a sufficiently large positive constant, N+
and nt = |[N*|.

{iENIy,»Zr}

While a detailed proof of this lemma is presented in Appendix A,
we provide a brief summary of its logic here: For an arbitrary y; >
r, it can be shown that there always exists At satisfying constraints
(12)-(13) such that ¥"_ p,h¥ is equal to F)zf(y,-) - F)Z((r), i.e., the RHS
of condition (7) in Theorem 1. Note that since F )z((y,-) - F)Z((r) is non-
convex with respect to the outcomes of prospect X, there is a need
to introduce an auxiliary binary variable ZZ for each state to indicate
if the state-specific outcome x, is greater than the reference outcome
r. Moreover, it can be shown that for any A" satisfying constraints
(12)-(13), ¥, py/i7, provides an upper bound for F2 (y,)— F2(r). As the
choice of y; was arbitrary, it is relatively straightforward to establish
the lemma from these two results.

Next we develop the second system of linear constraints based on
condition (8) of Theorem 1. In particular, this condition states that for
prospect X to dominate prospect Y, it must hold that FZ(r) - F2(x,) <
Fﬁ(r) - F}%(xi) for each state-specific outcome x; that is a loss. A key
difference here compared to condition (7) is that the integrated CDFs
are evaluated at outcome levels corresponding to the state-specific
outcomes of the dominating prospect X rather than to those of the
dominated prospect Y. The resulting system of linear constraints is
formalized by the following lemma.

Lemma 2. Consider two prospects X and Y. Then condition (8) of
Theorem 1 holds if and only if there exist d~ € R}, g~ € R, h~ € R},
and z~ € {0, 1}"™" that satisfy the constraints

di2r-x;VkeN 15)
gr2x;—yVikeN (16)
By <x—x + M1 —z)VikeN a7
h, <Mz VikeN (18)
n n n

Zpkd; + Zpkgi_k - Zpkhi_k < F)%(r) VieN st x;<r, (19)
k=1 k=1 k=1

where M is a sufficiently large positive constant.

The overall proof strategy here is similar to that of Lemma 1: For
an arbitrary x; < r, rearranging condition (8) of Theorem 1 gives the
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Outcome t

Fig. 1. Illustration of dominance conditions in Theorems 1 and 2. The state-specific outcomes of prospects X (blue) and Y (red) are marked with points, triangles, and diamonds.

constraint FZ(r) + FZ(x;) — F2(x;) £ FZ(r). Then, it can be shown that
ket Prdy + Xio Pk — Ly Pihy, provides an upper bound for the
LHS of this constraint for any feasible values of d~, g, h~, z~ satisfying
constraints (15)-(19), and also that there exist feasible values for which
this upper bound is tight. The binary decision variables z7, ..., z;, are
needed here to indicate which of the state-specific outcomes x,, ..., x,
are below the state-specific outcome x;. As these results hold for any
x; <r, they imply the lemma.

Note that the constraints of Lemmas 1 and 2 are linear in the state-
specific outcomes of prospect X. Thus, we can readily treat x; as a
decision variable and identify if there exists some prospect in set X (11)
whose state-specific outcomes satisfy all these constraints when appro-
priate values for the auxiliary decision variables (ht*,z*,d~, g7, h™,z7)
are chosen. This result is formally established by the following theorem,
which uses X c R”" to denote the set of all vectors of state-specific
outcomes generated by the prospects in set X, i.e.,

X ={(xp,....x,) = (X(s), ..., X(s,) ER" | X e X} (20)

Theorem 3. Consider a set of prospects X and prospect Y. Then the
following statements hold:

(i) If there exists X € X such that X > Y, then there exist h* € R'J’:X",
zt e {0,1)", d~ e R}, g~ € R, b~ € R, 2z~ € {0,1}™", and
¢~ €{0,1}" that satisfy a system of linear constraints

X +MQA-z)+h, 2y, VieN*, keN (21)
r+Mzf+hf >y, VieN*, keN (22)
n
Y ekl < Fp(y) - Fp(n Vi€ N* (23)
k=1
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xy+d; 2rvVkeN (24)
x,-—gl._kSkai,keN (25)
xi—x+ M —z)—h; 20V ikeN (26)
Mz, —h, 20VikeN 27)
r—x;—M¢{ <O0VieN (28)

n n n
Dodi + ) pig — Xy — M=) SRV ieN, (29)
k=1 k=1 k=1

>

where M is a sufficiently large positive constant, N* = {i € N | y,;
r} and n* = |N*|.

Conversely, if there exist x € X, h* € fo", zt € (0,1}, d~ € R,
g~ € R h™ € RYY, z7 € (0,1}, and {~ € {0,1})" that
satisfy the system of linear constraints (21)—(29), then there exists
some prospect X' € X such that X'(s;) = x; forall i € N, and
X'>Y.

(i)

The theorem follows quite directly from the two systems of linear
constraints presented in Lemmas 1 and 2. However, it also intro-
duces constraint (28) and the binary variables ¢, ...,¢, to indicate
which of the state-specific outcomes x, ..., x, of prospect X are losses,
i.e., below the reference outcome r. These binary variables are also in-
corporated into constraint (29) to make it redundant for those outcomes
x; that are gains.

The linear system of constraints in Theorem 3 can be readily used to
formulate stochastic optimization models with PSD constraints. More-
over, since these constraints are linear, they do not give rise to non-
linearities in an optimization model, although they do necessitate the
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introduction of binary decision variables. For instance, if a stochastic
optimization model has (i) an objective function which is linear in
the state-specific outcomes x = (xj,...,x,), and (ii) a set of feasible
outcomes X (20) defined through linear constraints, then implementing
PSD constraints results in a MILP formulation. The following corol-
lary demonstrates how the constraints of Theorem 3 can be used to
formulate a stochastic optimization model that identifies, among all
prospects dominating the benchmark by PSD, the one yielding the
highest expected outcome.

Corollary 1. X* is an optimal solution to the optimization prob-
lem maxycx{E[X] | X > Y} if and only if x* = [CHRNEY)
(X*(s1), ---» X*(s,,)) is an optimal solution to the optimization problem

n
max Zpix,-
i=1
s.t. (x,ht,z¥,d™, g7, h™,z7,{") satisfies constraints (21)—-(29)
x € X,where X is given by (20).

(30)

4.2. Incorporating weighted prospect stochastic dominance constraints

In this section, we develop an approach for incorporating PWSD
constraints into stochastic optimization models. Recall that according
to Theorem 2, prospect X dominates prospect Y by PWSD, if X domi-
nates Y by PSD and the CDFs of these prospects satisfy two additional
conditions. Thus, implementing PWSD constraints requires only formu-
lating these additional conditions as linear constraints, because PSD can
be guaranteed by enforcing the constraints given by Theorem 3.

In order to keep the presentation clear, we assume throughout the
remainder of this section that the states in S = {s,,...,s,} are indexed
in an ascending order of the state-specific outcomes of prospect Y,
ie., y; <y, < -+ <y, and that one of these state-specific outcomes is
equal to the reference outcome, i.e., r € {y,,y,,...,y,}. Note that this
assumption does not lead to a loss of generality, since the state indexing
is arbitrary and S can be readily augmented with an additional zero-
probability state in which the state-specific outcome of prospect Y is
equal to the reference outcome r. Yet, the assumption avoids the need
to introduce separate notation for the ordered outcomes as well as to
duplicate listing of the constraints that are required to hold also for the
reference outcome. This is exemplified in the following lemma, which
formalizes the linear constraints that need to hold, in addition to PSD,
for a prospect to dominate another in the sense of PWSD.

Lemma 3. Consider two prospects X and Y. Then X zﬁf Y if and only
if X > Y and there exists z € {0, 1}"" that satisfies the constraints

X +Mz, >y, VikeN (31)
n
Zpkzik SFy(_)Yi€N st Fy(y_)<c andy, <r (32)
k=1
n
Zpkz,.k <max {Fy(yi_,), Fy(r), 1-c*} YieN, (33)

k=1
where Fy(y,) =0 and M is a sufficiently large positive constant.

A detailed proof of this lemma is given in Appendix A, but its logic
can be elaborated as follows: The binary variables z;, ..., z;, satisfying
constraint (31) have the property that z;, = 1 for all x; < y;. Therefore,
Yy Pxzix provides an upper bound for 2x,<y; Pi» and moreover, this
upper bound is tight when z;;, = 0 for all x, > y,. Since ZXI((J’:' p; is
equal to the LHSs of both constraints (9) and (10), the lemma follows
from Theorem 2.

Lemma 3 together with the results of Section 4.1 can be used to
determine if a set of prospects X contains some prospect X dominating
a given benchmark prospect Y by PWSD. Specifically, such a PWSD
dominating prospect exists if and only if the system of linear constraints
that comprises those in Lemma 3 and in Theorem 3 has a feasible
solution. This result is formalized by the following theorem.
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Theorem 4. Consider a set of prospects X and prospect Y. Then the
following statements hold:

(i) If there exists X € X such that X zgf Y, then there exist h* € Rf"",
zt e {0,1}", d~ € Ri, g € Rix", h~ € Rfrx”, z= € {0,1}m™n)
¢~ € {0,1}", and z € {0,1}"™" that satisfy the system of linear
constraints (21)-(29) and (31)—(33).

(ii) Conversely, if there exist x € X, h* € fo", zt € (0,1}, d~ €
]R’J’r, g € Rix", h~ € ]R:’_X", z= € {0,1}y™n ¢~ e {0,1}", and
z € {0,1}™" that satisfy the system of linear constraints (21)—(29)
and (31)—(33), then there exists some prospect X' € X such that
X'(s;)=x; forallie N, and X’ z{: Y.

Since the constraints in Theorem 4 are linear in all decision vari-
ables, they can be used in stochastic optimization models to implement
PWSD constraints without introducing non-linearities. Corollary 2 pro-
vides a formulation for a stochastic optimization model which identifies
the expected outcome maximizing prospect among all those in set X
that dominate the benchmark prospect Y by PWSD.

Corollary 2. X* is an optimal solution to the optimization prob-
lem maxycx {E[X] | X zgf Y} if and only if x* = CHES I
(X*(s1), ---» X*(s,)) is an optimal solution to the optimization problem

n
max Zp,-x,-
i=1
st (x,ht,zt,d”, g7, h™,z7,{", z) satisfies constraints (21)—(29) and
(31)-(33)
x € X,where X is given by (20).

5. Empirical applications
5.1. Application to industry portfolio optimization

This section applies the developed stochastic optimization models
to financial data to investigate the efficiency of the market portfolio.
Specifically, we test if diversification across industries makes it possible
to construct a portfolio that dominates the market portfolio by PSD or
PWSD. If such PSD dominating portfolios exist, they would be preferred
over the benchmark market portfolio by all investors with an S-shaped
utility function. Moreover, if there exists a portfolio dominating the
benchmark by PWSD, then it would be preferred by all CPT investors
with an S-shaped utility function and inverse S-shaped probability
weighting functions contained in sets W¢" and W¢" . However, if such
benchmark dominating portfolios cannot be identified, then holding the
market portfolio is a justified optimal investment decision for at least
some CPT preferences.

We use monthly returns of the Fama-French 49 value-weighted
industry portfolios as the base assets X, ..., X,9 and the all-share index
‘Bench’ from the Center for Research in Security Prices (CRSP) to proxy
the benchmark market portfolio Y. ‘Bench’ is a tracking index of the
value-weighted return of all CRSP firms incorporated in the US and
listed on the NYSE, AMEX, or NASDAQ exchanges. Therefore, the data
set includes all monthly asset and benchmark return observations from
January 1927 to December 2021, spanning a sample period of 95 years
or 1140 trading months. The descriptive statistics of this data set can
be found in the online supplementary material.

We deploy a rolling estimation approach with an estimation window
of 36 months that is shifted forward 12-month at a time. With this
estimation approach, our data set yields a total of 93 overlapping 3-
year estimation periods 01/1927-12/1929, 01/1928-12/1930, ...,
01/2019-12/2021. For each estimation period, we solve three stochas-
tic optimization models in which the state-space is constructed using
the monthly returns of the base assets Xj,..., X,y and the benchmark
market portfolio Y. The first optimization model identifies the expected
return maximizing portfolio among those that dominate the benchmark
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Fig. 2. Inefficiency of the market portfolio 1927-2021.
Note: Excess returns of the optimized portfolios X*, X; , and X; . over the benchmark market portfolio Y. Portfolio X* dominates the benchmark Y in the sense of PSD and

and X ,. in the sense of PWSD.

portfolios X, 025
Y in the sense of PSD, when short-selling is not allowed. Formally,
this model can be expressed as X* € argmaxyx{E[X] | X > Y },
where X = {Zﬁl X; | 4 € RY, Zﬁlﬂj 1} (see Corollary 1
for the MILP formulation). The second and third optimization models
identify the expected return maximizing portfolios among those that
dominate the benchmark Y in the sense of PWSD with two threshold
parameter values ¢ = ¢ = 0.1 and ¢ = ¢* = 0.25. Formally,
these portfolios are defined as X, € argmax xex{EIX] | X zg:{ Y}
and Xi,5 € argmaxXeX{]E[X 11X Zgég Y} (see Corollary 2 for the
MILP formulation). For each estimation period, the geometric mean
of the monthly risk-free T-bill rates is used as the reference rate r.

The expected returns of the three optimal portfolios satisfy E[X*]

v

ELX; 1> E[X; ], since (X € X| X » Y} 2 {X e X | X >0 Y} D
(X eX|X 20Ty}

Fig. 2 shows the excess returns of the optimized portfolios X*,
X;,» and X, over the benchmark market portfolio Y for the years
1927-2021. Fig. 3 presents the number of base assets included in the
optimal PSD (X*) and PWSD (X(’)‘A X 8‘.25) portfolios for each year from
1927 to 2021. Moreover, Fig. 4 illustrates the range of asset weights
4;€10,1] for each of the m = 49 base assets in the optimal PSD (X*) and
PWSD (X(’;‘I,X(’)".ZS) portfolios over the period 1927-2021 (see online
supplementary material for visualizations of asset compositions).

These results suggest that the market portfolio is inefficient, as for
each estimation period it is possible to identify another portfolio that
dominates the market portfolio in the sense of PSD and PWSD. On
average, the excess return of portfolio X* is approximately 2% while
that of portfolios X (’;1 and X (’;25 is around 1.6%-1.7% (see Table 1).
Overall, we observe a consistent pattern that these excess returns are
considerably higher during economic or financial downturns in history
such as the Wall Street Crash (1929), World War II (1939-1945), the
Eisenhower Recession (1958), the OPEC Oil Price Shock (1973), the
Energy Crisis (1979), the Doc-com Bubble (2000), and the September
11 Attacks (2001). Surprisingly, the excess returns do not soar to a new
record high level during the Subprime Mortgage Crisis (2007-2008),
which is known to have triggered a devastating worldwide financial
crisis impacting global economies. In most periods, PSD dominating
portfolios (X*) lead to only marginally greater excess returns over the

benchmark than those dominating it in the sense of PWSD (X, (’)‘_1 , X (‘;_25),
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Table 1
Summary statistics of excess returns of benchmark dominating portfolios by PSD (X*)

and PWSD (X . X{,5)-
Excess returns over benchmark (%) Statistics
Mean  Std. Min Median Max.
E[X*]-E[Y] 1.949 0.888 0.787 1.702 4.504
E [Xg‘l] -E[Y] 1.706 0.804 0.589 1.454 4.053
E [X* E[Y] 1.671 0.783 0.589 1.445 4.053

0251

although some notably higher returns are observed in late 1920s and
1970s. Moreover, the larger set of feasible probability weighting func-
tions (¢~ = ¢t = 0.25) generally results in only a modest decrease in
the excess returns, but requires a slightly broader diversification across
the asset universe compared to the smaller set (¢~ = ¢t = 0.1). In con-
trast, PSD (X*) portfolios are in general the least diversified compared
to PWSD (X (’;ll,X (’;25) portfolios. Interestingly, industries ‘BldMt’ and
‘Mach’ are not included in any of the optimal PSD (X*) or PWSD (XSJ)
portfolios. In addition, the optimal PSD (X*) portfolios do not include
industries ‘Hshld’, ‘Chems’, ‘Steel’, and ‘Trans’ either.

5.2. Application to a multi-period newsvendor problem

This section demonstrates how the developed models can be utilized
in other application areas apart from financial portfolio optimization to
analyze if observed decision behavior can be explained by CPT. For this
purpose we utilize the real-world procurement optimization application
of Sillanpaa et al. (2021), which can be viewed as a multi-period
newsvendor problem in the area of operations management.

In this application a pulp & paper company decides on the order
quantities of natural gas to satisfy uncertain demand with minimal
costs. This decision is complicated by multiple time periods and a piece-
wise linear pricing scheme of the procurement contracts. Originally, Sil-
lanpaa et al. (2021) developed a prescriptive stochastic optimization
model to identify ordering policies that minimize the expected cost.
This model was deployed to support decision making at the case com-
pany, which had previously been relying on heuristic ordering policies.
Here, however, we analyze the decision setting from a behavioral
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Fig. 3. Number of industries (out of m = 49) included in the optimal PSD (X*) and PWSD (X}

perspective and examine whether these heuristic ordering policies are
optimal under CPT. This is achieved by utilizing the models developed
in Section 4 to identify if there exists an ordering policy with a cost
distribution that dominates the one generated by a specific heuristic
policy in the sense of PSD or PWSD. If such a dominating policy exists,
then the heuristic ordering policy cannot be justified by behavioral
arguments based on CPT, since any CPT value maximizer would prefer
the dominating policy over the heuristic one. Conversely, if no such
dominating policy exists, then the heuristic policy would be consistent
with CPT decision behavior for some S-shaped utility functions and
inverse S-shaped probability weighting functions.

To formally present the decision setting and related stochastic op-
timization models, let D,, denote the random variable capturing the
demand at the #:th hour of month r € T = {1,...,12}. There are two
types of procurement contracts: First, the case company can commit to
ordering a constant fixed quantity ¢ for all hours of the upcoming year
at a unit price yTF , which varies from month to month. Second, the case
company can commit to ordering quantity ¢, for each hour of month
r € T with the unit price y° > ¢

The realized costs are contingent on the realized gas demand.
Specifically, if on a given hour n of month 7 the total ordered quantity
exceeds the gas demand (qr + ¢, > D,,), the supplier compensates at a
rate of y~ < yF per unit of unused gas. On the contrary, if the demand
exceeds the total order, i.e., (95 + ¢, < D,,), then any additional gas
request will be supplied at a higher price. However, this higher price
depends on the magnitude of the shortage: If the demand exceeds the
total order by at most (a, — 1) x 100%, the unit price is y} > y?, beyond
which the unit price is y} > y}. Thus, for month 7 the total cost is
captured by the random variable

C.(ar.q.) = Z max
neH,

{ rEap +72q, + v (D — (ap +4.)). (34

rEap +70q, +vF(Dyy — (ar +4.)).
rEap +70q, +vF Doy — (@r + @D+ F =¥

X(D‘m - ar(qF + qf)) }’

where H, is the index set of hours in month r € T.

Year
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01> X0,5) portfolios for each year 1927-2021.

The expected cost minimizing order quantities are thus obtained by
solving the optimization problem

{E[X] ‘ X =

This problem has an LP formulation when the uncertain demand is
captured by a discrete state-space (see online supplementary material
for details). Augmenting this formulation with the constraints and
decision variables from Theorem 4 gives a MILP formulation for the
optimization problem

max {E[X 1 ’ X =
4F+q:20
The resulting MILP model makes it possible to identify the expected
cost minimizing cost distribution X that dominates a chosen benchmark
Y in the sense of PWSD.

To estimate the parameters of the stochastic optimization prob-
lem (36), we utilize the data from year 2015 as reported in Sil-
lanpaa et al. (2021). Specifically, for the unit prices yr‘,yf ,y?,y:',y:
we use the cost forecasts from Table 1 of Sillanpda et al. (2021)
and the value «, = 1.15. Furthermore, for each month r € T, all
hourly demands D,,, n € H, are assumed to be identically dis-
tributed and to follow a lognormal distribution D,. These distributions
are fitted to the expected demands and the 95%-confidence intervals
presented in Figure 4 of Sillanpaa et al. (2021). The resulting log-
normal distributions have the expected values (E[D,],...,E[D;,]) =
(5.6,4.6,4.0,4.3,3.4,4.8,5.6,4.3,5.5,4.0,4.2,4.4) and standard deviations
(Std[D,],...,Std[Dy,]) = (1.1,1.3,0.8,1.4,1.1,1.9,2.6,3.1,1.1,0.7,0.9, 1.1).
A random sample of n = 50 hourly demand time-series (each with
a length of Y, |H,| = 8760) is drawn from these distributions to
construct the state-space.

As the benchmark we use the cost distribution generated by the
heuristic ordering policy that the case company had been practicing
before deploying stochastic optimization for decision support. Specif-
ically, in this heuristic policy, the fixed order quantity is given by
dr = argmian Zfer(yfqp + y? max{0, E[D,] — qr}) (see online sup-
plementary material for the LP formulation) and the monthly order
quantities by §, = max{0, E[D,] — §r}. The resulting benchmark cost

max

(35)
qF.4:20

- Z Cr(qF’ q‘r)

el

.
- Colap.a), X =Y

€T

(36)
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Fig. 4. Asset compositions of the optimal PSD (X*) and PWSD (X;, X;,;) portfolios. The gray bars show the minimum and maximum values for 4;, j € {1,...,49}, across the

years 1927-2021, and the red crosses denote the average values.

distribution from the heuristic order quantities is thus given by Y =
- Y.er C:(dF. d,), where C,(-) is given by (34).

We solve the stochastic optimization problem (36) using three dif-
ferent sets of probability weighting functions (¢~ = ¢* € {0,0.1,0.25})
and two reference outcomes (r € {0, median(Y)}). Surprisingly, the six
problems all produce exactly the same optimal ordering policy g},
42, ¢ = (1.1,0,0,0,0,0,0.4,0,0.9,0,0,0). This optimal policy offers a
0.5% reduction in the expected costs compared to the heuristic policy
Gr = 34,4 =(22,12,06,09,0,14,2.2,09,2.1,0.6,0.8, 1.0). Moreover,
we find that this optimal policy (g}, ¢;) results in a cost distribution
(X*) which first-order stochastically dominates the cost distribution (Y)
produced by the heuristic policy (Gr,q,) (i.e., Fy«(t) < Fy(t) V¢t €
R, see Fig. 5). Consequently, the heuristic policy is not optimal for
any CPT decision maker as the optimal policy (q}. ¢}) yields a higher
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CPT value for any S-shaped utility function and any pair of inverse
S-shaped probability weighting functions. More broadly, all decision
makers whose risk preferences are characterized by non-decreasing
utility functions would prefer the optimal ordering policy (¢;.. 4}) over
the heuristic one.

6. Discussion and conclusions

In this research, we have developed stochastic optimization models
for cumulative prospect theory (CPT) that allow incomplete preference
information. This incomplete information is modeled by utilizing the
PSD and PWSD criteria which accommodate sets of utility functions and
probability weighting functions. The developed optimization models
enable to identify an optimal decision alternative that is preferred to a
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Fig. 5. Cost distributions of the heuristic ordering policy (Y) and the optimized ordering policy (X*).

pre-specified benchmark by all CPT decision makers with an S-shaped
utility function and a pair of inverse S-shaped probability weight-
ing functions. These contributions complement existing prescriptive
stochastic optimization models that utilize EUT-based dominance cri-
teria (e.g., SSD), and make it possible to utilize stochastic optimization
in descriptive behavioral analyses in which CPT describes empirically
observed decision behavior.

The two reported applications in portfolio diversification and pro-
curement optimization demonstrate that the developed optimization
models are suitable for analyzing decision settings in which it is imprac-
tical or even impossible to enumerate all feasible decision alternatives.
In both applications, the developed optimization models identified a
decision alternative that would be preferred to the benchmark alterna-
tive by a large group of decision makers whose choice behavior agrees
with CPT. As a result, these benchmark alternatives are not optimal for
decision makers whose decision behavior is characterized by CPT.

This research opens up several avenues for future research. Firstly,
the methods developed here should be tested in other empirical applica-
tions in areas such as finance, operations management, and economics
to analyze if observed decision behavior is consistent with CPT. Sec-
ondly, the potential usefulness of the developed models in prescriptive
decision support could be explored. For instance, in financial portfo-
lio selection, recommending the expected utility maximizing portfolio
(for some reasonable choice of a utility function) among those that
dominate the market portfolio in the sense of PSD or PWSD might
strike a practical balance between rationality and acceptability from a
viewpoint of an investor whose preferences are consistent with CPT.
Thirdly, the optimal solution given by any stochastic optimization
model utilizing stochastic dominance constraints can be sensitive to the
benchmark selection. Although the choice of a benchmark depends on
the application context and the aims of the specific empirical analysis,
it would be useful to explore further if some general properties of a
suitable benchmark solution can be identified. Finally, another attrac-
tive approach would be to develop optimization models that avoid
the need of specifying a benchmark solution by solving the entire set
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of efficient solutions that are non-dominated in the sense of PSD or
PWSD. This approach seems promising since recently multiobjective
optimization models have been successfully applied to identify solu-
tions to stochastic optimization problems that are not dominated by
any other feasible solutions in the sense of Second- and Third-order
Stochastic Dominance (Liesio et al., 2023).
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Appendix A. Proofs

Proof of Theorem 1. By Proposition 1, X > Y if and only if for any
t~<randtt>r

tt

OS/
-

r el
Fy(t)—Fx(r)dr = /

=

Fy(r) — FX(‘L')dT+/

r
<

Fy(r) — Fy(r)dr.

J

=K

(A1)
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Note that if ¥ < 0 (y < 0) from some value of = (+*), then setting t* = r
(t~ = r) would imply that k +# < 0. In turn, if k +# < 0 for some values
of r~ and ¢, then it holds that x < 0 for ¢t or n < 0 for ¢*. Thus, X > Y
if and only if ¥ > 0 and # > 0. Substituting / aﬂ Fy(ndt = F(?)(ﬂ) - F&(a)
into (A.1) implies that X > Y if and only if

FX(tM) = Fi(r) 2 FR(H) - Fi(r) for all * > r (A.2)
FX(r)— FA(t7) 2 Fi()— Fp() forall = <r. (A3)

Since {y; | y; 2 r} C {t*|tt 2 r}and {x; | x; <r} C {t7|t7 < r},

conditions (A.2) and (A.3) imply the theorem’s conditions

F2(tH) = F2(r) > F2() = F2(r) for all i* € {y, | y, > r}

=yt@t) =pt@t)
F2(r) = FX(t7) 2 F2(r)— F2(t") for all ™ € {x; | x; <r}.

=¢=(17)

Thus, what remains to be proven is that in a discrete state-space
conditions (7) and (8) imply conditions (A.2) and (A.3), respectively.
These proofs make use of the fact that in a discrete state-space the
integrated CDFs are non-decreasing convex piece-wise linear functions
(cf. Eq. (6)).

In the gains domain, we show that if (A.2) does not hold, then
condition (7) not hold. Assume condition (A.2) does not hold for some
> r, ie., yt(r*) < $F(r*). First, if r* <yt where yt. = min{y,|y; >
r}, we have y*(yt ) - ¢t (vt ) <yt (t*) - ¢*(t*) < 0 as both y* and ¢+
are non-decreasing convex piece-wise linear functions. Then, condition
(7) does not hold for r* = y* . Second, if y! < r* < yt . where
Vi = max{y;|y; > r}, there exist y; and y, such that r* € [y;, ]
and y* is linear on [y;,y]. Then, y*(t*) < ¢*(+*) implies that either
rt;) <ty or yt(y) < ¢ (3, since ¢* is a non-decreasing convex
function. Hence, condition (7) does not hold for t* = y; or t* = y,.
Finally, in case * > y* it holds that y*(y" ) < ¢*(y+ ), since

0 4 max’ 9 max max
YT =F®O=12Fx@®)= 5—,¢+(t) forall >yt .
In the domain of losses, we show that if (A.3) does not hold, then
condition (8) does not hold. Assume (A.3) does not hold for some t* < r,
i.e., y~(t") < ¢~(t*). First, if r* > x; , where x, = max{x;|x; < r},
we have y~(x,, ) — ¢~ (x;,.) < r () = ¢~(t*) < 0 as both y~ and ¢~
are non-increasing concave piece-wise linear functions. Then, condition
(8) does not hold for r~ = x} . Second, if X S 10 < x,,., where
X, = min{x;|x; < r}, there exist x; and x, such that t* € [x;,x]
and ¢~ is linear on [x;,x,]. Then, y~(t*) < ¢~(+*) implies that either
y~(x;) < ¢7(x;) or y~(x;) < ¢~ (xy), and since ¢~ is a non-increasing
concave function. Hence, condition (8) does not hold for t~ = x ; or
1~ = x;. Finally, in case t* < x_, it holds that y~(x. ) < ¢~ (x
since 2¢7(1) = —Fy() =02 —Fy ()= 2y (1) forall t <x,, . [

=y=(7)

min)’

Proof of Theorem 2. To prove the theorem we need to show that
inequality (4) of Proposition 2 holds if and only if inequalities (9) and
(10) hold.

We first prove the ‘if’ part by contra-positive, i.e., if inequality
(4) of Proposition 2 does not hold, then inequalities (9)-(10) do not
hold. Assume that inequality (4) of Proposition 2 does not hold, which
implies that 3 t* € [a,tX) U [tR,b] such that Fy(r*) > Fy(t*), where
th =inf({t <r | Fx(t) > ¢~, Fy(t) > ¢~} U {r}) and R = sup({t > r |
Fy() < 1=c*, Fy(t) < 1—c*}u{r}). Suppose first that * € [a,t).
This implies that * < r and min{ Fy(t*), Fy(t*)} < ¢~, which together
with Fy(t*) > Fy(t*), gives Fy(t*) < ¢~. Choose I € {1,...,n+ 1} such
that * € [j,_;, 7)), then Fy(§,_;) = Fy(t*) < ¢~. Moreover, since 1* <r,
we have y,_; < r, which together with the assumption that r = j, for
some i € N, implies that j; < r. Thus, we obtain that Fy(y,_;) < ¢~ and
¥, < r, but evaluating the LHS of inequality (9) for index i =/ gives

FxGD= Y pe2 D p=Fx(t) > Fy(t) = Fy (1))
k s.t. k s.t.
X<y xp<r*

which implies that inequality (9) is not satisfied.
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Now suppose that t* € [tR, b]. Then, max{Fy ("), Fy (t*)} > 1 —c*,
which together with Fy (*) > Fy (¢*), implies Fy (t*) > 1—c*. Moreover,
t* > tR > r implies Fy (") > Fy(t*) > Fy(r). Choose ! € {1,...,n+1} such
that r* € [§,_;, 7). Then, Fy(5,_;) = Fy(*) < Fyx(*). Together these
inequalities imply that Fy (+*) > max{Fy (7,_,), Fy(r), 1 —c*}. Evaluating
the LHS of inequality (10) for index i = I gives

FxG= Y pe> Y, b= Fx(@)>max{Fy(Gi_,), Fy(n,1 - c*},
S
which implies that inequality (10) does not hold.

Next, we prove the ‘only if’ part by assuming that inequality (4) of
Proposition 2 holds. To show that inequality (9) is satisfied we evaluate
its LHS for an arbitrary i € {1,...,n + 1} such that Fy(j,_;) < ¢~ and
¥; < r to obtain
Fx@) =Y, pp=Fx(x,

k S't'_

X <Vi
where x* = max,{x;|x;, < J;}. By inequality (4) of Proposition 2, it
holds that Fy(r) < Fy(t) V t € [a,t!), where t& = inf({t < r | Fy() >
¢”, Fy() > ¢~} U {r}). To confirm that x* € [a,t!), first suppose that
tL = r. Then, this implies that t* = r > 3, > x* and thus, x* € [a,t}).
Second, suppose that ¢~ # r, which implies t* = min{t < r | Fx(t) >
c™, Fy(t) > c™}. If t£ < 3, this would imply that F, (t") < Fy(j,_;) < ¢,
which contradicts the required condition that Fy(t%) > ¢~. Hence, it
must hold that t* > 7, > x* and thus, x* € [a,t"). Evaluating inequality
(4) of Proposition 2 at r = x* yields

Fy(x*) < Fy(x*) < sup Fy(H) < Fy(y;_),

1E[X*,5;)
which is the right-hand side of inequality (9).
To show that inequality (10) is satisfied we evaluate its LHS for an

arbitrary i € {1,...,n+ 1} to obtain
FxG)= Y, p=Fx&"),

k s.t.

xk<ty,
where x* = max; {x;|x;, < ;. Since inequality (4) of Proposition 2
holds, we have Fy (1) < Fy(t) V t € [tR,b], where tR = sup({t > r |
Fy() <1—=c*, Fy(t) <1-c*}u{r}). Suppose x* < tR. If tR > r, then
{t >r| Fy() < 1—c*, Fy() < 1-c*} # @ and thus, there exists
x' € (x*,tR] such that Fy(x') <1—c*. Then,

Fx(x*) < Fx(x') £ 1 - ¢t <max{Fy(F_)), Fy(r), 1 —c*}.

In turn, if R = r, then (4) implies that Fy(r) < Fy(r), which gives
Fy(x*) < Fx(t®) = Fx(r) < Fy(r) < max{Fy(§;_)), Fy (), 1 - c*}.
Finally, if x* > R, then (4) implies that Fy(x*) < Fy(x*), which gives

Fy(x*) < Fy(x*) < sup

tE[X*,5;

)Fy(t) < Fy(.f’,‘_l) < m‘dX{Fy(i,»_l), Fy(")y 1- C+}- O

Proof of Lemma 1. We first show that the value of the right-hand side
(RHS) of condition (7) in Theorem 1 is equal to the optimal objective
function value of a MILP problem. Specifically, for any y; € [r, b], the
RHS of condition (7) in Theorem 1 is equal to

Z pk(yi _xk) - Z Pk(’—xk)

X <Yi X <r

n
Zpk max{y,- — Xy, 0}
k=1

F(y) — FA(r) 2 F3(y) — F3(r)

n
- Z Pk max{r - Xy, O}
k=1

n
= Zpk (max{yi - Xp, 0}
k=1

—max{r—x;, 0} ) . (A.4)
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The value of the kth term in (A.4) falls into one of the three cases: (i)
If x, > y; > r, then both max operators in (A.4) give zeros and hence,
the value of the kth term in (A.4) equals zero; (ii) If y; > x; > r, then
the first and second max operators yield y; — x, and 0, respectively,
and therefore the value of the kth term in (A.4) equals y; — x,; (iii) If
y; = r > x;, the value of the kth term in (A.4) is then equal to y; —r. As

a consequence, Eq. (A.4) reduces to the compact form

F)z((y,-) - F)z((r) = Zpk <max{min{y,— - Xp, Vi— r}, 0})
k=1

which can then be modeled as a MILP problem by introducing non-
negative continuous decision variables h:rl, ,h:; as well as binary
decision variables z;r, e z:'. In particular, we formulate two constraints
hY 2 yi—x,—M(1-z)) and b}, > y;—r—Mz]. In each state k, only one
of these two constraints binds while the other becomes redundant such
that z} = 1 if x, is greater than r or z; = 0 otherwise, for k € N, where
N = {1,...,n}. Specifically, for any y;, > r, the value of FZ(y;) - Fz(r)

equals to the optimal objective function value of the MILP problem

n
min ht A.5
(o DR l; Pici (A-5)
Hefo1)n
s.t. h;f;CZyi—xk—M(l—ZZ)VkeN (A.6)
h;’,’(Zyi—r—Mz:VkeN, (A.7)

where M is a sufficiently large positive constant.

We now prove the ‘if’ part. Assume that (h*,z*) satisfies con-
straints (12)-(14). Then, (h*, z¥) is a feasible solution to MILP problem
(A.5)-(A.7). Thus, the value of the objective function (A.5) evaluated
at (h*,z") is greater than (or equal to) the value of F2(y;) — Fa(r).
Since (ht,z") satisfies (14), then the value of the objective function
(A.5) is less than (or equal to) the value of F2(y;)— FZ(r). Together, for
an arbitrary i € N*, where N* = {i € N | y; > r}, we obtain

F2(y,) = FX(r) 2 F2(y) — F2(1).

Hence, condition (7) of Theorem 1 holds.

Finally, we prove the ‘only if’ part. Assume that condition (7) of
Theorem 1 holds, i.e., Fj(y;)— FZ(r) > Fx(y;)— F(r) for all y; > r. Take
any y; > r and let (h**, zt*) be the optimal solution to MILP problem
(A.5)—(A.7). Then, the solution clearly satisfies constraints (12)-(13),
as they are identical to constraints (A.6)-(A.7) and the value of the
objective function (A.5) is

n
X pihit = F() — Fx(r) < Fp(y) = FR (),
k=1
which implies that constraint (14) is satisfied. []

Proof of Lemma 2. We first show that the value of the right-hand side
(RHS) of condition (8) in Theorem 1 is equal to the optimal objective
function value of a MILP problem. Specifically, for any x; € [a,r], the
RHS of condition (8) of Theorem 1 equals, after rearrangement,

>

F2(r) 2 F2(r) + F2(x;) — F2(x))

Zpk(r_xk)+ Z pk(xi_yk)_ Z pk(xi_xk)

xXg<r Vi< XpSX;

n n
Z pemax{r—x;, 0} + Z pi max{x; = y;. 0}
k=1 k=1

n
- Z prmax{x; — x;, 0}. (A.8)
k=1
Obviously, the value of the kth term in (A.8) depends on the joint
outputs from each of the three max operators. Therefore, in order to
determine its outcome, Eq. (A.8) can be modeled as a MILP problem
by introducing non-negative continuous decision variables d[, ....d,,
R hlfl, Y and binary decision variables Zos ey 2 In par-

ticular, for each decision variable d,’, we construct the constraint d; >
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r — x, such that d;” > 0 if r is greater than x, or d;; = 0 otherwise, for
k € N, where N = {1,...,n}. Then, for each decision variable g , we
establish the constraint g, > x; — y, such that g;, is strictly positive if
x; is larger than y, or otherwise g7, gets zero, for k € N. Finally, for
each decision variable h7,, two constraints i, < x;—x,+M(1-z,) and
h, < Mz, alternate to bind each state k such that 4, >0 and z;, =1
if x; is greater than x, or A, = 0 and z; = 0 otherwise, for k € N.
Specifically, for any x; < r, the value of F (r)+ F2(x;) - Fa(x;) is equal
to the optimal objective function value of the MILP problem

n n n
o 0 ey DOt D0k~ Xnily ()
(hﬁ.,,..h;')eﬂ?{_'}, <zﬁ"'”zi_n)€w'l)"

s.t. dk_ >r—x, VkeN (A.10)
gp=Xxi— VW VKEN (A1D)
hy <x;—x+M( -z, )VKEN (A12)
h, <Mz, VkeEN, (A.13)

where M is a sufficiently large positive constant.

We now prove the ‘if’ part. Assume that (d—,g~,h™,z") satisfies
constraints (15)-(19). Then, (d~,g~,h ,z7) is a feasible solution to
MILP problem (A.9)-(A.13). Thus, the value of the objective function
(A.9) evaluated at (d~,g~,h,z7) is no less than the value of F)z( r) +
F2(x;) — F2(x;). Since (d~,g~,h™,z") satisfies (19), then the value of
the objective function (A.9) is no more than F}%(r). For an arbitrary
i € {i € N | x; <r}, combining these results yields then

Fp(r) > Fy(r) + Fp(x) = F3(x) & Fp(r) = Fp(x) > F3(r) = F3(x)).
Therefore, condition (8) of Theorem 1 holds.

Finally, we prove the ‘only if’ part. Assume that condition (8) of
Theorem 1 holds, i.e., FZ(r)— Fj(x;) > Fx(r)— Fz(x,) for all x; < r. Take
any x; < r and let (d=*,g~*,h™*,z7*) be the optimal solution to MILP
problem (A.9)-(A.13). Then, the solution clearly satisfies constraints

(15)—(18), as they are identical to constraints (A.10)-(A.13) and the
value of the objective function (A.9) is

n n n
N ped 4 Y gy = D pehi = F(r) + FA(x) — Fa(x)) < F2(r)
k=1 k=1 k=1
& F3(r) - F3(x;) < FE(r) - FE(x)).

O

which implies that constraint (19) is satisfied.

Proof of Theorem 3. Consider any prospects X and Y. Theorem 1
together with Lemmas 1 and 2 imply that X > Y if and only if there
exist it € RZ>, zt € {0,1)", d~ € R%, g~ € R>", h™ € R,
and z= € {0,1}™" that satisfy constraints (12)-(14), (15)—(18), and
constraint (19), i.e.,

n n n
Zpkd,: + Z[’kg,-—k - Zpkh,'—k
k=1 k=1 k=1

Since this constraint needs to hold for losses only, we modify it by
adding an extra term to obtain

<SFXrVie{ieN|x <r}

n n n
Y pedi + Y pigp — Qph - M=) S FROViIiEN,  (Al14)
k=1 k=1 k=1

where the new binary variables ¢ oo br indicate which of the state-
specific outcomes x, ..., x, are losses (i.e., below the reference outcome
r). This can be implemented by introducing the additional constraints

r—x; <M Vviell,....n}, (A.15)

which ensure that ¢; = 1 if x; < r. The set of constraints (12)—(14),
(15)—(18), (A.14) and (A.15) is equivalent to constraints (21)-(29).
This equivalence directly implies that statement (i) holds. Together
with the fact that for any x € X, there exists X’ € X such that
(X'(s1), -5 X (5,)) = (x1, ..., x,) (see (20)), the equivalence implies that
statement (ii) holds. []
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Proof of Corollary 1. We first prove the ‘if’ part. If x = (x|, ..., x,) =
(X(81), ..., X(s,)) is an optimal solution to optimization problem (30),
then random variable X by Theorem 3 is a feasible solution to
maxyex {E[X] | X > Y}. Assume now by contradiction that X is
not optimal to maxycx{E[X] | X > Y}. Then, there must exist
another feasible solution X’ that yields a higher objective function
value such that E[X'] > E[X]. Then, by Theorem 3, x' = (x/, ..., x}) =
(X'(sy), ..., X'(s,)) is a feasible solution to (30), and moreover, it yields
the objective function value Y | p;x] = E[X'] > E[X] = Y| pix;,
which is contradictory to the assumption that x is the optimal solution
to (30). Hence, X is an optimal solution to maxyx{E[X]| X > Y}.
Then, we prove the ‘only if’ part. Assume that random variable X
is an optimal solution to maxyx{E[X]| X > Y}. Then, by Theorem 3,
x=(xq,...,x,) = (X(s), ..., X(s,)) is a feasible solution to optimization
problem (30). Now assume by contradiction that x is not optimal
to (30), then there must exist another feasible solution x’ such that
Y, pix; > X, pix;. Then, by Theorem 3, random variable X’ such
that (X'(sy),...,X'(s,)) = (x],....x}), is also a feasible solution to
maxyex{E[X] | X > Y} and E[X'] = ¥ pixl > X, px; = E[X],
which contradicts to the assumption that X is the optimal solution to
maxycx{E[X]| X > Y}. Thus, x is an optimal solution to (30). [J

Proof of Lemma 3. Based on Theorem 2 it is sufficient to prove that
its inequalities (9) and (10) hold if and only if there exists z € {0, 1}"™"
that satisfies constraints (31)—(33). Since we have assumed that r €
{yi,-...y,tand y; <y, <,...,< y,_; <y, we have y = y, which implies
that the right-hand sides of constraints (32) and (33) are equal to those
of inequalities (9) and (10), respectively.

First, assume (9) and (10) hold. Then, construct z € {0, 1}"™" such
that

1, if x, <y,

Ziy = Vik €N.

0, otherwise

C~1early, z satisfies constraint (31). Moreover, Y/ _, pyz; = Loy<y, Pk =
Fx(y;) for all i € N. This implies that the left-hand sides of (32) and
(33) are equal to those of constraints (9) and (10). Thus, z satisfies
constraints (32) and (33).

Second, assume that there exists z € {0,1}™" that satisfies con-
straints (31)—(33). Satisfying constraint (31) requires that z; = 1 for
each i,k € N such that x, < y;,. This implies that for each i € N,
Yoy PrZik = Z<y; Pk = Fy(y,) and therefore the left-hand sides of
(32) and (33) are greater than those of inequalities (9) and (10). Thus,
inequalities (9) and (10) are satisfied. []

Proof of Theorem 4. (i) Assume there exists X € X such that
X zgf Y. Lemma 3 implies that there exists z € {0,1}"™" satisfying
constraints (31)-(33) and X > Y. Based on statement (i) of Theorem
3, X > Y implies that there exist 4t € RY*", z+ € {0,1}", d~ € R",
g~ € RY, hm € R, z7 € {0,1}™", and ¢~ € {0,1}" that satisfy
constraints (21)—(29). Together these imply that constraints (21)-(29)
and (31)-(33) are satisfied.

(ii) Assume there exist x € X, ht € ]fo", zt € {0,1)", d~ € R},
g € R™ b~ € R™, z= € {0,1}™", ¢~ € {0,1}", and z € {0,1}"™"
that satisfy constraints (21)-(29) and (31)-(33). Based on statement
(ii) of Theorem 3, there exists X’ € X such that X’ > Y and
X'(sy ..., X'(s,)) = (xq,...,x,). Lemma 3 then implies that X’ zzf
Y. O

Proof of Corollary 2. The proof of Corollary 2 is omitted for brevity
as it is similar to that of Corollary 1. []

Appendix B. Supplementary data

Supplementary material related to this article can be found online
at https://doi.org/10.1016/j.ejor.2025.08.013.
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