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 A B S T R A C T

Push-out tests on composite steel–concrete beams are a standardised method for assessing the load-slip capacity 
of shear connectors, such as welded headed studs. Experimental push-out tests can be costly and time-
consuming, so finite element (FE) numerical analyses provide an alternative for producing data on shear stud 
performance via parametric analyses, provided the numerical model has been accurately validated. Stainless 
steel has recently gained attention for use in composite construction due to its excellent durability, as well 
as ductility and strain hardening properties. Very few experimental push-out tests have been conducted on 
stainless steel shear studs in solid slabs, partly due to the high costs of stainless steel materials. Following 
a review of common push-out modelling approaches in the literature, this paper presents a comprehensive 
framework for FE modelling of stainless steel push-out tests, including ductile damage for the welded studs, 
which can be applied to different stud grades, geometries and arrangements. The modelling approach is 
demonstrated to accurately capture elastic, plastic and post-peak load-slip response, as well as failure mode, 
from three distinct test programs on stainless steel and carbon steel welded shear studs. A parametric study 
is carried out to investigate the effects of stud aspect ratio h/d on the capacity and ductility of austenitic EN 
1.4301 stainless steel studs, and the results are compared to the recommended h/d limit in Eurocode 4.
1. Introduction

Push-out tests on composite steel–concrete specimens are a stan-
dardised method for experimentally measuring the load and slip ca-
pacities of shear connectors in composite beams. The test methodology 
is detailed in several design standards, including Annex B of Eurocode 
4 [1]. While push-out tests do not wholly simulate the behaviour of 
studs in composite beams, mainly due to the absence of bending stresses 
within the concrete slab, full-scale composite beam tests are costly and 
time consuming. Furthermore, it is difficult to quantify the shear force 
transferred by individual studs within a composite beam, therefore 
push-out tests are preferred as a simpler method which provide conser-
vative strength and slip capacity measurements for studs [2,3]. Welded 
headed studs are the most common type of shear connector used in 
composite construction [4–10]. However, in recent years, demountable 
bolted shear studs have gained interest due to their sustainable advan-
tages, as they enable composite slabs to be disassembled and reused 
at the end of a structure’s life cycle. As a result, push-out tests on 
demountable specimens using bolted shear studs have been carried out 
to investigate their performance [11–13]. Another recent development 
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in composite construction is the use of stainless steel beams and shear 
studs, due to their excellent corrosion resistance owing to the addition 
of chromium to the alloy. Using stainless steel for the girder in compos-
ite bridges, especially bridges located in high chloride environments, 
can significantly reduce life cycle costs due to reduced maintenance 
costs, as well as indirect user costs due to fewer journey disruptions. 
Carbon emissions can also be reduced, both directly (e.g., eliminating 
corrosion resistant paint) and indirectly (e.g., fewer traffic disruptions, 
greenhouse gas emissions due to standing traffic) [14,15].

To enable their application in construction, new design codes are 
being developed to address the specific requirements of stainless steel–
concrete composite beams. In this context, new test data have been 
reported, including studies by Zhou et al. [9] on stainless steel com-
posite beams and shear studs at the University of Sydney, and by 
Presswood et al. [16] on stainless steel shear studs at the University 
of Southampton. Conducting push-out tests is time-consuming and 
expensive, particularly with the higher material costs of stainless steels. 
Therefore, finite element (FE) modelling provides a more convenient al-
ternative for generating extensive structural performance data through 
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parametric analyses to investigate the effect that different parameters 
may have on the behaviour and capacity of stainless steel shear studs 
in composite beams. The data generated can be used to assess the 
reliability of design equations.

Numerical models of push-out tests have been developed in FE 
modelling software ABAQUS [17] and used in the literature to conduct 
several parametric studies on carbon steel welded studs in solid con-
crete slabs. Common parameters investigated include concrete strength, 
stud diameter and stud height-to-diameter ratio. Pathirana et al. [4], 
Li et al. [8] and Lam and Ellobody [10] investigated the impact of 
concrete slab compressive strength on the push-out behaviour while Xu 
et al. [5] compared the response of studs embedded in lightweight and 
normal-weight concrete. Pathirana et al. [4], Li et al. [8] and Pavlovic 
et al. [11] studied the effect of stud height-to-diameter ratio, while 
Kruszewski et al. [6] investigated the importance of stud diameter 
relative to the beam web thickness, as well as the influence of eccen-
tric loading in push-out experiments. Kruszewski et al. [6] modelled 
specimens with ultra-high performance concrete (UHPC), as did Li 
et al. [8], who also examined the effect of concrete cover thickness 
and stud arrangement. In addition to the research on solid slabs with 
welded shear studs, Katwal et al. [7] modelled push-out tests with 
profiled steel sheeting, and Pathirana et al. [4], Pavlovic et al. [11], 
Tzouka et al. [12] and He at al. [13] modelled push-out specimens 
with bolted shear studs. Numerical analyses of push-out specimens con-
taining welded stainless steel shear studs and stainless steel–concrete 
composite beams have only been reported by Zhou et al. [9], who also 
developed push-out models with bolted shear studs, where the use of 
stainless steel in demountable construction was examined.

The existing literature on numerical modelling studies of steel–
concrete push-out specimens lacks consensus on the most suitable 
modelling methodology and assumptions. There are, for example, con-
tradicting approaches regarding boundary conditions and contact def-
initions. Additionally, there are differences in the focus of the model 
validation requirements, with many studies prioritising the ultimate 
load or the load-slip response up to the ultimate load, often neglect-
ing considerations of the post-ultimate load characteristics and the 
associated material damage modelling. Therefore, a robust validated 
approach for push-out modelling incorporating post-peak softening 
behaviour is required to enable reliable parametric studies to be con-
ducted. To address this, this paper presents a comprehensive review 
and assessment of various push-out modelling approaches employed 
in the literature, highlighting contradictions between, and sensitivity 
to, modelling assumptions and parameters. Following this, a detailed 
description of the proposed modelling framework is presented, which 
simulates the response of push-out specimens using both carbon and 
stainless steel welded headed shear studs. In developing the model, the 
focus was on accurately capturing the full load-slip response, including 
elastic, plastic, and softening stages as well as the failure mode, which 
required the calibration of ductile damage parameters; two methods for 
calibrating Bao–Wierzbicki damage parameters [18,19] are described 
and compared. The validity of the proposed modelling framework 
incorporating ductile damage is demonstrated through comparisons 
with push-out results, including new test data from stainless steel push-
out tests conducted by the authors [16], and those reported in the 
literature [4,9]. The proposed modelling approach can be applied to 
different stud material grades, diameters, heights and arrangements, 
provided the model ductile damage parameters are carefully calibrated 
against test data.

The validated model is used to investigate the transfer of loads 
within the push-out tests, focusing on friction and bearing forces at 
the steel–concrete and stud-concrete interfaces. Finally, a parametric 
study is carried out to assess the effects of stud aspect ratio h/d on the 
capacity and ductility of austenitic EN 1.4301 stainless steel welded 
shear studs. The results are compared to the h/d limit for carbon steel 
shear studs given by Eurocode 4.
2 
2. Review of existing finite element modelling approaches

The modelling approaches employed in previous push-out studies 
were thoroughly examined, and the ten most commonly used ap-
proaches are summarised in Table  1. These approaches are discussed 
in detail in the following sections, highlighting their key features, 
assumptions and limitations.

2.1. Boundary conditions at support

Steel–concrete push-out models involve various elements that re-
quire complex contact formulations and fine mesh topologies, which 
can significantly increase computational time, particularly when ac-
counting for plastic and softening behaviours. In order to reduce the 
computational time, previous researchers typically modelled either a 
quarter or half of the push-out specimen, depending on the applied 
loading, boundary conditions and the arrangements of the shear studs, 
through definition of appropriate quarter or half symmetry boundary 
conditions as reported in Table  1. Different boundary conditions at the 
concrete slab supports, both in terms of the restrained direction and 
the simulation approach, were also adopted as presented in Table  1. 
Some studies applied constraints to a reference point (RP) tied to the 
concrete slab base surface (Fig.  1a), while others applied the constraints 
directly to the slab base surface (Fig.  1b). These constraints can be 
classified as fixed (no displacements or rotations permitted), pinned 
(some rotations permitted) or roller (displacement normal to the slab 
i.e., 𝑈𝑧 permitted). In test setups, it is common for the concrete slab 
base to bear on a strong floor or plate, sometimes with a thin layer of 
grout or sand to ensure even contact, without the application of any 
active restraining device. Thus, a compression-only support condition 
should be simulated at the base of the slab, in which only displacements 
in the direction of the load (negative 𝑈𝑦 as per Fig.  1) are prevented. 
This can be achieved by defining an analytical rigid surface beneath the 
slab and specifying surface-to-surface contact interaction with friction 
between the base surface of the slab and the analytical rigid surface. 
However, as shown in Table  1, some studies restrain both displacement 
and rotation at the slab base, which may deviate from the real boundary 
conditions used in the tests and can introduce erroneous tension in 
the base of the slab. For the applied load, few details of the loading 
constraints and boundary conditions are provided in the literature.

2.2. Model discretisation

Solid elements, such as C3D8R linear brick elements with reduced 
integration available in ABAQUS element library, have commonly been 
used to discretise the stud, beam and slab components. In some mod-
elling studies, with higher strength concrete and/or smaller stud di-
ameters, the steel reinforcement bars were not explicitly modelled, as 
it was shown both numerically [11] and experimentally [20,21] that 
reinforcement had little influence on the shear resistance of welded 
studs when stud shear failure dominated. However, the amount of 
reinforcement does affect the load capacity and crack propagation 
in tests where concrete failure dominates i.e., with larger diameters 
and/or weaker strength concrete [11,20]. In cases where reinforcement 
was modelled, the T3D2 truss elements were commonly employed. A 
range of mesh sizes was used for each component. A fine mesh of 
2–4 mm was typically applied to the stud, while non-uniform mesh 
topologies were employed for the beam and the slab, involving a 
fine mesh (2–5 mm) near the stud, where high stress concentrations 
occur, and a coarser mesh (15 mm) in areas away from the stud 
location. In the models developed by Lam and Ellobody [10], a coarse 
mesh size of 20–60 mm was adopted for all components, but since no 
material damage was considered, as the concrete and steel materials 
were modelled as elastic–plastic, a coarse mesh was deemed sufficient.
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Fig. 1. Different approaches to modelling concrete slab boundary conditions in push-out tests.
Table 1
Summary of push-out test modelling approaches in the literature.
 Ref Stud type Analysis solver Mesh element type Friction coefficient 𝜇𝑓𝑟 Simulation of weld Boundary conditions Stud damage  
 Stud Slab Beam Rebar  
 [4] Welded & 

bolted
Not reported Solid (C3D8R) Solid (C3D8R) Solid 

(C3D8R)
Truss 
(T3D2)

0.4 Studs ‘‘tie’’ constraint to 
beam

Half model symmetry 
Fixed support (RP/Surface not specified):
𝑈𝑥 = 𝑈𝑦 = 𝑈𝑧 = 𝑈𝑅𝑥 = 𝑈𝑅𝑦 = 𝑈𝑅𝑧 = 0

No  

 [5] Welded Not reported Solid (C3D8R) Solid (C3D8R) Solid 
(C3D8R)

Truss 
(T3D2)

Exponential decay friction 
model

Studs (with weld collars) & 
beam merged

Quarter model symmetry 
Support not reported

Lemaitre  
 [6] Welded Dynamic 

Explicit
Solid (C3D8R) Solid (C3D8R) Solid 

(C3D8R)
None 0.4

Damping coefficient 0.8
Studs (with weld collars) & 
beam merged

Quarter model symmetry
Roller support (RP): 𝑈𝑥 = 𝑈𝑦 = 0

SMCS  
 [7] Welded; 

profiled 
sheeting

Dynamic 
Implicit 
(Standard)

Solid (C3D8R) Solid (C3D8R) Solid 
(C3D8R)

Truss 
(T3D2)

0.25 for slab to sheeting, 
0.01 for slab to studs

Studs & beam merged Quarter model symmetry 
Fixed support (RP/Surface not specified):
𝑈𝑥 = 𝑈𝑦 = 𝑈𝑧 = 𝑈𝑅𝑥 = 𝑈𝑅𝑦 = 𝑈𝑅𝑧 = 0
Half model symmetry 
Fixed support (above) and roller support:
𝑈𝑥 = 𝑈𝑦 = 𝑈𝑅𝑥 = 𝑈𝑅𝑦 = 𝑈𝑅𝑧 = 0

Implicitly 
modelled in 
material 
plasticity

 

 [8] Welded General Static 
(Standard)

Solid (C3D8R) Solid (C3D8R) Solid 
(C3D8R)

None 0.4 Studs (with weld collars) & 
beam merged

Quarter model symmetry 
Pinned support (surface): 
𝑈𝑥 = 𝑈𝑦 = 𝑈𝑧 = 0

SMCS  

 [9] Welded & 
bolted

Dynamic 
Explicit

Solid (C3D8R) Solid (C3D8R) Solid 
(C3D8R)

Truss 
(T3D2)

0.4 Studs (with weld collars)
‘‘tie’’ constraint to beam

Half model symmetry
Fixed support (RP):
𝑈𝑥 = 𝑈𝑦 = 𝑈𝑧 = 𝑈𝑅𝑥 = 𝑈𝑅𝑦 = 𝑈𝑅𝑧 = 0
Roller support (RP):
𝑈𝑥 = 𝑈𝑦 = 𝑈𝑅𝑥 = 𝑈𝑅𝑦 = 𝑈𝑅𝑧 = 0

SMCS  

 [10] Welded RIKS 
(Standard)

Solid (C3D15, 
C3D20)

Solid (C3D8, 
C3D15)

Not reported None Not reported Quarter model symmetry
Pinned support (surface):
𝑈𝑦 = 0

No  

 [11] Bolted Dynamic 
Explicit

Solid (C3D4) Solid (C3D4) Solid (C3D4) Not reported 0.14 N/A Quarter model symmetry 
Fixed support (RP):
𝑈𝑥 = 𝑈𝑦 = 𝑈𝑅𝑥 = 𝑈𝑅𝑦 = 𝑈𝑅𝑧 = 0

SMCS  

 [12] Bolted Dynamic 
Explicit

Solid (C3D8R) Solid (C3D8R) Solid 
(C3D8R)

Truss 
(T3D2)

0.45 N/A Quarter model symmetry 
Fixed support (surface):
𝑈𝑥 = 𝑈𝑦 = 𝑈𝑧 = 𝑈𝑅𝑥 = 𝑈𝑅𝑦 = 𝑈𝑅𝑧 = 0

SMCS  

 [13] Bolted Dynamic 
Explicit

Solid (C3D8R) Solid (C3D8R) Solid 
(C3D8R)

Truss 
(T3D2)

0.4 N/A Half model symmetry
Horizontal test; fixed support (surface):
𝑈𝑥 = 𝑈𝑦 = 𝑈𝑧 = 𝑈𝑅𝑥 = 𝑈𝑅𝑦 = 𝑈𝑅𝑧 = 0

No  

SMCS = Stress Modified Critical Strain
C3D4 = 4-node linear tetrahedral element; C3D8R = 8-node linear brick element, with reduced integration;
C3D15 = 15-node quadratic triangular prism element; C3D20 = 20-node quadratic brick element; T3D2 = 3D Linear truss elements
2.3. Contact formulation

The most common method of contact formulation between the 
steel parts (beam and studs) and the concrete slab is surface-to-surface 
contact. The hard contact relationship defines the normal behaviour, 
where the secondary surface (in this case, the beam flange or the stud) 
is unable to penetrate the main surface (in this case, the slab) and there 
is no transfer of tensile stresses. Tangential contact is defined using
penalty friction, typically with a representative friction coefficient 𝜇𝑓𝑟
between steel and concrete as reported in Table  1. Kruszewski et al. [6] 
added a damping coefficient of 0.8 to promote stability during damage 
initiation of the stud and concrete. A more advanced friction approach, 
using an exponential friction decay model, was reported in only one 
study by Xu et al. [5]. When modelling welded studs, two approaches 
are commonly used to simulate the welded connection between the 
studs and the beam flange. In the first approach a tie constraint between 
3 
the studs and the beam flange is applied [4,9]. The potential drawbacks 
of this method are that the connection behaviour may not be accurately 
captured at high deformations, the constrained nodes may be sensitive 
to the specified position tolerance and degrees of freedom at the root 
of the stud may be unrealistically constrained. The second approach 
is to model the studs and beam as a continuous merged part [5–8]. 
This is a simpler approach which may better capture the connection 
between the stud and the beam, but may require manual meshing if 
there is a large discrepancy in stud and beam mesh sizes. Some studies 
also explicitly model the weld collar at the root of the stud, again with 
either a tied constraint [9] or as part of a merged part [5,6,8], but 
this adds complexity to the modelling process with regard to meshing 
and contact definitions. An embedded constraint feature in ABAQUS is 
commonly used to model the interaction between the reinforcement 
bars and the slab, where the nodal translational degrees of freedom 
of the embedded (reinforcement bars) elements are constrained to the 
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interpolated values of the corresponding degrees of freedom of the host 
(concrete slab) elements.

2.4. Analysis solver

Most approaches use the Dynamic Explicit solver to overcome con-
vergence issues due to the complex geometry and contact formulations 
involved in the analyses. This requires care when defining the loading 
rate, time incrementation and mass scaling, and kinetic and internal 
energy must be monitored throughout the analysis to ensure it remains 
quasi-static. For these reasons, the study by Katwal et al. [7] chose to 
use the Standard Dynamic Implicit solver, although the analysis was 
still sensitive to loading rate and amplitude. Alternatively, Lam and 
Ellobody [10] used the Standard RIKS algorithm due to its advantages 
for predicting unstable and nonlinear responses, while Li et al. [8] used 
the Standard General Static solver.

2.5. Concrete and steel constitutive models

For the concrete slab, all of the models in Table  1 except for 
Lam and Ellobody [10] used ABAQUS concrete damaged plasticity 
(CDP) material model. Material plasticity and damage evolution are 
defined separately for compressive and tensile behaviour. The CDP 
model requires five parameters to be defined, which are flow potential 
eccentricity e (with a default value of 0.1), ratio of biaxial to uniaxial 
compressive strength 𝑓𝑏0∕𝑓𝑐0 (with a default value of 1.16), ratio of 
second stress invariants on tensile and compressive meridians K (with 
a default value of 0.667), dilation angle 𝜓 and viscosity parameter 𝜇𝑣𝑖𝑠𝑐 . 
The first three of these parameters are left to the default value in the 
literature models. The dilation angle 𝜓 , which relates to the volumetric 
change of the concrete under severe plastic deformation [22], was 
typically taken as 30− 40◦ [7,8,11,13], though variations exist, such as 
Xu et al. [5], who modelled lightweight concrete and specified 53◦ and 
Kruszewski et al. [6], who model UHPC and specified 17◦. The viscosity 
parameter 𝜇𝑣𝑖𝑠𝑐 controls viscoplastic regularisation, which can be used 
to overcome instability in the analysis caused by excessive distortion 
and softening behaviour of the concrete [22], particularly when using 
the ABAQUS/Standard solver. Theoretically, 𝜇𝑣𝑖𝑠𝑐 should be equal to 
zero, but a higher value may be employed to improve convergence, 
provided it does not affect the accuracy of the analysis results, which 
should be verified through a sensitivity study. Kruszewski et al. [6] and 
He et al. [13], who used the Dynamic Explicit analysis solver, set 𝜇𝑣𝑖𝑠𝑐
to 0, while Katwal et al. [7] and Li et al. [8], who used the Standard 
analysis solvers, set 𝜇𝑣𝑖𝑠𝑐 to 0.0001 and 0.0015, respectively.

The plastic behaviour of concrete is modelled by defining the com-
pressive and tensile stress–strain or stress–displacement behaviours as 
well as their respective damage evolution. The compressive stress–
strain behaviour was most commonly based on the model by Carreira 
and Chu [23] with linear elastic behaviour up to 0.4𝑓𝑐 , followed by a 
nonlinear response up to the peak compressive stress 𝑓𝑐 , as illustrated 
by Fig.  2(a). Variations on the post-peak softening behaviour have been 
proposed, such as by Pathirana et al. [4], as shown in Fig.  2(a), or by 
He et al. [13], where a linear softening response to a stress of 0.85𝑓𝑐
was adopted. For the compressive behaviour shown in Fig.  2(a), the 
compressive stress 𝜎𝑐 as a function of the compressive strain 𝜀𝑐 is given 
by Eqs. (1)–(4), where E is the concrete elastic modulus and 𝜀′𝑐 is the 
nominal ultimate strain which is taken as 0.00175. The compressive 
damage evolution was commonly specified by the relationship given in 
Eq. (5), where 𝑑𝑐 is the compressive damage parameter, as shown in 
Fig.  2(b). 
𝜎𝑐 = 𝐸𝜀𝑐 𝜎𝑐 ≤ 0.4𝑓𝑐 (1)

𝜎𝑐 =
𝑓𝑐𝛾

𝜀𝑐
𝜀′𝑐

𝛾 − 1 +
(

𝜀𝑐
)𝛾 0.4𝑓𝑐 < 𝜎𝑐 ≤ 𝑓𝑐 (2)
𝜀′𝑐

4 
𝛾 =
(

𝑓𝑐
32.4

)3
+ 1.55 (3)

𝜎𝑐 =
𝑓𝑐𝜀′𝑐
𝜀𝑐

𝜀𝑐 ≥ 𝜀′𝑐 (4)

𝑑𝑐 = 1 −
𝜎𝑐
𝑓𝑐

(5)

The tensile stress–strain behaviour of concrete was commonly defined 
as linear elastic up to a maximum tensile stress 𝑓𝑡 equal to 0.1𝑓𝑐 , 
followed by a linear [4,9,11,12] or non-linear [5,7,8,13] softening 
behaviour. Fig.  2(a) illustrates the linear softening behaviour as a 
function of tensile strain, but in ABAQUS the tensile behaviour may also 
be expressed in terms of crack displacement or fracture energy. Tensile 
damage evolution was not always specified, since concrete crushing is 
more critical in push-out tests, but where it was included it followed 
the same relationship as Eq. (5), where tensile damage parameter 𝑑𝑡 =
1 − 𝜎𝑡∕𝑓𝑡, where 𝜎𝑡 is the tensile stress and 𝑓𝑡 is the maximum tensile 
stress.

For the steel components (beam, studs and reinforcing bars), five 
different plasticity models have been used, namely elastic–plastic, 
elastic–plastic-linear hardening, elastic–plastic-non-linear hardening, 
elastic-linear hardening and fully non-linear response. Pathirana et al.
[4] modelled the studs as elastic-linear hardening, the beam as elastic–
plastic-linear hardening and the reinforcement as elastic–plastic. Xu 
et al. [5] and Li et al. [8] modelled all steel components as elastic-linear 
hardening. Kruszewski et al. [6] and Pavlovic et al. [11] modelled the 
beam and studs using a non-linear relationship obtained from coupon 
tests, while the latter additionally modelled the reinforcement using a 
simple linear elastic relationship. Katwal et al. [7] modelled all steel 
components with an elastic–plastic-non-linear hardening relationship. 
Zhou et al. [9] modelled push-out tests where all steel components 
were made from stainless steel, and therefore used coupon test data to 
define the non-linear plastic behaviour of all stainless steel components. 
Lam and Ellobody [10] modelled the beam and studs using elastic–
plastic relationships. Tzouka et al. [12] used coupon data to model 
the non-linear stud behaviour while the beam was modelled with an 
elastic–plastic-non-linear hardening response and the reinforcement 
was defined as elastic–plastic. He et al. [13] also modelled the studs 
using non-linear behaviour obtained from coupon tests, and the beam 
and reinforcement were defined as elastic–plastic.

Six of the ten modelling studies summarised in Table  1 incorporated 
damage models for the studs. Katwal et al. [7] implicitly modelled 
the post-peak softening behaviour in the material plasticity definition. 
Xu et al. [5] used the Lemaitre continuous damage mechanics model, 
while the rest used a ductile damage model called the stress-modified 
critical strain (SMCS) model, which is based on the void growth model 
(VGM) developed by McClintock [24] and Rice and Tracey [25]. The 
plastic material model for the stud can be split into two parts: firstly, 
the stress–strain response up to ultimate stress, and secondly post-peak 
behaviour. Up to the ultimate stress, the engineering stress s and strain
e, measured from tensile coupon tests, are converted to true stress 𝜎
and true plastic strain 𝜀𝑝𝑙 using Eqs. (6)–(8), where E is the Young’s 
Modulus. After the ultimate stress, these stress–strain equations are no 
longer valid, and a different approach must be taken to model the post-
peak stress–strain behaviour of the stud material. Two methods from 
the literature incorporating ductile damage models for modelling the 
stud behaviour are outlined here. The first is the SMCS model used 
by Pavlovic et al. [11] with strain localisation and the second is the 
Bao-Wierzbicki (BW) model [19], as described in Song et al. [18], in 
addition to the weighted average method. While the study by Song 
et al. [18] did not model push-out tests, it described a thorough ductile 
damage modelling procedure for bolts in tension and shear, which can 
be applied to welded studs in push-out tests. 
𝜎 = 𝑠(1 + 𝑒) (6)
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Fig. 2. Concrete Damage Plasticity (CDP) material model.
𝜀 = 𝑙𝑛(1 + 𝑒) (7)

𝜀𝑝𝑙 = 𝜀 − 𝜎
𝐸

(8)

2.5.1. Pavlovic et al. and SMCS
Pavlovic et al. [11] described a method for damage modelling 

of bolted and headed stud shear connectors in push-out tests. The 
method is presented schematically in Fig.  3(a), where point p rep-
resents the onset of plastic behaviour, n is the onset of necking, r
is the onset of rupture and f  is the point of complete fracture. The 
stress–strain response of the stud is split into individual increments i, 
with damage evolution parameter 𝐷𝑖 considered at each increment i. 
Damage initiation is defined at the necking point n, where the damage 
parameter 𝐷𝑛 = 0, and damage completion occurs at the fracture 
point f, where total damage has taken place, thus 𝐷𝑓 = 1. The three 
components of the damage model that are input into ABAQUS are 
the material plasticity, damage initiation and damage evolution. The 
material plasticity is input as the undamaged true stress 𝜎 as a function 
of true localised plastic strain 𝜀𝑝𝑙,𝑙𝑜𝑐 . Since after necking, strains become 
localised in the necked region, the standard equations for converting 
engineering stress and strain to true stress and strain are no longer valid 
after the ultimate stress point n. Pavlovic et al. captured this strain 
localisation by adjusting the gauge length in the post-necking strain 
calculations at each increment i, as shown in Fig.  3(a) and given by 
Eq. (9), where 𝑙0 is the original gauge length, 𝑙𝑙𝑜𝑐 is the average necking 
zone length, 𝛥𝑙𝑖 is the incremental displacement, 𝛥𝑙𝑛 and 𝛥𝑙𝑟 are the 
incremental displacements at necking and rupture, respectively and 𝛼𝐿
is a material factor. A post-necking engineering strain is then calculated 
from Eq. (10), which is converted to true plastic strain according to 
Eqs. (7) and (8). Undamaged true stress 𝜎, beyond the necking point, 
is calculated from Eq. (11), which is similar to Eq. (6) except that 𝑠𝑛
represents the engineering stress at the necking point (i.e., ultimate 
engineering stress). 

𝑙𝑖 = 𝑙0 +
(

𝑙𝑙𝑜𝑐 − 𝑙0
)

(

𝛥𝑙𝑖 − 𝛥𝑙𝑛
𝛥𝑙𝑟 − 𝛥𝑙𝑛

)𝛼𝐿
(9)

𝑒𝑖 = 𝑒𝑖−1 +
𝛥𝑙𝑖 − 𝛥𝑙𝑖−1

𝑙𝑖
(10)

𝜎𝑖 = 𝑠𝑛
(

1 + 𝑒𝑖
)

(11)

The damage initiation is set at the necking point n and is input as 
equivalent plastic strain at onset of damage 𝜀𝑝𝑙,0 as a function of stress 
triaxiality, 𝜂, which is the ratio of hydrostatic stress to Von Mises stress, 
given by Eq. (12), which is the SMCS relationship, where 𝜀  is the 
𝑝𝑙,𝑛

5 
equivalent plastic strain at the onset of damage for uniaxial tension 
(i.e., at the necking point) and 𝛽 is a material parameter, taken as 1.5. 
This relationship is shown in Fig.  3(b). 

𝜀𝑝𝑙,0 = 𝜀𝑝𝑙,𝑛𝑒
−𝛽

(

𝜂− 1
3

)

(12)

Finally, damage evolution defines the amount of damage that occurs 
as displacement increases i.e., the rate of stiffness degradation. The 
damaged stress 𝜎𝑑,𝑖 is calculated from Eq. (13), where 𝑠𝑖 and 𝑒𝑖 are the 
post-necking engineering stress and strain at increment i, respectively. 
It should be noted that this is a continuation of the standard conversion 
from engineering to true stress (Eq. (6)), beyond the necking point. 
The ratio of damaged stress 𝜎𝑑,𝑖 to undamaged stress 𝜎𝑖 is used to 
calculate the incremental damage evolution parameter, 𝐷𝑖, in Eq. (14), 
where 𝛼𝐷 is a material parameter. The damage parameter 𝐷𝑖 is input 
into ABAQUS as a function of the equivalent plastic displacement, 𝑢𝑝𝑙,𝑖, 
which is the displacement of the individual mesh elements in the model 
rather than the overall coupon displacement, and may be obtained from 
Eqs. (15)–(18). In Eqs. (15)–(18), 𝜀𝑝𝑙,𝑖, 𝜀𝑝𝑙,𝑛 and 𝜀𝑝𝑙,𝑓  are the plastic 
strains at increment i, at necking point n and at fracture point f, 𝑢𝑝𝑙,𝑓  is 
the plastic displacement at fracture point, 𝜆𝑆 is the element size factor, 
𝐿𝐸 is the element size, 𝐿𝑅 is the element size of the reference mesh, 
𝐿𝑐ℎ𝑎𝑟 is the characteristic element length and 𝜆𝐸 is the element type 
factor, which can be taken as 1 for C3D4 elements, and between 2.5 to 
3.2 for C3D8R elements depending on material ductility. The damage 
evolution relationship is shown in Fig.  3(c). 
𝜎𝑑,𝑖 = 𝑠𝑖

(

1 + 𝑒𝑖
)

(13)

𝐷𝑖 =

⎧

⎪

⎨

⎪

⎩

𝛼𝐷
(

1 − 𝜎𝑑,𝑖
𝜎𝑖

)

𝑛 ≤ 𝑖 ≤ 𝑟

1 𝑖 = 𝑓
(14)

𝑢𝑝𝑙,𝑖 =
𝑢𝑝𝑙,𝑓

(

𝜀𝑝𝑙,𝑖 − 𝜀𝑝𝑙,𝑛
)

𝜀𝑝𝑙,𝑓 − 𝜀𝑝𝑙,𝑛
𝑖 ≥ 𝑛 (15)

𝑢𝑝𝑙,𝑓 = 𝜆𝑠𝐿𝑐ℎ𝑎𝑟
(

𝜀𝑝𝑙,𝑓 − 𝜀𝑝𝑙,𝑛
)

(16)

𝜆𝑠 =
3

√

𝐿𝑅
𝐿𝐸

(17)

𝐿𝑐ℎ𝑎𝑟 = 𝜆𝐸𝐿𝐸 (18)

Pavlovic et al. incorporated an additional ABAQUS shear damage 
definition to model the damaged behaviour of the studs under shear 
loading. Similar to the tensile ductile damage models, the shear damage 
model consists of three key parts: plasticity, damage initiation and dam-
age evolution. For the plasticity data, the plastic material properties 
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Fig. 3. Stress–strain relationship with damage initiation and evolution from Pavlovic et al. [11].
Fig. 4. Stress–strain relationship with damage initiation and evolution from Song et al. [18].
from the tensile model are used. The damage initiation is defined by 
shear strain at onset of damage, which is calibrated by trial and error, 
shear stress ratio, which is assumed to be 1.732, and strain rate, which 
is set to 0, and the shear damage evolution is defined by a single value 
of displacement at failure.

Although this ductile damage model has been implemented in the 
literature, it has limitations, particularly regarding its accuracy at lower 
triaxialities, thus requiring an additional shear damage definition to 
capture fracture under combined tensile-shear and shear only loading 
conditions. The strain localisation and damage evolution calculations 
require several material- and mesh-specific parameters to be calibrated, 
which is time consuming. Furthermore, by defining the damage initi-
ation point as the necking point n, the model is very sensitive to the 
damage evolution definition, which is also complex.

2.5.2. Song et al. weighted average & Bao-Wierzbicki (BW)
The method outlined by Song et al. [18], illustrated schematically 

in Fig.  4(a), has four key differences to the method used by Pavlovic 
et al. described in Section 2.5.1. Firstly, the weighted average method 
proposed by Ling [26] is used to obtain the post-necking true stress–
strain response from the engineering stress–strain response. Secondly, 
the point of damage initiation is specified at the rupture point r, rather 
than at the necking point n. Thirdly, the Bao–Wierzbicki (BW) relation-
ship [19] is used to define the plastic strain at the onset of damage, 
which is more accurate at lower triaxialities, including under shear 
loading. Finally, damage evolution is defined by a single, very small 
value of equivalent plastic displacement to fracture. The calibration of 
this model requires developing an FE model of the coupon specimen, 
where the stress–strain data in the pre- and post-necking stages in terms 
of true stress and strain are defined. The pre-necking output true stress–
strain data from the model should match the input data provided, while 
for the post-necking stage, a trial and error approach is used until the 
FE output agrees with coupon test data, as described hereafter.

The weighted average method [26] assumes an upper and lower 
bound for the post-necking true stress–strain curve which provides an 
6 
envelope within which the actual stress–strain curve lies, as shown in 
Fig.  4(a). The upper bound corresponds to the perfect-plastic extension 
of the engineering curve after the necking point, calculated by Eq. (19), 
while the lower bound is estimated using a power law relationship, as 
given by Eq. (20), where 𝜎𝑛 and 𝜀𝑛 are the true stress and strain at 
necking, respectively. The best approximation of the true stress–strain 
curve lies between these bounds and is calculated using Eq. (21) with 
a weighted average factor, w, and when 𝑤 = 1 the curve follows the 
upper bound and when 𝑤 = 0, it follows the lower bound. For stainless 
steels, Song et al. adopted Eq. (22) for w, which varies with strain and 
includes two additional parameters, 𝑎1 and 𝑎2, calibrated by trial and 
error until an acceptable agreement is reached between the test and the 
FE analysis results. 

𝜎𝑢𝑝𝑝𝑒𝑟 = 𝜎𝑛𝑒
𝜀−𝜀𝑛 (19)

𝜎𝑙𝑜𝑤𝑒𝑟 = 𝜎𝑛

(

𝜀
𝜀𝑛

)𝜀𝑛
(20)

𝜎 = 𝜎𝑛

[

𝑤𝑒𝜀−𝜀𝑛 + (1 −𝑤)
(

𝜀
𝜀𝑛

)𝜀𝑛]

0 ≤ 𝑤 ≤ 1 (21)

𝑤 = 1
1 + 𝑎1

(

𝜀 − 𝜀𝑛
)𝑎2

(22)

Damage initiation is defined using the Bao-Wierzbicki [19] model, 
as shown in Fig.  4(b), where the relationship between the plastic strain 
at onset of damage, 𝜀𝑝𝑙,0, and the triaxiality, 𝜂, is defined over the 
full triaxiality ranges, covering shear, combined shear and tension and 
tensile failures as given by Eq. (23), where 𝐶1 and 𝐶2 are plastic 
fracture strains at pure shear (𝜂 = 0) and pure tension (𝜂 = 1∕3), 
respectively. The 𝐶2 parameter is calibrated first using the results of 
the FE coupon tensile model, by integrating the equivalent plastic strain 
PEEQ and triaxiality for all integration points within a critical element 
(Eq. (24)) and 𝐶1 is then calibrated by trial and error. Damage evolution 
controls the stress–strain response from point r to point f  and is defined 
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Fig. 5. Details of push-out test specimens (mm) and measured load-slip responses.
Fig. 6. Diagram of push-out model assembly and boundary conditions.
by a single, very small value of equivalent plastic displacement to 
fracture, illustrated in Fig.  4(c). 

𝐷𝑖 =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

∞ 𝜂 ≤ − 1
3

𝐶1
1+3𝜂 − 1

3 < 𝜂 ≤ 0

𝐶1 +
(

𝐶2 − 𝐶1
)

(3𝜂)2 0 < 𝜂 ≤ 1
3

𝐶2
𝜂 𝜂 ≥ 1

3

(23)

𝐶2 = ∫ 𝜂𝑑𝜀𝑝𝑙 (24)

The limitations of the method used by Song et al. are that the 
weighted average method requires several iterations to calibrate the 
parameters 𝑎1 and 𝑎2. On the other hand, this allows the onset of 
damage to be defined at the rupture point r, which makes the model 
less sensitive to the damage evolution definition, which can be a simple 
linear relationship. The calculation of 𝐶2 and subsequent calibration of 
𝐶1 require iterative trial and error, which is time consuming. However, 
the Bao-Wierzbicki damage initiation criteria is more accurate across 
a broader range of triaxialities and does not require additional shear 
damage to be defined separately in ABAQUS.

3. Development of FE models and validation

3.1. Push-out tests

The FE models in this study were validated against push-out tests by 
Presswood et al. [16]. The geometry of the specimens and the measured 
load-slip responses are shown in Fig.  5. The key test parameters are 
reported in Table  2, where 𝑃𝑢 is the maximum load per shear con-
nector, 𝑃𝑅𝑘 is the characteristic resistance, 𝑘𝑠𝑐 is the shear connector 
stiffness, 𝛿𝑘𝑒 is the elastic slip, 𝛿𝑢 is the stud slip capacity and 𝛿𝑢𝑘 is 
the characteristic stud slip capacity (𝛿𝑢𝑘 = 0.9𝛿𝑢). The beams were 
fabricated from lean duplex EN 1.4162 stainless steel plates, with either 
7 
carbon steel (𝑓𝑢 = 500 MPa) or austenitic EN 1.4301 stainless steel 
(𝑓𝑢 = 692 MPa) studs welded to the flanges of the beams. All studs 
had a diameter of 19 mm and a total height of 150 mm. Specimens P-
C1 to P-C3 and P-A1 to P-A3 used high-strength C100 concrete, while 
specimens P-A4 and P-A5 used medium strength C50 concrete. The 
concrete slabs were embedded in dental plaster to fix them to the base 
of the test machine, and load was applied to the top surface of the 
beam. Aluminium shims and a thin rubber sheet were used to make 
sure the load was applied evenly. All the push-out specimens failed at 
the stud root with little concrete damage. Presswood et al. [16] also 
describe tensile coupon tests and double shear tests on material cut 
from the shanks of the welded shear studs, the results of which are 
used herein for development of stud damage models. Two different 
approaches to damage modelling are presented and compared, both 
based on the Bao-Wierzbicki method.

3.2. Geometry and mesh

The push-out tests were modelled using the FE package
ABAQUS/Standard with static general analysis. The use of explicit 
analysis solver was considered; however, it is highly sensitive to mass 
scaling, making accurate validation particularly challenging. In con-
trast, the static general analysis avoids this and is a straightforward 
and reliable approach. By appropriately defining assembly partitions, 
meshing, contact formulations and viscosity, convergence issues could 
be avoided. The model exploited the symmetry of the test by modelling 
one quarter of the specimen to reduce computational time. Fig.  6(a) 
shows a mirrored view of the model which represents the whole 
specimen and Fig.  6(b) shows the components of the quarter-model. 
The studs were welded to the beam thus the two components were 
modelled as merged part, and the welds were not explicitly considered 
during the analysis. The 10 mm reinforcing bars were modelled as wire 
truss elements using a 30 mm T3D2 mesh. All other components used 
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Table 2
Results of push-out tests.
 Stud 
material

Concrete 
grade

Specimen Pu (kN) PRk (kN) ksc
(kN/mm)

𝛿ke (mm) 𝛿u (mm) 𝛿uk (mm) FE model 
name

 

 
Carbon steel C100

P-C1 141 127 444 0.30 – –

PC-C100

 
 P-C2 154 139 416 0.33 2.6 2.3  
 P-C3 157 141 549 0.26 4.2 3.8  
 Mean 151 136 470 0.30 3.4 3.1  
 

Austenitic 
EN 1.4301

C100

P-A1 203 183 533 0.30 9.4 8.5

PA-C100

 
 P-A2 193 174 271 0.64 8.7 7.8  
 P-A3 201 181 282 0.64 8.5 7.7  
 Mean 199 179 362 0.53 8.9 8.0  
 

C50
P-A4 162 146 255 0.57 8.6 7.7

PA-C50
 

 P-A5 160 144 201 0.71 6.7 6.0  
 Mean 161 145 228 0.64 7.7 6.9  
Fig. 7. Effect of different boundary conditions at base of slab.
solid C3D8R mesh elements; the slab and the beam had a mesh size of 
approximately 15 mm and the studs had a mesh size of 1.5 mm, which 
was chosen following a mesh sensitivity study which is described in 
Section 3.5.1. The models need to be carefully partitioned to maintain 
mesh sizes close to the specified values in case of parametric studies, 
where the sizes of the model elements e.g., stud height may be changed.

3.3. Boundary conditions and interactions

Symmetry boundary conditions were applied to the beam web and 
the inner faces of the beam, studs and slab, corresponding to the XY 
and YZ planes of symmetry as shown in Fig.  6(a). The load was applied 
via displacement 𝑈y at the beam top; all other degrees of freedom 
were fixed to replicate the experimental test setup, which used a fixed 
plate to apply the test load. As explained in Section 2.1, an analytical 
rigid surface beneath the slab was modelled to replicate the boundary 
conditions of the experimental test; the rigid surface was fully fixed, 
and hard contact with suitable friction coefficient 𝜇𝑓𝑟 was defined 
between the top of the rigid surface and the bottom of the slab. This 
was found to most accurately replicate the experimental test boundary 
conditions. When a fully fixed boundary condition was applied directly 
to the slab, this caused tension damage in the base of the slab due 
to the moment caused by the loading in conjunction with the slab 
recess, as illustrated in Fig.  7(a). The damage at the base could be 
avoided by applying pinned boundary conditions, however this did 
not replicate the test conditions and led to an underprediction of the 
push-out capacity, as shown in Fig.  7(b).

A sensitivity study was carried out to verify the friction coefficient 
𝜇𝑓𝑟, comparing values from 0.3 to 0.6, and the results are presented in 
Fig.  7(c). A value of 0.45 was found suitable, which is consistent with 
the value used for steel and grout contact by Gomez [27]. Surface-to-
surface contact was defined for the contact between the steel (flange 
and studs) and concrete, using hard contact definition with 𝜇  of 0.4 
𝑓𝑟

8 
and small sliding. A value of 0.4 is typically used in the literature [4,6,
8,9,13] for steel–concrete contact friction, as discussed by Gomez [27]. 
An embedded constraint was applied to the reinforcement bars within 
the concrete slab. To plot the load-slip responses, relative slip was 
calculated from the difference between the output displacements of a 
beam node and slab node, close to one of the studs, and load was taken 
from the output forces of the reference point on the slab rigid surface.

3.4. Concrete material modelling

The concrete material model was defined using concrete damaged 
plasticity (CDP) in ABAQUS. Elastic behaviour was defined using 
Young’s Modulus, E, as per Eq. (25) [28], where 𝜌𝑐 is the concrete 
density of 2400 kg/m3, 𝑓𝑐 is the compressive strength and 𝜈 is the 
Poisson’s ratio of 0.15. Compressive behaviour, including damage, was 
defined using Eqs. (1)–(5) presented in Section 2.5 and illustrated 
in Fig.  2. The tensile behaviour of the concrete was defined using a 
linear stress–displacement relationship with tensile strength 𝑓𝑡 taken 
as 0.1𝑓𝑐 . The maximum value of crack displacement 𝑢 was calculated 
from the fracture energy, 𝐺𝑓 , in N/mm, according to Eq. (26), since 
𝐺𝑓  corresponds to the area underneath the stress–displacement curve, 
and was calculated from Eq. (27) according to CEB-FIP Model Code 
2010 [29]. Tensile damage 𝑑𝑡 was defined as 0 at zero displacement 
and 0.95 at maximum displacement u, to avoid a sudden drop in the 
stress at the material point, which can cause dynamic instability and 
convergence issues. 
𝐸 = 𝜌𝑐0.043

√

𝑓𝑐 (25)

𝑢 =
2𝐺𝑓
𝑓𝑡

(26)

𝐺 = 0.073𝑓 0.18 (27)
𝑓 𝑐
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Fig. 8. Concrete slab mesh sensitivity results.
The CDP plastic material parameters were taken as 𝜓 = 40◦, 𝑒 = 0.1, 
𝑓𝑏0∕𝑓𝑐0 = 1.16 and 𝐾 = 0.667. The model was very sensitive to the 
mesh viscosity parameter, 𝜇𝑣𝑖𝑠𝑐 , and as discussed in Section 2.5, while 
increasing the value of 𝜇𝑣𝑖𝑠𝑐 can improve convergence, the results must 
be carefully checked, since increasing viscosity delays the onset of 
damage. A sensitivity study was carried out for values of 𝜇𝑣𝑖𝑠𝑐 from 
0.005 to 0.04 to investigate the influence on the load-slip response 
of the push-out analysis. The elastic response and peak load were 
not affected, with a range of less than 2.5% between the minimum 
and maximum peak load from the sensitivity analysis. Discrepancy 
arises in the plastic transition zone (between approximately 0.5–4 mm 
slip), where higher values of 𝜇𝑣𝑖𝑠𝑐 lead to steeper load-slip responses; 
this is because increasing the viscosity delays the onset of concrete 
damage. Since all models are ultimately controlled by stud failure, this 
discrepancy did not influence the ultimate load of the analyses. A 𝜇𝑣𝑖𝑠𝑐
value of 0.03 was chosen for use in further analyses, which was found 
to best mimic the load-slip response in the plastic transition zone and 
achieved convergence within a manageable computational time.

The CDP material model for concrete is very mesh sensitive, so a 
mesh sensitivity study was carried out to help choose an appropriate 
mesh size. Fig.  8(a) shows the results of a mesh sensitivity study in a 
model containing no concrete or stud damage; the concrete slab mesh 
size had little effect on the push-out model response. Fig.  8(b) shows 
the results of a mesh sensitivity study in a model with concrete damage 
(damage parameters kept constant for each mesh size), but no stud 
damage; this shows that the mesh size had significant effect on the 
initial plastic region of the load-slip response, but little effect on the 
overall peak load, as initial concrete damage happens at low slip, then 
the load is redistributed and primarily taken by the stud. Ultimately, a 
15 mm mesh size was chosen for the concrete slab as this gave a good 
match with the experimental results while maintaining computational 
efficiency.

3.5. Steel material modelling

The model was not sensitive to the beam and rebar material prop-
erties, since they do not contribute significantly to the capacity of the 
push-out specimen, hence a simple elastic-linear hardening relationship 
was used for both [5,8]. For the rebar, nominal material properties 
for grade 500 were used, while for the beam, the measured mate-
rial parameters taken from the coupon tests reported in [16] were 
employed. Modelling the stud stress–strain behaviour would have a 
significant impact on the results, and therefore different approaches 
were employed, in particular with respect to damage modelling. Two 
methods are described hereafter for modelling stud damage, Method 
A and Method B. Both methods are based on the Bao–Wierzbicki 
relationship and require the calibration of damage parameters, which 
fully or partially rely on modelling the stud tensile and shear coupon 
behaviour, as described hereafter.
9 
3.5.1. Tensile and double shear coupon models
Models of the stud coupon under tension and shear loadings were 

developed for the calibration of the material tensile and shear damage 
parameters through FE analysis. A proportional tensile coupon with 
a diameter of 10 mm and parallel length of 55 mm was modelled as 
a homogeneous solid part as shown in Fig.  9(a) [16], using C3D8R 
elements with 1.5 mm mesh size. A pinned restraint was applied to the 
top of the coupon via a rigid body reference point, likewise vertical 
displacement was applied to the base of the coupon.

For the stud double shear models, one quarter of the shear test 
geometry was modelled to reduce computational time, as shown in Fig. 
9(b), using symmetry boundary conditions. The nut and the rod were 
modelled as a single homogeneous solid part. A fine mesh with filleted 
corners was required to capture the shear behaviour of the rod and to 
minimise the effect of stress concentrations at the interface between 
the shear plates. The mesh size was 1.5 mm for the rod, 1.5 mm in 
the plates adjacent to the rod and 2 mm elsewhere. All elements were 
C3D8R solid brick elements. Augmented Lagrange hard contact with 
a friction coefficient of 0.3 was used to define the contact between 
the shear plates and the rod. A pinned constraint was applied to the 
top of the central plate via a rigid body reference point and vertical 
displacement was applied to the bottom of the end plate. A very small 
0.2 mm gap was introduced between the nut and end plate, to account 
for the fact that the nuts were only hand-tightened. For both models, 
the static general analysis solver was used.

Damage models are highly mesh sensitive [18], and the tensile 
coupon, shear and push-out models need to adopt the same mesh 
topology for the calibrated damage parameters to be applicable. A mesh 
sensitivity study was carried out to select the most appropriate mesh 
size. The results of the mesh sensitivity studies for the tensile and shear 
models are presented in Fig.  10, with mesh sizes ranging from 1–4 mm 
with constant material and damage properties. A mesh size of 1.5 mm 
was chosen as it gave good accuracy in both tensile and shear models.

3.5.2. Method A: Ductile damage model using stud tensile and shear coupon 
test data

Since the Bao-Wierzbicki (BW) fracture strain-triaxiality relation-
ship can capture a wide range of triaxialities, as shown in Fig.  4(b), 
it was used as the basis for the ductile damage models in this study. 
A single ductile damage model was therefore calibrated, with the 𝐶1
parameter calibrated from shear test results and 𝐶2 from tensile coupon 
results. Damage initiation was set at the rupture point r. An accurate 
material plasticity model was required to represent the softening of the 
tensile curve from point n to point r, followed by damage evolution 
from r to f, as shown in Figs.  4(a) and Fig.  4(c). A simplified version 
of the weighted average method was adopted, whereby the true stress–
strain curve was extended linearly beyond the necking point, and the 
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Fig. 9. ABAQUS FE models of tensile and double shear stud coupons.
Fig. 10. Mesh sensitivity results for tensile and shear models.
slope of the extension was adjusted by trial and error until a good fit 
between the FE and experimental stress–strain data was obtained.

For the damage initiation definition, 𝐶2 was calibrated first against 
tensile coupon test data through trial and error, using a single data 
point for damage initiation corresponding to a triaxiality of 1/3. The 
whole BW relationship was then input into the FE shear model, fixing 
𝐶2 as the calibrated value from the tensile model, but varying 𝐶1 until a 
good agreement between the FE and experimental shear load-slip curve 
was obtained. Damage evolution in the tensile model controls the part 
of the curve after point r where the stress suddenly decreases to zero. 
In the shear model, it controls the softening of the load-slip curve after 
the peak. Damage evolution was defined by a bi-linear relationship, 
specifying values of fracture displacement at 50% (𝑈𝑓,50) and 90% 
(𝑈𝑓,90) damage. These values were found by trial and error. The damage 
initiation and evolution parameters for Method A are given in Table  3.

3.5.3. Method B: Ductile damage model using stud tensile coupon and 
push-out test data

An alternative method was also used, where 𝐶1 and damage evolu-
tion parameters were calibrated directly from the push-out test results 
rather than from the double shear test results. The same 𝐶2 as calibrated 
in Method A was used, since the tensile material properties and mesh 
topology remained constant. The value of 𝐶  was varied until the FE 
1

10 
Table 3
Method A ductile damage parameters.
 Stud material Mesh size (mm) 𝐶1 𝐶2 𝑈𝑓,50 𝑈𝑓,90 
 Carbon steel 1.5 0.23 1.1 0.10 0.15  
 Austenitic EN 1.4301 1.5 0.25 1.2 0.06 0.09  

push-out model results, employing the input material parameters, were 
in good agreement with the experimental load-slip curves. Damage 
evolution was also calibrated by trial and error to fit the push-out 
responses, using the same bi-linear relationship as previously. Fig. 
11(a) illustrates the difference between the undamaged and damaged 
response from the push-out models; it is seen that both concrete dam-
age and stud damage are required to accurately capture the load-slip 
response from experimental tests.

Damage evolution controls a significant portion of the push-out 
load-slip response, unlike the tensile model, where damage initiates 
at rupture and is therefore not sensitive to damage evolution. It was 
found that the damage evolution for the same stud material differed 
in different concrete strengths. In the experimental tests, the load-
slip response of the austenitic stainless steel studs in C100 concrete 
varied significantly from the austenitic stainless steel studs in C50 
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Fig. 11. Damage evolution calibrated directly from push-out results.
Table 4
Method B ductile damage parameters.
 Stud material Ref Concrete 

grade
Mesh size 
(mm)

𝐶1 𝐶2 𝑈𝑓,50 𝑈𝑓,90  

 Carbon steel [16] C100 1.5 0.20 1.10 0.10 0.15  
 Austenitic EN 1.4301 [16] C100 1.5 0.14 1.20 0.35 0.60  
 Austenitic EN 1.4301 [16] C50 1.5 0.14 1.20 0.15 0.20  
 Duplex EN 1.4462 [9] C35 1.5 0.14 1.35 0.02 0.025 
 Duplex EN 1.4462 [9] C70 1.5 0.14 1.35 0.35 0.40  
concrete, despite the failure being governed by stud fracture. The PA-
C50 tests showed less ductility than the PA-C100 tests; this is due to the 
larger deformations in the weaker concrete, leading to bending in the 
stud; the combination of bending and shear stresses in the stud cause 
earlier fracture than under predominantly pure shear, as is the case 
with PA-C100. This demonstrates the complex interactions between 
the materials in push-out tests and highlights the need for accurate 
damage models for both concrete and studs, even when stud failure 
dominates. The damage evolution linear relationships for carbon steel 
studs in C100 concrete and austenitic stainless steel studs in C50 and 
C100 concrete are shown in Fig.  11(b). Table  4 presents a summary of 
the calibrated 𝐶1, 𝐶2, 𝑈𝑓,50 and 𝑈𝑓,100 parameters.

4. Validation results and discussions

4.1. Validation of presswood et al. tests

The validation results from Method A, described in Section 3.5.2, 
are presented in Fig.  12 for the tensile and double shear FE models. Fig. 
12(a) shows that the FE tensile results align well with the experimental 
stress–strain curves for both carbon and stainless steel studs. In Fig. 
12(b), the carbon steel double shear FE model shows a good fit with 
the experimental data, although the ductility is slightly overestimated. 
The austenitic stainless steel double shear FE model shows a reasonable 
fit; the model does not capture all of the strain hardening of the 
experiment, and underestimates the peak load by 17%; a higher value 
of 𝐶1 would achieve a closer fit with the shear test data, but was found 
to overestimate the peak capacity and ductility of the push-out model. 
Fig.  12(a) also shows the failure of the coupon models just before the 
onset of complete fracture, which correlate well with photographs of 
the fractured experimental specimens and DIC strain outputs [16].

The validated push-out results from both methods are presented 
in Fig.  13. While Method A accurately replicates the responses for 
the carbon and austenitic stainless steel studs in C100 concrete, it 
does not do so for the austenitic stainless steel studs in C50 concrete. 
11 
For the carbon steel studs in C100 concrete, the model captures the 
initial stiffness very well, though it slightly over-predicts the peak load 
– 2.4% higher than the maximum load and 6.6% higher than the 
average peak load across the three tests. In terms of ductility, although 
the experimental results show some scatter; the model validation lies 
within the experimental range and is considered accurate. Similar 
observations are made for the austenitic stainless steel studs in C100 
concrete, the peak load is 5.4% higher than the maximum load and 
7.4% higher than the average peak load across the three tests. For the 
model with austenitic stainless steel studs in C50 concrete, only the 
concrete strength differs from the PA-C100 model, yet the response 
becomes very inaccurate. The discrepancy between the PA-C50 FE 
and experimental results after stud damage initiation is due to the 
inaccurate simulation of the stud damage evolution through Method A, 
as these studs experienced greater bending compared to those in C100 
concrete [16]. Because the BW stud damage model in Method A is only 
calibrated based on values of triaxiality under pure tension and pure 
shear, it cannot accurately account for intermediate values of triaxiality 
relating to bending, which make it an unreliable method for predicting 
the behaviour of studs in different concrete strengths. The Method A 
approach is similar to bolted connection modelling, where tensile and 
shear parameters are separately calibrated and then combined in a 
full model [18]. However, this approach is inadequate for push-out 
modelling due to the interaction between the steel and the concrete, 
with more complex stress states.

In Method B, where the 𝐶1 and damage evolution parameters are 
directly calibrated from push-out tests, the obtained stud damage pa-
rameters more accurately represent the real triaxiality state of the 
push-out specimens. As shown in Fig.  13, Method B provides excellent 
validation of initial stiffness, peak load and ductility for all three 
models. However, a drawback of this method is that the calibrated 
damage parameters, 𝐶1 and damage evolution, are specific to each 
push-out test with different concrete strengths. Nevertheless, due to its 
accuracy and relative simplicity of calibration, Method B is considered 
sufficient for parametric studies, provided that the damage parameters 
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Fig. 12. Method A: tensile and shear validation results compared to experimental data.
Fig. 13. Load-slip results from push-out model validations.
are calibrated for each concrete grade based on reliable push-out test 
data. Fig.  14 shows the damaged concrete slabs together with their 
corresponding concrete compression and tension damage outputs from 
the FE models. For all models, there is good agreement between the test 
and FE failure modes; the size of the concrete crushed zone below the 
stud agrees with the damaged area from the experimental specimens, 
and similar areas of tension damage are visible above the stud, where 
in the experimental specimens the stud has deformed, creating a gap in 
the concrete above.

4.2. Validation of Zhou et al. tests

The results of the push-out tests on 16 mm duplex stainless steel 
studs reported in Zhou et al. [9] were also validated using the Method 
B modelling approach described above; the ductile damage parameters 
are presented in Table  4. The studs were a duplex grade EN 1.4462, 
embedded in C70 and C35 concrete, shown as P2 and S2 in Fig.  15(a), 
respectively. As above, the stiffness, peak load and ductility measured 
from the FE models achieve a very good match with the experimental 
results. Similar to PA-C50, the P2 model exhibits a loss of stiffness in 
the early plastic stage of the load-slip response, which is due to the 
sensitivities of the concrete damage modelling. These validations are 
useful as they demonstrate that the modelling strategy adopted is appli-
cable to different push-out configurations, including different geometric 
and material properties. Furthermore, they enabled the calibration of 
duplex EN 1.4462 stainless steel stud damage parameters, which are 
needed for future parametric studies.

4.3. Validation of Pathirana et al. tests

A final validation was carried out against test results presented in 
Pathirana et al. [4] for 19 mm carbon steel studs embedded in C40 
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concrete, shown in Fig.  15(b). The results from [4] were only reported 
up to the peak load, therefore this numerical model did not incorporate 
stud damage, yet is useful for further demonstrating the robustness and 
wide applicability of the model to different geometries and material 
properties. The material model for the carbon steel studs consisted 
of a tri-linear relationship with strain hardening. The reported failure 
mode by Pathirana et al. was combined concrete crushing and stud 
weld failure; the validated numerical model shown here demonstrated 
significant concrete crushing at the peak load, and only the elements 
at the very root of the stud exhibited excessive plastic strain above 
10%; these deformations are judged small enough to not have led 
to damage initiation, if ductile damage was present. Therefore the 
modelling procedure in this paper is also applicable in tests where stud 
damage does not occur before the ultimate load is reached.

Table  5 provides a summary of the results from all the validation 
models, where the mean experimental peak load per stud (𝑃𝑢,𝐸𝑥𝑝) and 
FE peak load per stud (𝑃𝑢,𝐹𝐸) as well as the experimental ultimate 
slip (𝛿𝑢,𝐸𝑥𝑝), calculated according to Eurocode 4 [1], and FE ultimate 
slip (𝛿𝑢,𝐹𝐸) are compared. All models are within 7% of the mean 
experimental peak load, and 9% of the mean slip, which demonstrates 
excellent capability of the modelling strategy to predict the capacity 
and ductility of carbon steel and stainless steel shear studs in push-out 
tests.

4.4. Load-transfer mechanisms

The validated models were used to assess the expected load carry-
ing mechanism in a push-out test. Considering the two load transfer 
mechanisms between the stud and concrete: bearing between the stud 
and concrete and shear between the steel and concrete, these forces 
were extracted from the FE models as shown in Fig.  16, where ‘CFS2’ 
represents the shear force in the 𝑦-direction, i.e. friction, and ‘CFN2’ 
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Fig. 14. Post-peak concrete damage from ABAQUS FE models compared with damaged slabs after push-out test.
Fig. 15. Validation of push-out tests from the literature.
represents normal forces in the 𝑦-direction, i.e. bearing. The force 
contributions are presented in Fig.  17 and show that the majority of the 
load is transferred by stud bearing onto the concrete and 20%–30% of 
the load is transferred via friction between the beam and slab, regard-
less of stud material or concrete strength. This proportion remains fairly 
13 
constant throughout the load duration, after an initial rapid increase in 
the elastic region. The majority of this friction occurs at the root of 
the stud. Even though the surface of the beam flange is greased before 
casting the concrete slab, the friction component is quite high; greasing 
the flange prevents any bonding between the flange and concrete slab, 



R. Presswood et al. Thin-Walled Structures 216 (2025) 113605 
Table 5
Summary of push-out test validation results.
 Test series 𝑃𝑢,𝐸𝑥𝑝 (kN) 𝑃𝑢,𝐹𝐸 (kN) 𝑃𝑢,𝐹𝐸∕𝑃𝑢,𝐸𝑥𝑝 𝛿𝑢,𝐸𝑥𝑝 (mm) 𝛿𝑢,𝐹𝐸 (mm) 𝛿𝑢,𝐹𝐸∕𝛿𝑢,𝐸𝑥𝑝 
 PC-C100 150.5 159.8 1.06 3.4 3.3 0.97  
 PA-C100 198.9 212.4 1.07 8.9 8.4 0.94  
 PA-C50 160.9 163.6 1.02 7.7 8.4 1.09  
 Zhou-P2 246.8 239.4 0.97 10.6 11.4 1.08  
 Zhou-S2 190.8 186.9 0.98 8.6 9.4 1.09  
 Pathirana 119.0 125.6 1.06 – – –  
Fig. 16. Validation of push-out tests from the literature.
Fig. 17. Load transferred by bearing and friction in models.
but during the push-out test there is still friction due to the contact 
pressure between the surfaces, especially once the stud deforms.

4.5. Parametric study on stud aspect ratio

According to Eurocode 4 [1], the design resistance 𝑃𝑅𝑑 of headed 
shear studs in push-out tests is determined from the minimum of 
Eq. (28) (governed by stud failure) and Eq. (29) (governed by concrete 
failure), where 𝑓𝑢 is the stud ultimate strength, d is the stud diameter, 
𝑓𝑐 is the concrete compressive strength, 𝐸𝑐𝑚 is the concrete modulus 
and 𝛾𝑣 is the partial factor, equal to 1.25. The 𝛼 factor is a reduction 
for studs with short aspect ratio, and is calculated from Eq. (30) where
h is the stud height. Studs with h/d below 3 should not be used due to 
the increased likelihood of pry-out failure. 

𝑃 Rd,s =
0.8𝑓u𝜋𝑑2∕4

𝛾v
(28)

𝑃 Rd,c =
0.29𝛼𝑑2

√

𝑓 c𝐸cm (29)

𝛾v
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𝛼 =

{

0.2( ℎ𝑑 + 1) for 3 ≤ ℎ∕𝑑 ≤ 4
1 for ℎ∕𝑑 > 4

(30)

The validated model was used to conduct parametric studies on the 
effect of the height-to-diameter ratio h/d of the austenitic EN 1.4301 
stainless steel shear connectors. The model was based on the tests 
by [16], with stud diameters of 16 mm, 19 mm, 22 mm and 25 mm 
and stud heights ranging from 35 mm to 250 mm, giving a range of
h/d between 1.4 and 15.6. The results for C50 and C100 concrete are 
presented in Fig.  18, which shows how the ultimate load capacity of 
the studs varies with h/d ratio for each stud diameter, and Fig.  19, 
which shows the impact of h/d on the ultimate slip capacity 𝑑𝑢. Figs. 
18 and 19 also illustrate the failure mode for each model; stud failure, 
concrete failure, combined stud and concrete failure, or pry-out failure. 
The limit for pry-out failure was found to be ℎ∕𝑑 = 1.84; studs with h/d
above this limit did not exhibit pryout failure. The load capacity and 
ductility of the studs both showed slight increase between 2 ≤ ℎ∕𝑑 ≤ 3
before reaching a plateau. This suggests that the h/d limit of 3 in 
Eurocode 4, with a reduction factor applied for h/d between 3 and 4, 
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Fig. 18. Effect of h/d ratio on load capacity of austenitic EN 1.4301 stainless steel studs embedded in C50 and C100 grade concrete.
Fig. 19. Effect of h/d ratio on ultimate slip capacity of austenitic EN 1.4301 stainless steel studs embedded in C50 and C100 grade concrete.
could be relaxed. Further parametric studies including the effect of stud 
diameter, stud height, stud grade and concrete strength will be carried 
out in the future to assess the applicability of Euocode 4 to stainless 
steel shear studs in greater detail.

5. Conclusions

This paper investigated the numerical modelling of push-out tests 
with welded headed shear studs in solid slabs. A comprehensive review 
of existing approaches for finite element modelling of push-out tests has 
been presented, with a particular focus on techniques for representing 
the stress–strain responses of concrete and shear studs, including dam-
age, to accurately capture the full load-slip response — an area that has 
received limited attention in the literature. To this end, the applicability 
of the stress-modified critical strain and Bao–Wierzbicki ductile damage 
models for simulating the post-ultimate stress–strain behaviour of shear 
studs, including fracture, were evaluated. Two calibration methods 
for the stud tensile and shear damage parameters, based on the Bao–
Wierzbicki model, were presented: the first based on stud tensile and 
shear test data, and the second on stud tensile and push-out test data. 
The latter method was found to better capture stud behaviour in push-
out tests, as it more accurately represented the stress state in the 
push-out specimens, and was therefore recommended.

Furthermore, the review of the literature highlighted a lack of con-
sensus on the correct approaches for modelling boundary conditions, 
and for the appropriate values of friction coefficient in contact defini-
tions. The proposed modelling framework includes a new approach for 
modelling the boundary conditions at the base of the slab which more 
accurately represents the experimental conditions when the slabs are 
15 
embedded in grout or plaster. Sensitivity studies have been carried out 
on contact friction coefficients and CDP viscosity parameters.

The proposed modelling framework was validated against several 
experimental tests from the literature [4,16,28], demonstrating its ca-
pability to capture a wide range of geometric and material properties 
in push-out tests, including carbon steel, austenitic stainless steel and 
duplex stainless steel studs with varying diameters. This approach 
comprehensively accounted for all relevant modelling parameters in-
fluencing the structural behaviour of push-out specimens. It achieved 
higher predictive accuracy in the overall load-slip response compared 
to existing methods and successfully replicated the observed failure 
modes. The proposed modelling framework can be used to capture 
the behaviour of a variety of push-out arrangements with welded 
headed shear studs, with different concrete grades, stud grades, stud 
heights, stud diameters and stud arrangements. This is ideal for the 
development of extensive parametric analyses of stainless steel push-
out tests, which would aid in the assessment of Eurocode 4 design 
equations for predicting the resistance of welded stainless steel shear 
studs in composite beams.

CRediT authorship contribution statement

R. Presswood: Writing – original draft, Methodology, Validation, 
Formal analysis. M. Shaheen: Supervision, Writing – review & editing, 
Conceptualization. S. Afshan: Writing – review & editing, Conceptual-
ization, Supervision. F. Meza: Writing – review & editing. N. Baddoo: 
Writing – review & editing.



R. Presswood et al. Thin-Walled Structures 216 (2025) 113605 
Declaration of competing interest

The authors declare that they have no known competing finan-
cial interests or personal relationships that could have appeared to 
influence the work reported in this paper.

Acknowledgments

The authors gratefully acknowledge the University of Southampton 
PhD studentship funding, which enabled this project to be carried out.

Data availability

Data will be made available on request.

References

[1] BSI, Eurocode 4: Design of composite steel and concrete structures  Part 1-1: 
General rules and rules for buildings, British Standards Institution, 2004.

[2] R.P. Johnson, D.J. Oehlers, Analysis and design for longitudinal shear in 
composite T-beams, Proc. Inst. Civ. Eng. 71 (1981) 989–1021, http://dx.doi.
org/10.1680/iicep.1981.1735.

[3] S. Hicks, Longitudinal Shear Resistance of Steel and Concrete Composite Beams 
(Ph.D. thesis), University of Cambridge, 1997.

[4] S.W. Pathirana, B. Uy, O. Mirza, X. Zhu, Bolted and welded connectors for 
the rehabilitation of composite beams, J. Constr. Steel Res. 125 (2016) 61–73, 
http://dx.doi.org/10.1016/j.jcsr.2016.06.003.

[5] C. Xu, Q. Su, H. Masuya, Static and fatigue behavior of the stud shear connector 
in lightweight concrete, Int. J. Steel Struct. 18 (2018) 569–581, http://dx.doi.
org/10.1007/s13296-018-0014-1.

[6] D. Kruszewski, A. Zaghi, K. Wille, Finite element study of headed shear studs 
embedded in ultra-high performance concrete, Eng. Struct. 188 (2019) 538–552, 
http://dx.doi.org/10.1016/j.engstruct.2019.03.035.

[7] U. Katwal, Z. Tao, M.K. Hassan, B. Uy, D. Lam, Load sharing mechanism between 
shear studs and profiled steel sheeting in push tests, J. Constr. Steel Res. 174 
(2020) http://dx.doi.org/10.1016/j.jcsr.2020.106279.

[8] Y. Li, S. Wang, G. Zhao, Y. Ma, D. Guo, J. Luo, Z. Fang, E. Fang, Shear 
behavior of short studs in steel-thin ultrahigh-performance concrete composite 
structures, Case Stud. Constr. Mater. 19 (2023) http://dx.doi.org/10.1016/j.cscm.
2023.e02423.

[9] Y. Zhou, B. Uy, J. Wang, D. Li, X. Liu, Behaviour and design of stainless steel 
shear connectors in composite beams, Steel Compos. Struct. 46 (2023) 175–193, 
http://dx.doi.org/10.12989/scs.2023.46.2.175.
16 
[10] D. Lam, E. Ellobody, Behavior of headed stud shear connectors in composite 
beam, J. Struct. Eng. 131 (2005) 96–107, http://dx.doi.org/10.1061/(ASCE)
0733-9445(2005)131:1(96).

[11] M. Pavlović, Z. Marković, M. Veljković, D.B.D. Signevac, Bolted shear connectors 
vs. headed studs behaviour in push-out tests, J. Constr. Steel Res. 88 (2013) 
134–149, http://dx.doi.org/10.1016/j.jcsr.2013.05.003.

[12] E. Tzouka, T. Karavasilis, M. Kashani, S. Afshan, Finite element modelling of 
push-out tests for novel locking nut shear connectors, Structures 33 (2021) 
1020–1032, http://dx.doi.org/10.1016/j.istruc.2021.04.088.

[13] J. He, A. Suwaed, G. Vasdravellis, Horizontal pushout tests and parametric 
analyses of a locking-bolt demountable shear connector, Structures 35 (2022) 
667–683, http://dx.doi.org/10.1016/j.istruc.2021.11.041.

[14] E. Schedin, A. Backhouse, Stainless Steel Composite Bridge Study - A Summary 
of ARUP Reports, Tech. Rep., Outokumpu, 2019.

[15] F. Meza, N. Baddoo, Life Cycle Cost Assessment of a Stainless Steel Highway 
Bridge, The Steel Construction Institute, 2023.

[16] R. Presswood, S. Afshan, F. Meza, N. Baddoo, M. Shaheen, P. Desnerck, 
Experimental study on the behaviour of austenitic stainless steel and carbon steel 
welded shear connectors, Eng. Struct. 321 (2024) http://dx.doi.org/10.1016/j.
engstruct.2024.118930.

[17] Dassault, ABAQUS Analysis User’s Manual 6.10-EF, Providence, RI, USA, 2010.
[18] Y. Song, J. Wang, B. Uy, D. Li, Experimental behaviour and fracture prediction 

of austenitic stainless steel bolts under combined tension and shear, J. Constr. 
Steel Res. 166 (2020) 105916, http://dx.doi.org/10.1016/j.jcsr.2019.105916.

[19] Y. Bao, T. Wierzbicki, On fracture locus in the equivalent strain and stress 
triaxiality space, Int. J. Mech. Sci. 46 (2004) 81–98, http://dx.doi.org/10.1016/
j.ijmecsci.2004.02.006.

[20] L. An, K. Cederwall, Push-out tests on studs in high strength and normal strength 
concrete, J. Constr. Steel Res. 36 (1996) 15–29.

[21] M. Spremic, Z. Markovic, M. Veljkovic, D. Budjevac, Push-out experiments of 
headed shear studs in group arrangements, Adv. Steel Constr. 9 (2013) 139–160.

[22] M. Qasem, M. Hasan, R. Muhamad, C.L. Chin, N. Alanazi, Generalised calibra-
tion and optimization of concrete damage plasticity model for finite element 
simulation of cracked reinforced concrete structures, Results Eng. 25 (2025) 
http://dx.doi.org/10.1016/j.rineng.2024.103905.

[23] D. Carreira, K.-H. Chu, Stress-strain relationship for plain concrete in 
compression, ACI J. (1985).

[24] F. Mcclintock, Local criteria for ductile fracture, Int. J. Fract. Mech. 4 (1968).
[25] J. Rice, D. Tracey, On the ductile enlargements of voids in triaxial stress fields, 

J. Mech. Phys. Solids 17 (1969).
[26] Y. Ling, Uniaxial true stress-strain after necking, AMP J. Technol. 5 (1996).
[27] I.R. Gomez, Behavior and Design of Column Base Connections (Ph.D. thesis), 

University of California, 2010.
[28] Y. Zhou, B. Uy, X. Liu, D. Li, Finite element modelling of stainless steel shear 

connectors in composite beams, in: Advances in Structural Engineering and 
Mechanics ASEM19, 2019, pp. 1–14.

[29] FIB, CEB FIP Model Code 2010, Tech. Rep., FIB, 2010.

http://refhub.elsevier.com/S0263-8231(25)00698-6/sb1
http://refhub.elsevier.com/S0263-8231(25)00698-6/sb1
http://refhub.elsevier.com/S0263-8231(25)00698-6/sb1
http://dx.doi.org/10.1680/iicep.1981.1735
http://dx.doi.org/10.1680/iicep.1981.1735
http://dx.doi.org/10.1680/iicep.1981.1735
http://refhub.elsevier.com/S0263-8231(25)00698-6/sb3
http://refhub.elsevier.com/S0263-8231(25)00698-6/sb3
http://refhub.elsevier.com/S0263-8231(25)00698-6/sb3
http://dx.doi.org/10.1016/j.jcsr.2016.06.003
http://dx.doi.org/10.1007/s13296-018-0014-1
http://dx.doi.org/10.1007/s13296-018-0014-1
http://dx.doi.org/10.1007/s13296-018-0014-1
http://dx.doi.org/10.1016/j.engstruct.2019.03.035
http://dx.doi.org/10.1016/j.jcsr.2020.106279
http://dx.doi.org/10.1016/j.cscm.2023.e02423
http://dx.doi.org/10.1016/j.cscm.2023.e02423
http://dx.doi.org/10.1016/j.cscm.2023.e02423
http://dx.doi.org/10.12989/scs.2023.46.2.175
http://dx.doi.org/10.1061/(ASCE)0733-9445(2005)131:1(96)
http://dx.doi.org/10.1061/(ASCE)0733-9445(2005)131:1(96)
http://dx.doi.org/10.1061/(ASCE)0733-9445(2005)131:1(96)
http://dx.doi.org/10.1016/j.jcsr.2013.05.003
http://dx.doi.org/10.1016/j.istruc.2021.04.088
http://dx.doi.org/10.1016/j.istruc.2021.11.041
http://refhub.elsevier.com/S0263-8231(25)00698-6/sb14
http://refhub.elsevier.com/S0263-8231(25)00698-6/sb14
http://refhub.elsevier.com/S0263-8231(25)00698-6/sb14
http://refhub.elsevier.com/S0263-8231(25)00698-6/sb15
http://refhub.elsevier.com/S0263-8231(25)00698-6/sb15
http://refhub.elsevier.com/S0263-8231(25)00698-6/sb15
http://dx.doi.org/10.1016/j.engstruct.2024.118930
http://dx.doi.org/10.1016/j.engstruct.2024.118930
http://dx.doi.org/10.1016/j.engstruct.2024.118930
http://refhub.elsevier.com/S0263-8231(25)00698-6/sb17
http://dx.doi.org/10.1016/j.jcsr.2019.105916
http://dx.doi.org/10.1016/j.ijmecsci.2004.02.006
http://dx.doi.org/10.1016/j.ijmecsci.2004.02.006
http://dx.doi.org/10.1016/j.ijmecsci.2004.02.006
http://refhub.elsevier.com/S0263-8231(25)00698-6/sb20
http://refhub.elsevier.com/S0263-8231(25)00698-6/sb20
http://refhub.elsevier.com/S0263-8231(25)00698-6/sb20
http://refhub.elsevier.com/S0263-8231(25)00698-6/sb21
http://refhub.elsevier.com/S0263-8231(25)00698-6/sb21
http://refhub.elsevier.com/S0263-8231(25)00698-6/sb21
http://dx.doi.org/10.1016/j.rineng.2024.103905
http://refhub.elsevier.com/S0263-8231(25)00698-6/sb23
http://refhub.elsevier.com/S0263-8231(25)00698-6/sb23
http://refhub.elsevier.com/S0263-8231(25)00698-6/sb23
http://refhub.elsevier.com/S0263-8231(25)00698-6/sb24
http://refhub.elsevier.com/S0263-8231(25)00698-6/sb25
http://refhub.elsevier.com/S0263-8231(25)00698-6/sb25
http://refhub.elsevier.com/S0263-8231(25)00698-6/sb25
http://refhub.elsevier.com/S0263-8231(25)00698-6/sb26
http://refhub.elsevier.com/S0263-8231(25)00698-6/sb27
http://refhub.elsevier.com/S0263-8231(25)00698-6/sb27
http://refhub.elsevier.com/S0263-8231(25)00698-6/sb27
http://refhub.elsevier.com/S0263-8231(25)00698-6/sb28
http://refhub.elsevier.com/S0263-8231(25)00698-6/sb28
http://refhub.elsevier.com/S0263-8231(25)00698-6/sb28
http://refhub.elsevier.com/S0263-8231(25)00698-6/sb28
http://refhub.elsevier.com/S0263-8231(25)00698-6/sb28
http://refhub.elsevier.com/S0263-8231(25)00698-6/sb29

	Numerical modelling of solid slab push-out tests with stainless steel welded stud shear connectors
	Introduction
	Review of existing finite element modelling approaches
	Boundary conditions at support
	Model discretisation
	Contact formulation
	Analysis solver
	Concrete and steel constitutive models
	Pavlovic and SMCS
	Song weighted average & Bao-Wierzbicki (BW)


	Development of FE models and validation
	Push-out tests
	Geometry and mesh
	Boundary conditions and interactions
	Concrete material modelling
	Steel material modelling
	Tensile and double shear coupon models
	Method A: Ductile damage model using stud tensile and shear coupon test data
	Method B: Ductile damage model using stud tensile coupon and push-out test data


	Validation results and discussions
	Validation of Presswood tests
	Validation of Zhou tests
	Validation of Pathirana tests
	Load-transfer mechanisms
	Parametric study on stud aspect ratio

	Conclusions
	CRediT authorship contribution statement
	Declaration of competing interest
	Acknowledgments
	Data availability
	References


