MFPS 2025 Preliminary Proceedings

Unambiguous Acceptance of Thin Coalgebras

Anton Chernev®! Corina Cirstea®? Helle Hvid Hansen®?® Clemens Kupke ¢4

& University of Groningen
Groningen, Netherlands

Y University of Southampton
Southampton, United Kingdom

¢ University of Strathclyde
Glasgow, United Kingdom

Abstract

Automata admitting at most one accepting run per structure, known as unambiguous automata, find applications in ver-
ification of reactive systems as they extend the class of deterministic automata whilst maintaining some of their desirable
properties. In this paper, we generalise a classical construction of unambiguous automata from thin trees to thin coalgebras
for analytic functors. This achieves two goals: extending the existing construction to a larger class of structures, and pro-
viding conceptual clarity and parametricity to the construction by formalising it in the coalgebraic framework. As part of
the construction, we link automaton acceptance of languages of thin coalgebras to language recognition via so-called coherent
algebras, which were previously introduced for studying thin coalgebras. This link also allows us to establish an automata-
theoretic characterisation of languages recognised by finite coherent algebras.

Keywords: Coalgebra, unambiguous automaton, thin tree, thin coalgebra, verification.

1 Introduction

Background and Motivation Model checking [3] of reactive systems makes extensive use of automata
over infinite objects [8]. A core result facilitating the use of infinite word automata in verification is the
determinisation of parity automata. However, this result is limited to infinite words, so systems whose runs
exhibit tree-like structure call for more refined theoretical tools.

Recent work [7,6] (building on [17]) presents coalgebraic approaches to quantitative model checking
using parity automata. Coalgebra [15] allows for a unified treatment of various system types by viewing
these as coalgebras for a functor describing the system type. In particular, [6] proposes an approach to
quantitative model checking of systems with quantitative branching type given by a monad T and the
structure of system runs given by a polynomial functor F'. A key condition in [6] is that the property to
be checked must be given by an F-coalgebra automaton [12] that is unambiguous, i.e., there is at most one
accepting run on each coalgebra. This raises the question of when an equivalent unambiguous F-coalgebra

* Cirstea and Kupke were funded by a Leverhulme Trust Research Project Grant (RPG-2020-232).
Email: a.chernev@rug.nl

Email: cc2@ecs.soton.ac.uk

Email: h.h.hansen@rug.nl

Email: clemens.kupke@strath.ac.uk

B~ W N =

MFPS 2025 Proceedings will appear in Electronic Notes in Theoretical Informatics and Computer Science

mailto:a.chernev@rug.nl
mailto:cc2@ecs.soton.ac.uk
mailto:h.h.hansen@rug.nl
mailto:clemens.kupke@strath.ac.uk

CHERNEV et al.

automaton can be constructed from a nondeterministic one. This question is also of fundamental interest
and the coalgebraic framework allows to investigate for which system types unambiguous acceptance results
can be obtained. For ordered ranked trees, there are languages that are not accepted by an unambiguous
automaton |4]. However, for the subclass of thin trees, i.e., trees with only countably many infinite branches,
[16] shows how to construct from a nondeterministic automaton, an automaton that unambiguously accepts
the same thin trees. The construction goes via thin algebras: every automaton can be transformed into a
finite thin algebra, which can be transformed into an automaton that is unambiguous on thin trees.
Inspired by these results on thin trees, we showed in [5] that thin trees and their inductive characterisa-
tion can be generalised to the level of F-coalgebras for an analytic functor F'. Analytic functors [11] include
polynomial functors (the type of ordered ranked trees) and quotients thereof such as the bag functor. In
the present paper, we build on the algebraic characterisation from [5] of thin F-coalgebras via so-called
coherent algebras in order to prove unambiguous acceptance for thin F-coalgebras for analytic F'.
Contributions We summarise our contributions below.

e We show that, when restricting to thin F-coalgebras for analytic functors F, every (nondeterministic)
F-coalgebra automaton can be transformed into an equivalent unambiguous F'-coalgebra automaton.
We thus extend the results for thin trees [16], thereby making a step towards applications in quantitative
model checking [6].

¢ We give an automata-theoretic characterisation of languages recognised by finite coherent algebras; these
are precisely the languages accepted by F-automata with a so-called prefiz-agnostic acceptance condition,
which informally means that acceptance does not depend on any finite prefix of paths in the run.

e When instantiated to a polynomial functor F, our unambiguous automaton construction provides a
categorical account of the classical construction in [16]. In particular, thin algebras arise as coherent
algebras with additional structure, which we call rational coherent algebras.

We obtain these results as follows. In order to define unambiguous acceptance, in Section 3, we generalise
the concept of run for F-coalgebra automata in [6] from polynomial F' to analytic F. In Section 4, we show
how to transform an automaton into a finite coherent algebra recognising the same language restricted to
thin coalgebras. This construction works not just for parity automata, but, more generally, for automata
with a prefix-agnostic acceptance condition. We identify rational coherent algebras as the coherent algebras
obtained from parity automata. In Section 5, we show how to transform a finite coherent algebra into an
automaton, called the algebraic automaton, which unambiguously accepts precisely the thin coalgebras
that are recognised by the algebra. In order to prove correctness of this construction, we show that runs
of the algebraic automaton correspond to certain coalgebra-to-algebra morphisms called markings. The
uniqueness of markings, and hence of runs, follows from thin coalgebras being recursive thanks to their
inductive structure. Finally, in Section 6, we combine the two constructions to obtain our main result,
the transformation of an automaton into an automaton which, over thin coalgebras, is unambiguous and
equivalent to the original one. In addition, we show that the languages recognised by finite coherent algebras
coincide with the languages of thin behaviours accepted by automata with prefix-agnostic acceptance.

We finish the section with a brief example of the significance of our unambiguous automaton construction
for model checking. Figure 1 depicts (a variant of) the simple probabilistic server from [6]. The state
diagram on the left consists of a server and a worker. At each step, the server process spawns a worker
with probability % and returns to itself. A worker process performs a computation with probability %
and finishes otherwise. The type of this system is given by the functor T o ' where T is the distribution
monad and F' is a polynomial functor with a binary operation fork, two unary operations wait, compute
and a nullary operation done. On the right we see a possible execution (or trace) of the system. Suppose
we are given a property P of system executions, such as “there exists a worker that never finishes”. The
framework [6] can then determine the probability with which P holds, as long as P is specified by an
automaton that has at most one accepting run on each possible execution. Consider the automaton A
for P that guesses at each fork whether the worker does not terminate. This automaton is ambiguous,
so it cannot be readily used for determining the probability. Note, however, that all executions of the
given system are thin, because the server can spawn at most countably many workers. Therefore we can
apply our unambiguous automaton construction to .4, so that the resulting automaton satisfies the desired
condition of having at most one accepting run for each possible execution.

CHERNEV et al.

7
4 1 < ,compute
5 wait 8’ fork 1d fork 1d i
¢

Q Q server Pyp— server ° 2 server %%, ...

1 1

5 fork . 5 done
server —— o Y, worker >—— new new

(! — done compute compute
old worker ——— worker —— worker —— - - -
(a) State diagram (b) Possible execution (trace)

Fig. 1. Example of a probabilistic server

2 Preliminaries

2.1 Automata and Algebras for Languages of Infinite Words

We begin by reviewing basics from the classical theory of automata on infinite words [8]. There are multiple
types of equivalent infinite word automata, but here we focus on (nondeterministic) parity word automata.
Given a finite alphabet ¥, a nondeterministic parity word automaton is a tuple A = (@, 4, Qr,2), where
@ is a finite set of states, § : Q@ — P(X x Q) is a transition function, @7 C @ is a set of initial states
and Q :) — w is a priority function. An accepting run of A on an infinite word z = (an)new € X is a
sequence of states (gn)necw € Q“ such that go € Qr, (an,qn+1) € 6(gn) and limsup,,c,, Q(gy) is even, i.e.,
the largest priority occurring infinitely often is even. An infinite word x is accepted by A if there exists
an accepting run of A on z. Languages (i.e., sets) of infinite words accepted by a nondeterministic parity
word automaton are called w-regular. An automaton A is deterministic if Q)1 is a singleton and for each
q € Q and a € ¥, we have a single pair (a,q1) € §(¢). For convenience, we write deterministic parity word
automata as (Q, 9, qr, Q) where 6 : Q — Q~ and ¢r € Q. An important result is that deterministic parity
word automata accept the same languages as all (nondeterministic) parity word automata.

An alternative, algebraic approach to characterising w-regular languages is via w-semigroups [14, Chap-
ter 2|. An w-semigroup is a two-sorted algebraic structure (V, W) with three operations - : V.x V — V|
X VW — W, II: V¥ — W, satisfying certain associativity axioms. In order to get some intuition about
w-semigroups, consider (X7, ¥¢) which is the w-semigroup freely generated by ¥. Here - is concatenation
between two finite words, X is concatenation between a finite and an infinite word and II is concatenation
of infinitely many finite words. A homomorphism between w-semigroups (Vi, Wi) and (Va, Ws) is a pair of
maps f = (fv, fw), where fy : Vi — Vo, fyr : W1 — Wy, that preserves the w-semigroup operations. The
key property of w-semigroups is that L C ¥ is w-regular if and only if there exists a finite w-semigroup
(V,W), a homomorphism f : (%, %%) — (V, W) and a recognising set U C W such that L = fy;}(U).

There exist extensions of parity automata from words to other infinite structures, such as binary trees.
Instead of considering automata running on some concrete structures, we will work with F'-coalgebra au-
tomata (see Section 3) that run on F'-coalgebras.

2.2 F-Coalgebras and F-Algebras

F-coalgebras [15] are a formalism for modelling state-based systems that is parametric in the transition
type F. Let F' be an endofunctor on the category Set. An F-coalgebra is a tuple (X, &) consisting of an
object X and a morphism £ : X — FX. An F-coalgebra morphism f: (X,£) — (Y,v)isamap f: X =Y
(in Set) such that vo f = Ff o . Informally, F-coalgebra morphisms map states in such a way that the
transition structure is preserved. F'-coalgebras, together with F-coalgebra morphisms, form a category.
A terminal object (Z, () in this category is called a final F'-coalgebra and its elements can be thought of
as abstract behaviours. By selecting a root state zy in a coalgebra (X, &), we get a pointed F-coalgebra
(X, &, x1). Pointed F-coalgebra morphisms are F-coalgebra morphisms that also preserve the root.

Given F-coalgebras (X, ¢) and (Y,v), two states z € X and y € Y are behaviourally equivalent if there
exist F-coalgebra morphisms fx : (X,&) — (W,n) and fy : (Y,v) — (W,n) into a third F-coalgebra such
that fx(x) = fy(y). Two pointed F-coalgebras (X, &, zr), and (Y, v,ys) are behaviourally equivalent if z;
and y; are behaviourally equivalent. Under the assumption that F' preserves weak pullbacks, behavioural
equivalence amounts to the existence of a span of pointed coalgebra morphisms, i.e., a pointed F-coalgebra
(Ra P SI) with pOinted HlOI‘phiSIl’lS fX : (R? Py SI) - (X7 ga l']) and fY : (R7 P, 51) - (Ya v, y[)

Assuming that F' preserves intersections and preimages, there exists a natural transformation Basep :

3

CHERNEV et al.

F = P, where P is the covariant power-set functor (see [9, Theorem 8.1]). For z € F X, Baser(z) C X
is the least set such that £ € F(Basep(z)). The notion of base allows us to define reachable pointed
F-coalgebras. These are pointed coalgebras (X, &, xy) where for every z € X, there exists a finite sequence
xo,T1,...,Z, such that zy = x5, , = x and x;41 € Basep({(x;)) for all i < n. As the name suggests,
every state in a reachable coalgebra can be reached from the root along some transitions. One readily
observes that reachable coalgebras come with an induction principle: if P C X is a property such that
xy € P and, for all z € X, x € P implies Base(¢(z)) C P, then P = X

F-algebra is the dual notion of F-coalgebra. An F-algebra is a pair (C,~) with v : FC — C. An
F-algebra morphism f : (B,) — (C,~) is then amap f: B — C with fo = ~vyoFf. An initial F-algebra
is an initial object in the category of F-algebras and F-algebra morphisms. An F-algebra can be thought
of as an algebra with a (generalised) signature F', and the elements of an initial F-algebra can be seen as
equivalence classes of terms.

Given an F-coalgebra (X,¢) and an F-algebra (C,7), an F'-coalgebra-to-algebra morphism is a map
f: X — C satisfying f =vo Ffo&. An F-coalgebra (X, &) is recursive if for every F-algebra (C,~), there
exists a unique F-coalgebra-to-algebra morphisms from (X, &) to (C,~). Recursive coalgebras capture the
idea of recursion on well-founded relations (see [2] for details).

In this paper, we will work with coalgebras for analytic functors.

2.8 Analytic Functors

Analytic functors [11] (see also [10]) generalise polynomial functors by allowing symmetries of successors,
thus including, for instance, the bag functor. They were shown in [5] to be a natural setting for studying
thin coalgebras (see Section 2.4). While here we give the basic definitions, we refer the reader to [5,
Sections ILIII| for a more detailed discussion with examples.

Given sets X, U and a group H of permutations on U, H acts on the set XY of functions by o-¢ = ¢oo ™1,
for 0 € H and ¢ € XY. The set of orbits of this action is written as XY /H, with elements of the form
(¢l ={¢ € XV |30 € H(t) =0 - ¢)}. An analytic functor is a functor of the form F(X) = |],.; XVi/H;
where [is an index set, U; is a finite set and H; is a group of permutations on U;, for all ¢ € I. Thus elements
of F(X) are of the form (7, [¢]m,). We think of the sets U; as positions to which we assign data in X. These
positions can be permuted according to H;. For a function f: X — Y, F(f)(4, [¢|n,) = (i, [f o &]u,)-

We will use the notion of functor derivative [1| for an analytic functor F, which models one-hole
contexts over F. Consider the collection of functions | |, X UMut | which can be seen as the collection of
partial functions from U to X that are undefined precisely at one element. A group H of permutations
on U acts on UueUXU\{“} by o (u,¢) = (o(u),¢ o (6 in{o)y), for u € U, ¢ : U\ {u} - X.
The orbit of an element (u,) € | |,crr XUMu} is denoted by [u,¢]s,. The functor derivative of F' is
the functor F'(X) = | |;c; (l_lueUi XUi\{“})/Hi. Elements of F'(X) are of the form (i, [u, ¢]m,) and are
called one-hole contexts, because one position is empty. An element z € X can be “plugged” into a
context [u, |y, € F'X, resulting in [¢p U {(u,z)}|y, € FX. Formally, define the context plug-in natural
transformation > : F’ x Id = F by >x([u, |m,,) == [¢p U {(u,z)}]|H,.

Proposition 2.1 The plug-in is weakly cartesian, i.e., every naturality square of > is a weak pullback.

We often use the following notational convention: given a set X, write x € X, 7 € FX and 7/ € F'X.

Analytic functors and their derivatives satisfy the conditions for the existence of a base. Concretely,
their base is given by Basep([¢]n,) = Im(¢) and Basep ([u, ¢]) = Im(¢) for ¢ € FX, [u,¢|n, € F'X. We
have the property Basep(>x(Z/,x)) = Basep (Z') U {z}, for ¥’ € F'X and = € X. Moreover, if T € FX
and z € Basep(T), there exists a (not necessarily unique) ' € F'X with >x(Z/,z) = Z (see |5] for details).
Analytic functors also preserve weak pullbacks.

We introduce a new context decomposition natural transformation. Intuitively, context decomposition
O : F = F(F' x Id) does the opposite of context plug-in: it gives all possible ways to split Z € FX into a
context in ' € F'X and an element in z € X. Moreover, it organises all decompositions (Z’, z) of Z into
an F-structure, based on the position of the context hole. For each such decomposition (#', x), think of Z/
as the context of siblings of x in z. This will be essential in Definition 5.1 (the algebraic automaton).

CHERNEV et al.

Definition 2.2 Given an analytic functor F' = | |;c; X Ui /H;, define the context decomposition natural
transformation [: F' = F(F’ x Id) as follows:

EIX(iv [¢]Hz) = (iv W}]Hz)’ where ¢ : U; — F'X x X, l/l(u) = ((Z’ [u7¢\ {<u7¢(u)>}]Hz)7¢(u))
Example 2.3 Take F(X) = ¥ x X3 where ¥ = {a,b}. Then F'(X) = ¥ x3x X2, and for X = {xq,z1, 22}
and (a,xg,z1,z2) € FX, we have:

E‘X(aa Zo, L1, x?) = (CL, ((aa 07 x1, $2), xO)a ((a7 17 Zo, x?): 1’1), ((av 27 Zo, 32'1), xQ))

Example 2.4 Take F' = Bs, the bag functor where the bag size is bounded by 3, i.e., F' = ||, .3 X"/H

where H is the symmetric group on n. Then F’ = B;. We use the notation {...};, for bags. For
X = {zo,z1, 22}, we have:

x({zo, zo, z1}p) = {({wo, 21 }6, 20), {@0, 21 }5, T0), ({20, To }p, 1) }o-

In order to avoid working with the concrete definition of [, we identify its key abstract properties.

Lemma 2.5 Context decomposition [satisfies:
(i) Fpryo@x =id (see Figure 2a);

(ii) for every element v = (§',y) € F/(F'X x X) x (F'X x X) with >pxxx(v) € Bx[FX], we have
F'pry(y') = pri(y) (see Figure 2b);

(i17) if T € FX and (¥',x) € Basep(Ex(T)), then >x (', x) = Z.

priov

TS T
F'X xX — F'X
(a) Property (i) (b) Property (ii)

Fig. 2. Diagrams for Lemma 2.5.

Property (i) completely describes the content of the Id-component of Fx(z) € F(F' x Id). Together
with property (i), property (ii) completely describes the F’-component. Thus these two properties can be
taken as an abstract, equivalent definition of . Property (111) follows from (i) and (ii) and it conveys our
intuitive understandlng that [decomposes T € FX into pairs of an element x and its siblings 7.

We apply the concept of relation lifting [13] for analytic functors. Specifically, we will use the lifting
€ of the “element of” relation €. Given a set X, p € FX and ¢ € F(P(X)), we have p € ¢ if there exists
r € F(€) such that Fpri(r) = p and Fpry(r) = ¢ (we write pr; and pr, for product projections, also
in; and in, for coproduct injections). Informally, p € ¢ means “p and g have matching indices in I and
p is position-wise contained in ¢”. The parameters F' and X, on which € depends, are left implicit and
understood from the context.

Assumption. For the rest of the paper, we fix an analytic functor F'X = | |,.; X Ui |H; where I is
finite. This ensures that I’ and F” preserve finite sets.

2.4 Thin Coalgebras

We are interested in running F-automata on a subclass of F-coalgebras called thin F-coalgebras [5]. Thin
coalgebras generalise the notion of thin tree [16] to the level of coalgebras. They are defined as those F-
coalgebras for which every state is the starting point of only countably many infinite paths. More precisely,
given a F-coalgebra (X, &) and z € X with &(x) = (4, [¢]m,), we say that an element x; € Baser(i, [¢]n,) =

Im(¢) is a successor of x with multiplicity |¢~!(z1)|. Thus the successor relation on (X, &) defines a
multigraph, with multiplicities corresponding to multiple parallel edges. A state x € X is thin if there are

5

CHERNEV et al.

Fr) AT yoyz2p — (Froz

! | Js

A [-] VA

> 7
Cbl iﬁ

Fzb — L FZ

Fig. 3. Algebra and coalgebra on ZP.

only countably many infinite paths starting from x in this multigraph. A (pointed) coalgebra is thin if all
its states are thin.

Behaviours of thin coalgebras can be characterised algebraically via coherent (F' 4+ G)-algebras. Define
the functor G(X) := (F'X)%, mapping X to the set of streams of contexts over X. An (F + G)-algebra
is of the form (C,~), with v = [0, 71], where 79 : FX — X is an F-algebra structure and 7, : GX — X
is a G-algebra structure. An (F + G)-algebra (C,7) is coherent if it satisfies the equation v; = 7 o
>c o(id,~1) o (hd, tl), where hd stands for stream head and ¢l stands for stream tail. Roughly, the equation
says “evaluating a stream with ~; is equal to evaluating the stream tail, plugged into the stream head, with
vY". |5, Corollary VIIL.6| shows that the initial coherent (F' + G)-algebra is isomorphic to the collection of
behaviours of thin coalgebras.

The initial coherent (F' + G)-algebra is given concretely as follows. Fix an initial (F + G)-algebra
(A, = [, 1]) and a final F-coalgebra (Z,() (their existence is proven in [5]). There exists a natural
way to interpret terms a € A in Z. Informally speaking, for a € F A, a = ag(a) is interpreted as a state
with successors @; for (a),)new € GA, a = a1((@)new) is interpreted by successively plugging all contexts
(@),)new into each other, i.e., plugging a) into ap, @, into @}, aj into @) and so on. This is formalised
by defining a suitable (F' + G)-algebra structure 8 = [fy, 51] on Z and taking the interpretation map
[-]: (A,a) = (Z,) to be the unique map obtained by initiality of (A4,). By taking the image ZP C Z°
of the interpretation map, one obtains both an (F4G)-subalgebra (ZP, 8P) of (Z,) and an F-subcoalgebra
(ZP,¢P) of (Z,¢). Figure 3 gives a visual summary. We have that (ZP, 8P) is an initial coherent (F + G)-
algebra, i.e., for every coherent (F' + G)-algebra (C,7), there exists a unique (F + G)-algebra morphism
cev(c,y) (2P, BP) — (C,v). Moreover, (ZP,¢P) is a final thin coalgebra, meaning that for every thin
coalgebra (X,¢), there exists a unique F-coalgebra morphism theh(x¢) @ (X,§) — (ZP,¢P). In other
words, (Zb, Cb) is the subcoalgebra of all thin behaviours, i.e., behaviours of thin coalgebras. Furthermore,
ZP is isomorphic to the collection of normal terms [5, Section V|: each z € ZP has a canonical normal
representative a € A with [a] = 2. We have two useful properties connecting 4P and ¢P:

¢b =B, (1)
(2m)mew € (Zb)w7 (Zp)m>0 € (F,Zb>wvvn cw: DZb('?;m-s—laZm—i—l) = Cb(zm) == ﬂ%((%n)nﬂ)) =z. (2)
In the present work, we are interested in the language recognition aspect of (F 4 G)-algebras. Given a
coherent (F' + G)-algebra (C,~) and U C C, the language of the triple (C,~v,U) is defined as L(C,~,U) =
cev(gw)(U) C ZP. Hence coherent algebras recognise languages of thin behaviours, similarly to how

w-semigroups recognise languages of infinite words. We refer to such a triple (C,~,U) as a coherent
(F + G)-algebra with a recognising set.

3 Runs and Unambiguity of F-Coalgebra Automata

In this section, we present F'-coalgebra automata (for brevity, F-automata), which were studied in [12] as
automata accepting F-coalgebras. We define acceptance of F-automata via the notion of run, in contrast

5 The superscript b is pronounced as “thin”. The letter thorn b denotes a voiceless dental fricative (the first sound
in “thin”) in Old English.

CHERNEV et al.

with [12], which defines acceptance via parity games. Our reason for introducing runs is to be able to define
unambiguous F-automata. While the two definitions of acceptance (via runs and via parity games) appear
to coincide, we do not show it in this paper, as we work exclusively with runs. We note that a similar
definition of F-automaton runs and unambiguity is given in [6], but only for polynomial functors F.

Definition 3.1 An F-automaton is a quadruple A = (Q,d, Qr,Acc) where @ is a finite set of states,
0: Q — (PoF)(Q) is a transition function. Qr C Q is a set of initial states, and Acc C Q“ is an acceptance
condition.

According to the above definition, F-automata are, in general, nondeterministic, i.e., every state g € @
has an arbitrary set d(q) of transitions and there are multiple initial states ;. We do not place any
conditions of the acceptance condition; instead, we distinguish the following types of acceptance conditions.

Definition 3.2 Let A = (Q, 0, Q1, Acc) be an F-automaton. We call Acc:

* parity if there exists a map : — N such that (g)new € Acc if and only if limsup,,c,, 2(gn) is even;
e w-reqular if Acc is an w-regular language over the alphabet Q);
* prefiz-agnostic if for all x € Q¥, w € Q*: wx € Acc if and only if x € Acc.

F-automata with a parity acceptance condition are known as parity F'-automata and we write them as
a tuple (Q,0,Qr,), with instead of Acc. By taking the polynomial functor F(X) = X x X, for some
alphabet ¥, we obtain nondeterministic parity word automata.

Since parity word automata recognise w-regular languages, one can see that every parity condition is
also w-regular. Conversely, every F-automaton with w-regular acceptance can be turned into an equivalent
parity F-automaton via the wreath product construction [12, Theorem 4.4]. Parity conditions are also
prefix-agnostic, but automata with the prefix-agnostic conditions turn out to be strictly more expressive,
as shown below.

Example 3.3 Consider the functor F(X) = ¥ x X, for ¥ = {a,b}, whose derivative is F'(X) = X.
Define the (word) F-automaton A = (@Q,9,Qr,Acc) with @ = {qa, @}, 0(q) = {(a,qa),(b,qp)} for all
g € Q, Qr = Q. Let Acc C Q% consist of those infinite words that contain infinitely many ¢,’s and
unboundedly many consecutive ¢,’s, i.e., for every natural number n, the word contains n-many consecutive
do’s. One readily sees that Acc is prefix-agnostic and A accepts (in the classical sense) the language
L :={apai ... | qayqa, - - - € Acc}. However, L is not w-regular. This is because every non-empty w-regular
language contains an ultimately periodic word, i.e., a word of the form wu®, while L contains no such
words. This example shows that automata with prefix-agnostic acceptance are more expressive than parity
automata.

Next, we define F-automaton runs and unambiguity, thereby generalising the definitions in [6] from
polynomial functors to arbitrary analytic functors. Below we write Ay for the constant functor sending
every set to the set Y and every function to idy.

Definition 3.4 Let A = (Q,6,Qr,Acc) be an F-automaton and (X,{,z5) be a pointed F-coalgebra.
A pre-run of A on (X,&,xr) is a reachable pointed (F x Ax x Ag)-coalgebra (R, p = (pr,px,pQ),71)
satisfying:

(i) px : (R,pr,rr) = (X,&,x1) is a pointed F-coalgebra morphism;
(i) (Fpgopr)(r)e (00opg)(r)forall r € R;
(ili) (pQ(7n))new € Acc for all (rp)new € RY with ro =77 and Vn(r, 1 € Baser(pr(r4)).

We define a run as a pre-run (R, p,rr) for which (R, p) is a subcoalgebra of the final (F' x Ax x Ag)-
coalgebra. A (pre-)run is accepting if po(rr) € Q. We say that A accepts (X, €, xy) if there exists an
accepting run of A on (X, ¢, x7).

Definition 3.5 Let A be an F-automaton and (X,&,x7) be a pointed F-coalgebra. We say that A is
unambiguous on (X, &, xy) if A has at most one accepting run on (X, &, zy).

A pre-run of A on (X, &, x1) represents an execution of A on the structure of (X, &, zy). The pre-run is a

span X +2~ R e, @ where R is equipped with an F-coalgebra structure pp: R — F(R). Property

7

CHERNEV et al.

T 1
X9 3330 T2 r3 T4 > s > rs —— T4 — T5
(a) Pointed coalgebra (b) Pre-run (c) Run

Fig. 4. Examples of (pre-)runs

(i) says that px: R — X respects the coalgebra structure of X; property (ii) says that pg: R — @ respects
the automaton transitions; and property (iii) says that pg respects the automaton acceptance condition.
We note that, classically, automaton runs need not respect the acceptance condition (they are called final
if they do) but in this paper, all (pre-)runs are required to be final. Runs have the additional property
that behaviourally equivalent elements are identified. This is essential for the definition of unambiguous
automata, where we count the number of accepting runs of an automaton modulo behavioural equivalence.
Intuitively, runs are as close as possible to being a relation between X and). However, there could be
elements 1 # 1o € R of a run R with px(r1) = px(r2) and pg(r1) = pg(r2), since r1 and 7o can still differ
on pp.

Example 3.6 Consider the polynomial functor F = X2 + X + 1. Figure 4a depicts a pointed F-
coalgebra (X, &, z1) with {(x1) = (22, 23), {(x2) = () and £(z3) = (x3). Consider the F-automaton A =

(Q;67 QI?ACC) with Q = {QIaQQ»QB7Q4}, QI = {ql}a 5((]1) = {(QQ’(B)}a 5((12) = {()}7 5((13) = {(q3)7 (q4)}7
0(q4) = {(g3)} and Acc containing all (¢,)nec, € Q¥ where ¢, = g3 for infinitely many n € w. Figure 4b

depicts the F-structure pp of an accepting pre-run (R, p = (pr, px,pq),r1), with px and pg given by:
pPX - T — T, Tt T9, {7’3,7’4,...}'—>:L'3,
PQ - TLE QL T2V G2, T3, T4 6, 7Ty T30, Tang Ly - -+ } Y @3, {7578y, Tng2, - - - } Y 4

Note that (R, p,r1) is not (isomorphic to) a run, because r3 and r¢ are behaviourally equivalent. Figure 4c
shows the F-structure of another accepting pre-run (R', p’ = (o, plx, pgy), 1), with p'y and pf, given by:

/
Px : L — I, To — I, {7"3,7’4, 7"5} — T3,
/
pQ : 1 = q1, To = (g2, {T37T4} = g3, T5 > q4.
One can check that (R',p',r1) is isomorphic to a run, since no two elements of R’ are behaviourally

equivalent. Moreover, by merging rs and 74 (i.e., setting p’(r3) = 5 and dropping ry), we obtain another
accepting run. Therefore A is not unambiguous on (X, &, x1).

Below we state two basic properties of (pre-)runs.

Lemma 3.7 Let A be an F-automaton and (X,&,x5) be a pointed F-coalgebra. If (R, p,rr) is an accepting
pre-run of A on (X, &, xr), then its image in the final (F' X Ax X Ag)-coalgebra is an accepting run. Hence
A accepts (X, €, x1) if and only if A has an accepting pre-run on (X, €, xr).

Proposition 3.8 Let A be an F-automaton and f: (X,&,xr) — (X',¢,2%) be a pointed F-coalgebra
morphism. Then A accepts (X, &, zr) if and only if A accepts (X', &',).

We conclude this section with a strengthening of [12, Theorem 4.4]: every automaton with w-regular
acceptance can be transformed into an equivalent parity automaton in an unambiguity-preserving way.

Proposition 3.9 FEvery F-automaton A with w-reqular acceptance can be transformed into a parity F-
automaton A’ accepting the same coalgebras. Moreover, for every pointed F-coalgebra (X, &, xy), if A is
unambiguous on (X, &, xy), then A’ is unambiguous on (X,&,xy).

4 From Automata to Algebras

In this section, we describe the first central construction of the paper: the automaton algebra. Given
an F-automaton with prefix-agnostic acceptance, we construct a finite coherent (F + G)-algebra with a

8

CHERNEV et al.

recognising set, which recognises the language consisting of the thin behaviours that are accepted by the
F-automaton. Our construction is inspired by the construction of the thin algebra of an automaton for
binary trees |16, Section 6.2.1].

4.1 The Automaton Algebra

Given an F-automaton A, the elements of the automaton algebra C 4 will be sets of automaton states. The
algebra structure of Cy4 is defined in order to obtain the following property: if z € ZP, then cevc 4(2) is

the set of those states ¢ such that A has a run of (ZP, (P, 2), starting at ¢ (recall ceve,, (ZP, BP) — C4).

Definition 4.1 Let A = (Q,d,Q, Acc) be an F-automaton with prefix-agnostic Acc. Define the automa-
ton algebra C4 == (C, [y0,71],U) of A as follows.

« C:=P(Q);

e forallce FC: y(c) ={qeQ|3ge FQ(GECNGE I(q)};

o for all (&),)new € (F'C)*:

'71((E/n)n€w) = {QO € Q ‘ El(Qn)nEw € ACC: ((ﬂz)”@ﬂ = (F/Q)w Vn € w(cj € E/")
Vn € w(>q(@hy, gnr1) € 6(gn)) };

s U={celC|cnQr #0}.

For simplicity, consider a polynomial functor F. In the definition of vy, 7o(¢) consists of those states
q, for which there exists a transition ¢ € §(q) such that each component in the tuple ¢ is an element of
the corresponding component of ¢. This corresponds to the fact that a thin behaviour z is accepted by
A, starting at ¢, precisely when there exists a transition ¢ € 6(q) such that, for all i, A accepts the i-th
successor of z, starting at the i-th component of g. Here it is essential to assume Acc is prefix-agnostic, so
that for all p € BaseF(_) and x € Q¥, we have gpr € Acc if and only if px € Acc.

Slmllarly, 7 ((€,)new) consists of states ¢ such that we can choose a context @, of states for every
context @,, and a sequence of states (¢,)n>1 € Acc to fill the consecutive holes in these contexts. Again, we
use the preﬁx—agnostic assumption, so that for all p € Baser/(q,) and z € Q¥, we have qoq; . .. gnpr € Acc
if and only if pr € Acc.

For the recognising set U, we take those sets of states ¢ that contain at least one accepting state, so
that cevc L(U) contains the thin behaviours accepted by A.

Theorem 4.3 below connects acceptance of an automaton .4 with the language L(C4) of its automaton
algebra. It uses the key property that the automaton algebra is coherent.

Lemma 4.2 For all F-automata A with prefiz-agnostic acceptance, the automaton algebra C 4 is coherent.

Theorem 4.3 Let A be an F-automaton with prefiz-agnostic acceptance and let (X, €, xr) be a thin pointed
F-coalgebra. Then A accepts (X, &, xy) if and only if theh(x ¢)(x1) € L(Ca).

Proof (Sketch) Suppose A = (Q,0,Qr, Acc) and C4 = (C,y = [y0,71],U). Define:

f:2°b = C,
2+ {q € Q| there exists a run of A on (ZP, (P, 2), starting from ¢}.

One can show that f : (ZP,8P) — (C,~) is an (F + G)-algebra morphism. Since (ZP,3P) is an initial
coherent (F' + G)-algebra, this implies f = cev(c,). Now A accepts (X, ¢, x;) if and only if A accepts
(ZP,¢P, theh x ¢ (1)) (by Proposition 3.8) if and only if (f o theh(x ¢))(z) NQr # 0 if and only if (cev(c,) o
tbeh(xg))(z) € U if and only if theh x ¢)(z1) € L(Ca). O

Example 4.4 Let A be the automaton from Example 3.3. Its automaton algebra C4 = (C, [y, 71], U) has
a carrier C' = {0,{qa},{a},{qa,w}}. The F-operation is given by vo(o,¢) = ¢, for 0 € ¥ and ¢ € C. For
the G-operation, for every (op)new € GC = ¢, we have that 71 ((0n)new) equals {qa, g}, if (0n)new € L,

9

CHERNEV et al.

and (), otherwise. For the recognising set, we have U = {{q.},{q}, {da, @} }- If we take Z = X¢ (the final
coalgebra of streams over ¥), we get L(C4) =L C ZP = Z.

4.2 Rational Algebras

Example 4.4 showed that there exist finite coherent (F'4G)-algebras whose language cannot be characterised
by parity F-automata. A finite coherent (F + G)-algebra (C,~) partitions ZP into finitely many classes
{cev(_éw)(c) | ¢ € C'}. In order to retain the connection to parity F-automata, in Definition 4.5 we equip
(C,~,U) with additional structure so that it also partitions into finitely many classes the set (F’ZP)* of

finite sequences of contexts over ZP. Intuitively, a sequence of n contexts is viewed as the “nested context”
obtained by plugging the sequence together, so that the hole is at depth n (whereas in our usual contexts
the hole is at depth 1). The partition of (F’ZP)* is to satisfy the following property: if (€n)new, (dn)new €
((F'ZP)*)“ and for all n € w, &, and d, are in the same class, then v1(Gc;...) € L(C,v,U) if and
only if v1(dody ...) € L(C,~,U). Note that in Example 4.4 it is impossible to find a finite partition of
(F'ZP)* = ©F with this property. In order to guarantee the property, below we identify the following
subclass of finite coherent (F' + G)-algebras.

Definition 4.5 Let (C,~v = [y9,71]), be a finite coherent (F + G)-algebra and X := F'C. We call (C,~)
rational if there exists a finite w-semigroup (C,Im(y1)) and a map v : X7 — C such that (y2,71) :
(X7,%%) = (C,Im(v1)) is an w-semigroup homomorphism.

In the above definition, the map o : ¥ — C partitions the set of finite sequences of contexts (i.e., the

nested contexts) into finitely many classes C.
Note that for a functor F' = ¥+ X9 x X x X, where ¥ and ¥, are alphabets, rational (F' 4 G)-algebras
essentially coincide with thin algebras [16]. Thin algebras contain two sorts: a sort for trees (in rational

algebras, this is the domain C) and a sort for contexts (in rational algebras, this is the set C'). Hence

rational (F + G)-algebras can be seen as a natural generalisation of thin algebras to analytic functors.
We will see in Section 6 that languages of rational (F' + G)-algebras can be characterised by parity

F-automata. For now, we only show that parity F-automata give rise to rational (F' + G)-algebras.

Proposition 4.6 For all F-automata A with parity acceptance, the automaton algebra C4 is rational.

Proof (Sketch) The construction generalises [16, Section 6.2.1]. Let A = (Q,d,Qr,2) be a parity F-
automaton, and C4 = (C,v = [10,71],U). Define a two-sorted algebra (C,C') by:

C=P(Q x Q x Im(Q)),
¢ -2 = {(q, @2, max{mi,ma}) | 31 € Q : (¢,q1,m1) € 1 A (q1, G2, Mm2) € Ca},
cxc={q|3gn €Ee;mew:(q,q1,m) €C},
II((¢n)new) = {20 | I(gn)new € Q¥, (Mn)new € N* : ¥n € w((qn, gn+1,Mn) € ¢,) Alimsupm,, is even}.

new

We define the map o : (F'C)* — C by specifying its restriction to the set of generators F'C of the freely
generated semigroup (F'C)*t. For & € F'C, we set:

Y2(@) = {(g, g1, maz{Q(q), Aq1)}) | 37 € F'Q(7 €@ N>q(7,q1) € 6(q)}-

One can show that (Im(72),Im(71)) is an w-semigroup and (v2,71) is a homomorphism. O

5 From Algebras to Automata

In this section, we show how to construct from a finite coherent algebra its algebraic automaton. The context
decomposition transformation from Definition 2.2 is instrumental in defining the transition structure of this
automaton. The key result here is that the algebraic automaton is unambiguous on thin coalgebras. We

10

CHERNEV et al.

proceed as follows: we introduce the algebraic automaton, develop the key technical notion of marking and
use it to show that, when restricting to thin F-coalgebras, the algebraic automaton is unambiguous and
accepts the same language as the starting algebra.

5.1 The Algebraic Automaton

Given a finite coherent (F + G)-algebra (C,[v0,71],U) with a recognising set, we aim to construct an
equivalent unambiguous automaton. We draw inspiration from the construction in [16, Section 7.2.1| for
binary trees. The idea is that each state ¢ in the algebraic automaton encodes an element ¢ € C' in such
a way that the algebraic automaton accepts, starting at state ¢, those pointed coalgebras (Zb, ¢h, z) for
which cev(c)(2) = c. A tun of the algebraic automaton labels behaviours 2 € ZP with algebra elements
c € C. The transitions of the automaton are to ensure that if z is labelled with ¢ € C' and ¢P(z) € FZP is
labelled with ¢ € F'C, then 7y(¢) = ¢. The acceptance condition is to ensure that for every infinite path
(2,21,22...), if z is labelled with ¢, and for all n > 1, the context in F’ZP consisting of the siblings of z,
is labelled with &, € F'C, then v1((&,)n>1) = ¢. In order to realise the latter requirement, a state ¢ of the
automaton must encode both a label ¢ € C' and a context ¢ € F'C for the label of its sibling context. Since
the root of a pointed F-coalgebra does not have any siblings, we need additional states that only encode a
label in C' — these states occur only in the root of the run.

Recall that the notion “context of siblings” can be expressed formally using the context decomposition
operator [: F = F(F' x Id) from Definition 2.2.

Definition 5.1 Let C = (C,[y0,71],U) be a finite coherent (F + G)-algebra with a recognising set. Define
the algebraic automaton Ac = (Q,0,Qr,Acc) as follows:
e Q=C+FCxC;
e Qr=im[UJ;
e 0(iny(c)) = {(Fing o) () | 1(€) = c}, for c € C, (iny(, ¢)) = d(in;(¢)), for (¢',¢) € F'C x C}
* Acc = {iny(co) - (ing(€, cn)n>0 | Ymlem = 11((€)n>m)) -
In the above definition of 4, transitions from an automaton state labelled with ¢ € C cover all possible
decompositions of all ¢ such that v(¢) = ¢. The algebraic automaton is defined such that it accepts the

same thin behaviours as the corresponding coherent algebra. Furthermore, it has precisely one run on each
thin coalgebra, thus it is unambiguous. The rest of the section is dedicated to proving these statements.

5.2 Markings

In order to relate pre-runs of the algebraic automaton with the corresponding coherent algebra, we introduce
the notion of marking, which generalises consistent markings on binary trees [16, Section 7.1].

Definition 5.2 Let (C,y = [y0,71]) be a coherent (F' + G)-algebra and let (X,§) be an F-coalgebra.
A marking of (X,§) with (C,~) is a map u: X — C satisfying:
(i) p:(X,&) — (C,70) is a F-coalgebra-to-algebra morphism;
(i) for all (2a)ncw € X, (2)ns0 € GX with ¥n(x (#)s 1, 2ni1) = E@a)): 71 (Gu((E,)an0)) = plo).
Roughly speaking, property (i) of markings is the algebraic counterpart to property (ii) of pre-runs
the algebraic automaton, while property (ii) of markings is the algebraic counterpart to property (iii) of

pre-runs. So, intuitively, pre-runs of the algebraic automaton compute a marking. The precise connection
between markings and pre-runs of the algebraic automaton is given in the following statement.

Proposition 5.3 Let C = (C,vy = [v0,7],U) be a finite coherent (F + G)-algebra with a recognising set,
and let (X,&,z1) be a pointed F-coalgebra.

(i) If (R,p = (pFr,px,pq),71) is a pre-run of Ac on (X,§,xr), then [id,pry] o pg : R — C is a marking
of (R, pr) with (C,~) (see Figure 5a).

(it) If p: X — C is a marking of (X,&) with (C,~), then there exists a pre-run (R,p = (pr, px,pQ):71)
of Ac on (X, &, xr) with pg(rr) € iny[C] and [id, pry] o pg = po px (see Figure 5b).

11

CHERNEV et al.

R, 04 (F'Cx 0) 1Pl o FR <™ R %, 04 (F'CxC)
lPF %O prl lpx i[id,prgl
F F
R F([id.pry)ong) ¢ FX e X 0C
(a) Property (i) (b) Property (ii)

Fig. 5. Diagrams for Proposition 5.3.

Proof (Sketch) (i). It can be verified that [id,pry] o pg : R — C satisfies the properties of markings,
using Lemma 2.5. The proof of property (i) of markings uses property (ii) of the pre-run (R, p,rr), while
for property (ii) of markings we use property (iii) of pre-runs.

(ii). We define a pointed (F' x Ax x Ag)-coalgebra R = (R, (pF, px,pq),rr) with R == X x Q,
px = pry and pg = pry. The marking p is used to define r; :== (xr,in; o u(zr)) and:

pr=Xx Q2 x & Fx B p(rx x x) PR ook (X < 0))

F(idxiny)
—_—

S F(X x (F'C x C)) F(X x Q).

It can be verified that the reachable subcoalgebra of R is a pre-run, using Lemma 2.5 and properties of the
marking . a

The benefit of working with markings instead of (pre-)runs is that markings are defined solely in terms
of the algebra, as opposed to in terms of the algebraic automaton. We will see in Lemma 5.8 that by
equipping (X, &) with a suitable (F + G)-coalgebra structure, markings turn into (F + G)-coalgebra-to-
algebra morphisms. This will allow us to find existence and uniqueness properties of markings that follow
from the recursive structure of thin behaviours. Consequently, Proposition 5.3 will allow us to draw
conclusions about pre-runs of the algebraic automaton.

Properties of Markings
The first property of markings is that every thin coalgebra can be marked. Concretely, for all thin
coalgebras (X, &) and all coherent algebras (C,7v), we show that p = cev(c) o theh(x ¢) is a marking of

(X,€) with (C,v). Our strategy is to show that cev() is a marking and that markings are preserved
under precomposition with F'-coalgebra morphisms.

Lemma 5.4 If (C,7) is a coherent (F' + G)-algebra, then cevc) : (zb,BP) — (C,~) is a marking of
(2, ¢P) with (C,).

Proof. To see that cev(c,) satisfies condition (i) of markings, i.e., cev(c,) : (ZP,¢P) — (C,v0) is an
F-coalgebra-to-algebra morphism, consider the diagram to the right. We have:

CeV(Cy) O ,Bg =00 Feevcy) =00 Feevgy o ¢Po Bg, F(zP) Lo p(C)
where the first equality uses that cev(c) is an (F'+G)-algebra morphism and the Cbr B rm
second equality uses' Equation (1) Now since Bg is epic, we conclu@e CeV(Cy) = 7b _ p
Yo o Fecevcyy 0 (P, Le., cev(cyy) is an F-coalgebra-to-algebra morphism.

To see that cev(c) satisfies condition (ii) of markings, let (zn)new € (ZP)* and (2],)n>0 € GZP satisfy
>0 (2410 2nt1) = (P(2n), for all n € w. It follows from Equation (2) that ,B%’((Eﬁl),wo) = zp. Hence:

cev (¢ (20) = Cev(c,w)(ﬁf((%)nw)) = (710 Geevcy)) ((Z)n>0)- 0

Lemma 5.5 If p: (X, &) — (C,7) is a marking and f : (Y,v) — (X, &) is an F-coalgebra morphism, then
wo fis a marking.

12

CHERNEV et al.

Proposition 5.6 (Existence of Markings) For every thin F-coalgebra (X,&) and every coherent (F +
G)-algebra (C,7), there exists a marking p of (X,§) with (C,v) given by p = cev(c) © theh(x ¢).

theh(x) cev(Cy)

zb C

g

FX — s FZb — 5 FC
Ftbeh(xyg) FCE’U(CW)

Proof. By Lemma 5.4, cev(c) : ZP — C is a marking of (ZP,¢P) with (C,~). By Lemma 5.5, Cev(Cyy) ©
theh(x ¢y is a marking of (X, &) with (C,7). a

The second central property of markings is uniqueness: there do not exist two distinct markings of a
given thin coalgebra with a given coherent algebra (Proposition 5.9). The key insight behind the proof is
that every thin coalgebra (X,) can be transformed into a recursive (F 4 G)-coalgebra such that markings
of (X, &) become (F + G)-coalgebra-to-algebra morphisms (Lemma 5.8). Uniqueness of markings will then
follow from the fact that coalgebra-to-algebra morphisms with a recursive domain coincide.

The recursive (F'+G)-coalgebra structure on X is inherited from a canonical recursive (F'+G)-coalgebra
structure n on ZP. Intuitively, decomposes a normal term z € ZP into its normal subterms.

Definition 5.7 Let ¢ : ZP — A be the map sending each thin behaviour to its unique normal representa-
tive. Define an (F 4 G)-coalgebra structure n on ZP by n:= (F + G)[-]oa o

Next, we show that we can define an (F' + G)-coalgebra structure on any thin coalgebra that turns
markings into (F' 4+ G)-coalgebra-to-algebra morphisms.

Lemma 5.8 Let (X,&) be a thin F-coalgebra and (C,v) be a coherent (F + G)-algebra. There exists an
(F + G)-coalgebra structure v on X such that:

(i) tbeh = theh(x ¢) is an (F' + G)-coalgebra morphism from (X, v) to (ZP,n), and

(i1) every marking p: X — C is an (F + G)-coalgebra-to-algebra morphism (X,v) — (C, 7).

s Je
X zb

’YT %u lﬁ
b
(F+G)C g, (F 4 OX gy F + G2

Proposition 5.9 (Uniqueness of Markings) For every thin F-coalgebra (X,) and every coherent (F+
G)-algebra (C,7), there is at most one marking of (X, &) with (C,~).

Proof. Let p; and pg be two markings of (X,) with (C,v). By appealing to Lemma 5.8, we obtain a
13

CHERNEV et al.

coalgebra structure v : X — (F + G)X. Consider the diagram:

tbeh
o - X) ZP N

1 & Lk

it
F F X —— 5 (F Zb — 5 (F A
(F+G)C &= FH X g, F G2 g, (F+G)

We know pi1, 2 are (F' + G)-coalgebra-to-algebra morphisms and that tbeh x ¢), ¢ are (F + G)-coalgebra
morphisms. Observe that, since (A4,«) is an initial (F + G)-algebra, the coalgebra (A,a~!) is recur-
sive |2, Corollary 8.2]. Moreover, any coalgebra mapping into a recursive coalgebra is also recursive |2,
Corollary 8.2, hence (X,v) is recursive. Now 1 and pg are two coalgebra-to-algebra morphisms with a
recursive coalgebra as their domain, therefore p; = puo. a

In the proof of Proposition 5.9, note the instrumental role of the inductive structure of thin behaviours.
It is what allowed us to obtain a recursive (F' + G)-coalgebra structure on X.

5.8 Acceptance and Unambiguity of the Algebraic Automaton

Theorem 5.10 Let C = (C,vy = [y0,7],U) be a coherent (F +G)-algebra with a recognising set. For every
thin pointed F-coalgebra (X, &, x1), the behaviour of xy is in the language of C if and only if the algebraic
automaton Ac accepts (X, €, x1).

Proof. Suppose (cev(c,y) o theh(x ¢))(zr) € U. By Proposition 5.6, u := cevc,) o theh(x ¢y is a marking
of (X,¢) with (C,~). By Proposition 5.3 (ii), there exists a pre-run (R,p = (pr, px,pq),rr) of Ac on
(X, & xr) with pg(rr) € iny[C] and [id, pry] o pg = p o px. px thehx.¢)

Hence [id, pry] 0 pg = p1o px = cevc) o theh(x ¢y o px. We conclude R X ’

; : £)
that pg(rr) € (iny o cev(c) o theh(x¢))(zr) € ing[U], ie., (R, p,77) is le \‘ lc“”’(aw)

an accepting pre-run. By Lemma 3.7, (X, £, xy) is accepted by Ac. 0 L O
[id,prs)
Conversely, suppose there exists an accepting run (R,p = (pr,px,pq),71) of Ac on (X,&,x7). By
Proposition 5.3 (i), the map p = [id, pry] 0 pg is a marking of (R, pr) with (C,~). By Propositions 5.6 and
5.9, we have 1 = cev(c) o theh(x). Hence:

rR—" 0
(cev(c,y) o theh(x) (x1) = (cev(c) © theh(x ¢y © px)(rr) = px | theh(rpp) e
(ce0(cia © thelr) (r1) = a(r1) = ([id, o] © p)). ~
tbeh(x7§>

But since (R, p,71) is accepting, pg(rr) € iny(U), so (cev(c,y) o theh(x ¢))(w1) = ([id, pro] o pg)(rr) € U. O

In order to prove unambiguity of the algebraic automaton, we first show that in every pre-run pg is
uniquely determined by pr and px.

Lemma 5.11 Let C be a coherent (F + G)-algebra with a recognising set, and (X,&,) be a thin pointed
F-coalgebra. If (R, {pF, px,pq),r1) and (R, pr, px, p/Q>, rr) are pre-runs of Ac on (X, &, xr), then pg = p’Q.

Proof (Sketch) Suppose C = (C,~,U). By Proposition 5.3 (i), [id, pry] 0 pg : R — C is a marking of
(R, pr) with (C,~). By Propositions 5.6 and 5.9, [id, pryJopg = cev(c) otbeh x ¢). Similarly, [id, prZ]Op&2 =
cev(c,y) © theh(x g), so [id, pry] o pg = [id, pry] o pfy. Now it can be shown by induction on the successor
relation of (R, pr,7r) that pg = pf. |

Theorem 5.12 Let C be a coherent (F + G)-algebra with a recognising set, and (X, &, xy) be a thin pointed
F-coalgebra. The algebraic automaton Ac is unambiguous on (X, &, xy).

14

CHERNEV et al.

Proof. Let (R',p" = (o, plx,pg).) and (R",p" = (o, p’. pg)),77) be two accepting runs of Ac on
(X, &, x1). We prove equality between these runs by exhibiting a span between them.

/ / /
Since ply i (R, pp,r)) = (X,& @) and pf R ppsry
(R”aplfr,r}/) — (X, &, 2) are pointed F-coalgebra mor-
phisms and F' preserves weak pullbacks, there exists

()
y \p’x‘
a reachable pointed F-coalgebra (R,pp,r;) with F- (R, pF,71)
N

(
()

Define px = p'y o f'. It can be shown that (R, (pr, px, py o '), r1) and (R, (pr, px, pgy o f"), 1) are
pre-runs, so according to Lemma 5.11, p’Q ofl = p’c’2 o f”. Hence, by setting pg = p’Q o f’, we have that
f, : (Rv <:0F7:0XapQ>7 TI) — (R/HO/"'J]) and f// : (Ra <PF,,0XaPQ>a T‘]) — (Rﬁv pllvrill) are (F X Ax X AQ)'
morphisms. Consequently, ((R, p,71), f’, f”') is a span in the category of pointed (F'x Ax x Ag)-coalgebras.

This means that (R, p/,r}) and (R”, p”,r!) are behaviourally equivalent pointed subcoalgebras of the final
coalgebra, hence they are equal. a

X7£7x1)
coalgebra morphisms f' : (R, pp,r1) — (R, pl,7}) and
£ (R prort) - (R,) such that plyof? = pof".

6 Combining the Two Constructions

Here we derive the main results of the paper, by employing the automaton algebra and the algebraic
automaton constructions. We begin by showing that, when restricted to thin coalgebras, every parity
F-automaton has an equivalent unambiguous parity F-automaton. We will make use of a property that
we hinted at earlier: that rational algebras induce automata with w-regular acceptance.

Lemma 6.1 Let C = (C,~,U) be a rational (F + G)-algebra with a recognising set. Then the acceptance
condition of the algebraic automaton Ac is w-reqular.

Proof (Sketch) It follows from the w-semigroup structure on (C,~) that, for every ¢ € C, the language
L(c) = {(2,)new € (F'C)* | 71((€,)new) = ¢} is w-regular. This can be used to show that the acceptance
condition Acc = {iny(co) - (iny(2,, cn))n>0 | Ym(cm = 71 ((€,)n>m))} is w-regular. O

Theorem 6.2 For every parity F-automaton A, there exists a parity automaton A’ such that:

(i) A and A" accept the same thin F-coalgebras, and
(ii) A" is unambiguous on thin F-coalgebras.

Proof. Since parity conditions are prefix-agnostic, by Theorem 4.3, the automaton algebra C4 accepts
exactly those thin behaviours accepted by A. By Proposition 4.6, C4 is rational, so, by Lemma 6.1, its
algebraic automaton B := Ac, has an w-regular acceptance condition. By Theorem 5.10, B accepts the
same thin coalgebras as A, while by Theorem 5.12, I3 is unambiguous on thin coalgebras. Finally, applying
Proposition 3.9 to B gives us the desired automaton A’. a

As our second main result, we give an automaton-theoretic characterisation of languages of finite co-
herent (F' + G)-algebras. Concretely, we show that coherent algebras are as expressive as automata with
prefix-agnostic acceptance (restricted to thin coalgebras). The key observation is that the acceptance
condition of the algebraic automaton can be adjusted to a prefix-agnostic condition.

Lemma 6.3 Let C = (C,v,U) be a finite coherent (F + G)-algebra with a recognising set. There exists an
F-automaton with a prefix-agnostic acceptance condition whose runs coincide with the runs of Ac.

Proof (Sketch) Suppose Ac = (@, 9, Qr, Acc). Using coherence of C, the following automaton can be
shown to satisfy the desired conditions: A’ = (Q,d, Qr, Acc’) with:

Acc’ = {(qn)necw € Q¥ | IM € w, (€, n>m € F'C, (cn)n>m € C¥ :
(@)n>m = (i"Q(dwcn))an AVEk > m(cy, = 71((5%)71214))}- U
15

CHERNEV et al.

Theorem 6.4 Restricted to thin F-coalgebras, finite coherent (F + G)-algebras recognise exactly the lan-
guages accepted by F-automata with a prefix-agnostic acceptance condition. More precisely, a language L
of thin F-behaviours equals L(C), for some finite coherent (F + G)-algebra C, if and only if L consists of
those thin F-behaviours accepted by A, for some F-automaton A with prefiz-agnostic acceptance.

Proof. Given a finite coherent (F + G)-algebra C with a recognising set, we have by Theorem 5.10 that the
language of C consists precisely of the thin coalgebras accepted by its algebraic automaton. By Lemma 6.3,
there exists an equivalent prefix-agnostic automaton. Conversely, for every F-automaton with prefix-
agnostic acceptance, by Theorem 4.3, its automaton algebra recognises precisely those thin coalgebras
accepted by the automaton. O

7 Conclusion

In this paper, we saw how to connect F-automata with prefix-agnostic acceptance to finite coherent (F +
G)-algebras in order to transform an arbitrary F-automaton into an unambiguous one. We gave two
constructions: the automaton algebra and the algebraic automaton constructions, both of which generalise
the corresponding classical constructions for thin trees [16]. In order to prove unambiguity of the algebraic
automaton (Theorem 5.12), we linked algebraic automaton pre-runs to markings, which are F-coalgebra-
to-algebra morphisms with an extra condition. We used the inductive structure of thin behaviours [5] to
show existence and uniqueness of markings, which implied existence and uniqueness of runs. We concluded
from the two constructions that finite (F' + G)-algebras recognise the same languages of thin F-behaviours
as F-automata with prefix-agnostic acceptance (Theorem 6.4).

In applications, one usually considers parity F-automata. Hence we showed that the unambiguous
automaton obtained from a parity automaton is itself a parity automaton (Theorem 6.2). To this end, we
identified rational (F' + G)-algebras as a subclass of coherent algebras that correspond to parity automata.
We observed that rational algebras generalise thin algebras [16] to analytic functors.

In addition to providing a useful generalisation (beyond trees and polynomial functors) of an existing
construction, our use of the context decomposition operator in the definition of the algebraic automaton,
and our key insight that markings (as defined in [16]) correspond to (F+G)-coalgebra-to-algebra morphisms
shed new light on the original construction in loc. cit. and on the reasons it delivers unambiguity.

A natural direction for future work is to incorporate our unambiguous parity automaton construction
into model-checking algorithms, such as the one proposed in [6]. In this context, the size of the resulting
automaton is crucial. In principle, our constructions yield at least an exponential blow-up but simple
optimisations such as removing unreachable states could considerably improve the automaton size.

We defined recognition by coherent algebra only for languages of thin F-behaviours, but some of our
constructions can be extended to all F-behaviours. In particular, by considering (F'4G)-algebra morphisms
from (Z,) to a finite coherent (F'+G)-algebra, we obtain a notion of recognition for arbitrary F-behaviours.
We can extend Theorem 4.3 to show that the automaton algebra recognises the same language over all
F-behaviours. In contrast, the properties of the algebraic automaton make essential use of thinness and,
without it, neither Theorem 5.10 nor Theorem 5.12 seem to hold. We leave further investigations into
coherent algebra recognition of non-thin behaviours as future work.

Finally, our characterisation of languages of finite coherent (F'+G)-algebras, together with Example 3.3,
show that the expressivity of these algebras lies beyond the tractable realm of regular languages. We
“corrected” this by equipping the algebras with additional structure, thus obtaining rational algebras.
Yet, rationality only played a role in ensuring that the algebraic automaton has a parity condition. This
suggests that coherent algebras could also be specialised with alternative additional structure in order to
study different classes of languages, while maintaining the correctness of the unambiguity construction.

References

[1] Abbott, M., T. Altenkirch, C. McBride and N. Ghani, 9 for data: Differentiating data structures, Fundamenta Informaticae
65, pages 1-28 (2005).
https://dl.acm.org/doi/10.5555/2370077.2370079

16

https://dl.acm.org/doi/10.5555/2370077.2370079

CHERNEV et al.

[2] Adamek, J., S. Milius and L. Moss, On well-founded and recursive coalgebras, in: J. Goubault-Larrecq and B. Konig,
editors, Foundations of Software Science and Computation Structures, pages 17-36, Springer International Publishing
(2020).

[3] Baier, C. and J.-P. Katoen, Principles of model checking, Comput. J. 53, page 615-616 (2010).
https://doi.org/10.1093/comjnl/bxp025

[4] Carayol, A., C. Loding, D. Niwiriski and I. Walukiewicz, Choice functions and well-orderings over the infinite binary tree,
Central European Journal of Mathematics 8, pages 662—682 (2010).

[5] Chernev, A., C. Cirstea, H. H. Hansen and C. Kupke, Thin coalgebraic behaviours are inductive. To appear in LICS 2025.
Preliminary version available on arXiv.
https://doi.org/10.48550/arXiv.2504.07013

[6] Cirstea, C. and C. Kupke, Measure-theoretic semantics for quantitative parity automata, in: B. Klin and E. Pimentel,
editors, 31st EACSL Annual Conference on Computer Science Logic (CSL 2023), volume 252 of Leibniz International
Proceedings in Informatics (LIPIcs), pages 14:1-14:20, Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik (2023).
https://doi.org/10.4230/LIPICS.CSL.2023.14

[7] Cirstea, C., S. Shimizu and I. Hasuo, Parity Automata for Quantitative Linear Time Logics, in: F. Bonchi and B. Kénig,
editors, 7th Conference on Algebra and Coalgebra in Computer Science (CALCO 2017), volume 72 of Leibniz International
Proceedings in Informatics (LIPIcs), pages T7:1-7:18, Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik, Dagstuhl,
Germany (2017), ISBN 978-3-95977-033-0, ISSN 1868-8969.
https://doi.org/10.4230/LIPIcs.CALC0.2017.7

[8] Gradel, E., W. Thomas and T. Wilke, editors, Automata, Logics, and Infinite Games: A Guide to Current Research
[outcome of a Dagstuhl seminar, February 2001], volume 2500 of Lecture Notes in Computer Science, Springer (2002).
https://doi.org/10.1007/3-540-36387-4

[9] Gumm, H., From t-coalgebras to filter structures and transition systems, in: J. Fiadeiro, N. Harman, M. Roggenbach and
J. Rutten, editors, Algebra and Coalgebra in Computer Science, pages 194-212, Springer Berlin Heidelberg (2005).

[10] Hasegawa, R., Two applications of analytic functors, Theoretical Computer Science 272, pages 113-175 (2002).
https://doi.org/10.1016/50304-3975(00)00349-2

[11] Joyal, A., Foncteurs analytiques et espéces de structures, in: G. Labelle and P. Leroux, editors, Combinatoire énumérative,
pages 126-159, Springer Berlin Heidelberg (1986).
https://doi.org/10.1007/BFb0072514

[12] Kupke, C. and Y. Venema, Coalgebraic automata theory: Basic results, Logical Methods in Computer Science 4 (2008).
https://doi.org/10.2168/LMCS-4(4:10)2008

[13] Kurz, A. and J. Velebil, Relation lifting, a survey, Journal of Logical and Algebraic Methods in Programming 85, pages
475-499 (2016). Relational and algebraic methods in computer science.
https://doi.org/https://doi.org/10.1016/j.jlamp.2015.08.002

[14] Perrin, D. and J.-E. Pin, Infinite Words: Automata, Semigroups, Logic and Games, volume 141 of Pure and applied
mathematics, Elsevier (2004).

[15] Rutten, J., Universal coalgebra: A theory of systems, Theoretical Computer Science 249, pages 3—80 (2000).

[16] Skrzypczak, M., Recognition by Thin Algebras, pages 121-135, Springer Berlin Heidelberg (2016).
https://doi.org/10.1007/978-3-662-52947-8_7

[17] Urabe, N., S. Shimizu and I. Hasuo, Coalgebraic Trace Semantics for Buechi and Parity Automata, in: J. Desharnais and
R. Jagadeesan, editors, 27th International Conference on Concurrency Theory (CONCUR 2016), volume 59 of Leibniz
International Proceedings in Informatics (LIPIcs), pages 24:1-24:15, Schloss Dagstuhl — Leibniz-Zentrum fiir Informatik,
Dagstuhl, Germany (2016), ISBN 978-3-95977-017-0, ISSN 1868-8969.
https://doi.org/10.4230/LIPIcs.CONCUR.2016.24

17

https://doi.org/10.1093/comjnl/bxp025
https://doi.org/10.48550/arXiv.2504.07013
https://doi.org/10.4230/LIPICS.CSL.2023.14
https://doi.org/10.4230/LIPIcs.CALCO.2017.7
https://doi.org/10.1007/3-540-36387-4
https://doi.org/10.1016/S0304-3975(00)00349-2
https://doi.org/10.1007/BFb0072514
https://doi.org/10.2168/LMCS-4(4:10)2008
https://doi.org/https://doi.org/10.1016/j.jlamp.2015.08.002
https://doi.org/10.1007/978-3-662-52947-8_7
https://doi.org/10.4230/LIPIcs.CONCUR.2016.24

	Introduction
	Preliminaries
	Automata and Algebras for Languages of Infinite Words
	F-Coalgebras and F-Algebras
	Analytic Functors
	Thin Coalgebras

	Runs and Unambiguity of F-Coalgebra Automata
	From Automata to Algebras
	The Automaton Algebra
	Rational Algebras

	From Algebras to Automata
	The Algebraic Automaton
	Markings
	Acceptance and Unambiguity of the Algebraic Automaton

	Combining the Two Constructions
	Conclusion
	References

