
1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

AccessGuru: Leveraging LLMs to Detect and Correct Web Accessibility Violations in
HTML Code

NADEEN FATHALLAH, University of Stuttgart, Artificial Intelligence, Germany

DANIEL HERNÁNDEZ, Artificial Intelligence, University of Stuttgart, Germany

STEFFEN STAAB, University of Stuttgart, Germany and University of Southampton, United Kingdom

The vast majority of Web pages fail to comply with established Web accessibility guidelines, excluding a range of users with diverse abilities from
interacting with their content. Making Web pages accessible to all users requires dedicated expertise and additional manual efforts from Web page
providers. To lower their efforts and, thus, promote inclusiveness, we aim to automatically detect and correct Web accessibility violations in HTML
code. While previous work has made progress in detecting certain types of accessibility violations, the problem of automatically detecting and
correcting accessibility violations remains an open challenge that we address.

We introduce a novel taxonomy classifying Web accessibility violations into three key categories— Syntactic, Semantic, and Layout. This
taxonomy provides a structured foundation for developing our detection and correction method and selecting and redefining evaluation metrics.
We propose our novel method, AccessGuru, which combines existing accessibility testing tools and Large Language Models (LLMs) to detect
accessibility violations of Web accessibility guidelines and taxonomy-driven prompting strategies of LLMs to correct all three accessibility violation
categories.

To evaluate these capabilities, we have developed a novel benchmark encompassing Web accessibility violations from real-world Web pages.
Our benchmark quantifies syntactic and layout compliance and judges semantic accuracy through a comparative analysis against human expert
corrections. Evaluation against our benchmark demonstrates that our method achieves up to 84% average violation score decrease on our benchmark
dataset, significantly outperforming existing methods, which achieve at most 50% average violation score decrease.

CCS Concepts: •Computingmethodologies→Natural language processing; •Human-centered computing→Accessibility technologies.

Additional Key Words and Phrases: Web accessibility, Web accessibility violations, HTML correction, Large Language Models, Prompt Engineering

ACM Reference Format:
Nadeen Fathallah, Daniel Hernández, and Steffen Staab. 2025. AccessGuru: Leveraging LLMs to Detect and Correct Web Accessibility Violations in
HTML Code. In The 27th International ACM SIGACCESS Conference on Computers and Accessibility (ASSETS ’25), October 26–29, 2025, Denver, CO,

USA. ACM, New York, NY, USA, 25 pages. https://doi.org/10.1145/3663547.3746360

1 Introduction

Web accessibility is the ability of websites to be accessed by all people, including people with visual, auditory, motor, and cognitive
impairments such that they can perceive, understand, navigate, interact with, and contribute to the Web effectively [43, 57, 58].
Organizations like Web Accessibility in Mind (WebAIM) and the World Wide Web Consortium (W3C) have established guidelines,
such as theWeb Content Accessibility Guidelines (WCAG) [10], which advise developers to create accessible Web content. However,
an overwhelming majority of Web pages do not comply with Web accessibility guidelines; for instance, a 2025 study by WebAIM
revealed that 94.8% of the top one million most visited Web pages fail to meet accessibility guidelines [55]. This widespread
non-compliance is likely due to a lack of expertise in creating accessible content in the first place and the costly and labor-intensive
effort of correcting accessibility issues in the HTML code [6, 9].

Users with impairments rely on various assistive technologies, such as screen readers for visually impaired users, screen
magnification tools for individuals with low vision, closed captioning for those with hearing impairments, and voice recognition
software for users with motor disabilities. These technologies function effectively when accessibility-related information is
embedded in HTML. Based on the distinct types of HTML constructs and information required by assistive technologies—as

Authors’ Contact Information: Nadeen Fathallah, nadeen.fathallah@ki.uni-stuttgart.de, University of Stuttgart, Artificial Intelligence, Stuttgart, Germany; Daniel
Hernández, daniel.hernandez@ki.uni-stuttgart.de, Artificial Intelligence, University of Stuttgart, Stuttgart, Baden-Württemberg, Germany; Steffen Staab, steffen.staab@
uni-stuttgart.de, University of Stuttgart, Stuttgart, Germany and University of Southampton, Southampton, United Kingdom.

This work is licensed under a Creative Commons Attribution 4.0 International License.
© 2025 Copyright held by the owner/author(s).
Manuscript submitted to ACM

Manuscript submitted to ACM 1

https://doi.org/10.1145/3663547.3746360
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0


62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

2 Nadeen Fathallah, Daniel Hernández, and Steffen Staab

specified by the WCAG—we introduce a taxonomy of accessibility violations that classifies them into three dimensions: Syntactic,
Semantic, and Layout. Syntactic accessibility violations involve missing or malformed accessibility-enhancing HTML elements
and attributes (e.g., missing alt text); Semantic accessibility violations concern whether the provided accessibility-enhancing
HTML elements and attributes are meaningful (e.g., alt text that fails to describe the image content); and Layout accessibility
violations refer to visual or structural barriers that impede interaction (e.g., insufficient color contrast). A detailed explanation of
this taxonomy, its construction, and representative examples can be found in Section 3.

Research has led to the creation of efficient and accurate tools to automatically detect syntactic and layout accessibility violations
in HTML, like WAVE, Axe, Google Lighthouse, and AChecker. Current tools fail to identify semantic accessibility violations such
as Violation 5 (line 25) in Listing 1. This highlights a significant gap in current accessibility detection methods.

Automating the correction of syntactic, layout, and semantic accessibility violations remains an open challenge. Web accessibility
guidelines provide general recommendations rather than detailed solutions. For example, they recommend making interactive
elements keyboard-operable for users without mouse access, but don’t specify how to manage keyboard focus for dynamically
loaded content.

This paper addresses the challenge of improving Web accessibility by introducing a method for automatically detecting and
correcting HTML accessibility violations. Our taxonomy provides a systematic understanding of Web accessibility violations and
informs our development of detection and correction strategies and the choice of evaluation metrics. AccessGuru relies on an
automatic Web accessibility evaluation tool to detect syntactic and layout accessibility violations and LLMs to detect semantic
accessibility violations. AccessGuru transforms Web pages with accessibility violations into guideline-compliant versions by
leveraging a pre-trained LLM to generate corrections that minimize a violation score, reflecting their impact on user interaction. In
this paper, we make the following contributions:

• We introduce a novel taxonomy that classifies Web accessibility violations into three key categories: Syntactic, Semantic,
and Layout. This taxonomy provides a structured foundation for understanding accessibility violations, guiding detection
and correction strategies, and informing evaluation metrics.

• We present a dataset of 3,500 real-world Web accessibility violations spanning over 112 distinct types across syntactic,
semantic, and layout categories, offering a diverse and representative basis for training and evaluating correction methods.
To our knowledge, this is the first publicly available dataset of this scale that includes all three types of accessibility
violations, sourced entirely from real-world Web data. The dataset will be published upon acceptance of this paper.

• We develop a novel pipeline that leverages accessibility testing tools and LLMs to automatically detect and correct Web
accessibility violations. Building on recent ideas of using LLMs for coding [3, 4, 7, 13, 29, 34, 50].

• We evaluate the correction effectiveness of AccessGuru against three baseline methods [15, 23, 37] using a subset of our
dataset sampled to reflect real-world violation distributions as indicated by [55], and an additional dataset from [23].
Our method achieves up to 84% average violation score decrease, outperforming baselines capped at 50%. We compare
the corrections generated by AccessGuru to those generated by human developers. To this end, we conducted a human
developer correction study on 55 Web accessibility violations from our dataset, achieving an average similarity of 73%.

To ensure reproducibility and transparency, all source codes, prompts, datasets, and results are available at https://github.com/
NadeenAhmad/AccessGuruLLM. The structure of the paper is as follows: Section 2 provides an overview of the existing literature
and background information, followed by our proposed taxonomy in Section 3. Section 4 details our approach, Section 5 describes
the evaluation process, and the results from our experiments are presented in Section 6. Section 7 discusses the limitations of our
method, and Section 8 concludes the paper with directions for future research.

2 Related Work

2.1 WCAG Guidelines

The WCAG [10, 24] are a widely adopted set of guidelines aimed at making Web content accessible to individuals with diverse
abilities, including visual, auditory, motor, and cognitive impairments. WCAG are organized around four fundamental principles,
referred to by the acronym POUR: (i) Perceivable, ensuring information and interface elements are presented in ways users can
perceive, like providing text alternatives for images; (ii) Operable, requiring Website functionality to be accessible through different
input methods, such as keyboard navigation or voice commands; (iii) Understandable, ensuring content is clear and easy to interact
Manuscript submitted to ACM

https://github.com/NadeenAhmad/AccessGuruLLM
https://github.com/NadeenAhmad/AccessGuruLLM


123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

AccessGuru: Leveraging LLMs to Detect and Correct Web Accessibility Violations in HTML Code 3

with; and (iv) Robust, which demands that content is compatible with current and future technologies. Each of these principles is
broken down into specific, testable success criteria, grouped into three conformance levels: A (minimum), AA (mid-range), and
AAA (highest).

2.2 Web Accessibility Violation Detection

Early efforts in accessibility violation detection relied on manual testing and expert assessment, which were time-consuming and
lacked scalability. This motivated the development of efficient tools like WAVE, Axe, Google Lighthouse, AChecker, and Tenon,
which translate WCAG accessibility guidelines into rule-based checks and apply them to individual HTML elements to detect
syntax and layout accessibility violations [59]. These reports provide developers with information on each violation, including its
type, description, and impact. In our work, we utilize the Axe-Playwright tool, an accessibility detection engine. However, such
tools fail to detect semantic accessibility violations [30]. For instance, [33] can confirm the presence of alt text but cannot evaluate
whether the description effectively conveys the image’s content.

2.3 Web Accessibility Violation Correction

Rule-based Corrections of Accessibility Violations. EarlyWeb accessibility correctionmethods defined rules to automate corrections [5,
11, 19, 48]. For example, [19] defines a fixed rule that inserts a skip link before a navigation bar to jump to the <main> tag. However,
such rules assume consistent page structure and fail to generalize across diverse Web layouts.

Computer Vision Correcting Accessibility Violations. Computer vision techniques have been used to correct web accessibility
violations, particularly for generating alt text. Facebook’s automatic alt text feature applied object detection to describe images
for visually impaired users [57], leveraging neural image captioning models such as [51]. Computer vision has been applied
to accessibility in graphical user interfaces (GUIs) by using deep learning models to predict natural-language labels for HTML
elements, enabling better navigation for visually impaired users [12, 27].

Semi-automatic methods for Correcting Accessibility Violations suggest an initial correction to a human expert for refinement.
[31, 38, 45] proposed using image recognition techniques to provide a first draft of the alt text, followed by human validation.

LLM Prompting for Correcting Accessibility Violations. LLMs have been shown to effectively generate code and detect errors
[3, 4, 7, 13, 29, 34, 50]. Recent studies have also shown that LLMs can generate accessibility-conformant code [4, 16]. Othman et al.
[37] used contextual prompting, where ChatGPT was provided with a non-conformant accessibility code and WCAG 2.1 guidelines
to generate corrections. Delnevo et al. [15] explored zero-shot prompting to correct accessibility violations by instructing ChatGPT
to determine whether HTML elements are accessibility complaints. Huang et al. [23] investigated three prompting techniques:
Reasoning + Acting (ReAct), Few-Shot, and Chain of Thought (CoT). ReAct, which combines reasoning steps with interactive
responses, achieved the best performance on their dataset. We adopt these three prompting techniques—contextual [37], zero-shot
[15], and ReAct [23]—as baselines for comparison against our proposed method. The prompt templates used for each baseline are
directly adapted from the original works and are provided in Table 12. While these methods were effective in correcting some
syntax and layout accessibility violations, they don’t consider correcting semantic accessibility violations. Additionally, the lack of
comparison with human-generated corrections limits a comprehensive evaluation of how well these models handle more complex,
real-world semantic accessibility challenges.

LLMs as Assistive Agents for Web Accessibility. LLMs can act as interactive assistive agents, helping users navigate and operate
inaccessible web pages. Kodandaram et al. [25] introduced a system that uses LLMs to interpret screen elements and execute
spoken user commands such as clicking buttons or filling out forms. Similarly, Mehendale and Walishetti [32] proposed the use
of one LLM to translate voice input into web interactions and the use of a second LLM to validate the outcome, thus improving
the success rates of task execution. While such systems offer compelling advantages, the translation from content to accessible
representation must be performed repeatedly for every user interaction, incurring high computational costs. Furthermore, because
the transformations occur in real-time and do not persist in the web content itself, they are difficult to monitor and correct. Their
lack of transparency hinders reproducibility and quality assurance.

Manuscript submitted to ACM



184

185

186

187

188

189

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

4 Nadeen Fathallah, Daniel Hernández, and Steffen Staab

2.4 Prompt Engineering Techniques

LLMs are highly sensitive to prompt structure, producing more accurate and contextually relevant responses when guided by
well-structured prompts. This observation has given rise to the field of prompt engineering, which involves designing instructions
that generative AI models can effectively interpret [44, 56]. We survey techniques that we have adopted in the following subsections.

2.4.1 Role-play promptingdirects LLMs to adopt specific personas, characters, professions, or roles (e.g., doctor, teacher, or
historical figure), priming them to provide responses that align with the expert knowledge of that role. This approach can help
guide the model’s output to be more precise and factually accurate without altering the underlying capabilities of the LLM, as
evidenced by studies [18, 26, 35, 46, 52].

2.4.2 Contextual prompting enriches prompts with task-specific information to guide the model’s response [22, 41]. Dynamic
contextual prompting adapts the context to each task, improving accuracy and reducing hallucinations. Prior work [22, 41] shows
that task-specific context yields more relevant and higher-quality outputs than zero-shot.

2.4.3 Metacognitive Prompting, metacognition refers to the ability to self-reflect and critically evaluate one’s own cognitive
processes [20, 21]. Metacognitive prompting [53, 60] mimics human cognitive steps through the following stages: (a) Self-
understanding: the model assesses its understanding of the prompt by identifying and interpreting relevant information, (b)
Reflection: the model undergoes preliminary judgment, forming an initial response, followed by inference evaluation, where it
reflects on and refines its initial interpretation, and (c) Self-regulation: the model finalizes its response and performs a confidence
assessment to evaluate the reliability of its decision.

2.4.4 Corrective Re-prompting involves re-querying the model with error-related feedback when a generated action or response
fails to meet certain conditions [40]. The feedback typically includes information about why the action failed (such as unmet
preconditions), allowing the model to adjust and generate a more appropriate response.

3 Our Taxonomy of Web Accessibility Violations

We introduce a structured taxonomy of Web accessibility violations that categorizes them into three distinct dimensions: Syntactic,
Semantic, and Layout. To construct the taxonomy, we adopted a methodology from prior work on taxonomy standardization
and classification [47, 49]. In the first stage, we conducted a literature review to identify recurring Web accessibility violations,
including studies incorporating user feedback.

In the second stage, we analyzed WCAG 2.1 alongside rule definitions from automated testing tools (Axe-Playwright [33], WAVE
[54], AChecker [1]), extracting and consolidating violation types. We adopt naming conventions from Axe-Playwright to ensure
consistency and interpretability (e.g., button-name, html-has-lang, color-contrast). Each type was defined by its associated
WCAG and required correction logic. For instance, although both form-label-mismatch and button-label-mismatch relate to
label mismatch, we identified them as distinct semantic accessibility violations: the former refers to form elements whose labels fail
to describe their input purpose, while the latter involves buttons with labels that do not reflect their action. Violations exhibiting
functional overlap were merged or redefined to ensure mutually exclusive boundaries.

In the third stage, we validated the taxonomy’s relevance and generalizability by evaluating its alignment with outputs from
automated testing tools (Axe-Playwright [33], WAVE [54], AChecker [1]) and cross-referencing the prevalence of accessibility
violations against large-scale reports from the WebAIM 2025 study [55]. For semantic accessibility violations— absent from
automated tools—we conducted manual audits of Web pages from [55]. Violations were retained only if observed repeatedly across
Web pages.

Manuscript submitted to ACM



1 <!DOCTYPE html>

2 <!-- Violation 1: Missing Language Attribute (Syntax)-->

3 <html>

4 <head>

5 <!--Violation 2: Viewport prevents scaling , zooming (Layout)-->

6 <meta name="viewport" content="width=device -width ,minimum -

scale=1,maximum -scale=1,user -scalable=no">

7 <title>Health Information Portal </title>

8 <link rel="stylesheet" href="styles.css">

9 </head>

10 <body style="font -family: Arial , sans -serif; background -color: #

fafafa; color: #888888;">

11 <!-- Violation 3: Contrast between foreground and background

doesn 't meet WCAG 2 AA minimum contrast ratio thresholds (

Layout)-->

12 <div style="background -color: #333; padding: 15px;">

13 <h1 style="color: #888888;">Welcome to the Vitamin Resource

Hub Portal </h1>

14 <div class="content">

15 <h2>Learn how vitamins can boost your health and well -being</

h2>

16 <p>Essential Vitamins </p>

17 <!-- Violation 4: Scrollable region not keyboard accessible (

Syntax)-->

18 <div class="scrollable -content">

19 <p>Vitamin A </p>

20 <p>Vitamin C</p>

21 <p>Vitamin D</p>

22 <p>Vitamin E</p>

23 <p>Vitamin K</p>

24 </div>

25 <!-- Violation 5: Image alt text not descriptive (Semantic)-->

26 <img src="https ://img.Webmd.com/woman.jpg" alt="image">

27 <!-- Violation 6: Table structure missing accessibility

attributes (Syntax)-->

28 <table>

29 <tr>

30 <td>Vitamin </td>

31 <td>Recommended Daily Amount </td>

32 </tr>

33 <tr>

34 <td>Vitamin C</td>

35 <td>75 mg</td>

36 </tr>

37 <tr>

38 <td>Vitamin D</td>

39 <td>600 IU</td>

40 </tr>

41 </table>

42 <!-- Violation 7: Link without discernible text (Syntax)-->

43 <a href="vitamin -guide.pdf"><img src="https :// vitaminguide.

png" height="95" width="95"></a>

44 <p>Select which topics you want to include in your

personalized vitamin guide:</p>

45 <!-- Violation 8: Nested interactive elements (Syntax)-->

46 <div>

47 <label class="vitamin -checkbox" role="checkbox" aria -

checked="false">

48 <input type="checkbox"> Special Vitamin Tips for Kids

49 </label>

50 <label class="vitamin -checkbox" role="checkbox" aria -

checked="false">

51 <input type="checkbox"> Vitamins for Skin Health

52 </label>

53 <label class="vitamin -checkbox" role="checkbox" aria -

checked="false">

54 <input type="checkbox"> Daily Multivitamin

Recommendation

55 </label>

56 </div>

57 <!-- Violation 9: Button without discernible text (Syntax)-->

58 <button class="subscribe -button" type="button">

59 <img src="https :// ScreenShot.png">

60 </button > </div> </div> </body></html>

Listing 1. Synthesized HTML web page from our dataset containing

accessibility violations. The listing shows the accessibility violations

detected by AccessGuru.

1 <!DOCTYPE html>

2 <!-- Fixed Violation 1: Added Language Attribute -->

3 <html lang="en">

4 <head>

5 <!-- Fixed Violation 2: Viewport allow scaling , zooming -->

6 <meta name="viewport" content="width=device -width , initial -

scale=1">

7 <title>Health Information Portal </title>

8 <link rel="stylesheet" href="styles.css">

9 </head>

10 <body style="font -family: Arial , sans -serif; background -color: #

fafafa; color: #fafafa;">

11 <!-- Fixed Violation 3: Changed contrast between foreground and

background to meet WCAG 2 AA standards -->

12 <div style="background -color: #333; padding: 15px;">

13 <h1 style="color: #fafafa;">Welcome to the Vitamin Resource

Hub Portal </h1>

14 <div class="content">

15 <h2>Learn how vitamins can boost your health and well -being</

h2>

16 <p>Essential Vitamins </p>

17 <!-- Fixed Violation 4: Scrollable region accessible via keyboard

(added tabindex attribute) -->

18 <div class="scrollable -content" tabindex="0" >

19 <p>Vitamin A </p>

20 <p>Vitamin C</p>

21 <p>Vitamin D</p>

22 <p>Vitamin E</p>

23 <p>Vitamin K</p>

24 </div>

25 <!-- Fixed Violation 5: Replaced nondescriptive alt text --> <img

src="https ://img.Webmd.com/woman.jpg" alt=" Woman reading

vitamin box label while standing in a pharmacy aisle.">

26 <!-- Fixed Violation 6: Table structure & accessibility

attributes (<th>) -->

27 <table>

28 <thead>

29 <tr>

30 <th scope="col">Vitamin </th>

31 <th scope="col">Recommended Daily Amount </th>

32 </tr> </thead> <tbody>

33 <tr>

34 <td>Vitamin C</td>

35 <td>75 mg</td>

36 </tr>

37 <tr>

38 <td>Vitamin D</td>

39 <td>600 IU</td>

40 </tr> </tbody> </table>

41 <!-- Fixed Violation 7: Added accessible text for the link -->

42 <a href="vitamin -guide.pdf"><img src="https :// vitaminguide.

png" alt="Link to download PDF guide on vitamins"></a>

43 <p>Select which topics you want to include in your

personalized vitamin guide:</p>

44 <!-- Fixed Violation 8: Removed improper nesting of interactive

elements -->

45 <div>

46 <label class="vitamin -checkbox">

47 <input type="checkbox" aria -label="Special Vitamin

Tips for Kids"> Special Vitamin Tips for Kids

48 </label>

49 <label class="vitamin -checkbox">

50 <input type="checkbox" aria -label="Vitamins for Skin

Health"> Vitamins for Skin Health

51 </label>

52 <label class="vitamin -checkbox">

53 <input type="checkbox" aria -label="Daily Multivitamin

Recommendation"> Daily Multivitamin

Recommendation

54 </label>

55 </div>

56 <!-- Fixed Violation 9: Added discernible text for button -->

57 <button class="subscribe" type="button" aria -label="Subscribe

to Vitamin Newsletter">

58 <img src="https :// ScreenShot.png" alt="Subscribe Button">

59 </button > </div> </div> </body></html>

Listing 2. AccessGuru delivers this accessibility-compliant HTML code

when provided with Listing 1.



245

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

295

296

297

298

299

300

301

302

303

304

305

6 Nadeen Fathallah, Daniel Hernández, and Steffen Staab

Fig. 1. Interface of the Web page before (a) and after (b) correction with AccessGuru, corresponding to the code in Listing 1 and Listing 2.
This example includes corrections of all three accessibility violation types: (1) Syntactic—added missing table headers and ARIA attributes, (2)
Semantic—replaced non-descriptive alt text with meaningful descriptions, and (3) Layout—adjusted color values to improve contrast. The overall
visual appearance remains largely unchanged for typical users.

(a) (b)

• Syntactic accessibility violations arise when the required accessibility-enhancing HTML elements and attributes are missing
or malformed. These include elements like alt text for images or ARIA (Accessible Rich Internet Applications) attributes,
which help define the behavior and purpose of interactive components. Syntactic accessibility compliance is fulfilled if
all required and useful syntactic constructs for indicating accessibility information are present. For instance, in Listing 1
Violation 6 (line 27), a table presenting vitamin data lacks accessibility syntax elements like <th> and scope attributes.
This omission hinders screen readers from correctly identifying table headers, making it difficult for visually impaired
users to understand the relationship between vitamins and their recommended daily amounts.

• Layout accessibility violations occur when the visual and spatial arrangement of content fails to meet accessibility guidelines.
This includes sufficient color contrast between text and background to ensure readability. It also includes ensuring that
users can adjust content presentation based on their needs, such as enabling text scaling and zooming.

• Semantic accessibility violations occur when HTML accessibility elements are present but fail to convey meaningful content.
In Listing 1 Violation 5 (line 25), an image includes an alt attribute set to the generic string "image"—a common issue
caused by auto-generated text. The corrected version is shown in Listing 2, line 25.

Our taxonomy comprises over 112 violation types. Each violation is annotated with associated WCAG guidelines, impact level, and
required supplementary information (e.g., image-alt-not-descriptive requires the image alongside the HTML to detect and
correct the violation). For syntactic and layout accessibility violations, impact levels are derived from existing tools [33], which
judge the severity of each violation based on how much it hinders user interaction with the Web content. For semantic accessibility
violations, we manually assign impact levels using analogous criteria (e.g., button-label-mismatch inherits the "Critical" level
from its syntactic counterpart button-name). A representative subset is shown in Table 13, and the complete taxonomy can be
found in the supplementary material of this paper.

4 Methodology

AccessGuru addresses Web accessibility violations in two stages: first, by automatically detecting accessibility violations, and
second, by automatically generating corrections for the detected accessibility violations.
Manuscript submitted to ACM



306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

AccessGuru: Leveraging LLMs to Detect and Correct Web Accessibility Violations in HTML Code 7

4.1 AccessGuruDetect: Web Accessibility Violation Detection

AccessGuruDetect uses an Axe-Playwright-based detector to detect syntactic and layout accessibility violations following method-
ologies from similar studies [2, 23] and an LLM to detect semantic accessibility violations (See Figure 2).

Given a target HTML document, AccessGuruDetect executes the following steps:

(1) The Axe-Playwright tool is executed on the target HTML document; the tool generates a detailed violation report, which
includes for each violation: (a) violation name, (b) affected HTML elements, (c) violation description, and (d) impact
level. We enrich the violation with (e) numerical violation scores ranging from 1 (lowest) to 5 (highest) by mapping
the qualitative impact levels reported by Axe-Playwright ("cosmetic", "minor", "moderate", "serious", and "critical") to
corresponding numeric values.

(2) For each violation, we use the violation name to query our predefined taxonomy, which specifies whether supplementary
information beyond the HTML is required for correction (see Table 13). If additional data is needed—such as color values
for contrast violations—we extract it as (f) supplementary information from the rendered HTML document (e.g., computed
CSS styles for background and foreground colors).

To detect semantic accessibility violations, AccessGuru uses an LLM-based semantic detector that runs in parallel to the Axe-
Playwright-based detector. Given the raw HTML document and a screenshot of its rendered view. AccessGuruDetect executes the
following steps:

(1) The HTML document is rendered in a headless browser that captures a long screenshot, resulting in a full-page image to
handle scrolling. The image is captured at a resolution of 1920×1080 pixels.

(2) The LLM is prompted with the HTML document, screenshot, and our semantic violation taxonomy. We show the prompt
template in Table 8. The prompt instructs the LLM to identify all semantic accessibility violations and enclose violation
(a) names and (b) affected HTML elements within string markers (e.g., [START], [END]). To support reasoning over
non-textual content (Web page screenshot), the LLM must exhibit multimodal capabilities.

(3) Each marked segment is matched against the original HTML code to ensure it refers to an existing element.
(4) If any of the returned HTML segments do not match elements in the original HTML, they are discarded as hallucinations

and excluded from the final set of detected violations.
(5) For each violation, we use the violation name returned by the LLM to look up our taxonomy to assign (c) violation

description, (d) impact level ("cosmetic", "minor", "moderate", "serious", and "critical"). We enrich the violation with (e)
numerical violation scores ranging from 1 (lowest) to 5 (highest).

(6) For each violation, we use the violation name to look up our taxonomy to determine if supplementary information to the
HTML is required (e.g., images for image-alt-not-descriptive, videos for video-caption-alt-not-descriptive). If
so, we extract (f) supplementary information crucial for correcting accessibility violations.

For illustration purposes, Listing 1 includes annotated comments to indicate the locations of accessibility violations; these comments
are added manually for reader clarity and are not provided as input to AccessGuruDetect. When the unannotated HTML in Listing 1
is processed, AccessGuruDetect identifies all the annotated accessibility violations. Each detector runs independently, and the
aggregated output is stored as a single JSON file containing a set of violation entries. Samples from the output are shown in Tables
1 and 2.

AccessGuruCorrect operates on the output of AccessGuruDetect—a set of detected Web accessibility violations—taking as input
𝑉 = {𝑣1, 𝑣2, . . . , 𝑣𝑛}, where each 𝑣𝑖 represents an individual violation (see Figure 2).

4.2 AccessGuruCorrect: Web Accessibility Violation Correction

AccessGuruCorrect operates on the output of the AccessGuruDetect—a set of detected Web accessibility violations—taking as input
𝑉 = {𝑣1, 𝑣2, . . . , 𝑣𝑛}, where each 𝑣𝑖 represents an individual We accessibility violation (see Figure 2).

Each violation includes the affected HTML element(s), violation metadata (See Tables 1 and 2 for sample inputs). The goal
is to generate correct HTML for each violation that minimizes the total violation score, as shown in Figure 3 and detailed in
Algorithm 1.

For each violation 𝑣 , detected by AccessGuruDetect and enriched with violation-specific data such as supplementary information
when required (e.g., images for image-alt-not-descriptive, videos for video-caption-alt-not-descriptive), we construct

Manuscript submitted to ACM



367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

8 Nadeen Fathallah, Daniel Hernández, and Steffen Staab

Fig. 2. Overview of the AccessGuruDetect. Given a raw HTML document (left), it applies two detectors: (1) a syntax and layout detector based
on the Axe-Playwright accessibility testing engine and (2) an LLM-based semantic detector. The output set of detected accessibility violations
(right).

.

.

.

.

.

.

.

.

Input: 
HTML document

AccessGuru Detection Module

LLM-based Semantic Detector

Accessibility testing engine-based 
Syntax & Layout Detector

Output: 
Set of detected accessibility violations

an initial prompt (Algorithm 1: line 3) and submit it to a pre-trained LLM (Algorithm 1: line 4). For semantic violations, the LLM
must possess multimodal capabilities to reason over non-textual content (e.g., images for image-alt-not-descriptive, videos
for video-caption-alt-not-descriptive).

The initial prompt integrates three techniques: (1) role-play prompting, (2) contextual prompting, and (3) metacognitive
prompting. The role-play technique embeds a Web accessibility expert persona (See Table 9) to guide the LLM toward expert-like
behavior. Contextual prompting enriches the prompt with violation-specific data— Web page URL, domain, WCAG guidelines, and
a violation category description. Driven by our taxonomy, which defines the categories (Syntactic, Semantic, Layout) and their
associated characteristics, we include the description of the violation category in each prompt. For example, layout violations may
require CSS and responsive design awareness while preserving visual integrity for all users. These components are integrated
using metacognitive prompting; we show the prompt template Table 10.

The LLM returns a correction (𝐿𝐿𝑀𝑂𝑢𝑡𝑝𝑢𝑡1), enclosed between string markers (e.g., ###START### and ###END###), as
specified in the prompt. We extract the HTML snippet using regular expressions and evaluate it with AccessGuruDetect to assign
a violation score (Algorithm 1 line 5). If the score is zero, the correction is accepted (Algorithm 1: line 6). Otherwise, we apply
corrective re-prompting by adding feedback and resubmitting the prompt (Algorithm 1: lines 8–10), yielding a revised correction
(𝐿𝐿𝑀𝑂𝑢𝑡𝑝𝑢𝑡2).

If the revised output still contains accessibility violations (Algorithm 1: line 11), we compare the scores of 𝑣 , 𝐿𝐿𝑀𝑂𝑢𝑡𝑝𝑢𝑡1, and
𝐿𝐿𝑀𝑂𝑢𝑡𝑝𝑢𝑡2 (Algorithm 1: line 12). The version with the lowest score is selected as the final correction (Algorithm 1: line 13),
with ties resolved by preferring the most recent output.

Our scoring mechanism is robust to new LLM-induced accessibility violations by treating all accessibility violations equally in
the total violation score. For instance, if 𝐿𝐿𝑀𝑂𝑢𝑡𝑝𝑢𝑡1 yields a violation score of 4, while 𝐿𝐿𝑀𝑂𝑢𝑡𝑝𝑢𝑡2 introduces two accessibility
violations scoring 1 and 2 (total 3), we prefer 𝐿𝐿𝑀𝑂𝑢𝑡𝑝𝑢𝑡2. Conversely, if both LLM outputs score worse than the original input
(e.g., 𝐿𝐿𝑀𝑂𝑢𝑡𝑝𝑢𝑡1 violations score = 4 and 𝐿𝐿𝑀𝑂𝑢𝑡𝑝𝑢𝑡2 violations score = 3 vs. 𝑣 violations score = 2), we select the original code
as the output.

The output is the correction generated by AccessGuruCorrect, which is appended to its corresponding JSON entry in the set, as
shown in Tables 1 and 2. Resulting in a final JSON file that contains all detected accessibility violations along with their suggested
corrections.

Manuscript submitted to ACM



428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

AccessGuru: Leveraging LLMs to Detect and Correct Web Accessibility Violations in HTML Code 9

Fig. 3. Overview of AccessGuruCorrect in: For each Web accessibility violation detected by AccessGuruDetect (examples of the input accessibility
violations are shown in Tables 1 and 2), the LLM is prompted to generate the corrected code. The generated code is assigned a violation score; if
the violation score remains above zero, corrective re-prompting is applied to improve the response further.

Output: 
Select lowest violation score (Input, Initial Correction, Revised Correction) 

Output: 
Transformed 

code to 
comply with 

WCAG 2.1 ✅

No

Yes

If violation score > 0

If violation score > 0
No

Yes

LLM Ouput 2
Revised 

Correction
Roleplay Prompting 

Contextual + 
Metacognitive Prompting

Corrective Re-Prompting 
Generation

Prompt

Prompt 
Execution

LLM

Input: 

Roleplay 
Prompting 

Contextual + 
Metacognitive 
Prompting

Prompt
LLM Output 1 

 Initial 
Correction 

Initial Prompt Generation

Corrective 
Re-prompting 

Execution  

Calculate 
Violation Score

AccessGuru
Detect Output: 

Transformed 
code to comply 

with WCAG 
2.1 ✅

Output: 
Transformed 

code to 
comply with 

WCAG 2.1 ✅

Calculate 
Violation Score

AccessGuru
Detect

LLM

Algorithm 1 AccessGuruCorrect

1: input: Set of detected accessibility violations 𝑉 = {𝑣1, 𝑣2, . . . , 𝑣𝑛}
2: ouput: Set of corrected HTML segments {𝑐1, 𝑐2, . . . , 𝑐𝑛}
3: for each violation 𝑣 ∈ 𝑉 do
4: Construct Initial Prompt(𝑣)
5: Submit prompt to LLM to obtain 𝐿𝐿𝑀𝑂𝑢𝑡𝑝𝑢𝑡1
6: if 𝑉𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛𝑆𝑐𝑜𝑟𝑒 (𝐿𝐿𝑀𝑂𝑢𝑡𝑝𝑢𝑡1) = 0 then
7: 𝑐 ← 𝐿𝐿𝑀𝑂𝑢𝑡𝑝𝑢𝑡1
8: else
9: Construct Corrective Prompt(𝑣)
10: Submit prompt to LLM to obtain 𝐿𝐿𝑀𝑂𝑢𝑡𝑝𝑢𝑡2
11: if 𝑉𝑖𝑜𝑙𝑎𝑡𝑖𝑜𝑛𝑆𝑐𝑜𝑟𝑒 (𝐿𝐿𝑀𝑂𝑢𝑡𝑝𝑢𝑡2) = 0 then
12: 𝑐 ← 𝐿𝐿𝑀𝑂𝑢𝑡𝑝𝑢𝑡2
13: else
14: 𝑐 ← 𝑆𝑒𝑙𝑒𝑐𝑡𝐵𝑒𝑠𝑡 (𝑣, 𝐿𝐿𝑀𝑂𝑢𝑡𝑝𝑢𝑡1, 𝐿𝐿𝑀𝑂𝑢𝑡𝑝𝑢𝑡2)
15: end if
16: end if
17: end for
18: return {𝑐1, 𝑐2, . . . , 𝑐𝑛}

Manuscript submitted to ACM



489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

540

541

542

543

544

545

546

547

548

549

10 Nadeen Fathallah, Daniel Hernández, and Steffen Staab

4.2.1 Correction Independence and Overwrites: AccessGuruCorrect applies corrections sequentially, generating a separate correction
for each violation. Our taxonomy ensures that violations are non-overlapping, so each correction typically modifies a different
attribute of the same HTML node. Consider the following example, where a single HTML node contains two violations:
<a href="subscribe.html" style="color:#767676;background:#303030;">

<img src="sub.png"> </a>

AccessGuru generates two independent corrections:

• Violation A: link-name
- <a href="subscribe.html" ...>

+ <a href="subscribe.html" aria-label="Subscribe" ...>

• Violation B: color-contrast
- style="color:#767676;background:#303030;"

+ style="color:#FFFFFF;background:#1A1A1A;"

Each correction targets a distinct part of the node and can be applied independently. However, rare edge cases may result in
overlapping edits. For example:
<html lang="eng" xml:lang="en-GB">

AccessGuru suggests:

• Violation A: html-lang-valid
- lang="eng"

+ lang="en"

• Violation B: html-xml-lang-mismatch
- lang="eng"

+ lang="en-GB"

The second correction may overwrite the first; any overwrite, therefore, further refines the correction.

Table 1. Example JSON entry from AccessGuru’s output for a syntax violation from the HTML document in Listing 1 (Violation 9, Line 57). It
consists of: (1) the violation 𝑣 detected by AccessGuru Detect, including metadata; (2) contextual information; and (3) the correction generated
by AccessGuru Correct.

Input to AccessGuru

Correct

Output from AccessGuruDetect:

Category: Syntax

Violation name: button-name

HTML element(s) affected:

<button class="subscribe-button" type="button"> <img src="https://ScreenShot.png"> </button>

Description: Ensures buttons have discernible text.

Impact: Critical

Violation score: 5

Contextual information:

Web page URL: www.VitaminHealthGuide.com

Domain: Health and Wellness

Category description: Syntax violations occur when HTML code lacks essential structural elements or attributes
required for accessibility.

Relevant WCAG guidelines:WCAG 4.1.2 Name, Role, Value Markup: is used in a way that facilitates accessibility.
This includes following the HTML specifications and using forms, input labels, frame titles, etc., appropriately. ARIA is
used appropriately to enhance accessibility when HTML is not sufficient.

Output from Access-
Guru Correct

<button class="subscribe" type="button" aria-label="Subscribe to Vitamin Newsletter"> <img

src="https://ScreenShot.png" alt="Subscribe Button Image"> </button>

Manuscript submitted to ACM

www.VitaminHealthGuide.com


550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

AccessGuru: Leveraging LLMs to Detect and Correct Web Accessibility Violations in HTML Code 11

Table 2. Example JSON entry from AccessGuru’s output for a semantic violation from Listing 1 (Violation 5, Line 25). It consists of: (1) the
violation 𝑣 output from AccessGuru Detect ; (2) input to AccessGuruCorrect, which is the output from AccessGuru Detect along with the contextual
information; and (3) the output correction generated by AccessGuru Correct.

Input to AccessGuru
Correct

Output from AccessGuruDetect:

Category: Semantic

Violation name: image-alt-not-descriptive

HTML element(s) affected: <img src="https://img.Webmd.com/woman.jpg" alt="image">

Description: alt text does not describe the image content.
Impact: Critical
Violation score: 5

Supplementary information:

Contextual information:

Web page URL: www.VitaminHealthGuide.com
Domain: Health and Wellness
Category description: Semantic violations involve the misuse or absence of meaningful content or attributes,

such as vague alt text or improper use of semantic elements like <header> or <section>.
Relevant WCAG guidelines: WCAG 1.1.1 Non-text Content. All meaningful visual elements (e.g., images, image

buttons, image maps) must have descriptive alternative text. Form controls, inputs, multimedia, and frames must
include accessible names, labels, or titles to ensure clarity for assistive technologies.

Output from Access-
Guru Correct

<img src="https://img.Webmd.com/woman.jpg" alt="Woman reading the label on a vitamin box while
standing in a pharmacy aisle.">

5 Evaluation

We evaluate the effectiveness of AccessGuru in detecting and correcting Web accessibility violations across the three categories
defined in our taxonomy: syntactic, semantic, and layout. Specifically, we ask:

• Detection Evaluation: RQ 1. To what extent can our detection method identify accessibility violations across all three
categories?

• Syntactic and Layout Correction Evaluation:RQ 2. To what extent can the LLM generate HTML code that satisfies syntactic
and layout accessibility compliance, effectively addressing Web accessibility violations?

• Semantic Correction Evaluation: RQ 3. To what extent are the LLM-generated attributes semantically meaningful, as
evaluated by human experts and in comparison to corrections made by human developers?

5.1 Dataset of Web Accessibility Violations from [23]

We use the dataset from [23] to evaluate whether AccessGuruDetect can successfully identify the reported violations and assess
whether AccessGuruCorrect can transform violations into accessibility-compliant HTML. The dataset consists of Web accessibility
violations collected from 25 URLs, including popular Websites such as Google Calendar, Slack, and BBC. The dataset contains
171 rows of accessibility violations, which were identified using the Axe-Playwright and span 40 distinct accessibility violation
types. Each violation is categorized by severity (ranging from cosmetic to critical) and includes details such as the Web page URL,
violation name, description, and HTML elements.

The dataset introduced by Huang et al. [23] represents a valuable step toward evaluating automated accessibility corrections.
However, it remains limited in several important ways. The dataset is relatively small in scale and does not offer broad coverage of
known Web accessibility violation types- 40 accessibility violation types. Moreover, upon manual inspection, we observed that the
dataset provides only HTML for each violation, which is insufficient for certain accessibility violations. For example, addressing
contrast violations requires access to the color values of foreground and background elements, which are often defined in external
CSS and not reflected in the raw HTML. This omission restricts the ability to fully detect or correct such violations.

Manuscript submitted to ACM

www.VitaminHealthGuide.com


611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

12 Nadeen Fathallah, Daniel Hernández, and Steffen Staab

5.2 Our novel dataset for benchmarking corrections of syntactic, layout, and semantic accessibility violations

We introduce a new dataset that comprehensively covers syntactic, semantic, and layout accessibility violations, reflecting real-
world accessibility violations. Our dataset was collected through a structured process guided by the WebAIM 2025 study [55],
which identifies commonly visited websites with accessibility violations. To account for variation in accessibility violations across
domains—e.g., government sites often use data tables, while e-commerce relies heavily on forms and images—we used GPT-4
[36] to identify a diverse set of popular Web domains such as health, education, government, news, technology, and e-commerce,
including multilingual websites. We then asked GPT-4 to suggest representative URLs from each category based on sites listed in
the WebAIM 2025 study [55]. This process yielded 448 URLs.

We crawled each URL using Playwright (see §5.4) and retained only those pages where document.readyState === "complete".
We applied AccessGuruDetect (Figure 2) to each URL to identify Web accessibility violations. This yielded 3,500 Web accessibility
violations. The dataset spans over 112 distinct violation types across all three categories. To our knowledge, it is the most
comprehensive publicly available dataset of real-world Web accessibility violations to date.

To ensure our evaluation reflects real-world Web accessibility violations, we sampled a representative subset of 305 violations
from our full dataset of 3,500 instances. Sampling aligns the distribution of violation types in the subset with real-world frequencies
reported in the WebAIM 2025 study [55]. This method avoids biases caused by overrepresented violation types in large-scale
crawled data but does not reflect their actual prevalence across the Web. This subset size was chosen to enable controlled and
consistent comparison across LLMs and baselines. Table 3 compares the distribution of violation categories in our subset with that
of the dataset from [23].

Table 3. Distribution of accessibility violations in our dataset and dataset from [23]

Web Accessibility Violation Category # Violation in Our Sampled Dataset # Violation in [23] Dataset

Syntax 195 151
Layout 55 20
Semantic 55 0

Total 305 171

# Violation Types 112 40

5.3 Prompt-based baseline methods for accessibility violation correction

We compare AccessGuru to three other baselines, that use the following prompt engineering techinues to correct Web accessibility
violations: contextual prompting [37], Re-Act prompting [23], and zero-shot prompting [15], using our sampled dataset and the
dataset from Huang et al. [23] (See section 2.3).

5.4 Implementation

We implement the AccessGuruDetect using Axe-Playwright-1.51.0 for syntax and layout accessibility violations and GPT-4o for
semantic accessibility violations requiring multimodal reasoning capabilities to reason over Web page screenshot (See Section 4.1).
For AccessGuruCorrect, we evaluate three LLMs on syntax and layout accessibility accessibility violations: GPT-4-0125-preview,
Mistral-7B-v0.1, and Qwen2.5-Coder—a model optimized for coding tasks. These models vary in size, architecture, and training
methods, enabling comparison across capabilities. To correct semantic accessibility violations requiring multimodal reasoning
capabilities to reason over images (See Section 4.2 and Table 2), we use: GPT-4, Pixtral-12B, and Qwen-VL.

Handling Unreliable LLM Outputs: During the manual inspection of LLM-generated responses, we identified several
reliability issues in LLM-generated corrections. Some outputs were incomplete, hallucinated unrelated HTML, especially for long
or multilingual pages (e.g., Chinese). In other cases, the model returned only textual advice without any HTML code. To ensure a
fair and robust evaluation across all methods, we apply consistency checks to verify that LLM-generated corrections are valid and
complete. For our method, we explicitly instruct the LLM to enclose the corrected code between string markers (e.g., ###START###
and ###END###), enabling reliable extraction via regular expressions. For baselines that do not follow this format, we extract the
first valid HTML snippet from the response heuristically, using pattern matching for common HTML tags.
Manuscript submitted to ACM



672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

AccessGuru: Leveraging LLMs to Detect and Correct Web Accessibility Violations in HTML Code 13

For all LLM responses in our experiments, we manually verify that the extracted HTML contains a structurally valid and
complete correction. If the response is missing required elements, contains malformed markup, or consists solely of textual advice,
we flag it as not fixed. In these cases, the original violation score of the violation 𝑣 is used as the final output score avoid inflating
performance metrics.

5.5 Evaluation Metrics

We evaluate the effectiveness of AccessGuru in detecting and correcting Web accessibility violations across the three categories.
For each category, we employ category-specific metrics to assess whether the LLM-generated corrections resolve the detected
accessibility violations, as measured by automated evaluation tools or manual validation.

5.5.1 Detection Evaluation Metrics, We evaluate accessibility violation detection performance by measuring the detected violation
count, the total number of Web accessibility violations identified across syntactic, layout, and semantic categories.

5.5.2 Syntactic and Layout Correction Metrics, we evaluate syntactic and layout accessibility compliance based on the reduction in
violation scores. To calculate the average violation score of the entire dataset 𝑅, we use Equation 1, where 𝑖 represents the index of
each violation and 𝑛 denotes the total number of entries in the dataset.

𝑅 =
1
𝑛

𝑛∑︁
𝑖=1

ViolationScore(𝑣𝑖 ) (1)

To calculate the percentage improvement 𝐼 in violation score, we use Equation 2, we compare the average violation scores before
𝑅initial and after 𝑅fix applying a correction method.

𝐼 = 1 −
𝑅fix

𝑅initial
(2)

5.5.3 Semantic Correction Metrics, we calculate the similarity between human-generated and LLM-generated attributes using
Sentence-BERT cosine similarity to assess the semantic quality of LLM-generated corrections. Sentence-BERT is well-suited for
this task as it captures semantic meaning [42], making it more robust than traditional word-overlap metrics such as BLEU [39]
or ROUGE [28], which rely on exact n-gram matches. We then computed the average similarity score to evaluate the alignment
between human and LLM-generated attributes. For instance, given an LLM-generated alt text attribute: "A golden retriever playing

with a ball in a grassy park." We compare it to three human-generated variants:

• "A dog fetching a ball in a green field." (Similarity: 0.5986)
• "A golden retriever running in the park with a toy." (Similarity: 0.8364)
• "A happy dog playing outdoors with a ball." (Similarity: 0.6760)

The average similarity score across these responses is 0.7037, indicating a strong semantic alignment.

6 Experiments and Results

6.1 Detecting Accessibility Violations Experiments and Results (RQ1)

To evaluate RQ1—, we applied AccessGuruDetect to the HTML documents of the 16 URLs from the dataset by Huang et al.[23].
Table 4 compares the number of detected violations by AccessGuru Detect against those originally reported in the dataset [23],
AccessGuru Detect outperforms the original dataset by additionally detecting 104 semantic and more layout violations (15 vs. 8).

Although both methods use Axe-Playwright for detecting syntax and layout violations, AccessGuruDetect reports fewer syntax
(82 vs. 118) and more layout violations (15 vs. 8). To investigate this discrepancy, we refer to the counts reported in [23], which
help explain the decrease in violations detected by automatic tools. Since that dataset was collected in early 2024, some changes
in reported violations are expected due to the dynamic nature of Web content. This interpretation is consistent with broader
trends: according to the WebAIM Million study [55], Web accessibility has seen incremental improvements over the past year. For
example, low color contrast violations decreased from 81% in 2024 to 79.1% in 2025.

Manuscript submitted to ACM



733

734

735

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

14 Nadeen Fathallah, Daniel Hernández, and Steffen Staab

Table 4. Comparison of accessibility violation detection coverage on 16 Web pages from the dataset of Huang et al. [23].

Web Accessibility Violation Category Detected by [23] Detected by AccessGuruDetect

Syntax 118 82
Layout 8 15
Semantic 0 104

Total 126 201

6.2 Syntactic and Layout Correction Experiments and Results (RQ2)

To evaluate RQ2—, we conduct three analyses: (1) a comparison against three correction baselines, (2) a cross-LLM evaluation, and
(3) an ablation study to assess the impact of our corrective re-prompting strategy.

Baselines Comparison. We compare AccessGuru with three prompting-based baselines: contextual prompting [37], ReAct
prompting [23], and zero-shot prompting [15]. As shown in Table 5, AccessGuru consistently achieves the highest violation score
decrease and number of corrected violations on both our dataset and the Huang et al. dataset [23]. With GPT-4, AccessGuru
reduces violation scores by 0.84 (204 corrections) on our dataset, significantly outperforming ReAct and contextual prompting
(0.50 and 0.46, respectively). On the Huang et al. dataset with GPT-4, AccessGuru reduces violation scores by 0.83 (141 corrections),
significantly outperforming ReAct and contextual prompting (0.48 and 0.42, respectively).

Cross-LLM Comparison. AccessGuru was tested with GPT-4, Qwen2.5, and Mistral-7B. GPT-4 consistently achieved the best
performance across all correction tasks as shown in Table 5.

Ablation Study. To assess the impact of the corrective re-prompting strategy, we executed AccessGuru without the re-prompting
phase using GPT-4. Performance dropped from 0.84 to 0.72 on our dataset, confirming the added value of this component. Even
without it, AccessGuru outperforms the best-performing baseline, Re-Act prompting (0.50). This pattern holds consistently across
all LLMs evaluated.

Qualitative Analysis. During the manual inspection of the results, we observed that all three baselines often provided incomplete
solutions or adopted an "Occam’s Razor" approach, where problematic elements were removed rather than properly corrected.
This was frequently observed in long HTML snippets; when asked to correct an HTML snippet with sixteen elements, the output
would only contain nine. In contrast, our method did not exhibit these issues. By asking the LLM to generate the code between
string markers (###START### and ###END###) in our prompts as shown in Table 10, we improved the model’s ability to provide
complete solutions. We also observed that baseline methods would occasionally resolve color contrast accessibility violations by
changing both background and foreground colors to black and white. While this resolves the accessibility violation for users with
diverse abilities, it distorts the visual design and layout for normal users. This behavior was not observed in our method’s results,
as our prompt template—shown in Table 10—was driven by our proposed taxonomy. The taxonomy entails that correcting layout
accessibility violations shouldn’t distort the visual design and layout for all users. We attribute the notably poor performance
of the zero-shot prompting baseline [15] to the nature of its prompt design shown in Table 12. The prompt asked, “Is the

following HTML code accessible?” without distinguishing between detection and correction tasks. As a result, we observed
that the LLM often failed to recognize existing accessibility violations, and in cases where it did, it sometimes responded with
only a confirmation that a violation was present, without generating the corrected code. This ambiguity in the prompt limited the
effectiveness of the zero-shot approach across both datasets. Additionally, the lack of explicit reference to accessibility guidelines
often leads to corrections that don’t comply with recognized standards.

6.3 Semantic Correction Experiments and Results (RQ3)

To evaluate RQ3—, we conducted two complementary evaluations: (1) human annotation to assess WCAG compliance and (2) a
developer correction study to compare LLM corrections with those of human experts.

Human Annotation for WCAG Compliance. Two human annotators with five years of web development and accessibility
experience reviewed corrections for 55 semantic violations from our sampled dataset. The human annotators assigned a violation
Manuscript submitted to ACM



794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

AccessGuru: Leveraging LLMs to Detect and Correct Web Accessibility Violations in HTML Code 15

Table 5. Comparison of violation score decrease and number of corrected accessibility violations for syntax & layout violations on our dataset
and the dataset from [23].

Method Model
Our Dataset (Size=250) Huang et al. Dataset [23] (Size=171)

Avg. Violation
Score Decrease

# Corrected
Violations

Avg. Violation
Score Decrease

# Corrected
Violations

Contextual prompting [37] GPT-4 0.46 123 0.42 86
ReAct prompting [23] GPT-4 0.50 141 0.48 91
Zero-shot prompting [15] GPT-4 0.19 43 0.12 19
AccessGuru w/o reprompting (Ours) GPT-4 0.72 184 0.67 119
AccessGuru(Ours) GPT-4 0.84 204 0.83 141

Contextual prompting [37] Mistral-7B 0.12 44 0.27 62
ReAct prompting [23] Mistral-7B 0.13 45 0.26 48
Zero-shot prompting [15] Mistral-7B 0.05 10 0.002 2
AccessGuru w/o reprompting (Ours) Mistral-7B 0.50 162 0.51 110
AccessGuru (Ours) Mistral-7B 0.82 200 0.79 147

Contextual prompting [37] Qwen2.5 0.41 121 0.39 77
ReAct prompting [23] Qwen2.5 0.44 130 0.37 71
Zero-shot prompting [15] Qwen2.5 0.14 54 0.19 49
AccessGuru w/o reprompting (Ours) Qwen2.5 0.49 153 0.52 103
AccessGuru (Ours) Qwen2.5 0.74 183 0.75 126

score of 0 if the correction fully resolved the accessibility violation according to WCAG 2.1; otherwise, the original violation score
assigned during the detection of the semantic violation was retained. For example, if an image originally had the alt text “image”
(violation score 5), and the LLM corrected it to a descriptive alt text, the violation was considered resolved, and the annotator
assigned the correction a score of 0. If the correction is still vague (e.g., “image alt text”), the human annotator assigns a correction
violation score of 5. We then computed the average violation score decrease across all samples—i.e., how much the violation
score was reduced after correction. As shown in Table 6, AccessGuru with GPT-4 achieved the highest average violation score
decrease (0.96), resolving 53 out of 55 violations. This outperformed both ReAct prompting (0.87) and contextual prompting (0.82),
confirming the effectiveness of our approach for semantic correction.

Qualitative Analysis. We also manually reviewed the semantic correction quality across GPT-4, Qwen-VL, and Pixtral, each
showing distinct strengths. We found that explicitly instructing the model to consider the screenshot in the prompt—shown
in Tables 10, 11,12—was critical for eliciting image-grounded responses across all models. GPT-4 offered the most balanced
performance, accurately integrating HTML structure and visual cues with minimal hallucinations. Qwen-VL showed strong
image-based reasoning but frequently hallucinated additional HTML or introduced unrelated structures, especially. Pixtral, by
contrast, preserved original HTML faithfully and avoided unnecessary changes but often failed to ground its corrections in the
provided image. For example, when prompted to generate alt text for the HTML5 logo, it produced generic attributes such as: (1)
“an orange and white SVG graphic,” rather than a meaningful description of the image’s identity—e.g., “the HTML5 logo.”

Comparison with Human Developer Corrections. To assess how closely AccessGuru aligns with human correction behavior, we
conducted a human developer correction study. This human developer correction study builds on findings from prior work [17],
which demonstrated that LLMs are capable of generating semantic corrections. In particular, that study showed that GPT-based
models could effectively address the video-caption-not-descriptive violation with corrections comparable in quality to those
written by human annotators. Three full-stack developers independently corrected the same 55 semantic violations. Each developer
received the HTML, violation metadata, and WCAG guidance—identical to what AccessGuru receives. We measured the similarity
between LLM- and human-generated corrections using Sentence-BERT cosine similarity. As shown in Table 7, AccessGuru (GPT-
4) achieved an average semantic similarity score of 0.77 when compared to human-generated corrections, indicating that the
LLM-produced outputs closely matched the phrasing, structure, and meaning of human-written solutions.

Manuscript submitted to ACM



855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

16 Nadeen Fathallah, Daniel Hernández, and Steffen Staab

Table 6. Comparison of violation score decrease and number of corrected accessibility violations for semantic violations on our dataset (Size=55).

Method Model Avg. Violation Score Decrease # Corrected Violations

Contextual prompting [37] GPT-4 0.82 44
ReAct prompting [23] GPT-4 0.87 48
Zero-shot prompting [15] GPT-4 0.33 18
AccessGuru w/o reprompting (Ours) GPT-4 0.92 51
AccessGuru(Ours) GPT-4 0.96 53

Contextual prompting [37] Pixtral 0.75 41
ReAct prompting [23] Pixtral 0.81 44
Zero-shot prompting [15] Pixtral 0.54 29
AccessGuru w/o reprompting (Ours) Pixtral 0.83 46
AccessGuru(Ours) Pixtral 0.92 51

Contextual prompting [37] Qwen-VL 0.60 32
ReAct prompting [23] Qwen-VL 0.37 20
Zero-shot prompting [15] Qwen-VL 0.18 8
AccessGuru w/o reprompting (Ours) Qwen-VL 0.69 37
AccessGuru(Ours) Qwen-VL 0.75 41

Table 7. Sentence-BERT similarity between AccessGuru (GPT-4) and human corrections across semantic violation categories

Violation Category # Violations Avg. Similarity

image-alt-not-descriptive 6 0.83

lang-mismatch 18 0.84

link-text-mismatch 11 0.68

form-label-mismatch 5 0.70

ambiguous-heading 4 0.68

page-title-not-descriptive 3 0.86

button-label-mismatch 8 0.83

Average Across 55 Violations 0.77

While overall similarity scores indicate strong semantic alignment, certain categories—most notably link-text-mismatch and
form-label-mismatch—had lower scores. For link-text-mismatch, this is likely due to the LLM’s inability to access the target
of hyperlinks, especially when the destination is a downloadable file (e.g., <a href="rep123.pdf">Click here</a>). Without
knowing the link’s content, the model cannot generate a descriptive label like Download quarterly report. In contrast, when
the link points to another section of the same page (e.g., #contact), the LLM performs better by using the surrounding context. In
the case of form-label-mismatch, the LLM sometimes fails to infer connections between labels and input fields.

A full comparison of all methods across LLMs and violation types is provided in Tables 5 and 6, showing that AccessGuru
consistently outperforms baselines on both datasets and across syntactic, layout, and semantic accessibility violations.

7 Limitations

We have shown that AccessGuru works conceptually and have evaluated it thoroughly. However, several non-trivial engineering
efforts have not yet been integrated into our current implementation. These include the reconstruction of a fully corrected
HTML document. While our correction module outputs individual corrected segments per violation, reintegrating these into
the original document requires resolving potential conflicts, particularly when multiple overlapping corrections affect nested
or related elements. For instance, corrections to a list and an image within a list item must be merged carefully to preserve the
semantic structure.
Manuscript submitted to ACM



916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

AccessGuru: Leveraging LLMs to Detect and Correct Web Accessibility Violations in HTML Code 17

Fig. 4. Breakdown of top 10 uncorrected Web accessibility violations by AccessGuru across three LLMs (GPT-4, Mistral, and Qwen).

0 2 4 6 8 10 12 14
Number of Unfixed Violations

page-has-heading-one

color-contrast

link-name

duplicate-id

region

landmark-one-main

landmark-unique

landmark-no-duplicate-main

role-img-alt

aria-tooltip-name

Vi
ol

at
io

n 
Ty

pe

Model
AccessGuru (GPT-4) AccessGuru (Mistral) AccessGuru (Qwen)

Another limitation is the reliability of the LLM-based semantic detector; in our observations, the LLM occasionally hallucinated
accessibility violations or misidentified affected elements due to a lack of grounding in HTML attributes or structures. Long HTML
documents pose challenges; they increase the prompt length, potentially overwhelming the model’s context window and leading
to incomplete reasoning or fabricated results. The LLM-based semantic detector relies on a static screenshot of the web page,
which doesn’t capture dynamic content or alternate views such as drop-down menus, pop-ups, or language toggles.

While we manually verified the correctness of detected violations, we did not establish the complete set of ground-truth
violations for each Web page. As a result, we do not report recall or precision metrics. This limits our ability to quantify undetected
violations and fully assess detection completeness.

Finally, correcting accessibility violations is exceptionally difficult, as it requires a nuanced understanding of user needs, Web
design principles, and advanced reasoning capabilities to ensure effective correction [8, 14]. To better understand which violations
remained uncorrected, we analyzed the corrections produced by three AccessGuru models—GPT-4, Mistral, and Qwen. As shown
in Figure 4, certain violations such as page-has-heading-one, color-contrast, and link-name were consistently difficult to correct. A
limitation of AccessGuru is that it corrects color-contrast accessibility violations by adjusting foreground and background values to
meet WCAG thresholds only. However, it does not account for cases where color is used to convey meaning, such as red for errors
or green for success. In such scenarios, even after contrast improvements, users with color vision deficiencies may still struggle to
understand the intended message. Future work should investigate how visual cues like color can be supplemented with alternative
representations (e.g., icons, text labels, or ARIA attributes) to ensure the semantic meaning is preserved for all users.

8 Conclusion and Future work

Our proposed solution, AccessGuru, helps to improve Web accessibility by detecting and correcting accessibility violations in
HTML documents. AccessGuru combines automated evaluation tools with prompting strategies for pre-trained LLMs to generate
compliant corrections. AccessGuru Detect is evaluated by comparing its accessibility violation coverage against existing accessibility
detection datasets. AccessGuruCorrect is evaluated on two datasets using three different LLMs, with additional human studies to
assess the semantic quality of the corrections compared to human-generated solutions. Our benchmark extends beyond automatic
evaluation tools’ conformance by addressing semantic accessibility violations. Future work should follow this direction by also

Manuscript submitted to ACM



977

978

979

980

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

1030

1031

1032

1033

1034

1035

1036

1037

18 Nadeen Fathallah, Daniel Hernández, and Steffen Staab

moving beyond conformance checks and incorporating measures like task completion and usability, which automatic evaluation
tools alone do not fully capture.

An important future direction is the reconstruction of fully corrected Web pages. While our system outputs individual corrected
HTML snippets per violation, these must be re-integrated into the original document to form a coherent and fully accessible Web
page. This reconstruction process involves merging overlapping or nested corrections while preserving the semantic structure,
layout, and any unaffected content. We intend to address this engineering effort in future iterations of our system.

Additionally, future research should exploremore robust grounding techniques, multi-view analysis of dynamic content—including
the use of video to capture temporal changes—and strategies to handle long-context scenarios—such as hierarchical analysis or
chunked evaluation—to improve the effectiveness of LLMs in detecting semantic accessibility violations. Finally, accessible Web
pages available in the wild could be leveraged in future work to help LLMs retrieve compliant examples and apply similar patterns
in corrections.

9 Acknowledgements

We acknowledge the support of the Stuttgart Research Focus Interchange Forum for Reflection on Intelligent Systems (IRIS).

References
[1] AChecker: IDI Accessibility. [n. d.]. AChecker: IDI Accessibility. http://www.atutor.ca/achecker/. Retrieved 25-06-2024.
[2] Patricia Acosta-Vargas, Mario González, and Sergio Luján-Mora. 2020. Dataset for evaluating the accessibility of the websites of selected Latin American

universities. Data in brief 28 (2020), 105013.
[3] Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray, and Kai-Wei Chang. 2021. Unified Pre-training for Program Understanding and Generation. In Proceedings

of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2021, Online,
June 6-11, 2021, Kristina Toutanova, Anna Rumshisky, Luke Zettlemoyer, Dilek Hakkani-Tür, Iz Beltagy, Steven Bethard, Ryan Cotterell, Tanmoy Chakraborty,
and Yichao Zhou (Eds.). Association for Computational Linguistics, 2655–2668. doi:10.18653/V1/2021.NAACL-MAIN.211

[4] Wajdi Aljedaani, Abdulrahman Habib, Ahmed Aljohani, Marcelo Eler, and Yunhe Feng. 2024. Does ChatGPT Generate Accessible Code? Investigating Accessibility
Challenges in LLM-Generated Source Code. In Proceedings of the 21st International Web for All Conference, W4A 2024, Singapore, May 13-14, 2024. ACM, 165–176.
doi:10.1145/3677846.3677854

[5] Suliman K. Almasoud and Hassan I. Mathkour. 2019. Instant Adaptation Enrichment Technique to Improve Web Accessibility for Blind Users. In Proceedings of the
3rd International Conference on Information System and Data Mining, ICISDM 2019, Houston, TX, USA, April 6-8, 2019. ACM, 159–164. doi:10.1145/3325917.3325931

[6] Abdulaziz Alshayban, Iftekhar Ahmed, and Sam Malek. 2020. Accessibility issues in Android apps: state of affairs, sentiments, and ways forward. In ICSE ’20:
42nd International Conference on Software Engineering, Seoul, South Korea, 27 June - 19 July, 2020, Gregg Rothermel and Doo-Hwan Bae (Eds.). ACM, 1323–1334.
doi:10.1145/3377811.3380392

[7] Jacob Austin, Augustus Odena, Maxwell I. Nye, Maarten Bosma, Henryk Michalewski, David Dohan, Ellen Jiang, Carrie J. Cai, Michael Terry, Quoc V. Le, and
Charles Sutton. 2021. Program Synthesis with Large Language Models. CoRR abs/2108.07732 (2021). arXiv:2108.07732 https://arxiv.org/abs/2108.07732

[8] Ana Baptista, José Martins, Ramiro Goncalves, Frederico Branco, and Tania Rocha. 2016. Web accessibility challenges and perspectives: A systematic literature
review. In 2016 11th Iberian Conference on Information Systems and Technologies (CISTI). IEEE, 1–6.

[9] Tingting Bi, Xin Xia, David Lo, John C. Grundy, Thomas Zimmermann, and Denae Ford. 2022. Accessibility in Software Practice: A Practitioner’s Perspective.
ACM Trans. Softw. Eng. Methodol. 31, 4 (2022), 66:1–66:26. doi:10.1145/3503508

[10] Ben Caldwell, Michael Cooper, Loretta Guarino Reid, Gregg Vanderheiden, Wendy Chisholm, John Slatin, and Jason White. 2008. Web content accessibility
guidelines (WCAG) 2.0. WWW Consortium (W3C) 290, 1-34 (2008), 5–12.

[11] Carmine Cesarano, Anna Rita Fasolino, and Porfirio Tramontana. 2007. Improving Usability of Web Pages for Blinds. In Proceedings of the 9th IEEE International
Symposium on Web Systems Evolution, WSE 2009, 5-6 October 2007, Paris, France, Shihong Huang and Massimiliano Di Penta (Eds.). IEEE Computer Society, 97–104.
doi:10.1109/WSE.2007.4380250

[12] Jieshan Chen, Chunyang Chen, Zhenchang Xing, Xiwei Xu, Liming Zhu, Guoqiang Li, and Jinshui Wang. 2020. Unblind your apps: predicting natural-language
labels for mobile GUI components by deep learning. In ICSE ’20: 42nd International Conference on Software Engineering, Seoul, South Korea, 27 June - 19 July, 2020,
Gregg Rothermel and Doo-Hwan Bae (Eds.). ACM, 322–334. doi:10.1145/3377811.3380327

[13] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Pondá de Oliveira Pinto, Jared Kaplan, Harrison Edwards, Yuri swear here Nicholas Joseph, Greg
Brockman, Alex Ray, Raul Puri, Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan, Scott Gray, Nick Ryder, Mikhail
Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian, Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fotios
Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Cast, Alex Nichol, Alex Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu
Jain, William Saunders, Christopher Hesse, Andrew N. Carr, Jan Leike, Joshua Achiam, Vedant Misra, Evan Morikawa, Alec Radford, Matthew Knight, Miles
Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. 2021. Evaluating
Large Language Models Trained on Code. CoRR abs/2107.03374 (2021). arXiv:2107.03374 https://arxiv.org/abs/2107.03374

[14] Jenny Craven. 2006. Web accessibility: A review of research and initiatives. (2006).
[15] Giovanni Delnevo,Manuel Andruccioli, and SilviaMirri. 2024. On the Interactionwith Large LanguageModels forWebAccessibility: Implications and Challenges. In

21st IEEE Consumer Communications & Networking Conference, CCNC 2024, Las Vegas, NV, USA, January 6-9, 2024. IEEE, 1–6. doi:10.1109/CCNC51664.2024.10454680
[16] Iyad Abu Doush and Reem Qasem. 2024. Evaluating AI-Generated Web Code for Accessibility Compliance: A Metric-Driven Approach. In Proceedings of Software

Development and Technologies for Enhancing Accessibility and Fighting Info-exclusion (DSAI ’24). ACM.
[17] Nadeen Fathallah, Monika Bhole, and Steffen Staab. 2024. Empowering the Deaf and Hard of Hearing Community: Enhancing Video Captions Using Large

Language Models. In Proceedings of Software Development and Technologies for Enhancing Accessibility and Fighting Info-exclusion (DSAI ’24). ACM, New York,
USA, 1–9. doi:10.48550/arXiv.2412.00342

Manuscript submitted to ACM

http://www.atutor.ca/achecker/
https://doi.org/10.18653/V1/2021.NAACL-MAIN.211
https://doi.org/10.1145/3677846.3677854
https://doi.org/10.1145/3325917.3325931
https://doi.org/10.1145/3377811.3380392
https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2108.07732
https://doi.org/10.1145/3503508
https://doi.org/10.1109/WSE.2007.4380250
https://doi.org/10.1145/3377811.3380327
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://doi.org/10.1109/CCNC51664.2024.10454680
https://doi.org/10.48550/arXiv.2412.00342


1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

AccessGuru: Leveraging LLMs to Detect and Correct Web Accessibility Violations in HTML Code 19

[18] Nadeen Fathallah, Arunav Das, Stefano De Giorgis, Andrea Poltronieri, Peter Haase, and Liubov Kovriguina. 2024. NeOn-GPT: A Large Language Model-Powered
Pipeline for Ontology Learning. In The Extended Semantic Web Conference.

[19] Mexhid Ferati and Lirim Sulejmani. 2016. Automatic Adaptation Techniques to Increase the Web Accessibility for Blind Users. In HCI International 2016 - Posters’
Extended Abstracts - 18th International Conference, HCI International 2016, Toronto, Canada, July 17-22, 2016, Proceedings, Part II (Communications in Computer and
Information Science, Vol. 618), Constantine Stephanidis (Ed.). Springer, 30–36. doi:10.1007/978-3-319-40542-1_5

[20] Stephen M Fleming and Hakwan C Lau. 2014. How to measure metacognition. Frontiers in human neuroscience 8 (2014), 443.
[21] Chris D Frith. 2012. The role of metacognition in human social interactions. Philosophical Transactions of the Royal Society B: Biological Sciences 367, 1599 (2012),

2213–2223.
[22] Xiaodong Gu, Kang Min Yoo, and Sang-Woo Lee. 2021. Response Generation with Context-Aware Prompt Learning. CoRR abs/2111.02643 (2021). arXiv:2111.02643

https://arxiv.org/abs/2111.02643
[23] Calista Huang, Alyssa Ma, Suchir Vyasamudri, Eugenie Puype, Sayem Kamal, Juan Belza Garcia, Salar Cheema, and Michael Lutz. 2024. ACCESS: Prompt

Engineering for Automated Web Accessibility Violation Corrections. CoRR abs/2401.16450 (2024). doi:10.48550/ARXIV.2401.16450 arXiv:2401.16450
[24] Andrew Kirkpatrick, Joshue O’Connor, Alastair Campbell, and Michael Cooper. 2023. Web Content Accessibility Guidelines (WCAG) 2.1. Technical report. World

Wide Web Consortium (W3C). https://www.w3.org/TR/2023/REC-WCAG21-20230921/
[25] Satwik Ram Kodandaram, Utku Uckun, Xiaojun Bi, IV Ramakrishnan, and Vikas Ashok. 2024. Enabling Uniform Computer Interaction Experience for Blind Users

through Large Language Models. In Proceedings of the 26th International ACM SIGACCESS Conference on Computers and Accessibility. 1–14.
[26] Aobo Kong, Shiwan Zhao, Hao Chen, Qicheng Li, Yong Qin, Ruiqi Sun, Xin Zhou, Enzhi Wang, and Xiaohang Dong. 2024. Better Zero-Shot Reasoning with

Role-Play Prompting. In Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies (Volume 1: Long Papers), NAACL 2024, Mexico City, Mexico, June 16-21, 2024, Kevin Duh, Helena Gómez-Adorno, and Steven Bethard (Eds.). Association
for Computational Linguistics, 4099–4113. doi:10.18653/V1/2024.NAACL-LONG.228

[27] Yang Li, Gang Li, Luheng He, Jingjie Zheng, Hong Li, and Zhiwei Guan. 2020. Widget Captioning: Generating Natural Language Description for Mobile User
Interface Elements. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing, EMNLP 2020, Online, November 16-20, 2020, Bonnie
Webber, Trevor Cohn, Yulan He, and Yang Liu (Eds.). Association for Computational Linguistics, 5495–5510. doi:10.18653/V1/2020.EMNLP-MAIN.443

[28] Chin-Yew Lin. 2004. Rouge: A package for automatic evaluation of summaries. In Text summarization branches out. 74–81.
[29] Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Lingming Zhang. 2023. Is Your Code Generated by ChatGPT Really Correct? Rigorous Evaluation of Large

Language Models for Code Generation. In Advances in Neural Information Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023,
NeurIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023, Alice Oh, Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine (Eds.).
http://papers.nips.cc/paper_files/paper/2023/hash/43e9d647ccd3e4b7b5baab53f0368686-Abstract-Conference.html

[30] Juan-Miguel López-Gil and Juanan Pereira. 2024. Turning manual web accessibility success criteria into automatic: an LLM-based approach. Universal Access in
the Information Society (2024), 1–16.

[31] AndreaMangiatordi andMarco Lazzari. 2018. Combined use of artificial intelligence and crowdsourcing to provide alternative content for images onwebsites. In 15th
IEEE Annual Consumer Communications & Networking Conference, CCNC 2018, Las Vegas, NV, USA, January 12-15, 2018. IEEE, 1–6. doi:10.1109/CCNC.2018.8319312

[32] Shridhar Mehendale and Ankit Walishetti. 2024. DexAssist: A Voice-Enabled Dual-LLM Framework for Accessible Web Navigation. arXiv preprint arXiv:2411.12214
(2024).

[33] Microsoft. 2024. Playwright API. https://playwright.dev. Accessed: 2024-06-30.
[34] Daye Nam, Andrew Macvean, Vincent J. Hellendoorn, Bogdan Vasilescu, and Brad A. Myers. 2024. Using an LLM to Help With Code Understanding. In Proceedings

of the 46th IEEE/ACM International Conference on Software Engineering, ICSE 2024, Lisbon, Portugal, April 14-20, 2024. ACM, 97:1–97:13. doi:10.1145/3597503.3639187
[35] Ahmed Njifenjou, Virgile Sucal, Bassam Jabaian, and Fabrice Lefèvre. 2024. Role-Play Zero-Shot Prompting with Large Language Models for Open-Domain

Human-Machine Conversation. CoRR abs/2406.18460 (2024). doi:10.48550/ARXIV.2406.18460 arXiv:2406.18460
[36] OpenAI. 2023. GPT-4 Technical Report. CoRR abs/2303.08774 (2023). doi:10.48550/ARXIV.2303.08774 arXiv:2303.08774
[37] Achraf Othman, Amira Dhouib, and Aljazi Nasser Al Jabor. 2023. Fostering websites accessibility: A case study on the use of the Large Language Models ChatGPT

for automatic remediation. In Proceedings of the 16th International Conference on PErvasive Technologies Related to Assistive Environments, PETRA 2023, Corfu,
Greece, July 5-7, 2023. ACM, 707–713. doi:10.1145/3594806.3596542

[38] Letícia Seixas Pereira, João Guerreiro, André Rodrigues, Tiago João Guerreiro, and Carlos Duarte. 2024. From Automation to User Empowerment: Investigating
the Role of a Semi-automatic Tool in Social Media Accessibility. ACM Trans. Access. Comput. 17, 3 (2024), 13:1–13:25. doi:10.1145/3647643

[39] Matt Post. 2018. A call for clarity in reporting BLEU scores. arXiv preprint arXiv:1804.08771 (2018).
[40] Shreyas Sundara Raman, Vanya Cohen, Eric Rosen, Ifrah Idrees, David Paulius, and Stefanie Tellex. 2022. Planning with Large Language Models via Corrective

Re-prompting. CoRR abs/2211.09935 (2022). doi:10.48550/ARXIV.2211.09935 arXiv:2211.09935
[41] Yongming Rao, Wenliang Zhao, Guangyi Chen, Yansong Tang, Zheng Zhu, Guan Huang, Jie Zhou, and Jiwen Lu. 2022. DenseCLIP: Language-Guided Dense

Prediction with Context-Aware Prompting. In IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24,
2022. IEEE, 18061–18070. doi:10.1109/CVPR52688.2022.01755

[42] Nils Reimers and Iryna Gurevych. 2019. Sentence-bert: Sentence embeddings using siamese bert-networks. arXiv preprint arXiv:1908.10084 (2019).
[43] Richard Rutter, Patrick H Lauke, Cynthia Waddell, Jim Thatcher, Shawn Lawton Henry, Bruce Lawson, Andrew Kirkpatrick, Christian Heilmann, Michael R Burks,

Bob Regan, et al. 2007. Web accessibility: Web standards and regulatory compliance. Apress.
[44] Pranab Sahoo, Ayush Kumar Singh, Sriparna Saha, Vinija Jain, Samrat Mondal, and Aman Chadha. 2024. A Systematic Survey of Prompt Engineering in Large

Language Models: Techniques and Applications. CoRR abs/2402.07927 (2024). doi:10.48550/ARXIV.2402.07927 arXiv:2402.07927
[45] Elliot Salisbury, Ece Kamar, and Meredith Ringel Morris. 2017. Toward Scalable Social Alt Text: Conversational Crowdsourcing as a Tool for Refining Vision-to-

Language Technology for the Blind. In Proceedings of the Fifth AAAI Conference on Human Computation and Crowdsourcing, HCOMP 2017, 23-26 October 2017,
Québec City, Québec, Canada, Steven Dow and Adam Tauman Kalai (Eds.). AAAI Press, 147–156. doi:10.1609/HCOMP.V5I1.13301

[46] Murray Shanahan, Kyle McDonell, and Laria Reynolds. 2023. Role play with large language models. Nat. 623, 7987 (2023), 493–498. doi:10.1038/S41586-023-06647-8
[47] Darja Šmite, Claes Wohlin, Zane Galvin, a, and Rafael Prikladnicki. 2014. An empirically based terminology and taxonomy for global software engineering.

Empirical Software Engineering 19 (2014), 105–153.
[48] Dat Trinh Tuan, Van-Hung Phan, et al. 2012. Checking and correcting the source code of web pages for accessibility. In 2012 IEEE RIVF International Conference on

Computing & Communication Technologies, Research, Innovation, and Vision for the Future. IEEE, 1–4.

Manuscript submitted to ACM

https://doi.org/10.1007/978-3-319-40542-1_5
https://arxiv.org/abs/2111.02643
https://arxiv.org/abs/2111.02643
https://doi.org/10.48550/ARXIV.2401.16450
https://arxiv.org/abs/2401.16450
https://www.w3.org/TR/2023/REC-WCAG21-20230921/
https://doi.org/10.18653/V1/2024.NAACL-LONG.228
https://doi.org/10.18653/V1/2020.EMNLP-MAIN.443
http://papers.nips.cc/paper_files/paper/2023/hash/43e9d647ccd3e4b7b5baab53f0368686-Abstract-Conference.html
https://doi.org/10.1109/CCNC.2018.8319312
https://playwright.dev
https://doi.org/10.1145/3597503.3639187
https://doi.org/10.48550/ARXIV.2406.18460
https://arxiv.org/abs/2406.18460
https://doi.org/10.48550/ARXIV.2303.08774
https://arxiv.org/abs/2303.08774
https://doi.org/10.1145/3594806.3596542
https://doi.org/10.1145/3647643
https://doi.org/10.48550/ARXIV.2211.09935
https://arxiv.org/abs/2211.09935
https://doi.org/10.1109/CVPR52688.2022.01755
https://doi.org/10.48550/ARXIV.2402.07927
https://arxiv.org/abs/2402.07927
https://doi.org/10.1609/HCOMP.V5I1.13301
https://doi.org/10.1038/S41586-023-06647-8


1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

20 Nadeen Fathallah, Daniel Hernández, and Steffen Staab

[49] Muhammad Usman, Ricardo Britto, Jürgen Börstler, and Emilia Mendes. 2017. Taxonomies in software engineering: A systematic mapping study and a revised
taxonomy development method. Information and Software Technology 85 (2017), 43–59.

[50] Priyan Vaithilingam, Tianyi Zhang, and Elena L. Glassman. 2022. Expectation vs. Experience: Evaluating the Usability of Code Generation Tools Powered by
Large Language Models. In CHI ’22: CHI Conference on Human Factors in Computing Systems, New Orleans, LA, USA, 29 April 2022 - 5 May 2022, Extended Abstracts,
Simone D. J. Barbosa, Cliff Lampe, Caroline Appert, and David A. Shamma (Eds.). ACM, 332:1–332:7. doi:10.1145/3491101.3519665

[51] Oriol Vinyals, Alexander Toshev, Samy Bengio, and Dumitru Erhan. 2015. Show and tell: A neural image caption generator. In IEEE Conference on Computer Vision
and Pattern Recognition, CVPR 2015, Boston, MA, USA, June 7-12, 2015. IEEE Computer Society, 3156–3164. doi:10.1109/CVPR.2015.7298935

[52] Noah Wang, Z. y. Peng, Haoran Que, Jiaheng Liu, Wangchunshu Zhou, Yuhan Wu, Hongcheng Guo, Ruitong Gan, Zehao Ni, Jian Yang, Man Zhang, Zhaoxiang
Zhang, Wanli Ouyang, Ke Xu, Wenhao Huang, Jie Fu, and Junran Peng. 2024. RoleLLM: Benchmarking, Eliciting, and Enhancing Role-Playing Abilities of Large
Language Models. In Findings of the Association for Computational Linguistics, ACL 2024, Bangkok, Thailand and virtual meeting, August 11-16, 2024, Lun-Wei Ku,
Andre Martins, and Vivek Srikumar (Eds.). Association for Computational Linguistics, 14743–14777. doi:10.18653/V1/2024.FINDINGS-ACL.878

[53] Yuqing Wang and Yun Zhao. 2023. Metacognitive Prompting Improves Understanding in Large Language Models. CoRR abs/2308.05342 (2023). doi:10.48550/
ARXIV.2308.05342 arXiv:2308.05342

[54] WebAIM. 2025. WAVE. https://wave.webaim.org/api/. Retrieved 2025-01-11.
[55] WebAIM. 2025. The WebAIM Million - An Annual Accessibility Analysis of the Top 1,000,000 Home Pages. Technical Report. WebAIM.org. https://webaim.org/

projects/million/
[56] Jules White, Quchen Fu, Sam Hays, Michael Sandborn, Carlos Olea, Henry Gilbert, Ashraf Elnashar, Jesse Spencer-Smith, and Douglas C. Schmidt. 2023. A Prompt

Pattern Catalog to Enhance Prompt Engineering with ChatGPT. CoRR abs/2302.11382 (2023). doi:10.48550/ARXIV.2302.11382 arXiv:2302.11382
[57] Shaomei Wu, Jeffrey Wieland, Omid Farivar, and Julie Schiller. 2017. Automatic Alt-text: Computer-generated Image Descriptions for Blind Users on a Social

Network Service. In Proceedings of the 2017 ACM Conference on Computer Supported Cooperative Work and Social Computing, CSCW 2017, Portland, OR, USA, February
25 - March 1, 2017, Charlotte P. Lee, Steven E. Poltrock, Louise Barkhuus, Marcos Borges, andWendy A. Kellogg (Eds.). ACM, 1180–1192. doi:10.1145/2998181.2998364

[58] Yeliz Yesilada, Giorgio Brajnik, Markel Vigo, and Simon Harper. 2012. Understanding web accessibility and its drivers. In International Cross-Disciplinary Conference
onWeb Accessibility, W4A ’12, Lyon, France, April 16-17, 2012, Markel Vigo, Julio Abascal, Rui Lopes, and Paola Salomoni (Eds.). ACM, 19. doi:10.1145/2207016.2207027

[59] Yeliz Yesilada and Simon Harper (Eds.). 2019. Web Accessibility - A Foundation for Research, Second Edition. Springer. doi:10.1007/978-1-4471-7440-0
[60] Yujia Zhou, Zheng Liu, Jiajie Jin, Jian-Yun Nie, and Zhicheng Dou. 2024. Metacognitive Retrieval-Augmented Large Language Models. In Proceedings of the ACM

on Web Conference 2024, WWW 2024, Singapore, May 13-17, 2024, Tat-Seng Chua, Chong-Wah Ngo, Ravi Kumar, Hady W. Lauw, and Roy Ka-Wei Lee (Eds.). ACM,
1453–1463. doi:10.1145/3589334.3645481

A Appendix

This appendix complements our methodology by providing prompting templates and a subset of our proposed taxonomy for
categorizing Web accessibility violations.

Manuscript submitted to ACM

https://doi.org/10.1145/3491101.3519665
https://doi.org/10.1109/CVPR.2015.7298935
https://doi.org/10.18653/V1/2024.FINDINGS-ACL.878
https://doi.org/10.48550/ARXIV.2308.05342
https://doi.org/10.48550/ARXIV.2308.05342
https://arxiv.org/abs/2308.05342
https://wave.webaim.org/api/
https://webaim.org/projects/million/
https://webaim.org/projects/million/
https://doi.org/10.48550/ARXIV.2302.11382
https://arxiv.org/abs/2302.11382
https://doi.org/10.1145/2998181.2998364
https://doi.org/10.1145/2207016.2207027
https://doi.org/10.1007/978-1-4471-7440-0
https://doi.org/10.1145/3589334.3645481


1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

AccessGuru: Leveraging LLMs to Detect and Correct Web Accessibility Violations in HTML Code 21

Table 8. Prompt template used in the LLM-based semantic detector within the AccessGuruDetect module. The prompt guides the LLM to detect
semantic Web accessibility violations. We structure the prompt into fixed and dynamic components. Fixed components remain constant
across all HTML documents, while dynamic fields are populated based on the specific web page input.

Type Prompt Template

Fixed You are a Web accessibility expert. Your task is to detect semantic accessibility violations in the given HTML Web page.
These accessibility violations are often not detectable by standard automated tools and require interpretation of the content’s
meaning and user context.

Fixed A semantic violation occurs when:
- Attributes like alt text, language, or link/button labels are present but do not provide meaningful information.
- Visual or multimedia content is not described in a way that conveys its purpose to users with disabilities.

Fixed Use the information below to guide your analysis. You are operating on:
- The domain of the web page:

Dynamic {Insert Web page Domain}

Fixed - The URL of the web page:

Dynamic {Insert Web page URL}

Fixed You are provided with:
- The HTML code of the web page to analyze.
- The full semantic accessibility violation taxonomy.

This taxonomy defines specific types of semantic accessibility violations and their descriptions.
[Semantic Accessibility Violation Taxonomy]

- A screenshot of the rendered view of the web page.

Dynamic {Insert HTML here}

Dynamic {Insert Web page screenshot}

Fixed Now, review the HTML and supplementary data. List all semantic accessibility violations you detect, and for each:
1. Identify the affected HTML element. Enclose the exact HTML snippet using the markers [START] and [END].
2. Specify the violation name.

Table 9. Role-play persona used in the AccessGuruCorrect module to guide the LLM in generating WCAG-compliant HTML corrections.

Persona

You are aWeb accessibility expert with a strong proficiency in HTML and a deep commitment to fixingWeb accessibility
violations. You specialize in analyzing Web pages, identifying accessibility violations, and providing immediate,
corrected HTML code solutions that meet WCAG 2.1 standards. Your expertise includes resolving problems like missing
or improper alt text, insufficient heading structure, non-semantic elements, inaccessible forms, and color contrast
accessibility violations.

You are adept at transforming flawed code into compliant, cleanHTML thatworks seamlesslywith assistive technologies,
ensuring that Websites are fully navigable by keyboard and readable by screen readers. You provide the corrected code
necessary for immediate implementation, ensuring that Websites are not only compliant but truly inclusive for users
with disabilities.

Your mission is to ensure that every website and application is accessible to all users by providing expertly corrected
HTML, making the web a more inclusive space.

Manuscript submitted to ACM



1221

1222

1223

1224

1225

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

1275

1276

1277

1278

1279

1280

1281

22 Nadeen Fathallah, Daniel Hernández, and Steffen Staab

Table 10. Initial prompt template used in the AccessGuruCorrect module. The prompt integrates role-play, contextual, and metacognitive
prompting strategies and is structured around five metacognitive stages: comprehension clarification, preliminary judgment, critical evaluation,
decision confirmation, and confidence assessment. The prompt is structured into fixed and dynamic components. The fixed components remain
constant across all samples, while dynamic fields are populated based on the violation instance. (For semantic violations involving visual content,
an additional instruction guides the LLM to reason over webpage screenshots—see purple-highlighted rows.)

Metacognitive
Stage

Type Prompt Template

Comprehension
Clarification

Fixed {Role-play persona} + Clarify your understanding of the following web accessibility violation: (Role-play
persona) + Clarify your understanding of the following web accessibility

Dynamic {Category}
{Category description}
{Violation name}
{Violation description}
{URL}
{HTMLElement}
{Impact}

Fixed Impact is a rating determined by the severity of the violation, indicating the extent to which it hinders user
interaction with the Web content. The scale is [cosmetic, minor, moderate, serious, critical]

Fixed Prioritize the attached screenshot of the Web page (which visually shows the UI element with a possible Web
accessibility violation). Your tasks:

(1) Interpret the visual content of the attached image.
(2) Identify the UI element (e.g., a button or icon) shown in the image.
(3) Determine whether the element is accessible (i.e., if an image element has a meaningful alt text)
(4) Compare your findings with the corresponding HTML provided and highlight any mismatches.
(5) Suggest an accessibility-compliant fix if there’s a violation.

Dynamic {Web page screenshot}

Preliminary
Judgment

Fixed Based on your understanding, provide a preliminary correction for the web accessibility violation based on the
following WCAG guideline(s): violation based on the following WCAG guideline(s):

Dynamic {Relevant WCAG guideline}

Fixed Make sure your generated code corrects the web accessibility violation without introducing new accessibility
violations. Ensure you generate the complete corrected code, not just a snippet.

Critical
Evaluation

Fixed Critically assess your preliminary correction, make sure to correct the initial web accessibility violation
without introducing new web accessibility violations. Only make corrections if the previous answer is incorrect.
Make sure your generated code corrects the web accessibility violation without introducing new accessibility
violations.

Decision
Confirmation

Fixed Confirm your final decision on whether the correction is accurate or not and provide the reasoning for your
decision. Only suggest further corrections if the initial response contains errors. Make sure your generated
code corrects the web accessibility violation without introducing new accessibility violations. Enclose your
corrected HTML code to replace the initial code with accessibility violations between these two marker strings:
"###START###" as first line and "###END###" as last line.

Confidence
Assessment

Fixed Evaluate your confidence (0-100%) in your correction, enclose your confidence score between these two
marker strings: "###START1###" as first line and "###END1###" as last line. Provide an explanation for this
confidence level; enclose your explanation between these two marker strings: "###START2###" as the first line
and "###END2###" as last line.

Manuscript submitted to ACM



1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

AccessGuru: Leveraging LLMs to Detect and Correct Web Accessibility Violations in HTML Code 23

Table 11. Corrective re-prompting template used in the AccessGuruCorrect module. The prompt is structured into fixed and dynamic
components. The fixed components remain constant across all samples, while dynamic fields are populated based on the violation instance.
(For semantic violations involving visual content, an additional instruction guides the LLM to reason over webpage screenshots—see purple-
highlighted rows.)

Metacognitive
Prompting
Stage

Type Prompt Template

Comprehension
Clarification

Fixed {Role-play persona} + You are analyzing a web accessibility issue using a

snippet of Affected HTML Element(s) , Web page screenshot and related metadata.

The screenshot reflects exactly what is rendered to users. Follow these strict rules:

• Prioritize visual analysis: list at least three specific details observable in the image

(e.g., color, shape, text, or spatial arrangement).

• Analyze only the provided HTML snippet and metadata. Do not infer or invent additional structure,
styles, or UI elements beyond what is given.

• Avoid introducing or rewriting content not present in the HTML. Do not add or alter CSS, forms,
headers, sections, scripts, or attributes unnecessarily. Modify only the minimal code needed
to resolve the violation.

• Return only the modified lines in a fenced code block. Leave all other parts of the HTML
unchanged.

• Justify every accessibility concern directly with observable evidence from the HTML.

Clarify your understanding of the following web accessibility violation:
Lorem Ipsum is simply dummy text of the printing and typesetting industry.

Dynamic {Category}
{Category description}
{Violation name}
{Violation description}
{URL}
{HTMLElement}
{Impact}

{Web page screenshot}

Fixed Impact is a rating determined by the severity of the violation, indicating the extent to which it hinders user
interaction with the Web content. The scale is [cosmetic, minor, moderate, serious, critical]

Preliminary
Judgment

Fixed Based on your understanding, provide a preliminary correction for the web accessibility violation based on the
following WCAG guideline(s): violation based on the following WCAG guideline(s):

Dynamic {Relevant WCAG guideline}

Fixed Make sure your generated code corrects the web accessibility violation without introducing new accessibility
violations. Ensure you generate the complete corrected code, not just a snippet.

Critical
Evaluation

Fixed Critically assess your preliminary correction, make sure to correct the initial web accessibility violation
without introducing new web accessibility violations. Only make corrections if the previous answer is incorrect.
Make sure your generated code corrects the web accessibility violation without introducing new accessibility
violations.

Decision
Confirmation

Fixed Confirm your final decision on whether the correction is accurate or not, and provide the reasoning for your
decision. Only suggest further corrections if the initial response contains errors. Make sure your generated
code corrects the web accessibility violation without introducing new accessibility violations. Enclose your
corrected HTML code to replace the initial code with accessibility violations between these two marker strings:
"###START###" as the first line and "###END###" as the last line.

Confidence
Assessment

Fixed Evaluate your confidence (0-100%) in your correction, enclose your confidence score between these two
marker strings: "###START1###" as first line and "###END1###" as last line. Provide an explanation for this
confidence level; enclose your explanation between these two marker strings: "###START2###" as the first line
and "###END2###" as last line.

Manuscript submitted to ACM



1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

24 Nadeen Fathallah, Daniel Hernández, and Steffen Staab

Table 12. Prompt templates used for baseline methods, structured into fixed and dynamic components. Fixed components remain constant
across all samples, while dynamic fields are populated based on the specific violation instance. These templates are directly adapted from
the original works. (For semantic violations involving visual content, we added an additional instruction that guides the LLM to reason over
webpage screenshots—see purple-highlighted rows.)

Baseline Method Type Prompt Template

Contextual
Prompting
(Othman et al.[37])

Fixed Given the following Web page screenshot and source code, can you fix the accessibility issue related
to the success criteria according to WCAG 2.1? Given the following source code, can you fix the
accessibility issue related to the success criteria according to WCAG 2.1?

Dynamic {HTML}, {WCAG relevant to the violation} , {Web page screenshot}

ReAct Prompting
(Huang et al. [23])

Fixed You are a helpful assistant who will correct accessibility issues of a provided website.

Provide your thought before you provide a fixed version of the results.

E.g. Incorrect: <span>Search</span>

Thought: because ... I will ...

Correct: <span class="DocSearch-Button-Placeholder">Search</span>

You are operating on this website:

Dynamic {Web page URL}, {violation name}, {violation description}, {fix advice}, {HTML}

Fixed Given the Web page screenshot:

Dynamic {Web page screenshot}

Zero-shot
Prompting
(Delnevo et al. [15])

Fixed Is the following HTML code accessible? Is the following HTML code accessible? Is the following HTML
code accessible?Is the following HTML code accessible?Is the following HTML code accessible?Is the
following HTML code accessible?

Dynamic {HTML}

Fixed Given the Web page screenshot:

Dynamic {Web page screenshot}

Manuscript submitted to ACM



1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

AccessGuru: Leveraging LLMs to Detect and Correct Web Accessibility Violations in HTML Code 25

Table 13. Subset of our Proposed Taxonomy to Categorize Web Accessibility Violations. The full taxonomy can be found in our supplementary
material.

Category Violation
Name

Description Violated
Guide-
lines

Impact Supplementary In-
formation

Semantic
Accessibility
Violations

image-alt-not-
descriptive

Inaccurate or misleading alternative text that fails to
describe the purpose of the image.

WCAG
1.1.1

Critical Image

video-captions-
not-descriptive

Inaccurate video captions. WCAG
1.2.1, 1.2.3

Critical Video

lang-mismatch Page language attribute does not match the actual lan-
guage of the content.

WCAG
3.1.1

Serious –

link-text-
mismatch

Links fail to convey their purpose or are ambiguous. WCAG
2.4.4, 2.4.9

Serious –

button-label-
mismatch

Button labels are unclear or fail to specify their purpose. WCAG
4.1.2, 2.5.3

Critical –

ambiguous-
heading

Headings are vague, repetitive, or fail to describe the
content.

WCAG
2.4.6, 2.4.10

Moderate –

incorrect-
semantic-tag

A non-semantic tag (e.g., div or span) is used instead of
a proper semantic element (e.g., header, nav, main).

WCAG
1.3.1

Serious Document structure
(other headings, sec-
tion context)

color-only-
distinction

Visual information is conveyed using color alone with-
out additional indicators like text, shape, or pattern,
making it inaccessible to users with color vision defi-
ciencies.

WCAG
1.4.1

Serious Web page Screenshot

Layout
Accessibility
Violations

meta-viewport Ensure <meta name="viewport"> does not disable text
scaling and zooming

WCAG
1.4.4

Critical –

color-contrast Ensure the contrast between foreground and back-
ground colors meets WCAG 2 AA minimum contrast
ratio thresholds

WCAG
1.4.3

Serious Color Information
(Background and
Foreground)

avoid-inline-
spacing

Ensure that text spacing set through style attributes can
be adjusted with custom stylesheets

WCAG
1.4.12

Serious –

target-size Ensure touch targets have sufficient size and space WCAG
2.5.5

Serious –

Syntax
Accessibility
Violations

duplicate-id-
aria

Ensure every id attribute value used in ARIA and in
labels is unique

WCAG
4.1.2

Critical –

tabindex Ensure tabindex attribute values are not greater than 0 WCAG
2.1.1

Serious –

duplicate-id-
aria

Ensure every id attribute value used in ARIA and in
labels is unique

WCAG
4.1.2

Critical –

tabindex Ensure tabindex attribute values are not greater than 0 WCAG
2.1.1

Serious –

valid-lang Ensure lang attributes have valid values 3.1.2 Serious –
aria-required-
attr

Ensure elements with ARIA roles have all required ARIA
attributes

WCAG
4.1.2

Critical –

meta-refresh Ensure <meta http-equiv="refresh"> is not used for de-
layed refresh

WCAG
2.2.1

Critical –

empty-table-
header

Ensure table headers have discernible text WCAG
1.3.1, 2.4.6

Minor –

empty-heading Ensure headings have discernible text WCAG
1.3.1, 2.4.6

Minor –

Manuscript submitted to ACM


	Abstract
	1 Introduction
	2 Related Work
	2.1 WCAG Guidelines
	2.2 Web Accessibility Violation Detection
	2.3 Web Accessibility Violation Correction
	2.4 Prompt Engineering Techniques

	3 Our Taxonomy of Web Accessibility Violations
	4 Methodology
	4.1 AccessGuruDetect: Web Accessibility Violation Detection
	4.2 AccessGuruCorrect:  Web Accessibility Violation Correction

	5 Evaluation
	5.1 Dataset of Web Accessibility Violations from DBLP:journals/corr/abs-2401-16450
	5.2 Our novel dataset for benchmarking corrections of syntactic, layout, and semantic accessibility violations
	5.3 Prompt-based baseline methods for accessibility violation correction
	5.4 Implementation
	5.5 Evaluation Metrics

	6 Experiments and Results
	6.1 Detecting Accessibility Violations Experiments and Results (RQ1) 
	6.2 Syntactic and Layout Correction Experiments and Results (RQ2)
	6.3 Semantic Correction Experiments and Results (RQ3)

	7 Limitations
	8 Conclusion and Future work
	9 Acknowledgements
	References
	A Appendix

