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Abstract

We introduce continuation semantics for both fixpoint modal logic (FML) and Computation Tree Logic* (CTL*), param-
eterised by a choice of branching type and quantitative predicate lifting. Our main contribution is proving that they are
equivalent to coalgebraic semantics, for all branching types. Our continuation semantics is defined over coalgebras of the
continuation monad whose answer type coincides with the domain of truth values of the formulas. By identifying predicates
and continuations, such a coalgebra has a canonical interpretation of the modality by evaluation of continuations. We show
that this continuation semantics is equivalent to the coalgebraic semantics for fixpoint modal logic. We then reformulate the
current construction for coalgebraic models of CTL*. These models are usually required to have an infinitary trace/maximal
execution map, characterized as the greatest fixpoint of a special operator. Instead, we allow coalgebraic models of CTL*
to employ non-maximal fixpoints, which we call execution maps. Under this reformulation, we establish a general result on
transferring execution maps via monad morphisms. From this result, we obtain that continuation semantics is equivalent to
the coalgebraic semantics for CTL*. We also identify a sufficient condition under which CTL can be encoded into fixpoint
modal logic under continuation semantics.
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1 Introduction

Modal and temporal logics are effective tools for specifying the behavior of various kinds of reactive
systems, whose inner states are often invisible from the outside. Verifying specifications over such systems
gives precious insight into how these systems behave, and what they produce in the next step and in the
future.

In recent years, a coalgebraic approach to modelling and verifying reactive systems has shown a lot
of promise, as it allows specification-description languages like coalgebraic modal logics [31,32,40] and
coalgebraic temporal logics [7,8,6,34] to be studied at a high level of generality, and verification techniques
to be developed parametrically in the type of system and specification logic [9].

The technical core of these coalgebraic modal and temporal logics is to interpret the modality using
an (Ω-valued) predicate lifting of the branching-type endofunctor B. Such a predicate lifting is given by
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a monotone natural transformation of type Ω( ) ⇒ ΩB( ) with Ω the domain of truth values for the
formulas. This gives a categorical way to lift predicates over the state space to predicates over the set of
“B-computations”, which in turn allows modal formulas to be interpreted over B-coalgebras c : X → BX.

Our motivation is to represent these abstract constructs, including coalgebras, their branching types
and the interpretation of the modality, in terms of the more concrete data structure of Ω-valued continu-
ations [33,38]. This intuition naturally comes if we transpose the type of the predicate lifting to the form

B( ) ⇒ [Ω( ),Ω], which represents a natural transformation from the endofunctor B to the monotone

continuation monad [22,18] Km = [Ω( ),Ω] with answer type Ω. Via such a natural transformation ι,
every B-coalgebra c is represented as the Km-coalgebra ι ◦ c, whose successors are now just monotone
maps, which consume Ω-valued continuations over the state space and return their results in Ω.

The continuation semantics we propose in this paper interprets modal and temporal formulas over coal-
gebras of the continuation monad. Since we can identify Ω-valued predicates and Ω-valued continuations,
every Km = [Ω( ),Ω]-coalgebra c has a canonical interpretation of the modality given by mere evaluation
of Ω-valued continuations with the function c(x) at each state x. By this “built-in” interpretation of the
modality by evaluation, the coalgebras of the continuation monad do not only play the role of models
of systems, which coalgebras are conventionally expected to play, but they also carry the information on
predicate liftings at the same time.

Km-coalgebras also come with a natural semantics for (path-based) temporal logics. Conventionally,
coalgebraic models for temporal logics [6,34] require additional data to transform predicates over compu-
tation paths, representing temporal behaviors of system executions, to predicates over the set of states.
When the branching type of systems is described by a monad T , this additional data is given by a Kleisli
map u ∈ Kℓ(T )(X,Xω) = Set(X,TXω), linking states with their computation paths, usually obtained
as the greatest fixpoint of a monotone operator OT over the set Kℓ(T )(X,Xω) (where X represents the
state space). For the monotone continuation monad Km, producing such a fixpoint is an easy task, thanks
to the rich ordered-structure on the set Kℓ(Km)(X,Xω) inherited from the complete lattice Ω. Applying
a general fixpoint theorem, we obtain not only the greatest fixpoint but also the least fixpoint for every
Km-coalgebra. In this way, every Km-coalgebra automatically becomes a model for temporal logic with
the obtained map u ∈ Kℓ(Km)(X,Xω) and moreover, the map u provides a canonical interpretation of the
path quantifier, by evaluation of Ω-valued continuations with the function u(x) at each state x again.

After seeing several nice properties of Km-coalgebras and continuation semantics over them, a natural
question to ask is whether this semantics is equivalent to the original coalgebraic semantics for modal and
temporal logic. The main technical contribution of this paper is to give a positive answer for this question.

We exemplify this equivalence with two well-known and highly expressive logics, namely fixpoint modal
logic (FML) [28] and (extended) Computation Tree Logic (CTL*) [15]. In the case of FML, we can
incorporate every coalgebraic model as a Km-coalgebra in the same way as aforementioned, via the natural
transformation induced by the Ω-valued predicate lifting. The highlight of the proof is to show that the
transferred coalgebra ι ◦ c has the same semantic information as the original model c. This proof uses the
key observation that every Ω-valued predicate lifting for every endofunctor can be decomposed using the
canonical interpretation of the modality, which, as we saw above, is obtained by evaluation.

As for the temporal logic CTL*, surprisingly, the current formulation of coalgebraic semantics is too
restrictive to be equivalent to continuation semantics. This requires us to revisit the current definition of
a coalgebraic model, so that the class of coalgebraic models becomes large enough to match up with the
class of continuation models. Our main modification is that we allow every fixpoint u ∈ Kℓ(T )(X,Xω) of
the operator OT to constitute a coalgebraic model for CTL*, and we call such a (possibly non-maximal)
fixpoint a T -execution map. This removal of the maximality requirement might seem a subtle change, but
we can go back to its origin in the study of infinitary trace semantics [24], which to our knowledge was
the first attempt to formalize ever-lasting behaviors of coalgebras.

As a result of this more general notion of execution map, we obtain two technical, but meaningful,
results. First, we show that a monad morphism transfers execution maps from its domain to its codomain.
When applied to our coalgebraic models for CTL*, the transferred execution map plays a key role for the
equivalence of coalgebraic and continuation semantics for CTL*.

The second result comes when we impose affine-ness [27,23] on the continuation monad. This affine
sub-monad Ka,m ⊆ Km detects constant continuations and immediately returns the given constants. This
mild and natural restriction of the continuation monad leads to a profound result: when the answer type
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Ω is a de Morgan complete lattice, a unique Ka,m-execution map exists. This means there is exactly one
choice of evaluation for each affine continuation model for CTL*.

This paper introduces this novel, continuation-based approach to investigating behaviors of systems in a
concrete and unified way. While the main focus of this paper is to show the theoretical fundamentals of our
approach, we briefly sketch an application of our approach to analyzing the fixpoint characterization [14]
of CTL, which is essential for proving that CTL model checking can be done in linear time.

Our main contributions are summarized as follows.

• We introduce the continuation semantics (Def. 3.10, Def. 4.9) for FML and CTL*, where in each case,
the resulting model has its “built-in” interpretation of the modality 3, respectively quantifier E, char-
acterized as evaluation of continuations (Prop. 3.11, Prop. 4.10).

• We show the equivalence of our continuation semantics and the coalgebraic semantics of these log-
ics (Prop. 3.12, Prop. 4.12). In the case of CTL*, we obtain the equivalence from a general result
relating execution maps for two different monads via monad morphisms (Prop. 4.11).

• We show that the minimal and maximal execution maps always exist for both Km and Ka,m (Prop. 5.1),
and thus we can always extend every continuation model for FML to one for CTL* with one of these
maps (Prop. 5.2). Moreover, we show that the minimal and maximal Ka,m-execution maps coincide
when the answer type Ω is a de Morgan complete lattice (Prop. 5.3).

• We give a sufficient condition for the fixpoint characterization and a weaker version of it to hold under
continuation semantics (Thm. 6.5).

This paper is organized as follows. Sec. 2 summarizes our conventions and preliminaries. In Sec. 3,
after recalling the coalgebraic semantics of FML, we introduce our continuation semantics and show the
equivalence result. In Sec. 4, we reformulate the coalgebraic semantics for CTL* [6,34] with our novel
notion of execution map, introduce our continuation semantics for CTL*, and prove the equivalence of
the two semantics. In Sec. 5, we prove the existence of the minimal and maximal execution maps for the
continuation monad, and also their coincidence result. In Sec. 6, we analyze the fixpoint characterization
result under continuation semantics.

2 Preliminaries

Throughout this paper, we follow the following conventions.

• Every functor treated in this paper is defined over the category Set of sets. We use the letters B for an
endofunctor, and T or S for monads. A B-coalgebra for an endofunctor B is a map of type X → BX
for some set X. A T -coalgebra for a monad T is also defined by seeing T as a mere endofunctor.

• We use the notations Y X := Set(X,Y ) and [P,Q] for the set of monotone maps between ordered sets.
A function f : X → Y is also represented using lambda notation λxX .f(x), with the type superscript
sometimes omitted. We denote ( )∗ and ( )∗, respectively, the post- and pre-compositions of function.

• We equip every monad T with its monad strength [25, Def. 5.2.9] given by the canonical monad
strength [25, Lem. 5.2.10]: for each X,Y ∈ Set, the canonical monad strength stT : X×TY → T (X×Y )

is defined by stT := λ(x, t)X×TY . T
(
λyY . (x, y)

)
(t).

• We fix a set AP of atomic propositions throughout this paper.

We consider the continuation monad whose answer type is given by a complete lattice (see [5,12,19]
for the further details of Lattice Theory). A complete lattice is a poset Ω = (Ω,⊑) with every join (or
equivalently, every meet). Especially, it has the bottom and top elements ⊥ = ⊥Ω and ⊤ = ⊤Ω. In this
paper, we assume a complete lattice is always meet- and join-continuous: for every I ∈ Set and a, bi ∈ Ω
for i ∈ I, the equalities a ⊓

⊔
i∈I bi =

⊔
i∈I a ⊓ bi and a ⊔

d
i∈I bi =

d
i∈I a ⊔ bi hold. A complete lattice Ω

is called de Morgan if it equips an involution map ¬: explicitly, an involution map over Ω is a bijective
monotone map ¬ : Ω → Ωop for the opposite lattice Ωop = (Ω,⊑op) (we will identify ¬−1 = ¬). The set of
the booleans 2 is an obvious example of de Morgan (indeed Boolean) complete lattice. Another example
is the unit interval [0, 1]: it is a complete lattice with sup as its join and inf as its meet. It also equips a
de Morgan involution by the  Lukasiewicz negation ¬r := 1− r.
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Hereafter, we fix a (possibly de Morgan) complete lattice Ω ∈ Set.

The plain continuation monad K : Set → Set with answer type Ω is defined by K(X) = ΩΩX
for

X ∈ Set and K(f) = λhKX . λkΩ
Y
. h(k ◦ f) : KX → KY for f : X → Y . Its monad unit and multiplication

are given by ηX = λxX . λkΩ
X
. k(x) : X → KX and µX = λHKKX . λkΩ

X
. H(λhKX . h(k)) : KKX → KX,

respectively. We also define the monotone and affine sub-monads of the plain continuation monad: recall
that a monad T is affine if its unit η1 : 1 → T1 is an isomorphism.

• The monotone continuation monad Km is defined by Km := [Ω( ),Ω].

• The affine monotone continuation monad Ka,m is defined by Ka,m(X) = {h ∈ KmX | h(λ . a) = a}. 3

We introduce the “polymorphic” symbol Km to represent both of the two monads Km and Ka,m at once.
This symbol is used in the situations where we want to treat these monads in parallel. We also denote
Km = Km

Ω when we emphasize the answer type Ω of the continuation monad Km.

Example 2.1 When Ω = 2, the monotone continuation monad Km
2 is called the monotone neighborhood

(MN) monad [20], denoted M. Under the identification of 2X = PX, it is written as MX = {F ∈
PPX | F is upward closed}. The MN monad M is used for coalgebraic formulations of the neighborhood
semantics [30,35] of modal logic since M-coalgebras are exactly neighborhood frames.

We next recall the notion of monad morphism between monads S = (S, ηS , µS) and T = (T, ηT , µT ),
which plays an important role throughout this paper: a monad morphism is a natural transformation
ι : S ⇒ T which satisfies the equations ηT = ι ◦ ηS : Id ⇒ T and µT ◦ ιT ◦ Sι = µS ◦ ι : SS ⇒ T . We call
a monad S with a monad morphism ι : S ⇒ T a T -over-monad. The monad S is called a T -sub-monad if
the monad morphism ι is moreover an injection. Monad morphisms are also compatible with the canonical
monad strength and affineness of monads, as shown in the following result (its proof is in Appendix A).

Proposition 2.2 Let ι : S ⇒ T be a monad morphism.

(i) For each X,Y ∈ Set, the equation stT ◦ (idX × ιY ) = ιX×Y ◦ stS : X × SY → T (X × Y ) holds.

(ii) When the monad T is an affine monad, then so is the monad S.

Trivially, the identity natural transformation id: T ⇒ T is an invertible monad morphism for every
monad T . The inclusions between the above monads K,Km,Ka,m are also injective monad morphisms.

When Ω is a de Morgan complete lattice, there is another monad morphism between the affine monotone
continuation monads Ka,m

Ω and Ka,m
Ωop , induced from the involution ¬. See Appendix A for its proof.

Proposition 2.3 If Ω is a de Morgan complete lattice with its involution ¬, the map

βY := λh. λk.¬h(¬ ◦ k) : Ka,m
ΩopY → Ka,m

Ω Y

for each Y ∈ Set constitutes an invertible monad morphism β : Ka,m
Ωop ⇒ Ka,m

Ω .

3 Continuation Semantics for Fixpoint Modal Logic

In this section, we introduce our continuation semantics for fixpoint modal logic (FML) [28]. First, we
recall the coalgebraic semantics of FML in the same manner as preceding work [40,10], using the categorical
notion of predicate lifting [32] to interpret the modality. We then note the well-known, seemingly folklore
result on the bijective correspondence between predicate liftings and natural transformations into the
continuation monad. From this result, we obtain the canonical predicate lifting for the continuation
monad Km induced from the identity map. The continuation semantics introduced here uses this the
canonical lifting to interpret the modality. We show the equivalence of coalgebraic and continuation
semantics for FML, using the result that this canonical lifting for Km decomposes every predicate lifting
for every endofunctor.

3 The affine monotone continuation monad Ka,m is indeed the affine part [23, Def. 4.5] of Km, which means Ka,m is
the largest affine sub-monad of the monotone continuation monad.
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3.1 Coalgebraic Semantics for Fixpoint Modal Logic

Modal logic extended with least and greatest fixpoint operators µ and ν, also called the modal µ-calculus,
was first introduced by [28]. We present here its full syntax and negation-free fragment.

Definition 3.1 We define the set µL¬, called the full fixpoint modal logic (full FML, for short), by the
following grammar:

θ ∈ µL¬ ::= u | p ∈ AP | ¬p | tt | ff | θ1 ∧ θ2 | θ1 ∨ θ2 | 3θ | 2θ | µu. θ(u) | νu. θ(u)

where u is the propositional variable, 3 and 2 are the mutually dual modalities, and µ and ν are the least
and greatest fixpoint operators.

We also define the set µL, called the ¬-free FML as the set obtained by removing ¬p and 2 from the
above set µL¬. We often call just FML formulas for the formulas of both µL and µL¬.

Remark 3.2 [negation as syntactic sugar] While negation is restricted to atomic propositions in the syntax
of µL¬ above, we can define the negation ¬θ for every µL¬ formula θ by inductively applying the de Morgan
laws and the duality between the modalities3,2 and the fixpoint operators µ, ν: harmlessly, we can assume
the syntactic equivalences ¬3 ≡ 2¬,¬2 ≡ 3¬ and ¬µu. θ(u) ≡ νu.¬θ(¬u),¬νu. θ(u) ≡ µu.¬θ(¬u). Note
that since θ(u) has only positive occurrences of the variable u, so has the formula ¬θ(¬u). See [17] for
further technical details.

The semantics for FML was originally defined over Kripke frames and later extended to neighborhood
frames [16], each corresponding to Kripke semantics and neighborhood semantics for modal logic without
fixpoints. Both of these semantics are instances of coalgebraic semantics [40,10], which is defined over
B-coalgebras for an endofunctor B with a predicate lifting [32] for B. 4

Definition 3.3 Let B be an endofunctor and T be a monad.

(i) An Ω-predicate lifting for B is a natural transformation 3 : Ω( ) ⇒ ΩB( ) which is monotone with
respect to the point-wise order on ΩY and ΩBY for each Y ∈ Set.

(ii) A cartesian Ω-predicate lifting for T is an Ω-predicate lifting which is cartesian as a natural transfor-

mation: a natural transformation 3 : Ω( ) ⇒ ΩT ( ) is cartesian [1, Definition 3.1] if for each object
X, the equations η∗ ◦3X = idΩX : ΩX → ΩX and µ∗ ◦3X = 3TX ◦3X : ΩX → ΩTTX hold.

Definition 3.4 An Ω-valued coalgebraic model is a tuple (B,3, c, L) where B is an endofunctor,

3 : Ω( ) ⇒ ΩB( ) is an Ω-predicate lifting for B, c : X → BX is a B-coalgebra, and L : AP → ΩX is
a labeling function.

Definition 3.5 Let (B,3, c, L) be an Ω-valued coalgebraic model. For each µL formula θ with free

variables u1, . . . , um, its interpretation JθK(B,3)
c :

(
ΩX

)m → ΩX is defined by:

JuiK(B,3)
c (k) := ki, JpK(B,3)

c (k) := L(p),

JttK(B,3)
c (k) := λx.⊤, JffK(B,3)

c (k) := λx.⊥,
Jθ1 ∧ θ2K(B,3)

c (k) := Jθ1K(B,3)
c (k) ⊓ Jθ2K(B,3)

c (k), Jθ1 ∨ θ2K(B,3)
c (k) := Jθ1K(B,3)

c (k) ⊔ Jθ2K(B,3)
c (k),

J3θK(B,3)
c (k) := c∗ ◦3X

(
JθK(B,3)

c (k)
)
,

Jµu. θ(u)K(B,3)
c (k) := µk. Jθ(u)K(B,3)

c (k, k), Jνu. θ(u)K(B,3)
c (k) := νk. Jθ(u)K(B,3)

c (k, k)

for k = (k1, . . . , km) ∈
(
ΩX

)m
. When Ω is a de Morgan complete lattice, the interpretation of µL¬

formulas is also defined: in addition to the interpretation above, we define

J¬pK(B,3)
c (k) := ¬ ◦ L(p), J2θK(B,3)

c (k) := (¬)∗ ◦ c
∗ ◦3X

(
¬ ◦ JθK(B,3)

c (k)
)
.

4 The original definition [32] of predicate lifting, also employed by [40,10], was restricted to 2-valued case. Our
definition here is slightly more general, in that we allow any complete lattice.
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3.2 Canonical Decomposition of Predicate Liftings

As mentioned in Introduction (Sec. 1), the following seemingly folklore result 5 is the starting point of our
investigation for the continuation monad, and heavily used throughout this paper.

Proposition 3.6 Let B be an endofunctor and T be a monad.

(i) There is a bijective correspondence between the following:
(a) a natural transformation B ⇒ Km,

(b) an Ω-predicate lifting Ω( ) ⇒ ΩB( ) for B.

(ii) There is a bijective correspondence between the following:
(a) a monad morphism T ⇒ Km,

(b) a cartesian Ω-predicate lifting Ω( ) ⇒ ΩT ( ) of T .

We only indicate concrete constructions of the first bijective correspondence: the full proof, including
the cartesian case, comes immediately from this construction.

• Given a natural transformation ι : B ⇒ Km, the map λkΩ
Y
. λtBY . ιY (t)(k) : Ω

Y ⇒ ΩBY for each Y ∈ Set
gives an Ω-predicate lifting for B.

• Given an Ω-predicate lifting 3 : Ω( ) ⇒ ΩB( ) for B, the map λtBY . λkΩ
Y
.3Y (k)(t) : BY ⇒ [ΩY ,Ω] =

KmY for each Y ∈ Set gives a natural transformation to Km.

From Prop. 2.2, the bijective correspondence for the cartesian case also applies to the affine monotone
continuation monad Ka,m.

Proposition 3.7 Let T be an affine monad. There is a bijective correspondence between the following:

(i) a monad morphism T ⇒ Ka,m,

(ii) a cartesian Ω-predicate lifting Ω( ) ⇒ ΩT ( ) of T .

The continuation monad Km has the cartesian predicate lifting induced from the identity.

Definition 3.8 The canonical lifting, denoted △, of Km = Km
Ω is the cartesian Ω-predicate lifting induced

from the identity natural transformation id: Km ⇒ Km by Prop. 3.6.

The canonical lifting △ of Km is the most basic one among all Ω-predicate liftings of all endofunctors
in that it decomposes every Ω-predicate lifting. Below, we formulate the statement for both the monotone
and affine monotone cases in parallel using the polymorphic symbol Km. Throughout this paper, we will
do similar parallel arguments as long as they are technically harmless.

Proposition 3.9 (canonical decomposition) Let B be an endofunctor, 3 : Ω( ) ⇒ ΩB( ) be an Ω-
predicate lifting for B and ι : B ⇒ Km be the natural transformation corresponding to 3 by Prop. 3.6,

which means ιY = λtBY . λkΩ
Y
.3Y (k)(t) for each Y ∈ Set. Then, the Ω-predicate lifting 3 for B is

decomposed as

3 = ι∗ ◦ △ : Ω( ) ⇒ ΩKm( ) ⇒ ΩB( )

via the canonical lifting △ : Ω( ) ⇒ ΩKm( ) of Km. We call this decomposition of the Ω-predicate lifting 3

the canonical decomposition of 3.

Proof. The natural transformation ι is decomposed as ι = id ◦ ι : B ⇒ Km ⇒ Km via the identity natural
transformation id of Km. This decomposed natural transformation corresponds to the Ω-predicate lifting
ι∗ ◦ △ by Prop. 3.6. Since this correspondence is bijective and the corresponding lifting of the natural
transformation ι is 3 by definition, we have 3 = ι∗ ◦ △. 2

5 The result appears in its partial forms in the literature in different contexts. For example, we can refer to [22,
Proposition 1], [26, Lemma 7] and [4, Proposition 14].
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3.3 Continuation Semantics for Fixpoint Modal Logic

Our continuation semantics for FML is defined as an instantiation of the general coalgebraic seman-
tics (Def. 3.5) with the continuation monad Km and the canonical lifting △.

Definition 3.10 (i) An Ω-valued continuation model is a pair (c, L) of a Km-coalgebra c : X → KmX
and a labeling function L : AP → ΩX .

(ii) The continuation semantics J Kc of µL, µL¬ for a continuation model (c, L) is defined as J Kc :=

J K(K
m,△)

c for the Ω-valued coalgebraic model (Km,△, c, L).

The key feature of the continuation semantics is that the interpretation of the modality 3 is given by
“evaluation”, by the definition of the canonical lifting △.

Proposition 3.11 (modality is interpreted by evaluation) Let (c, L) be a continuation model (c, L).
For each FML formula θ, we have

J3θKc(k) = λx. c(x)
(
JθKc(k)

)
.

The above presentation implies that each Km-coalgebra itself carries both the data of a system and
the lifting of predicates at the same time. This suggests the special status of Km-coalgebras among all
coalgebras with various branching types in giving semantics to FML. Indeed, the following result shows
continuation semantics is strong enough to capture all semantic properties of FML.

Proposition 3.12 (continuation semantics is equivalent to coalgebraic semantics) Let
(B,3, c, L) be an Ω-valued coalgebraic model.

(i) The pair (ιX ◦ c, L) is a continuation model, where ι : B ⇒ Km is the natural transformation induced
from the Ω-predicate lifting 3 by Prop. 3.6.

(ii) The interpretations JθKιX◦c = JθK(B,3)
c coincide for every FML formula θ.

Proof. item i is trivial.
For item ii, the proof goes inductively. The only non-trivial parts are the interpretations of 3θ and

2θ. Assume JθKιX◦c(k) = JθK(B,3)
c (k) for k ∈

(
ΩX

)m
as the induction hypothesis. By the canonical

decomposition 3 = ι∗ ◦ △ of Prop. 3.9 and the definition of the coalgebraic semantics (Def. 3.5), we have

J3θK(B,3)
c (k) = c∗ ◦3X

(
JθK(B,3)

c (k)
)
= c∗ ◦ (ι∗X ◦ △X)

(
JθK(B,3)

c (k)
)
= (ιX ◦ c)∗ ◦ △X

(
JθKιX◦c(k)

)
.

Since RHS of the above equation is equal to J3θK(K
m,△)

ιX◦c (k) = J3θKιX◦c(k) by the definitions of the

coalgebraic and continuation semantics (Def. 3.5, Def. 3.10), we conclude J3θK(B,3)
c (k) = J3θKιX◦c(k).

We can show the 2θ case by a similar calculation. 2

Recall that our continuation models are defined as a specific class of coalgebraic models (Def. 3.10).
The above result thus implies that every coalgebraic model is indeed a continuation model and vice versa.

4 Continuation Semantics for Computation Tree Logics

In this section, we formulate the coalgebraic semantics of Computation Tree Logic* (CTL*), mostly in
line with preceding work [6,34] but with some modifications. We first introduce the notion of T -execution
map of a T -coalgebra c for a monad T , which we use to interpret the path quantifier of CTL*. We then
formulate our coalgebraic semantics and continuation semantics for CTL*, whose models have execution
maps as new parameters. We show the equivalence of these semantics using a general result on monad
morphisms and execution maps.
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4.1 Execution Operator and Execution Maps

Recall the Kleisli category Kℓ(T ) of a monad T on Set (see [29] for details). Its objects are sets and
its morphisms are defined as Kℓ(T )(Y, Y ′) := Set(Y, TY ′) for Y, Y ′ ∈ Set. The composition ⊙ between
morphisms is defined as f ′⊙ f := µ ◦Tf ′ ◦ f ∈ Kℓ(T )(Y, Y ′′) for f ∈ Kℓ(T )(Y, Y ′) and f ′ ∈ Kℓ(T )(Y ′, Y ′′).
The identity morphism is defined as ηY ∈ Kℓ(T )(Y, Y ). The category Set is embedded into the Kleisli
category Kℓ(T ) by the identity-on-objects functor J : Set → Kℓ(T ) which maps a function f ∈ Set(Y, Y ′)
to Jf = ηY ′ ◦ f ∈ Set(Y, TY ′) = Kℓ(T )(Y, Y ′).

The set Xω of paths over a set X ∈ Set can be characterized as the final coalgebra of the polynomial

functor ΠX := X× IdSet, which we call the path functor. The final ΠX -coalgebra map ζ = ⟨ζ1, ζ2⟩ : Xω
∼=−→

ΠXX
ω = X × Xω decomposes a path π ∈ Xω into its head ζ1(π) = π0 and tail ζ1(π) = π+ := π1π2· · ·,

meaning π = π0π
+. 6 We denote ΠX : Kℓ(T ) → Kℓ(T ) the Kleisli lifting of the path functor ΠX for a

monad T . Explicitly, it is given by ΠX(Y ) = ΠX(Y ) = X×Y for Y ∈ Set and ΠX(f) = stX,Y ′ ◦ (idX × f)
for a Kleisli map f ∈ Kℓ(T )(Y, Y ′).

We define an execution map of a T -coalgebra as a Kleisli map from its state space to the path space,
which is additionally a fixpoint of a special operator, called execution operator.

Definition 4.1 Let T be a monad and c : X → TX be a T -coalgebra.

(i) The execution operator OT,c : Kℓ(T )(X,Xω) → Kℓ(T )(X,Xω) of the T -coalgebra c is a map defined
by

OT,c(u) = Jζ−1 ⊙ΠX(u)⊙
(
stTX,X ◦ ⟨idX , c⟩

)
for each u ∈ Kℓ(T )(X,Xω). We will omit its subscripts T, c when they are clear from the context.

(ii) A T -execution map, or just execution map, of the T -coalgebra c is a Kleisli map u ∈ Kℓ(T )(X,Xω)
satisfying the equation OT,c(u) = u.

(iii) When the homset Kℓ(T )(X,Xω) is ordered, an execution map u of the T -coalgebra c is called the
maximal execution map [6] if the map is the greatest one among all execution maps of c. We similarly
define the minimal execution map.

Intuitions behind the definition of the execution operator OT,c are as follows. Let x ∈ X.

• The value
(
stTX,X ◦⟨idX , c⟩

)
(x) = stTX,X

(
x, c(x)

)
∈ T (X×X) gives the successor c(x) with the additional

data of the current state x on its left entry.

• The map ΠX(u) applies the map u only to the successors (the right entry), and does not touch the
current state (the left entry).

• The final part Jζ−1 concatenates the unchanged current state with the u-values of successors to produce
an element in TXω. (Recall that the isomorphism ζ decomposes a path to its head and tail.)

The equation OT,c(u) = u implies directly applying the map u to the current state x is the same as applying
the map to its all successors and then combining them as above.

Example 4.2 When T = P, a P-coalgebra c : X → PX and a map u : X → PXω induce(
stTX,X ◦ ⟨idX , c⟩

)
(x) = {(x, x′) | x′ ∈ c(x)}, ΠX(u)(x, x

′) = {(x, π′) | π′ ∈ u(x′)}, Jζ−1(x, π′) = {xπ′}.

The execution operator OP,c can be calculated to OP,c(u)(x) = {xπ′ ∈ Xω | ∃x′ ∈ c(x). π′ ∈ u(x′)}. The
maximal P-execution map is well-known to be [24,39]

x 7→ u(x) = {π ∈ Xω | π(0) = x and ∀n ∈ ω. π(n+ 1) ∈ c
(
π(n)

)
}.

The minimal P-execution map is the trivial one: λ . ∅. When we replace the powerset monad P with the
non-empty powerset monad P+, the maximal P+-execution is known to be the same as above [34].

6 Here πn represents the n-th element of a path π, and xπ ∈ Xω for an element x ∈ X represents the concatenation
of x with π.

8



Kojima and Ĉırstea

Once defined abstractly, we now give a concrete formula to calculate the execution operator with only
the defining data of a monad. The following formula follows from the definition of the canonical strength
map and applies to every monad on the category Set.

Proposition 4.3 Let T be a monad and c : X → TX be a T -coalgebra. The execution operator OT,c can
be calculated to OT,c(u) = λx. T

(
λπ. xπ

)(
(µXω ◦ Tu ◦ c)(x)

)
for each u ∈ Kℓ(T )(X,Xω) = Set(X,TXω).

Remark 4.4 The execution operator OT defined here is just a specialization of the defining operator
to obtain the more general coalgebraic notion of maximal trace or infinitary trace [24,39], which was
introduced to capture “ever-lasting” behaviors of TF -coalgebras with a monad T and an endofunctor F
under a distributive law between them. A more restricted version of maximal trace, where the endofunctor
F and distributive law are fixed to a polynomial functor and the canonical distributive law, appear under
the name of maximal execution map [6]. While our definition of execution map is in line with these
preceding definitions, it differs from them in that we allow every fixpoint of the execution operator. The
modification is technically harmless in the formulation of coalgebraic semantics for CTL* of this paper
(and also that of preceding work [6,34]). Moreover, our results are more clearly stated under this extended
setting, as we will see in the later sections.

4.2 Coalgebraic Semantics for Computation Tree Logics

Computation Tree Logic (CTL) and its two-sorted extension CTL* were introduced in [13] and [15],
respectively. We here present the ¬-free and full versions of both of these logics.

Definition 4.5 We define the pair (sL¬
CTL∗ ,pL¬

CTL∗) of sets, called the full extended Computation Tree
Logic (full CTL*, for short), by the following (mutually inductive) grammar:

ψ ∈ sL¬
CTL∗ ::=p ∈ AP | ¬p | tt | ff | ψ1 ∧ ψ2 | ψ1 ∨ ψ2 | Eφ | Aφ,

φ ∈ pL¬
CTL∗ ::=tt | ff | φ1 ∧ φ2 | φ1 ∨ φ2 | ψ | Xφ | φ2Uφ1 | φ1Wφ2

where E and A are the mutually dual path quantifiers. The ¬-free CTL* is defined as the pair
(sLCTL∗ , pLCTL∗) of sets obtained by removing ¬p and A from the above set sL¬

CTL∗ . We call the formulas
of sLCTL∗/sL¬

CTL∗ and pLCTL∗/pL¬
CTL∗ , respectively, state formulas and path formulas.

We also define the (strict) subset L¬
CTL ⊊ sL¬

CTL∗ , called the full CTL by the following grammar:

ψ ∈ L¬
CTL ::=p ∈ AP | ¬p | tt | ff | ψ1 ∧ ψ2 | ψ1 ∨ ψ2 | EXψ | E(ψ2Uψ1) | E(ψ1Wψ2)

| AXψ | A(ψ2Uψ1) | A(ψ1Wψ2).

The ¬-free CTL LCTL ⊊ sLCTL∗ is also defined similarly to the ¬-free CTL*. We just call CTL formulas
for both formulas of the ¬-free and full CTL.

Remark 4.6 As a similar remark to the full FML, negation for the full CTL* and CTL can be extended
to all formulas in an inductive manner, via the duality between E,A and U,W.

In our coalgebraic semantics for CTL*, models have the additional data of an execution map.

Definition 4.7 An Ω-valued temporal coalgebraic model is a tuple (T,3, c, L, u) which consists of an Ω-
valued coalgebraic model (Def. 3.4) (T,3, c, L) with a monad T and a cartesian Ω-predicate lifting 3, and
additionally a T -execution map u : X → TXω of c.

Definition 4.8 Let (T,3, c, L, u) be an Ω-valued temporal coalgebraic model. For each sLCTL∗ formula

ψ and pLCTL∗ formula φ, the interpretation LψM(T,3,u)c ∈ ΩX and LφM(T,3,u)c ∈ ΩX
ω
are defined by:

LpM(T,3,u)c := L(p),

LttM(T,3,u)c := λx.⊤, LffM(T,3,u)c := λx.⊥,
Lψ1 ∧ ψ2M(T,3,u)c := Lψ1M(T,3,u)c ⊓ Lψ2M(T,3,u)c , Lψ1 ∨ ψ2M(T,3,u)c := Lψ1M(T,3,u)c ⊔ Lψ2M(T,3,u)c ,

LEφM(T,3,u)c := u∗ ◦3Xω

(
LφM(T,3,u)c

)
9
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for state formulas and

LttM(T,3,u)c := λπX
ω
.⊤, LffM(T,3,u)c := λπ.⊥,

Lφ1 ∧ φ2M(T,3,u)c := Lφ1M(T,3,u)c ⊓ Lφ2M(T,3,u)c , Lφ1 ∨ φ2M(T,3,u)c := Lφ1M(T,3,u)c ⊔ Lφ2M(T,3,u)c ,

LψM(T,3,u)c := ζ∗1 (LψM(T,3,u)c ), LXφM(T,3,u)c := ζ∗2
(
LφM(T,3,u)c

)
Lψ2Uψ1M(T,3,u)c := µw. Lψ1M(T,3,u)c ⊔

(
Lψ2M(T,3,u)c ⊓

(
ζ∗2 (w)

))
,

Lψ1Wψ2M(T,3,u)c := νw. Lψ1M(T,3,u)c ⊓
(
Lψ2M(T,3,u)c ⊔

(
ζ∗2 (w)

))
for path formulas. When Ω is a de Morgan complete lattice, the interpretation of sL¬

CTL∗ formulas is also
defined: in addition to the interpretation above, we define

L¬pM(T,3,u)c := ¬ ◦ L(p), LAφM(T,3,u)c := (¬)∗ ◦ u
∗ ◦3Xω

(
¬ ◦ LφM(T,3,u)c

)
.

The interpretations of LCTL and L¬
CTL are defined by restricting that of sLCTL∗ and sL¬

CTL∗ .

We can also explicitly write down the interpretation of the operators X,U,W: we have
LXψMuc = λπ. LψMuc (π1), Lψ2Uψ1Muc = λπ.

⊔
n∈ω

(d
m<nLψ2Muc (πm)

)
⊓ Lψ1Muc (πn) and Lψ1Wψ2Muc =

λπ.
d
n∈ω

(⊔
m<nLψ1Muc (πm)

)
⊔Lψ2Muc (πn) for state formulas ψ,ψ1, ψ2.

7 This abstract semantics recovers the
classical Kripke semantics of CTL* when we employ the maximal execution map presented in Example 4.2.
See [6,34] for details.

4.3 Continuation Semantics for Computation Tree Logics

The continuation semantics for CTL* is also a restriction of the coalgebraic one (Def. 4.8) for this logic.

Definition 4.9 (i) An Ω-valued temporal continuation model is a tuple (c, L, u) where (c, L) is an Ω-
valued continuation model and u : X → KmXω is an execution map of the Km-coalgebra c.

(ii) The continuation semantics L Muc of CTL* (and CTL) for an Ω-valued temporal continuation model

(c, L, u) is defined as L Muc := L M(K
m,△,u)

c for the Ω-valued temporal coalgebraic model (Km,△, c, L, u).

The interpretation of the quantifier E is explicitly calculated by the definition of the canonical lifting
△ (Def. 3.8), which is again given by evaluation of continuations.

Proposition 4.10 (quantifier is interpreted by evaluation) Let (c, L, u) be a temporal continuation
model. For each path formula φ, we have

LEφMuc = λx. u(x)
(
LφMuc

)
.

The following result, stating that monad morphisms transfer execution maps, is crucial for proving the
equivalence of the continuation and coalgebraic semantics for CTL*.

Proposition 4.11 (monad morphism transfers execution maps) Let S, T be monads with a monad
morphism ι : S ⇒ T , and c : X → SX be an S-coalgebra. We assume that the homset Kℓ(T )(X,Xω) is a
poset with an order ⊑ and the execution operator OT,ιX◦c of T -coalgebra ιX ◦ c is a monotone map with
respect to this order ⊑. Then, we have the following:

(i) The set Kℓ(S)(X,Xω) equips the preorder ⊑ι defined as: for each u, v ∈ Kℓ(S)(X,Xω), u ⊑ι v holds
if ι ◦ u ⊑ ι ◦ v holds. This preorder ⊑ι is a partial order if ι is an injective monad morphism.

7 Note that we have ζ1 ◦ζ2(π) = (π+)0 = π1 and that the meet and join operations are continuous over the complete
lattice Ω, since we assumed Ω to be always meet- and join-continuous.
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(ii) The execution operator OT,ιX◦c restricts to OS,c on the homset Kℓ(S)(X,Xω):

Kℓ(T )(X,Xω) Kℓ(T )(X,Xω)

Kℓ(S)(X,Xω) Kℓ(S)(X,Xω)

OT,ιX◦c

OS,c

(ιXω )∗ (ιXω )∗
(1)

and OS,c is a monotone map with respect to the induced order ⊑ι.

(iii) A map u ∈ Kℓ(S)(X,Xω) is a pre/post-fixpoint of OS,c if and only if ιXω ◦ u ∈ Kℓ(T )(X,Xω) is
a pre/post-fixpoint of OT,ιX◦c. Moreover, a map u ∈ Kℓ(S)(X,Xω) being a fixpoint of OS,c implies
ιXω ◦ u ∈ Kℓ(T )(X,Xω) being a fixpoint of OT,ιX◦c. The converse also holds when ι is an injection.

(iv) If u is an S-execution map of c, the map ιXω ◦ u is a T -execution map of ιX ◦ c.

Proof. item i is straightforward.
item ii follows from the following diagram (we here erased obvious subscripts for readability): given

u ∈ Kℓ(S)(X,Xω), we have

X × TX T (X ×X) T (X × TXω) TT (X ×Xω) T (X ×Xω)

T (X × SXω) S(X × TXω) ST (X ×Xω)

X X × SX S(X ×X) S(X × SXω) SS(X ×Xω) S(X ×Xω).

stT
T
(
id×(ι◦u)

)
T stT µT

T (id×ι)
ι

SstT

ιT

⟨id,c⟩

⟨id,ι◦c⟩

stS

⟨id,ι⟩

S
(
id×(ι◦u)

)
ι

SstS
ι

S(id×ι)
µS

Sι

ι

Note that the top and bottom path of the above diagram are OT ◦ ι∗(u) and ι∗ ◦OS(u), respectively. Most
squares in the diagram follows immediately from naturality of ι and stS , stT . Recall that the strength of
the T -over-monad S is inherited from that of T Prop. 2.2 (i.e. stT ◦ (id × ι) = ι ◦ stS). The right-most
square comes from the definition of monad morphism.

For item iii, if u is a post-fixpoint of OS , ι ◦ u is immediately a post-fixpoint of OT from item ii.
Conversely, if ι ◦ u is a post-fixpoint of OT , We have ι ◦ u ⊑ OT (ι ◦ u) = ι ◦OS(u) by diagram 1 in item ii.
Thus, we conclude u ⊑ι OS(u) by the definition of the induced order ⊑ι of item i. The pre-fixpoint case is
treated similarly. For the fixpoint case, since a fixpoint is both post- and pre-fixpoint, the above argument
implies that ι ◦u is a fixpoint of OT,ι◦c. The converse is also true if the induced order ⊑ι is a partial order.

Finally, item iv immediately follows from item iii. 2

When applied to Km-over-monads, this result enables us to transform every temporal coalgebraic model
to a temporal continuation model.

Proposition 4.12 (continuation semantics is equivalent to coalgebraic semantics) Let
(T,3, c, L, u) be an Ω-valued temporal coalgebraic model.

(i) The tuple (ιX ◦ c, L, ιXω ◦ u) is an Ω-valued temporal continuation model, where ι : T ⇒ Km is the
monad morphism corresponding to the cartesian Ω-valued predicate lifting 3.

(ii) The interpretations L MιXω◦u
ιX◦c = L M(T,3,u)c coincide for every CTL* formula.

Proof. For item i, since ι is a monad morphism, ιXω ◦ u is an execution map of the Km-coalgebra ιX ◦ c
by item iv of Prop. 4.11.

For item ii, the proof goes inductively. The only non-trivial part is the interpretation of Eφ: the Aφ

case goes similarly. Assume LφMιXω◦u
ιX◦c = LφM(T,3,u)c for a path formula φ as the induction hypothesis. The

decomposition 3 = ι∗ ◦ △ of Prop. 3.9 and the definition of the coalgebraic semantics (Def. 4.8) induce

LEφM(T,3,u)c = u∗ ◦3Xω

(
LφM(T,3,u)c

)
= u∗ ◦ (ι∗Xω ◦ △Xω)

(
LφM(T,3,u)c

)
= (ιXω ◦ u)∗ ◦ △Xω

(
LφMιXω◦u

ιX◦c
)
.

11
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Since RHS = LEφM(K
m,△,ιXω◦u)

ιX◦c = LEφMιXω◦u
ιX◦c , we conclude LEφM(T,3,u)c = LEφMιXω◦u

ιX◦c . 2

5 Minimal, Maximal and Unique Execution Maps for the Continuation Monad Km

In this section, we further investigate the Km-execution maps and continuation models.
The first result is the existence of minimal and maximal Km-execution maps.

Proposition 5.1 (minimal and maximal Km-execution map) (i) Let c : X → KmX be a Km-
coalgebra. The execution operator OKm,c : Kℓ(Km)(X,Xω) → Kℓ(Km)(X,Xω) for the continuation
monad Km is given by

OKm,c(u)(x) = λwΩXω

. c(x)
(
λyX . u(y)

(
λπX

ω
. w(xπ)

))
.

This operator is a monotone map with respect to the point-wise order on Kℓ(Km)(X,Xω) induced from
the answer type lattice Ω.

(ii) The minimal and maximal Km-execution maps exist for every Km-coalgebra.

Proof. item i follows from the formula Prop. 4.3. The monotonicity of the operator OKm,c follows from
c(x) ∈ KmX for each x ∈ X.

On item ii, let c be a Km
Ω -coalgebra. Since the Kleisli homset Kℓ(Km)(X,Xω) becomes a complete

lattice with the point-wise order induced from the order on Ω, we can obtain the least and greatest
fixpoints of OKm,c by the Cousot-Cousot fixpoint theorem [11]. Note that while the bottom and top
elements of Kℓ(Km)(X,Xω) are given by λ . λ .⊥Ω and λ . λ .⊤Ω, those of Kℓ(Ka,m)(X,Xω) are given
by λ . λw.

d
π∈Xω w(π) and λ . λw.

⊔
π∈Xω w(π), respectively. 2

By Prop. 5.1, we can always extend every continuation model for FML to one for CTL*.

Proposition 5.2 Given an Ω-valued continuation model (c, L), we have the temporal continuation models
(c, L, µOKm,c) and (c, L, νOKm,c), which we call the minimal and maximal models induced from (c, L).

These models coincide for Ka,m
Ω -coalgebras with de Morgan Ω. See Appendix A for its proof.

Proposition 5.3 (coincidence of minimal and maximal Ka,m-execution map) If Ω is a de Mor-
gan complete lattice, for every Ka,m

Ω -coalgebra c, the execution operator OKa,m
Ω ,c of c has a unique fixpoint

u = µOKa,m
Ω ,c = νOKa,m

Ω ,c.

These results are also useful when applied to coalgebraic models, giving a method of extending them
to temporal models. The following result follows from Prop. 5.2, Prop. 5.3 and Prop. 3.7.

Corollary 5.4 Let (T,3, c, L) be an Ω-valued coalgebraic model where 3 is a cartesian predicate lifting
and (ιX ◦ c, L) be the induced continuation model, where ι is the monad morphism induced from 3. Below,
we denote c′ := ιX ◦ c.
(i) For every T -execution map u, the minimal model and the maximal model induced from (c′, L) approx-

imate the temporal coalgebraic model (T,3, c, L, u):

L M
µOKm,c′

c′ ⊑ L M(T,3,u)c ⊑ L M
νOKm,c′

c′ .

(ii) If Ω is a de Morgan complete lattice and ι restricts to Ka,m, we have L M(T,3,u)c = L Muexe(c
′)

c′ for every
T -execution map u, where we denote uexe(c′) the unique Ka,m-execution map of c′ (Prop. 5.3).

Note that: even if there does not exist any T -execution map and thus any temporal coalgebraic model
extending (T,3, c, L), we always have the minimal and maximal models induced from (c′, L). This gives
a practical merit of transforming coalgebraic models to continuation ones in interpreting temporal logic.

Example 5.5 [the Ω-valued powerset monad and its affine part] For a given monad, finding its execution

map is often non-trivial. For example, consider the Ω-valued powerset monad TΩ = Ω( ) [36], whose affine

12
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part [23] is given by TΩ
aY = {k ∈ TΩY |

⊔
y∈Y k(y) = ⊤} for each Y ∈ Set. The monads TΩ and TΩ

a

represent Ω-weighted branching and its serial variant, as P = T2 and P+ = T2
a represent non-determinism

and serial non-determinism. It is not hard to see the existence of the minimal and maximal TΩ-execution
maps: we can use the Cousot-Cousot fixpoint theorem to obtain them. However, these maps do not
necessarily restrict to TΩ

a-execution maps for a TΩ
a-coalgebra c, as the minimal P-execution map λ .⊥

does not restrict to a P+-execution map (Example 4.2). The existence of TΩ
a-execution map non-trivially

depends on the structures of both the lattice Ω and given coalgebras.
Now, we apply our extension method to the monad TΩ

a. First note that the monad TΩ is a Km-
over-monad. Indeed, from TΩ1 = Ω by its definition, we have the Eilenberg-Moore algebra µ1 : T

ΩΩ =
TΩTΩ1 → TΩ1 = Ω. The Eilenberg-Moore algebra µ1 induces a monad morphism ιµ1 : TΩ ⇒ Km in a
canonical manner [22, Proposition 1]. This monad morphism also restricts to the affine part ιµ1 : TΩ

a ⇒
Km. Hence, by Cor. 5.4, we obtain the under-/over-approximation of TΩ

a-execution map in the Kleisli
category Kℓ(Ka,m) for every TΩ

a-coalgebra c via transferring c to the Ka,m-coalgebra ιµ1 ◦ c. Cor. 5.4
implies that these approximations behave as if they were the real minimal and maximal TΩ

a-execution
maps of c in interpreting CTL* formulas. When Ω is moreover de Morgan, these approximations coincide,
and also coincide with the real TΩ

a-execution map (transferred via ιµ1) when it exists, as is the case for
the non-empty powerset P+ (Example 4.2).

6 Weak Fixpoint Characterization under Continuation Semantics

In this section, we investigate a classical semantic property of CTL called fixpoint characterization [14],
stating that CTL formulas can be encoded into FML in a way which preserves their semantics. This
property is crucial for the model-checking efficiency of CTL: the resulting fixpoint formulas do not contain
any alternation of least and greatest fixpoint operators, and so their semantics can be computed in linear
time in the formula size. We examine the conditions for the following encoding ϵ to preserve continuation
semantics. Throughout this section, we consider only the affine monotone continuation monad Ka,m.

Definition 6.1 We define the fixpoint encoding ϵ of the full CTL L¬
CTL into the full FML µL¬ by

ϵ(p) := p, ϵ(¬p) := ¬p,
ϵ(bb) := bb, ϵ(ψ1 ⋆ ψ2) := ϵψ1 ⋆ ϵψ2,

ϵ
(
EXψ

)
:= 3(ϵψ), ϵ

(
AXψ

)
:= 2(ϵψ),

ϵ
(
E
(
ψ2Uψ1

))
:= µu. ϵψ1 ∨ (ϵψ2 ∧3u), ϵ

(
E
(
ψ1Wψ2

))
:= νu. ϵψ1 ∧ (ϵψ2 ∨3u),

ϵ
(
A
(
ψ2Uψ1

))
:= µu. ϵψ1 ∨ (ϵψ2 ∧2u), ϵ

(
A
(
ψ1Wψ2

))
:= νu. ϵψ1 ∧ (ϵψ2 ∨2u)

where bb ∈ {tt,ff} and ⋆ ∈ {∧,∨}. The fixpoint encoding of the ¬-free CTL LCTL into the ¬-free fixpoint
modal logic µL is defined as the restriction of the encoding ϵ to the subset LCTL.

To facilitate the later statements, we introduce the following notations.

Definition 6.2 Let k1, k2 ∈ ΩX . We define the continuous operators ΦU
k1,k2

,ΦW
k1,k2

: ΩX
ω → ΩX

ω
and the

monotone operators ΨU
k1,k2

,ΨW
k1,k2

: ΩX → ΩX by, for each w ∈ ΩX
ω
and k ∈ ΩX ,

ΦU
k1,k2(w) := λπ. k1(π0) ⊔

(
k2(π0) ⊓ w(π+)

)
ΦW
k1,k2(w) := λπ. k1(π0) ⊓

(
k2(π0) ⊔ w(π+)

)
ΨU
k1,k2(k) := λx. k1(x) ⊔

(
k2(x) ⊓ c(x)(k)

)
ΨW
k1,k2(k) := λx. k1(x) ⊓

(
k2(x) ⊔ c(x)(k)

)
.

Under these notations, we can write down

LEψ2Uψ1Muc = µΨU
Lψ1Muc ,Lψ2Muc

LEψ1Wψ2Muc = νΨW
Lψ1Muc ,Lψ2Muc

Jµk. θ1 ∨ (θ2 ∧ k)Kc = µΦU
Jθ1Kc,Jθ2Kc Jνk. θ1 ∧ (θ2 ∨ k)Kc = ν ΦW

Jθ1Kc,Jθ2Kc

for FML formulas θ1, θ2 and CTL formulas ψ1, ψ2.
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The following additional property of Ka,m-coalgebras and their execution maps plays a crucial role in
the proof of fixpoint characterization.

Definition 6.3 (i) Let Y ∈ Set. A map h ∈ Ka,mY is constant-linear if the equations

h(λyY . a ⊓ k(y)) = a ⊓ h(k) h(λyY . a ⊔ k(y)) = a ⊔ h(k)

hold for every a ∈ Ω and k ∈ ΩY .

(ii) A Ka,m-coalgebra c : X → Ka,mX is constant-linear if the successor c(x) ∈ Ka,mX is constant-linear
for every x ∈ X. Similarly, we say an execution map u : X → Ka,mXω of a Ka,m-coalgebra is
constant-linear if its values are all constant-linear.

Even if a Ka,m-coalgebra is constant-linear, this does not necessarily imply that so are all of its execution
maps. Nonetheless, the minimal and maximal execution maps always inherit constant-linearity from
coalgebras. The proof can be found in Appendix A.

Proposition 6.4 Let c : X → Ka,mX be a constant-linear Ka,m-coalgebra. The minimal and maximal
execution maps µOKa,m,c and νOKa,m,c of c are constant-linear.

The fixpoint characterization result (item ii below) and its weaker version (item i below) of CTL under
continuation semantics hold under the constant-linearity assumption.

Theorem 6.5 ((weak) fixpoint characterization for CTL) Let (c, L, u) be an Ω-valued temporal
continuation model with constant-linear maps c and u. Let ψ be a CTL formula.

(i) When the execution map u is constant-linear, the following equality and inequalities hold for the
fixpoint encoding ϵ (Def. 6.1).
(a) If the formula ψ does not contain the symbols U nor W, the equality LψMuc = JϵψKc holds.
(b) If the formula ψ contains only the symbol U, the inequality LψMuc ⊒ JϵψKc holds.
(c) If the formula ψ contains only the symbol W, the inequality LψMuc ⊑ JϵψKc holds.

(ii) Moreover, the inequalities above become equalities if the inequalities

λx. u(x)
(
µΦU

Lψ1Muc ,Lψ2Muc

)
⊑ µΨU

Jϵψ1Kc,Jϵψ1Kc λx. u(x)
(
ν ΦW

Lψ1Muc ,Lψ2Muc

)
⊒ νΨW

Jϵψ1Kc,Jϵψ2Kc

hold for ψ-sub-formulas ψ1, ψ2. Here, the operators ΨU,ΨW and ΦU,ΦW are as in Def. 6.2.

Remark 6.6 [applicablility of weak fixpoint characterization] We expect our weaker version of the fixpoint
characterization (item i of Thm. 6.5) still has several practical values. When one uses the logic CTL as
a specification-description language, the verifier is often concerned with not only the precise evaluation
but also with “under-approximations” of one’s desired specification. Our weaker result (item b) implies
liveness properties can be approximated by fast fixpoint-based algorithms, which can terminate in linear
time in the number of sub-formulas of the specification in question.

We can also use the condition in item ii as criteria to make an efficient choice of execution map with
respect to one’s objective system. When one luckily finds a join/meet-continuous execution map, our result
guarantees verification of liveness/safety properties to be calculated in linear-time. Even when it is difficult
to find such a well-behaving map in lattice theoretic terms, there is still room for ad-hoc approaches for
specific systems or arranging the system itself to fit with the specification.

As a special case of Thm. 6.5, the minimal and maximal models (Prop. 5.2) with constant-linear c
always enjoy the weak fixpoint characterization by Prop. 6.4.

Proposition 6.7 For every Ω-valued continuation model (c, L) with constant-linear c, the minimal and
maximal models (c, L, µOKa,m,c) and (c, L, νOKa,m,c) enjoy the weak fixpoint characterization.

Example 6.8 When the lattice Ω is the booleans 2, every Ka,m
2 -coalgebra for the affine monotone con-

tinuation monad Ka,m
2 can be easily checked to be constant-linear, and it has the unique execution map

since 2 is a de Morgan complete lattice (Prop. 5.3). Thus, Prop. 6.7 implies that every 2-valued temporal
continuation model, which is automatically the minimal and maximal model this case, enjoys the weak

14
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fixpoint characterization. Moreover, we can show that this model also satisfies the inequalities in item ii
of Thm. 6.5 and thus enjoys the (full) fixpoint characterization. The proof for this fixpoint characterization
result goes essentially the same as that of Alternating-time Temporal Logic [2].

We show Thm. 6.5. The core parts of the proof are the following facts, whose proofs are in Appendix A.

Lemma 6.9 Let c : X → Ka,mX be a Ka,m-coalgebra, u : X → Ka,mXω be an execution map of c.

(i) For every k ∈ ΩX and x ∈ X, we have

u(x)(λπ. k(π0)) = k(x) and u(x)(λπ. k(π1)) = c(x)(k).

(ii) Assume the maps c and u are moreover constant-linear. Then, for every k1, k2 ∈ ΩX , w ∈ ΩX
ω

and
x ∈ X, we have the equations

ΨU
k1,k2

(
λy. u(y)(w)

)
= u(x)

(
ΦU
k1,k2(w)

)
, ΨW

k1,k2

(
λy. u(y)(w)

)
= u(x)

(
ΦW
k1,k2(w)

)
where the operators ΨU,ΨW and ΦU,ΦW are the ones defined in Def. 6.2.

Proof. [Proof of Thm. 6.5] We first show item a: the equality LψMuc = JϵψKc for the formula ψ which does
not contain the symbols U nor W. The proof goes by induction. When the formula ψ is an atomic predicate
or boolean expression of sub-formulas, the above equality immediately follows from the definition of the
fixpoint encoding ϵ (Def. 6.1) and the first equation of item i of Lem. 6.9.

For the case ψ = EXψ′, the induction hypothesis asserts Lψ′Muc = Jϵψ′Kc. Let x ∈ X. By the definition
of L Muc (Def. 4.9), we have LEXψ′Muc (x) = u(x)(LXψ′Muc ) = u(x)

(
ζ∗2 ◦ ζ∗1 (Lψ′Muc )

)
. Since we have ζ∗2 ◦

ζ∗1 (Lψ
′Muc ) = λπ. Lψ′Muc

(
ζ1 ◦ ζ2(π)

)
= λπ. Lψ′Muc (π1) by the definition of the final ΠX -coalgebra map ζ, we

obtain LψMuc (x) = u(x)
(
λπ. Lψ′Muc (π1)

)
. Finally, by the induction hypothesis Lψ′Muc = Jϵψ′Kc ∈ ΩX and the

second equation of item i of Lem. 6.9 of Lem. 6.9, we conclude

LEXψ′Muc (x) = u(x)
(
λπ. Lψ′Muc (π1)

)
= u(x)

(
λπ. Jϵψ′Kc(π1)

)
= c(x)(Jϵψ′Kc) = J3(ϵψ′)Kc(x) = Jϵ(EXψ′)Kc(x).

Next, we prove item b for the U case by induction: the proof for the W case is obtained dually. Since
we have seen the inequality (indeed equality) LψMuc ⊒ JϵψKc for each CTL formula ψ without symbol U,
it suffices to show the inequality LψMuc ⊒ JϵψKc for the CTL formula ψ = E(ψ2Uψ1) under the induction
hypotheses Lψ1Muc ⊒ Jϵψ1Kc and Lψ2Muc ⊒ Jϵψ2Kc. Let us denote ki := LψiMuc and k′i := JϵψiKc for i = 1, 2.
Using the operators defined in Def. 6.2, the inequality in question amounts to

λx. u(x)
(
µΦU

k1,k2

)
⊒ µΨU

k′1,k
′
2

(2)

for ki, k
′
i with ki ⊒ k′i for i = 1, 2.

Since the operator ΨU
k′1,k

′
2
is a monotone map over the complete lattice ΩX , we can use the Knaster-

Tarski fixpoint theorem [37], which implies µΨU
k′1,k

′
2
is the least one among all the pre-fixpoints of the

operator ΨU
k′1,k

′
2
. Thus, to see inequality 2, it suffices to show that LHS of inequality 2, λx. u(x)

(
µΦU

k1,k2

)
,

is a pre-fixpoint of ΨU
k′1,k

′
2
. This can be seen the following calculation, using item ii of Lem. 6.9,

ΨU
k′1,k

′
2

(
λx. u(x)

(
µΦU

k1,k2

))
= λx. u(x)

(
ΦU
k′1,k

′
2

(
µΦU

k1,k2

))
⊑ λx. u(x)

(
ΦU
k1,k2

(
µΦU

k1,k2

))
= λx. u(x)

(
µΦU

k1,k2

)
.

Here note that ΦU
k1,k2

is monotone with respect to k1, k2. Thus, we conclude LHS of inequality 2 is a

pre-fixpoint of ΨU
k′1,k

′
2
, and thus we have LHS ⊑ µΨU

k′1,k
′
2
= RHS.

item ii immediately follows from item i: the inequalities in item ii, combined with inequality 2 (and its
dual) imply LψMuc = JϵψKc for the CTL formulas ψ = E(ψ2Uψ1) and ψ = E(ψ1Wψ2) under the induction
hypotheses Lψ1Muc = Jϵψ1Kc and Lψ2Muc = Jϵψ2Kc. 2
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7 Conclusion

We have shown how continuation semantics can be used to unify modal and temporal coalgebraic logics
whose domain of truth values is a complete lattice. One advantage of this unified perspective is that, in
contrast to coalgebraic models, modal continuation models can always be extended to temporal ones using
either maximal or minimal execution maps. (The difficulty in finding maximal trace/execution maps for
monads seems to be the main reason why few concrete examples of execution maps are known.) Addition-
ally, while the category-theoretic perspective to modelling reactive systems has the benefit of uniformity,
a lattice-theoretic perspective has the potential to ease the development and analysis of verification al-
gorithms, as witnessed by work in [21,3]. Our continuation-based approach can utilize both of these two
perspectives.

Future work will further investigate concrete sub/over-monads of continuation monads for complete
lattices other than the boolean one, like the expectation monad [26] and the Ω-powerset monads, and
execution maps that are neither minimal nor maximal. For the latter, we believe a finer hierarchy of
execution maps could be used to account for additional types of temporal behavior, beyond the extreme
cases of finite, respectively maximal executions.
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A Omitted Proofs

Proof. [proof of Prop. 2.2] For the first statement, recall that we equipped every monad with the canonical
monad strength. To see the statement, it suffices to show that the diagram below commutes:

T (X × Y )TY

X (X × Y )Y T (X × Y )SY

S(X × Y )SY

ι∗Yλx. stT (x, )

λx. (x, )

λx. stS(x, )

λf. Tf

λf. Sf
ιX×Y ∗

where the symbol ( ) represents a placeholder. The top and bottom paths above are respectively

λx. stT
(
x, ιY ( )

)
= λx. stT ◦ (idX × ιY )(x, )

and λx. ιX×Y ◦ stS(x, ). We check the coincidence of these two maps. The top-left and bottom-left
triangles follows from the definition of the canonical monad strength. The right square also commutes
from the naturality of the monad morphism ι.

The second statement comes from the following commutative diagram.

S1 T1 1

!

ι1

ηS1

ηT1 =(!)−1

where the top hemisphere immediately follows and the bottom one comes from the definition of monad
morphism. 2

Proof. [proof of Prop. 2.3] We first see the map βY : Ka,m
ΩopY → Ka,m

Ω Y is well-defined for each Y ∈ Set.
The only non-trivial part is to show βY (h) is a monotone map for every h ∈ Km

ΩopY : its affine-ness comes
immediately. Let k, k′ ∈ ΩY with k ⊑ k′ and h ∈ Km

ΩopY . It suffices to see ¬h(¬ ◦ k) ⊑ ¬h(¬ ◦ k′) by the
definition of the map βY . Since k ⊑ k′ implies k ⊒op k′ and thus ¬◦k ⊑op ¬◦k′, we have h(¬◦k) ⊑op h(¬◦k′)
by h ∈ Km

ΩopY . Thus, we obtain ¬h(¬ ◦ k) ⊒op ¬h(¬ ◦ k′), which concludes ¬h(¬ ◦ k) ⊑ ¬h(¬ ◦ k′).
Next, we check β is a monad morphism. Below, for every Y ∈ Set, we identify the sets Ka,m

Ω Y and
Ka,m

ΩopY via the obvious set isomorphism between these sets, and we denote Ka,mY = Ka,m
Ω Y = Ka,m

ΩopY . Let
Y, Y ′ ∈ Set.

• (naturality) For h ∈ Ka,mY and f : Y → Y ′, we have

βY ′ ◦ Ka,mf(h) = βY ′(λkΩ
Y ′
. h(k ◦ f))

= λlΩ
Y
.¬

(
λk. h(k ◦ f)

)
(¬ ◦ l)

= λl.¬
(
h(¬ ◦ l ◦ f)

)
= Ka,mf

(
λl.¬ ◦ h(¬ ◦ l)

)
= Ka,mf ◦ βY (h).

19



Kojima and Ĉırstea

• (unit) For y ∈ Y , we have

βY ◦ ηY (y) = βY
(
λk. k(y)

)
= λl.¬

(
λk. k(y)

)
(¬ ◦ l)

= λl.¬
(
(¬ ◦ l)(y)

)
= λl.¬¬l(y)
= λl. l(y)

= ηY (y).

• (multiplication) We want the equation

βY ◦ µY = µY ◦ βKa,mY ◦ Ka,mβY : Ka,mKa,mY → Ka,mY.

For H ∈ Ka,mKa,mY , we have

βY ◦ µY (H) = βY

(
λk.H

(
λhK

a,mY . h(k)
))

= λk.¬H
(
λh. h(¬ ◦ k)

)
and

µY ◦ βKa,mY ◦ Ka,mβY (H) = µY ◦ βKa,mY

(
λjΩ

Ka,mY
. H(j ◦ βY )

)
= µY

(
λj.¬H

(
(¬ ◦ j) ◦ βY

))
= λk.

(
λj.¬H

(
(¬ ◦ j) ◦ βY

))(
λh. h(k)

)
= λk.¬H

(
¬ ◦

(
λh. h(k)

)
◦ βY

)
= λk.¬H

(
λh.¬

(
βY (h)(k)

))
= λk.¬H

(
λh.¬

(
¬h(¬ ◦ k)

))
= λk.¬H

(
λh. h(¬ ◦ k)

)
.

2

Proof. [proof of Prop. 5.3] Let c : X → Ka,m
Ω X be a Ka,m

Ω -coalgebra and denote O := OKa,m
Ω ,c. Let

β−1 : Ka,m
Ω ⇒ Ka,m

Ωop be the inverse monad morphism of the morphism β in Prop. 2.3. When we equip
the set Kℓ(Ka,m

Ωop )(X,Xω) with the opposite (point-wise) order ⊑op, the induced order (⊑op)β−1 on the set

Kℓ(Ka,m
Ω )(X,Xω) from the monad morphism β−1 in item i of Prop. 4.11 coincides with the original order:

(⊑op)β−1 =⊑. Since the map (β−1
Xω)∗ is a monotone map between the ordered sets

(
Kℓ(Ka,m

Ω )(X,Xω),⊑
)

and
(
Kℓ(Ka,m

Ωop )(X,Xω),⊑op
)
by item ii of Prop. 4.11, the inequality µO ⊑ νO implies

(β−1
Xω)∗(µO) ⊑

op (β−1
Xω)∗(νO) (A.1)

in the ordered set
(
Kℓ(Ka,m

Ωop )(X,Xω),⊑op
)
. On the other hand, since we have the set isomorphism

Ka,m
Ω Xω ∼= Ka,m

ΩopXω and also the order isomorphism
(
Ka,m

Ω Xω,⊑
) ∼=

(
Ka,m

ΩopXω,⊑op
)
, we have the

order isomorphism
(
Kℓ(Ka,m

Ω )(X,Xω),⊑
) ∼=

(
Kℓ(Ka,m

Ωop )(X,Xω),⊑op
)
induced from the point-wise or-

ders. Via this order isomorphism, inequality A.1 implies (β−1
Xω)∗(µO) ⊑ (β−1

Xω)∗(νO) in the ordered set(
Kℓ(Ka,m

Ω )(X,Xω),⊑
)
. This inequality means that: for every x ∈ X and w ∈ ΩX

ω
, we have

¬µO(x)(¬ ◦ w) ⊑ ¬νO(x)(¬ ◦ w).
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Since ¬ ◦ w runs over ΩX
ω
when w runs over ΩX

ω
, the above inequality is equivalent to

¬µO(x)(w) ⊑ ¬νO(x)(w),

which means µO(x)(w) ⊒ νO(x)(w). 2

Proof. [proof of Prop. 6.4] Since the minimal and maximal execution maps µO and νO for the execution
operator O = OKa,m,c of the monad Ka,m are obtained as

µO =
⊔

κ∈Ord

Oκ(λ .⊥), νO =
l

κ∈Ord

Oκ(λ .⊤)

by the Cousot-Cousot fixpoint theorem [11], we can show the statement by the transfinite induction. We
here see the join case for the maximal execution νO.

For the base step, since O0(λ .⊤) = λx. λw.
⊔
π∈Xω w(π), we have

O0(λ .⊤)(x)(a ⊓ w) =
⊔

π∈Xω

a ⊓ w(π) = a ⊓
⊔

π∈Xω

w(π) = a ⊓ O0(λ .⊤)(x)(w)

for each x ∈ X, w ∈ ΩX
ω
and a ∈ Ω. For each successor ordinal κ + 1, assume Oκ(λ .⊤)(x)(a ⊓ w) =

a ⊓ Oκ(λ .⊤)(x)(w) for every x ∈ X, w ∈ ΩX
ω
and a ∈ Ω. By item i of Prop. 5.1, we have

Oκ+1(λ .⊤)(x)(a ⊓ w) = O(Oκ)(λ .⊤)(x)(a ⊓ w)

= c(x)
(
λy.Oκ(λ .⊤)(y)

(
λπ. a ⊓ w(xπ)

))
= c(x)

(
λy.Oκ(λ .⊤)(y)

(
λπ. a ⊓ wx(π)

))
where we denote wx = λπ.w(xπ). By applying the induction hypothesis to this wx ∈ ΩX

ω
, we obtain

Oκ+1(λ .⊤)(x)(a ⊓ w) = c(x)
(
λy.Oκ(λ .⊤)(y)

(
λπ. a ⊓ wx(π)

))
= c(x)

(
λy. a ⊓ Oκ(λ .⊤)(y)

(
λπ.wx(π)

))
= a ⊓ c(x)

(
λy.Oκ(λ .⊤)(y)

(
λπ.wx(π)

))
= a ⊓ Oκ+1(λ .⊤)(x)(w).

Here, we used c(x) being constant-linear. Finally, for each limit ordinal λ, assume Oκ(λ .⊤) is constant-
linear for every ordinal κ < λ. Under this induction hypothesis, we conclude

Oλ(λ .⊤)(x)(a ⊓ w) =
l

κ<λ

Oκ(λ .⊤)(x)(a ⊓ w)

=
l

κ<λ

a ⊓ Oκ(λ .⊤)(x)(w)

= a ⊓
l

κ<λ

Oκ(λ .⊤)(x)(w)

= a ⊓ Oλ(λ .⊤)(x)(w)

for every x ∈ X, w ∈ ΩX
ω
and a ∈ Ω. 2

Proof. [proof of Lem. 6.9] We denote O := OKa,m,c. Since u is an execution map of c, the equality u = O(u)
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holds. Thus, the first equation of item i follows from the following calculation:

u(x)
(
λπ. k(π0)

)
= O(u)(x)

(
λπ. k(π0)

)
= c(x)

(
λy. u(y)

(
λπ′. (λπ. k(π0))(xπ

′)
))

= c(x)
(
λy. u(y)

(
λπ′. k(x)

))
= k(x)

where the last transformation comes from the affineness of c and u. The second equation of item i comes
from the equality u = O(u) and also the first equation of item i:

u(x)
(
λπ. k(π1)

)
= O(u)(x)

(
λπ. k(π1)

)
= c(x)

(
λy. u(y)

(
λπ′. (λπ. k(π1))(xπ)

))
= c(x)

(
λy. u(y)

(
λπ′. k(π′0)

))
= c(x)

(
λy. k(y)

)
= c(x)(k).

We next show item ii only for the U case, since the W case is its dual. We just denote Ψ := ΨU
k1,k2

and

Φ := ΦU
k1,k2

here. For each x ∈ X and w ∈ ΩX
ω
, we have

u(x)
(
Φ(w)

)
= O(u)(x)

(
Φ(w)

)
= c(x)

(
λy. u(y)

(
λπ.Φ(w)(xπ)

))
= c(x)

(
λy. u(y)

(
λπ. k1(x) ⊔

(
k2(x) ⊓ (w)(π)

)))
= k1(x) ⊔

(
k2(x) ⊓ c(x)

(
λy. u(y)(w)

))
= Ψ

(
λy. u(y)(w)

)
(x)

where we used constant-linearity of c, u. Thus, we conclude λx. u(x)
(
Φ(w)

)
= Ψ

(
λx. u(x)(w)

)
. 2
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