19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44

46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61

AccessGuru: Leveraging LLMs to Detect and Correct Web Accessibility Violations in
HTML Code

NADEEN FATHALLAH, University of Stuttgart, Artificial Intelligence, Germany
DANIEL HERNANDEZ, Artificial Intelligence, University of Stuttgart, Germany
STEFFEN STAAB, University of Stuttgart, Germany and University of Southampton, United Kingdom

The vast majority of Web pages fail to comply with established Web accessibility guidelines, excluding a range of users with diverse abilities from
interacting with their content. Making Web pages accessible to all users requires dedicated expertise and additional manual efforts from Web page
providers. To lower their efforts and, thus, promote inclusiveness, we aim to automatically detect and correct Web accessibility violations in HTML
code. While previous work has made progress in detecting certain types of accessibility violations, the problem of automatically detecting and
correcting accessibility violations remains an open challenge that we address.

We introduce a novel taxonomy classifying Web accessibility violations into three key categories— Syntactic, Semantic, and Layout. This
taxonomy provides a structured foundation for developing our detection and correction method and selecting and redefining evaluation metrics.
We propose our novel method, AccessGuru, which combines existing accessibility testing tools and Large Language Models (LLMs) to detect
accessibility violations of Web accessibility guidelines and taxonomy-driven prompting strategies of LLMs to correct all three accessibility violation
categories.

To evaluate these capabilities, we have developed a novel benchmark encompassing Web accessibility violations from real-world Web pages.
Our benchmark quantifies syntactic and layout compliance and judges semantic accuracy through a comparative analysis against human expert
corrections. Evaluation against our benchmark demonstrates that our method achieves up to 84% average violation score decrease on our benchmark

dataset, significantly outperforming existing methods, which achieve at most 50% average violation score decrease.
CCS Concepts: » Computing methodologies — Natural language processing; « Human-centered computing — Accessibility technologies.
Additional Key Words and Phrases: Web accessibility, Web accessibility violations, HTML correction, Large Language Models, Prompt Engineering

ACM Reference Format:

Nadeen Fathallah, Daniel Hernandez, and Steffen Staab. 2025. AccessGuru: Leveraging LLMs to Detect and Correct Web Accessibility Violations in
HTML Code. In The 27th International ACM SIGACCESS Conference on Computers and Accessibility (ASSETS °25), October 26-29, 2025, Denver, CO,
USA. ACM, New York, NY, USA, 25 pages. https://doi.org/10.1145/3663547.3746360

1 Introduction

Web accessibility is the ability of websites to be accessed by all people, including people with visual, auditory, motor, and cognitive
impairments such that they can perceive, understand, navigate, interact with, and contribute to the Web effectively [43, 57, 58].
Organizations like Web Accessibility in Mind (WebAIM) and the World Wide Web Consortium (W3C) have established guidelines,
such as the Web Content Accessibility Guidelines (WCAG) [10], which advise developers to create accessible Web content. However,
an overwhelming majority of Web pages do not comply with Web accessibility guidelines; for instance, a 2025 study by WebAIM
revealed that 94.8% of the top one million most visited Web pages fail to meet accessibility guidelines [55]. This widespread
non-compliance is likely due to a lack of expertise in creating accessible content in the first place and the costly and labor-intensive
effort of correcting accessibility issues in the HTML code [6, 9].

Users with impairments rely on various assistive technologies, such as screen readers for visually impaired users, screen
magnification tools for individuals with low vision, closed captioning for those with hearing impairments, and voice recognition
software for users with motor disabilities. These technologies function effectively when accessibility-related information is

embedded in HTML. Based on the distinct types of HTML constructs and information required by assistive technologies—as

Authors’ Contact Information: Nadeen Fathallah, nadeen.fathallah@ki.uni-stuttgart.de, University of Stuttgart, Artificial Intelligence, Stuttgart, Germany; Daniel
Hernandez, daniel.hernandez@ki.uni-stuttgart.de, Artificial Intelligence, University of Stuttgart, Stuttgart, Baden-Wiirttemberg, Germany; Steffen Staab, steffen.staab@
uni-stuttgart.de, University of Stuttgart, Stuttgart, Germany and University of Southampton, Southampton, United Kingdom.

This work is licensed under a Creative Commons Attribution 4.0 International License.
© 2025 Copyright held by the owner/author(s).
Manuscript submitted to ACM

Manuscript submitted to ACM 1

https://doi.org/10.1145/3663547.3746360
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0

62
63
64
65
66
67
68
69
70
71
72
73

75
76
77
78
79
80
81
82
83
84

86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113

114

116
117
118
119
120
121

122

2 Nadeen Fathallah, Daniel Hernandez, and Steffen Staab

specified by the WCAG—we introduce a taxonomy of accessibility violations that classifies them into three dimensions: Syntactic,
Semantic, and Layout. Syntactic accessibility violations involve missing or malformed accessibility-enhancing HTML elements
and attributes (e.g., missing alt text); Semantic accessibility violations concern whether the provided accessibility-enhancing
HTML elements and attributes are meaningful (e.g., alt text that fails to describe the image content); and Layout accessibility
violations refer to visual or structural barriers that impede interaction (e.g., insufficient color contrast). A detailed explanation of
this taxonomy, its construction, and representative examples can be found in Section 3.

Research has led to the creation of efficient and accurate tools to automatically detect syntactic and layout accessibility violations
in HTML, like WAVE, Axe, Google Lighthouse, and AChecker. Current tools fail to identify semantic accessibility violations such
as Violation 5 (line 25) in Listing 1. This highlights a significant gap in current accessibility detection methods.

Automating the correction of syntactic, layout, and semantic accessibility violations remains an open challenge. Web accessibility
guidelines provide general recommendations rather than detailed solutions. For example, they recommend making interactive
elements keyboard-operable for users without mouse access, but don’t specify how to manage keyboard focus for dynamically
loaded content.

This paper addresses the challenge of improving Web accessibility by introducing a method for automatically detecting and
correcting HTML accessibility violations. Our taxonomy provides a systematic understanding of Web accessibility violations and
informs our development of detection and correction strategies and the choice of evaluation metrics. AccessGuru relies on an
automatic Web accessibility evaluation tool to detect syntactic and layout accessibility violations and LLMs to detect semantic
accessibility violations. AccessGuru transforms Web pages with accessibility violations into guideline-compliant versions by
leveraging a pre-trained LLM to generate corrections that minimize a violation score, reflecting their impact on user interaction. In

this paper, we make the following contributions:

e We introduce a novel taxonomy that classifies Web accessibility violations into three key categories: Syntactic, Semantic,
and Layout. This taxonomy provides a structured foundation for understanding accessibility violations, guiding detection
and correction strategies, and informing evaluation metrics.

e We present a dataset of 3,500 real-world Web accessibility violations spanning over 112 distinct types across syntactic,
semantic, and layout categories, offering a diverse and representative basis for training and evaluating correction methods.
To our knowledge, this is the first publicly available dataset of this scale that includes all three types of accessibility
violations, sourced entirely from real-world Web data. The dataset will be published upon acceptance of this paper.

o We develop a novel pipeline that leverages accessibility testing tools and LLMs to automatically detect and correct Web
accessibility violations. Building on recent ideas of using LLMs for coding [3, 4, 7, 13, 29, 34, 50].

e We evaluate the correction effectiveness of AccessGuru against three baseline methods [15, 23, 37] using a subset of our
dataset sampled to reflect real-world violation distributions as indicated by [55], and an additional dataset from [23].
Our method achieves up to 84% average violation score decrease, outperforming baselines capped at 50%. We compare
the corrections generated by AccessGuru to those generated by human developers. To this end, we conducted a human

developer correction study on 55 Web accessibility violations from our dataset, achieving an average similarity of 73%.

To ensure reproducibility and transparency, all source codes, prompts, datasets, and results are available at https://github.com/
NadeenAhmad/AccessGuruLLM. The structure of the paper is as follows: Section 2 provides an overview of the existing literature
and background information, followed by our proposed taxonomy in Section 3. Section 4 details our approach, Section 5 describes
the evaluation process, and the results from our experiments are presented in Section 6. Section 7 discusses the limitations of our

method, and Section 8 concludes the paper with directions for future research.

2 Related Work
2.1 WCAG Guidelines

The WCAG [10, 24] are a widely adopted set of guidelines aimed at making Web content accessible to individuals with diverse
abilities, including visual, auditory, motor, and cognitive impairments. WCAG are organized around four fundamental principles,
referred to by the acronym POUR: (i) Perceivable, ensuring information and interface elements are presented in ways users can
perceive, like providing text alternatives for images; (ii) Operable, requiring Website functionality to be accessible through different
input methods, such as keyboard navigation or voice commands; (iii) Understandable, ensuring content is clear and easy to interact
Manuscript submitted to ACM

https://github.com/NadeenAhmad/AccessGuruLLM
https://github.com/NadeenAhmad/AccessGuruLLM

123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151

153
154

156
157

159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183

AccessGuru: Leveraging LLMs to Detect and Correct Web Accessibility Violations in HTML Code 3

with; and (iv) Robust, which demands that content is compatible with current and future technologies. Each of these principles is
broken down into specific, testable success criteria, grouped into three conformance levels: A (minimum), AA (mid-range), and
AAA (highest).

2.2 Web Accessibility Violation Detection

Early efforts in accessibility violation detection relied on manual testing and expert assessment, which were time-consuming and
lacked scalability. This motivated the development of efficient tools like WAVE, Axe, Google Lighthouse, AChecker, and Tenon,
which translate WCAG accessibility guidelines into rule-based checks and apply them to individual HTML elements to detect
syntax and layout accessibility violations [59]. These reports provide developers with information on each violation, including its
type, description, and impact. In our work, we utilize the Axe-Playwright tool, an accessibility detection engine. However, such
tools fail to detect semantic accessibility violations [30]. For instance, [33] can confirm the presence of alt text but cannot evaluate

whether the description effectively conveys the image’s content.

2.3 Web Accessibility Violation Correction

Rule-based Corrections of Accessibility Violations. Early Web accessibility correction methods defined rules to automate corrections [5,
11, 19, 48]. For example, [19] defines a fixed rule that inserts a skip link before a navigation bar to jump to the <main> tag. However,
such rules assume consistent page structure and fail to generalize across diverse Web layouts.

Computer Vision Correcting Accessibility Violations. Computer vision techniques have been used to correct web accessibility
violations, particularly for generating alt text. Facebook’s automatic alt text feature applied object detection to describe images
for visually impaired users [57], leveraging neural image captioning models such as [51]. Computer vision has been applied
to accessibility in graphical user interfaces (GUIs) by using deep learning models to predict natural-language labels for HTML
elements, enabling better navigation for visually impaired users [12, 27].

Semi-automatic methods for Correcting Accessibility Violations suggest an initial correction to a human expert for refinement.
[31, 38, 45] proposed using image recognition techniques to provide a first draft of the alt text, followed by human validation.

LLM Prompting for Correcting Accessibility Violations. LLMs have been shown to effectively generate code and detect errors
[3, 4,7, 13, 29, 34, 50]. Recent studies have also shown that LLMs can generate accessibility-conformant code [4, 16]. Othman et al.
[37] used contextual prompting, where ChatGPT was provided with a non-conformant accessibility code and WCAG 2.1 guidelines
to generate corrections. Delnevo et al. [15] explored zero-shot prompting to correct accessibility violations by instructing ChatGPT
to determine whether HTML elements are accessibility complaints. Huang et al. [23] investigated three prompting techniques:
Reasoning + Acting (ReAct), Few-Shot, and Chain of Thought (CoT). ReAct, which combines reasoning steps with interactive
responses, achieved the best performance on their dataset. We adopt these three prompting techniques—contextual [37], zero-shot
[15], and ReAct [23]—as baselines for comparison against our proposed method. The prompt templates used for each baseline are
directly adapted from the original works and are provided in Table 12. While these methods were effective in correcting some
syntax and layout accessibility violations, they don’t consider correcting semantic accessibility violations. Additionally, the lack of
comparison with human-generated corrections limits a comprehensive evaluation of how well these models handle more complex,
real-world semantic accessibility challenges.

LLMs as Assistive Agents for Web Accessibility. LLMs can act as interactive assistive agents, helping users navigate and operate
inaccessible web pages. Kodandaram et al. [25] introduced a system that uses LLMs to interpret screen elements and execute
spoken user commands such as clicking buttons or filling out forms. Similarly, Mehendale and Walishetti [32] proposed the use
of one LLM to translate voice input into web interactions and the use of a second LLM to validate the outcome, thus improving
the success rates of task execution. While such systems offer compelling advantages, the translation from content to accessible
representation must be performed repeatedly for every user interaction, incurring high computational costs. Furthermore, because
the transformations occur in real-time and do not persist in the web content itself, they are difficult to monitor and correct. Their

lack of transparency hinders reproducibility and quality assurance.

Manuscript submitted to ACM

184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203

204

206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234

236
237
238
239
240
241
242
243

244

4 Nadeen Fathallah, Daniel Hernandez, and Steffen Staab

2.4 Prompt Engineering Techniques

LLMs are highly sensitive to prompt structure, producing more accurate and contextually relevant responses when guided by
well-structured prompts. This observation has given rise to the field of prompt engineering, which involves designing instructions

that generative Al models can effectively interpret [44, 56]. We survey techniques that we have adopted in the following subsections.

2.4.1 Role-play promptingdirects LLMs to adopt specific personas, characters, professions, or roles (e.g., doctor, teacher, or
historical figure), priming them to provide responses that align with the expert knowledge of that role. This approach can help
guide the model’s output to be more precise and factually accurate without altering the underlying capabilities of the LLM, as
evidenced by studies [18, 26, 35, 46, 52].

2.4.2 Contextual prompting enriches prompts with task-specific information to guide the model’s response [22, 41]. Dynamic
contextual prompting adapts the context to each task, improving accuracy and reducing hallucinations. Prior work [22, 41] shows

that task-specific context yields more relevant and higher-quality outputs than zero-shot.

2.4.3 Metacognitive Prompting, metacognition refers to the ability to self-reflect and critically evaluate one’s own cognitive
processes [20, 21]. Metacognitive prompting [53, 60] mimics human cognitive steps through the following stages: (a) Self-
understanding: the model assesses its understanding of the prompt by identifying and interpreting relevant information, (b)
Reflection: the model undergoes preliminary judgment, forming an initial response, followed by inference evaluation, where it
reflects on and refines its initial interpretation, and (c) Self-regulation: the model finalizes its response and performs a confidence

assessment to evaluate the reliability of its decision.

2.4.4 Corrective Re-prompting involves re-querying the model with error-related feedback when a generated action or response
fails to meet certain conditions [40]. The feedback typically includes information about why the action failed (such as unmet

preconditions), allowing the model to adjust and generate a more appropriate response.

3 Our Taxonomy of Web Accessibility Violations

We introduce a structured taxonomy of Web accessibility violations that categorizes them into three distinct dimensions: Syntactic,
Semantic, and Layout. To construct the taxonomy, we adopted a methodology from prior work on taxonomy standardization
and classification [47, 49]. In the first stage, we conducted a literature review to identify recurring Web accessibility violations,
including studies incorporating user feedback.

In the second stage, we analyzed WCAG 2.1 alongside rule definitions from automated testing tools (Axe-Playwright [33], WAVE
[54], AChecker [1]), extracting and consolidating violation types. We adopt naming conventions from Axe-Playwright to ensure
consistency and interpretability (e.g., button-name, html-has-lang, color-contrast). Each type was defined by its associated
WCAG and required correction logic. For instance, although both form-label-mismatch and button-1label-mismatch relate to
label mismatch, we identified them as distinct semantic accessibility violations: the former refers to form elements whose labels fail
to describe their input purpose, while the latter involves buttons with labels that do not reflect their action. Violations exhibiting
functional overlap were merged or redefined to ensure mutually exclusive boundaries.

In the third stage, we validated the taxonomy’s relevance and generalizability by evaluating its alignment with outputs from
automated testing tools (Axe-Playwright [33], WAVE [54], AChecker [1]) and cross-referencing the prevalence of accessibility
violations against large-scale reports from the WebAIM 2025 study [55]. For semantic accessibility violations— absent from
automated tools—we conducted manual audits of Web pages from [55]. Violations were retained only if observed repeatedly across

Web pages.

Manuscript submitted to ACM

® < Qe e o =

S o

<!DOCTYPE html>
<!-- Violation 1:
<html>
<head>

<!--Violation 2:

Missing Language Attribute (Syntax)-->

Viewport prevents scaling, zooming (Layout)-->

<meta name="viewport" content="width=device-width,minimum
scale=1,maximum-scale=1,user-scalable=no">
<title>Health Information Portal</title>
<link rel="stylesheet" href="styles.css">
</head>
<body style="font-family: Arial, sans-serif; background-color: #
fafafa; color: #888888;">
<!-- Violation 3: Contrast between foreground and background
doesn't meet WCAG 2 AA minimum contrast ratio thresholds (
Layout)-->
<div style="background-color: #333; padding: 15px;">
<h1 style="color: #888888;">Welcome to the Vitamin Resource
Hub Portal</h1>
<div class="content">
<h2>Learn how vitamins can boost your health and well-being</
h2>
<p>Essential Vitamins</p>
<!-- Violation 4: Scrollable region not keyboard accessible (
Syntax)-->
<div class="scrollable-content">
<p>Vitamin A </p>
<p>Vitamin C</p>
<p>Vitamin D</p>
<p>Vitamin E</p>
<p>Vitamin K</p>
</div>
<!-- Violation 5: Image alt text not descriptive (Semantic)-->

<!-- Violation 6: Table structure missing accessibility
attributes (Syntax)-->
<table>
<tr>
<td>Vitamin</td>
<td>Recommended Daily Amount</td>
</tr>
<tr>
<td>Vitamin C</td>
<td>75 mg</td>
</tr>
<tr>
<td>Vitamin D</td>
<td>600 IU</td>
</tr>
</table>
<!-- Violation 7: Link without discernible text (Syntax)-->
<img src="https://vitaminguide.
png" height="95" width="95">
<p>Select which topics you want to include in your
personalized vitamin guide:</p>
<!-- Violation 8: Nested interactive elements (Syntax)-->
<div>
<label class="vitamin-checkbox" role="checkbox" aria-
checked="false">
<input type="checkbox"> Special Vitamin Tips for Kids
</label>
<label class="vitamin-checkbox" role="checkbox" aria-
checked="false">
<input type="checkbox"> Vitamins for Skin Health
</label>
<label class="vitamin-checkbox" role="checkbox" aria-
checked="false">
<input type="checkbox"> Daily Multivitamin
Recommendation
</label>
</div>
<!-- Violation 9: Button without discernible text (Syntax)-->
<button class="subscribe-button" type="button">

</button> </div> </div> </body></html>

Listing 1. Synthesized HTML web page from our dataset containing
accessibility violations. The listing shows the accessibility violations

detected by AccessGuru.

o v W o =

S o ® =

<!DOCTYPE html>

<!-- Fixed Violation 1: Added Language Attribute -->

<html lang="en">
<head>

<!-- Fixed Violation 2: Viewport allow scaling, zooming-->

<meta name="viewport content="width=device-width, initial

scale=1">
<title>Health Information Portal</title>

<link rel="stylesheet” href="styles.css">

</head>
<body style="font-family: Arial, sans-serif; background-color: #
fafafa; color #fafafa;">
<!-- Fixed Violation 3: Changed contrast between foreground and
background to meet WCAG 2 AA standards -->
<div style="background-color #333; padding: 15px;">
<h1 style="color: #fafafa;">Welcome to the Vitamin Resource

Hub Portal</h1>

<div class="content">
<h2>Learn how vitamins can boost your health and well-being</
h2>

<p>Essential Vitamins</p>

<!-- Fixed Violation 4: Scrollable region accessible via keyboard
(added tabindex attribute) -->
<div class="scrollable-content” tabindex="0" >
<p>Vitamin A </p>
<p>Vitamin C</p>
<p>Vitamin D</p>
<p>Vitamin E</p>
<p>Vitamin K</p>
</div>
<!-- Fixed Violation 5: Replaced nondescriptive alt text--> <img
src="https://img.Webmd.com/woman. jpg" alt=" Woman reading
vitamin box label while standing in a pharmacy aisle.">
<!-- Fixed Violation 6: Table structure & accessibility
attributes (<th>) -->
<table>
<thead>
<tr>
<th scope="col">Vitamin</th>
<th scope="col">Recommended Daily Amount</th>
</tr> </thead> <tbody>
<tr>
<td>Vitamin C</td>
<td>75 mg</td>
</tr>
<tr>
<td>Vitamin D</td>
<td>600 IU</td>
</tr> </tbody> </table>
<!-- Fixed Violation 7: Added accessible text for the link-->
<img src="https://vitaminguide.
png" alt="Link to download PDF guide on vitamins">
<p>Select which topics you want to include in your
personalized vitamin guide:</p>
<!-- Fixed Violation 8: Removed improper nesting of interactive
elements -->
<div>
<label class="vitamin-checkbox">
<input type="checkbox" aria-label="Special Vitamin
Tips for Kids"> Special Vitamin Tips for Kids
</label>
<label class="vitamin-checkbox">
<input type="checkbox" aria-label="Vitamins for Skin
Health"> Vitamins for Skin Health
</label>
<label class="vitamin-checkbox">
<input type="checkbox" aria-label="Daily Multivitamin
Recommendation"> Daily Multivitamin
Recommendation
</label>
</div>
<!-- Fixed Violation 9: Added discernible text for button -->

<button class="subscribe” aria-label="Subscribe

to Vit

type="button”
amin Newsletter">

</button> </div> </div> </body></html>

Listing 2. AccessGuru delivers this accessibility-compliant HTML code

when provided with Listing 1.

245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271

275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304

305

6 Nadeen Fathallah, Daniel Hernandez, and Steffen Staab

Fig. 1. Interface of the Web page before (a) and after (b) correction with AccessGuru, corresponding to the code in Listing 1 and Listing 2.
This example includes corrections of all three accessibility violation types: (1) Syntactic—added missing table headers and ARIA attributes, (2)
Semantic—replaced non-descriptive alt text with meaningful descriptions, and (3) Layout—adjusted color values to improve contrast. The overall
visual appearance remains largely unchanged for typical users.

Welcome to the Vitamin Resource Hub Portal

Learn how vitamins can boost your health and well-being

Essential Vitamins

Vitamin A
Vitamin C

Vitamin D

Vitamin Intake

Vitamin Recommended Daily Amount
Vitamin C 75 mg

Vitamin D 600 IU

Select which topics you want to include in your personalized vitamin guide:
@ Special Vitamin Tips for Kids
@ Vitamins for Skin Health

@ Daily Multivitamin Recommendation

[Subscribe

M Subscribe

(b)

o Syntactic accessibility violations arise when the required accessibility-enhancing HTML elements and attributes are missing
or malformed. These include elements like alt text for images or ARIA (Accessible Rich Internet Applications) attributes,
which help define the behavior and purpose of interactive components. Syntactic accessibility compliance is fulfilled if
all required and useful syntactic constructs for indicating accessibility information are present. For instance, in Listing 1
Violation 6 (line 27), a table presenting vitamin data lacks accessibility syntax elements like <th> and scope attributes.
This omission hinders screen readers from correctly identifying table headers, making it difficult for visually impaired
users to understand the relationship between vitamins and their recommended daily amounts.

o Layout accessibility violations occur when the visual and spatial arrangement of content fails to meet accessibility guidelines.
This includes sufficient color contrast between text and background to ensure readability. It also includes ensuring that
users can adjust content presentation based on their needs, such as enabling text scaling and zooming.

o Semantic accessibility violations occur when HTML accessibility elements are present but fail to convey meaningful content.
In Listing 1 Violation 5 (line 25), an image includes an alt attribute set to the generic string "image"—a common issue

caused by auto-generated text. The corrected version is shown in Listing 2, line 25.

Our taxonomy comprises over 112 violation types. Each violation is annotated with associated WCAG guidelines, impact level, and
required supplementary information (e.g., image-alt-not-descriptive requires the image alongside the HTML to detect and
correct the violation). For syntactic and layout accessibility violations, impact levels are derived from existing tools [33], which
judge the severity of each violation based on how much it hinders user interaction with the Web content. For semantic accessibility
violations, we manually assign impact levels using analogous criteria (e.g., button-label-mismatch inherits the "Critical" level
from its syntactic counterpart button-name). A representative subset is shown in Table 13, and the complete taxonomy can be

found in the supplementary material of this paper.

4 Methodology

AccessGuru addresses Web accessibility violations in two stages: first, by automatically detecting accessibility violations, and
second, by automatically generating corrections for the detected accessibility violations.

Manuscript submitted to ACM

306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322

324

325

327
328
329
330
331
332
333
334

336
337
338
339
340
341
342
343
344

346

347

349

362
363
364
365

366

AccessGuru: Leveraging LLMs to Detect and Correct Web Accessibility Violations in HTML Code 7

4.1 AccessGuruDetect: Web Accessibility Violation Detection

AccessGuruDetect uses an Axe-Playwright-based detector to detect syntactic and layout accessibility violations following method-
ologies from similar studies [2, 23] and an LLM to detect semantic accessibility violations (See Figure 2).

Given a target HTML document, AccessGuruDetect executes the following steps:

(1) The Axe-Playwright tool is executed on the target HTML document; the tool generates a detailed violation report, which
includes for each violation: (a) violation name, (b) affected HTML elements, (c) violation description, and (d) impact
level. We enrich the violation with (e) numerical violation scores ranging from 1 (lowest) to 5 (highest) by mapping
the qualitative impact levels reported by Axe-Playwright ("cosmetic”, "minor", "moderate”, "serious", and "critical") to
corresponding numeric values.

(2) For each violation, we use the violation name to query our predefined taxonomy, which specifies whether supplementary
information beyond the HTML is required for correction (see Table 13). If additional data is needed—such as color values
for contrast violations—we extract it as (f) supplementary information from the rendered HTML document (e.g., computed

CSS styles for background and foreground colors).

To detect semantic accessibility violations, AccessGuru uses an LLM-based semantic detector that runs in parallel to the Axe-
Playwright-based detector. Given the raw HTML document and a screenshot of its rendered view. AccessGuruDetect executes the

following steps:

(1) The HTML document is rendered in a headless browser that captures a long screenshot, resulting in a full-page image to
handle scrolling. The image is captured at a resolution of 1920x1080 pixels.

(2) The LLM is prompted with the HTML document, screenshot, and our semantic violation taxonomy. We show the prompt
template in Table 8. The prompt instructs the LLM to identify all semantic accessibility violations and enclose violation
(a) names and (b) affected HTML elements within string markers (e.g., [START], [END]). To support reasoning over
non-textual content (Web page screenshot), the LLM must exhibit multimodal capabilities.

(3) Each marked segment is matched against the original HTML code to ensure it refers to an existing element.

(4) If any of the returned HTML segments do not match elements in the original HTML, they are discarded as hallucinations
and excluded from the final set of detected violations.

(5) For each violation, we use the violation name returned by the LLM to look up our taxonomy to assign (c) violation
description, (d) impact level ("cosmetic", "minor", "moderate", "serious", and "critical"). We enrich the violation with (e)
numerical violation scores ranging from 1 (lowest) to 5 (highest).

(6) For each violation, we use the violation name to look up our taxonomy to determine if supplementary information to the
HTML is required (e.g., images for image-alt-not-descriptive, videos for video-caption-alt-not-descriptive). If

so, we extract (f) supplementary information crucial for correcting accessibility violations.

For illustration purposes, Listing 1 includes annotated comments to indicate the locations of accessibility violations; these comments
are added manually for reader clarity and are not provided as input to AccessGuruDetect. When the unannotated HTML in Listing 1
is processed, AccessGuruDetect identifies all the annotated accessibility violations. Each detector runs independently, and the
aggregated output is stored as a single JSON file containing a set of violation entries. Samples from the output are shown in Tables
1and 2.

AccessGuruCorrect operates on the output of AccessGuruDetect—a set of detected Web accessibility violations—taking as input

V ={v1,02,...,0n}, where each v; represents an individual violation (see Figure 2).

4.2 AccessGuruCorrect: Web Accessibility Violation Correction

AccessGuruCorrect operates on the output of the AccessGuruDetect—a set of detected Web accessibility violations—taking as input
V = {v1,02,...,0n}, where each v; represents an individual We accessibility violation (see Figure 2).

Each violation includes the affected HTML element(s), violation metadata (See Tables 1 and 2 for sample inputs). The goal
is to generate correct HTML for each violation that minimizes the total violation score, as shown in Figure 3 and detailed in
Algorithm 1.

For each violation v, detected by AccessGuruDetect and enriched with violation-specific data such as supplementary information

when required (e.g., images for image-alt-not-descriptive, videos for video-caption-alt-not-descriptive), we construct
Manuscript submitted to ACM

367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427

8 Nadeen Fathallah, Daniel Hernandez, and Steffen Staab

Fig. 2. Overview of the AccessGuruDetect. Given a raw HTML document (left), it applies two detectors: (1) a syntax and layout detector based
on the Axe-Playwright accessibility testing engine and (2) an LLM-based semantic detector. The output set of detected accessibility violations
(right).

Violation Category Syntax violations occur when HTML code lacks essential structural |
detected by elements or attributes required for accessibility.
accessibility Violation name button-name
testing. HTML element(s) affected | <button class= "subscribe-button” type="button"><img src= |
engine-based “"https://ScreenShot.png"> </button>
syntax & layout | Description Ensures buttons have discernible text.
Detector Impact Critical
~ Violation Score 5
Playwright .
Accessibility testing engine-based .
Syntax & Layout Detector
.
—_— ——
N
O,
2
.
[O
‘o .
Violation Catagory E ations isuse or absence of
> Spectal Vitanin Tips for Kids detected by orattributes, such as vague alt text or improper use of semantic elements
LLM-based Semantic Detector LLM-based — tike <header> or <section..
e detector | Violation name image-alt-not-descriptive]
* Whanion Par Iin Saadi) e HTML element(s) affected
ole Description Alt text does not describe the image content,
Daily Multivitamin R [Impact Critical
Violation Score 5
. Supplementary Information
AccessGuru Detection Module
Input: Output:
HTML document Set of detected accessibility violations

an initial prompt (Algorithm 1: line 3) and submit it to a pre-trained LLM (Algorithm 1: line 4). For semantic violations, the LLM
must possess multimodal capabilities to reason over non-textual content (e.g., images for image-alt-not-descriptive, videos
for video-caption-alt-not-descriptive).

The initial prompt integrates three techniques: (1) role-play prompting, (2) contextual prompting, and (3) metacognitive
prompting. The role-play technique embeds a Web accessibility expert persona (See Table 9) to guide the LLM toward expert-like
behavior. Contextual prompting enriches the prompt with violation-specific data— Web page URL, domain, WCAG guidelines, and
a violation category description. Driven by our taxonomy, which defines the categories (Syntactic, Semantic, Layout) and their
associated characteristics, we include the description of the violation category in each prompt. For example, layout violations may
require CSS and responsive design awareness while preserving visual integrity for all users. These components are integrated
using metacognitive prompting; we show the prompt template Table 10.

The LLM returns a correction (LLMOutput1), enclosed between string markers (e.g., ###START### and ###END###), as
specified in the prompt. We extract the HTML snippet using regular expressions and evaluate it with AccessGuruDetect to assign
a violation score (Algorithm 1 line 5). If the score is zero, the correction is accepted (Algorithm 1: line 6). Otherwise, we apply
corrective re-prompting by adding feedback and resubmitting the prompt (Algorithm 1: lines 8-10), yielding a revised correction
(LLMOutput?2).

If the revised output still contains accessibility violations (Algorithm 1: line 11), we compare the scores of v, LLMOutput1, and
LLMOutput2 (Algorithm 1: line 12). The version with the lowest score is selected as the final correction (Algorithm 1: line 13),
with ties resolved by preferring the most recent output.

Our scoring mechanism is robust to new LLM-induced accessibility violations by treating all accessibility violations equally in
the total violation score. For instance, if LLMOutput1 yields a violation score of 4, while LLMOutput?2 introduces two accessibility
violations scoring 1 and 2 (total 3), we prefer LLMOutput2. Conversely, if both LLM outputs score worse than the original input
(e.g., LLMOutput1 violations score = 4 and LLMOutput2 violations score = 3 vs. v violations score = 2), we select the original code
as the output.

The output is the correction generated by AccessGuruCorrect, which is appended to its corresponding JSON entry in the set, as
shown in Tables 1 and 2. Resulting in a final JSON file that contains all detected accessibility violations along with their suggested

corrections.

Manuscript submitted to ACM

428
429
430
431
432
433
434
435
436
437

439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488

AccessGuru: Leveraging LLMs to Detect and Correct Web Accessibility Violations in HTML Code

Fig. 3. Overview of AccessGuruCorrect in: For each Web accessibility violation detected by AccessGuruDetect (examples of the input accessibility
violations are shown in Tables 1 and 2), the LLM is prompted to generate the corrected code. The generated code is assigned a violation score; if
the violation score remains above zero, corrective re-prompting is applied to improve the response further.

Input:

Output from AccessGuruDetect:
Category: Syntax
Violation name: but ton-nane
HTML element(s) affected:

<button class= "subscribe-button” type="button">

<ing src= "https://ScreenShot..png"> </button>
Description: Ensures buttons have discernible text.
Impact: Critical

Violation score: 5

Contextual information:

Web page URL: www.VitaminHealthGuide.com

Domain: Health and Wellness

Category hen HTML
code lacks essential structural elements or attributes required
for accessibility.

Relevant WCAG guidelines: WCAG 4.1.2 Name, Role,
Value Markup: is used in a way that facilitates accessibility.
‘This includes following the HTML specifications and using
forms, input labels, frame titles, etc., appropriately. ARIA is
used appropriately to enhance accessibility when HTML is not
sufficient

[0}
If violation score >0 —>

Yes

Corrective Re-Prompting
Generation

Roleplay Prompting

Contextual +
Metacognitive Prompting

Initial Prompt Generation Ez::a?c:n Calculate
LLM Output 1 Violation Score
Roleplay Prompt Initial AccessGuru
Prompting 1 Correction -
o3 S Detect >
Contextual + LLM
Metacognitive
Prompting
Corrective
) Ca_lculate Re-prompting
Violation Score LLM Ouput 2 Execution
Revised Prompt
AccessGuru Correction 7%
Detect < é]‘[
LLM
Output: No
Transformed < [f violation score > 0
code to
comply with
WCAG 2.1
Yes
Output:

Select lowest violation score (Input, Initial Correction, Revised Correction)

Output:
Transformed
code to comply
with WCAG
2.1

Algorithm 1 AccessGuruCorrect

10:
11:
12:
13:
14:
15:
16:
17:

—
3

1
2
3
4
5:
6
7
8
9

else

else

end if
end if
end for

: return {cy,¢2,...,cn}

. input: Set of detected accessibility violations V = {v1, vy, . ..
: ouput: Set of corrected HTML segments {c1, ¢z, .
: for each violation v € V do
Construct Initial Prompt(v)
Submit prompt to LLM to obtain LLMOutput1
if ViolationScore(LLMOutput1) = 0 then

¢ < LLMOutput1

Construct Corrective Prompt(v)

Submit prompt to LLM to obtain LLMOutput2

if ViolationScore(LLMOutput2) = 0 then
¢ < LLMOutput2

»Un}

...Cn}

¢ « SelectBest (v, LLMOutput1, LLMOutput2)

Manuscript submitted to ACM

489
490
491
492
493
494
495
496
497
498

499

501

502

504
505

507
508

510

511

513
514

516
517

519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543

544

546
547
548

549

10 Nadeen Fathallah, Daniel Hernandez, and Steffen Staab

4.2.1 Correction Independence and Overwrites: AccessGuruCorrect applies corrections sequentially, generating a separate correction
for each violation. Our taxonomy ensures that violations are non-overlapping, so each correction typically modifies a different
attribute of the same HTML node. Consider the following example, where a single HTML node contains two violations:

AccessGuru generates two independent corrections:
e Violation A: link-name
-
+
e Violation B: color-contrast
- style="color:#767676;background:#303030;"
+ style="color:#FFFFFF;background:#1A1ATA;"

Each correction targets a distinct part of the node and can be applied independently. However, rare edge cases may result in
overlapping edits. For example:
<html lang="eng" xml:lang="en-GB">
AccessGuru suggests:
e Violation A: html-lang-valid
- lang="eng"
+ lang="en"
e Violation B: html-xml-lang-mismatch
- lang="eng"
+ lang="en-GB"
The second correction may overwrite the first; any overwrite, therefore, further refines the correction.
Table 1. Example JSON entry from AccessGuru’s output for a syntax violation from the HTML document in Listing 1 (Violation 9, Line 57). It

consists of: (1) the violation v detected by AccessGuru Detect, including metadata; (2) contextual information; and (3) the correction generated
by AccessGuru Correct.

Output from AccessGuruDetect:
Category: Syntax
Violation name: button-name
HTML element(s) affected:
Input to AccessGuru <button class="subscribe-button" type="button"> </button>
Correct Description: Ensures buttons have discernible text.
Impact: Critical

Violation score: 5

Contextual information:
Web page URL: www.VitaminHealthGuide.com
Domain: Health and Wellness

Category description: Syntax violations occur when HTML code lacks essential structural elements or attributes

required for accessibility.

Relevant WCAG guidelines: WCAG 4.1.2 Name, Role, Value Markup: is used in a way that facilitates accessibility.
This includes following the HTML specifications and using forms, input labels, frame titles, etc., appropriately. ARIA is

used appropriately to enhance accessibility when HTML is not sufficient.

Output from Access- | <button class="subscribe" type="button" aria-label="Subscribe to Vitamin Newsletter"> <img

Guru Correct src="https://ScreenShot.png" alt="Subscribe Button Image"> </button>

Manuscript submitted to ACM

www.VitaminHealthGuide.com

574
575
576
577
578
579
580
581
582
583
584

586
587
588
589
590
591
592
593
594
595

596

598
599
600
601
602
603
604
605
606
607
608
609

610

AccessGuru: Leveraging LLMs to Detect and Correct Web Accessibility Violations in HTML Code 11

Table 2. Example JSON entry from AccessGuru’s output for a semantic violation from Listing 1 (Violation 5, Line 25). It consists of: (1) the
violation v output from AccessGuru Detect; (2) input to AccessGuruCorrect, which is the output from AccessGuru Detect along with the contextual
information; and (3) the output correction generated by AccessGuru Correct.

Output from AccessGuruDetect:

Category: Semantic

Violation name: image-alt-not-descriptive

HTML element(s) affected:
Input to AccessGuru Description: alt text does not describe the image content.
Correct Impact: Critical

Violation score: 5

Supplementary information:

Contextual information:
Web page URL: www.VitaminHealthGuide.com
Domain: Health and Wellness

Category description: Semantic violations involve the misuse or absence of meaningful content or attributes,
such as vague alt text or improper use of semantic elements like <header> or <section>.
Relevant WCAG guidelines: WCAG 1.1.1 Non-text Content. All meaningful visual elements (e.g., images, image

buttons, image maps) must have descriptive alternative text. Form controls, inputs, multimedia, and frames must
include accessible names, labels, or titles to ensure clarity for assistive technologies.

Output from Access- | <img src="https://img.Webmd.com/woman.jpg" alt="Woman reading the label on a vitamin box while
Guru Correct standing in a pharmacy aisle.">

5 Evaluation

We evaluate the effectiveness of AccessGuru in detecting and correcting Web accessibility violations across the three categories

defined in our taxonomy: syntactic, semantic, and layout. Specifically, we ask:

e Detection Evaluation: RQ 1. To what extent can our detection method identify accessibility violations across all three
categories?

e Syntactic and Layout Correction Evaluation: RQ 2. To what extent can the LLM generate HTML code that satisfies syntactic
and layout accessibility compliance, effectively addressing Web accessibility violations?

e Semantic Correction Evaluation: RQ 3. To what extent are the LLM-generated attributes semantically meaningful, as

evaluated by human experts and in comparison to corrections made by human developers?

5.1 Dataset of Web Accessibility Violations from [23]

We use the dataset from [23] to evaluate whether AccessGuruDetect can successfully identify the reported violations and assess
whether AccessGuruCorrect can transform violations into accessibility-compliant HTML. The dataset consists of Web accessibility
violations collected from 25 URLs, including popular Websites such as Google Calendar, Slack, and BBC. The dataset contains
171 rows of accessibility violations, which were identified using the Axe-Playwright and span 40 distinct accessibility violation
types. Each violation is categorized by severity (ranging from cosmetic to critical) and includes details such as the Web page URL,
violation name, description, and HTML elements.

The dataset introduced by Huang et al. [23] represents a valuable step toward evaluating automated accessibility corrections.
However, it remains limited in several important ways. The dataset is relatively small in scale and does not offer broad coverage of
known Web accessibility violation types- 40 accessibility violation types. Moreover, upon manual inspection, we observed that the
dataset provides only HTML for each violation, which is insufficient for certain accessibility violations. For example, addressing
contrast violations requires access to the color values of foreground and background elements, which are often defined in external
CSS and not reflected in the raw HTML. This omission restricts the ability to fully detect or correct such violations.

Manuscript submitted to ACM

www.VitaminHealthGuide.com

611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633

634

636
637
638
639
640
641
642
643
644
645
646
647
648

649

651

661
662
663
664
665
666
667
668
669
670

671

12 Nadeen Fathallah, Daniel Hernandez, and Steffen Staab

5.2 Our novel dataset for benchmarking corrections of syntactic, layout, and semantic accessibility violations

We introduce a new dataset that comprehensively covers syntactic, semantic, and layout accessibility violations, reflecting real-
world accessibility violations. Our dataset was collected through a structured process guided by the WebAIM 2025 study [55],
which identifies commonly visited websites with accessibility violations. To account for variation in accessibility violations across
domains—e.g., government sites often use data tables, while e-commerce relies heavily on forms and images—we used GPT-4
[36] to identify a diverse set of popular Web domains such as health, education, government, news, technology, and e-commerce,
including multilingual websites. We then asked GPT-4 to suggest representative URLs from each category based on sites listed in
the WebAIM 2025 study [55]. This process yielded 448 URLs.

We crawled each URL using Playwright (see §5.4) and retained only those pages where document . readyState === "complete".
We applied AccessGuruDetect (Figure 2) to each URL to identify Web accessibility violations. This yielded 3,500 Web accessibility
violations. The dataset spans over 112 distinct violation types across all three categories. To our knowledge, it is the most
comprehensive publicly available dataset of real-world Web accessibility violations to date.

To ensure our evaluation reflects real-world Web accessibility violations, we sampled a representative subset of 305 violations
from our full dataset of 3,500 instances. Sampling aligns the distribution of violation types in the subset with real-world frequencies
reported in the WebAIM 2025 study [55]. This method avoids biases caused by overrepresented violation types in large-scale
crawled data but does not reflect their actual prevalence across the Web. This subset size was chosen to enable controlled and
consistent comparison across LLMs and baselines. Table 3 compares the distribution of violation categories in our subset with that

of the dataset from [23].

Table 3. Distribution of accessibility violations in our dataset and dataset from [23]

Web Accessibility Violation Category | # Violation in Our Sampled Dataset | # Violation in [23] Dataset
Syntax 195 151

Layout 55 20

Semantic 55 0

Total 305 171

Violation Types 112 40

5.3 Prompt-based baseline methods for accessibility violation correction

We compare AccessGuru to three other baselines, that use the following prompt engineering techinues to correct Web accessibility
violations: contextual prompting [37], Re-Act prompting [23], and zero-shot prompting [15], using our sampled dataset and the
dataset from Huang et al. [23] (See section 2.3).

5.4 Implementation

We implement the AccessGuruDetect using Axe-Playwright-1.51.0 for syntax and layout accessibility violations and GPT-40 for
semantic accessibility violations requiring multimodal reasoning capabilities to reason over Web page screenshot (See Section 4.1).
For AccessGuruCorrect, we evaluate three LLMs on syntax and layout accessibility accessibility violations: GPT-4-0125-preview,
Mistral-7B-v@.1, and Qwen2.5-Coder—a model optimized for coding tasks. These models vary in size, architecture, and training
methods, enabling comparison across capabilities. To correct semantic accessibility violations requiring multimodal reasoning
capabilities to reason over images (See Section 4.2 and Table 2), we use: GPT-4, Pixtral-12B, and Qwen-VL.

Handling Unreliable LLM Outputs: During the manual inspection of LLM-generated responses, we identified several
reliability issues in LLM-generated corrections. Some outputs were incomplete, hallucinated unrelated HTML, especially for long
or multilingual pages (e.g., Chinese). In other cases, the model returned only textual advice without any HTML code. To ensure a
fair and robust evaluation across all methods, we apply consistency checks to verify that LLM-generated corrections are valid and
complete. For our method, we explicitly instruct the LLM to enclose the corrected code between string markers (e.g., ###START###
and ###END###), enabling reliable extraction via regular expressions. For baselines that do not follow this format, we extract the

first valid HTML snippet from the response heuristically, using pattern matching for common HTML tags.
Manuscript submitted to ACM

672
673

674

676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719

720

AccessGuru: Leveraging LLMs to Detect and Correct Web Accessibility Violations in HTML Code 13

For all LLM responses in our experiments, we manually verify that the extracted HTML contains a structurally valid and
complete correction. If the response is missing required elements, contains malformed markup, or consists solely of textual advice,
we flag it as not fixed. In these cases, the original violation score of the violation v is used as the final output score avoid inflating

performance metrics.

5.5 Evaluation Metrics

We evaluate the effectiveness of AccessGuru in detecting and correcting Web accessibility violations across the three categories.
For each category, we employ category-specific metrics to assess whether the LLM-generated corrections resolve the detected

accessibility violations, as measured by automated evaluation tools or manual validation.

5.5.1 Detection Evaluation Metrics, We evaluate accessibility violation detection performance by measuring the detected violation

count, the total number of Web accessibility violations identified across syntactic, layout, and semantic categories.

5.5.2 Syntactic and Layout Correction Metrics, we evaluate syntactic and layout accessibility compliance based on the reduction in
violation scores. To calculate the average violation score of the entire dataset R, we use Equation 1, where i represents the index of

each violation and n denotes the total number of entries in the dataset.

1 n
R=- Z ViolationScore(v;) (1)
n
i=1

To calculate the percentage improvement I in violation score, we use Equation 2, we compare the average violation scores before

Rinitial and after Rgy applying a correction method.

R
[=1- I

@

initial

5.5.3 Semantic Correction Metrics, we calculate the similarity between human-generated and LLM-generated attributes using
Sentence-BERT cosine similarity to assess the semantic quality of LLM-generated corrections. Sentence-BERT is well-suited for
this task as it captures semantic meaning [42], making it more robust than traditional word-overlap metrics such as BLEU [39]
or ROUGE [28], which rely on exact n-gram matches. We then computed the average similarity score to evaluate the alignment
between human and LLM-generated attributes. For instance, given an LLM-generated alt text attribute: "A golden retriever playing

with a ball in a grassy park." We compare it to three human-generated variants:

o "A dog fetching a ball in a green field." (Similarity: 0.5986)
o "A golden retriever running in the park with a toy." (Similarity: 0.8364)
o "A happy dog playing outdoors with a ball." (Similarity: 0.6760)

The average similarity score across these responses is 0.7037, indicating a strong semantic alignment.

6 Experiments and Results
6.1 Detecting Accessibility Violations Experiments and Results (RQ1)
To evaluate RQ1—, we applied AccessGuruDetect to the HTML documents of the 16 URLs from the dataset by Huang et al.[23].

Table 4 compares the number of detected violations by AccessGuru Detect against those originally reported in the dataset [23],
AccessGuru Detect outperforms the original dataset by additionally detecting 104 semantic and more layout violations (15 vs. 8).

Although both methods use Axe-Playwright for detecting syntax and layout violations, AccessGuruDetect reports fewer syntax
(82 vs. 118) and more layout violations (15 vs. 8). To investigate this discrepancy, we refer to the counts reported in [23], which
help explain the decrease in violations detected by automatic tools. Since that dataset was collected in early 2024, some changes
in reported violations are expected due to the dynamic nature of Web content. This interpretation is consistent with broader
trends: according to the WebAIM Million study [55], Web accessibility has seen incremental improvements over the past year. For

example, low color contrast violations decreased from 81% in 2024 to 79.1% in 2025.
Manuscript submitted to ACM

733
734
735
736
737
738
739
740
741
742
743

744

746

747

749

759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792

793

14 Nadeen Fathallah, Daniel Hernandez, and Steffen Staab

Table 4. Comparison of accessibility violation detection coverage on 16 Web pages from the dataset of Huang et al. [23].

Web Accessibility Violation Category | Detected by [23] | Detected by AccessGuruDetect
Syntax 118 82

Layout 8 15

Semantic 0 104

Total 126 201

6.2 Syntactic and Layout Correction Experiments and Results (RQ2)

To evaluate RQ2—, we conduct three analyses: (1) a comparison against three correction baselines, (2) a cross-LLM evaluation, and

(3) an ablation study to assess the impact of our corrective re-prompting strategy.

Baselines Comparison. We compare AccessGuru with three prompting-based baselines: contextual prompting [37], ReAct
prompting [23], and zero-shot prompting [15]. As shown in Table 5, AccessGuru consistently achieves the highest violation score
decrease and number of corrected violations on both our dataset and the Huang et al. dataset [23]. With GPT-4, AccessGuru
reduces violation scores by 0.84 (204 corrections) on our dataset, significantly outperforming ReAct and contextual prompting
(0.50 and 0.46, respectively). On the Huang et al. dataset with GPT-4, AccessGuru reduces violation scores by 0.83 (141 corrections),
significantly outperforming ReAct and contextual prompting (0.48 and 0.42, respectively).

Cross-LLM Comparison. AccessGuru was tested with GPT-4, Qwen2.5, and Mistral-7B. GPT-4 consistently achieved the best

performance across all correction tasks as shown in Table 5.

Ablation Study. To assess the impact of the corrective re-prompting strategy, we executed AccessGuru without the re-prompting
phase using GPT-4. Performance dropped from 0.84 to 0.72 on our dataset, confirming the added value of this component. Even
without it, AccessGuru outperforms the best-performing baseline, Re-Act prompting (0.50). This pattern holds consistently across
all LLMs evaluated.

Qualitative Analysis. During the manual inspection of the results, we observed that all three baselines often provided incomplete
solutions or adopted an "Occam’s Razor" approach, where problematic elements were removed rather than properly corrected.
This was frequently observed in long HTML snippets; when asked to correct an HTML snippet with sixteen elements, the output
would only contain nine. In contrast, our method did not exhibit these issues. By asking the LLM to generate the code between
string markers (###START### and ###END###) in our prompts as shown in Table 10, we improved the model’s ability to provide
complete solutions. We also observed that baseline methods would occasionally resolve color contrast accessibility violations by
changing both background and foreground colors to black and white. While this resolves the accessibility violation for users with
diverse abilities, it distorts the visual design and layout for normal users. This behavior was not observed in our method’s results,
as our prompt template—shown in Table 10—was driven by our proposed taxonomy. The taxonomy entails that correcting layout
accessibility violations shouldn’t distort the visual design and layout for all users. We attribute the notably poor performance
of the zero-shot prompting baseline [15] to the nature of its prompt design shown in Table 12. The prompt asked, “Is the
following HTML code accessible?” without distinguishing between detection and correction tasks. As a result, we observed
that the LLM often failed to recognize existing accessibility violations, and in cases where it did, it sometimes responded with
only a confirmation that a violation was present, without generating the corrected code. This ambiguity in the prompt limited the
effectiveness of the zero-shot approach across both datasets. Additionally, the lack of explicit reference to accessibility guidelines

often leads to corrections that don’t comply with recognized standards.

6.3 Semantic Correction Experiments and Results (RQ3)

To evaluate RQ3—, we conducted two complementary evaluations: (1) human annotation to assess WCAG compliance and (2) a

developer correction study to compare LLM corrections with those of human experts.

Human Annotation for WCAG Compliance. Two human annotators with five years of web development and accessibility

experience reviewed corrections for 55 semantic violations from our sampled dataset. The human annotators assigned a violation
Manuscript submitted to ACM

794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813

814

816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844

846

AccessGuru: Leveraging LLMs to Detect and Correct Web Accessibility Violations in HTML Code 15

Table 5. Comparison of violation score decrease and number of corrected accessibility violations for syntax & layout violations on our dataset
and the dataset from [23].

Our Dataset (Size=250) Huang et al. Dataset [23] (Size=171)

Method Model Avg. Violation # Corrected | Avg. Violation # Corrected

Score Decrease Violations | Score Decrease Violations
Contextual prompting [37] GPT-4 0.46 123 0.42 86
ReAct prompting [23] GPT-4 0.50 141 0.48 91
Zero-shot prompting [15] GPT-4 0.19 43 0.12 19
AccessGuru w/o reprompting (Ours) GPT-4 0.72 184 0.67 119
AccessGuru(Ours) GPT-4 0.84 204 0.83 141
Contextual prompting [37] Mistral-7B 0.12 44 0.27 62
ReAct prompting [23] Mistral-7B 0.13 45 0.26 43
Zero-shot prompting [15] Mistral-7B 0.05 10 0.002 2
AccessGuru w/o reprompting (Ours) | Mistral-7B 0.50 162 0.51 110
AccessGuru (Ours) Mistral-7B 0.82 200 0.79 147
Contextual prompting [37] Qwen2.5 0.41 121 0.39 77
ReAct prompting [23] Qwen2.5 0.44 130 0.37 71
Zero-shot prompting [15] Qwen2.5 0.14 54 0.19 49
AccessGuru w/o reprompting (Ours) | Qwen2.5 0.49 153 0.52 103
AccessGuru (Ours) Qwen2.5 0.74 183 0.75 126

score of 0 if the correction fully resolved the accessibility violation according to WCAG 2.1; otherwise, the original violation score
assigned during the detection of the semantic violation was retained. For example, if an image originally had the alt text “image”
(violation score 5), and the LLM corrected it to a descriptive alt text, the violation was considered resolved, and the annotator
assigned the correction a score of 0. If the correction is still vague (e.g., “image alt text”), the human annotator assigns a correction
violation score of 5. We then computed the average violation score decrease across all samples—i.e., how much the violation
score was reduced after correction. As shown in Table 6, AccessGuru with GPT-4 achieved the highest average violation score
decrease (0.96), resolving 53 out of 55 violations. This outperformed both ReAct prompting (0.87) and contextual prompting (0.82),

confirming the effectiveness of our approach for semantic correction.

Qualitative Analysis. We also manually reviewed the semantic correction quality across GPT-4, Qwen-VL, and Pixtral, each
showing distinct strengths. We found that explicitly instructing the model to consider the screenshot in the prompt—shown
in Tables 10, 11,12—was critical for eliciting image-grounded responses across all models. GPT-4 offered the most balanced
performance, accurately integrating HTML structure and visual cues with minimal hallucinations. Qwen-VL showed strong
image-based reasoning but frequently hallucinated additional HTML or introduced unrelated structures, especially. Pixtral, by
contrast, preserved original HTML faithfully and avoided unnecessary changes but often failed to ground its corrections in the
provided image. For example, when prompted to generate alt text for the HTMLS5 logo, it produced generic attributes such as: (1)
“an orange and white SVG graphic,” rather than a meaningful description of the image’s identity—e.g., “the HTMLS5 logo.”

Comparison with Human Developer Corrections. To assess how closely AccessGuru aligns with human correction behavior, we
conducted a human developer correction study. This human developer correction study builds on findings from prior work [17],
which demonstrated that LLMs are capable of generating semantic corrections. In particular, that study showed that GPT-based
models could effectively address the video-caption-not-descriptive violation with corrections comparable in quality to those
written by human annotators. Three full-stack developers independently corrected the same 55 semantic violations. Each developer
received the HTML, violation metadata, and WCAG guidance—identical to what AccessGuru receives. We measured the similarity
between LLM- and human-generated corrections using Sentence-BERT cosine similarity. As shown in Table 7, AccessGuru (GPT-
4) achieved an average semantic similarity score of 0.77 when compared to human-generated corrections, indicating that the
LLM-produced outputs closely matched the phrasing, structure, and meaning of human-written solutions.

Manuscript submitted to ACM

859

861
862
863
864
865
866
867
868
869

886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914

915

16 Nadeen Fathallah, Daniel Hernandez, and Steffen Staab

Table 6. Comparison of violation score decrease and number of corrected accessibility violations for semantic violations on our dataset (Size=55).

Method Model | Avg. Violation Score Decrease | # Corrected Violations
Contextual prompting [37] GPT-4 0.82 44
ReAct prompting [23] GPT-4 0.87 48
Zero-shot prompting [15] GPT-4 0.33 18
AccessGuru w/o reprompting (Ours) GPT-4 0.92 51
AccessGuru(Ours) GPT-4 0.96 53
Contextual prompting [37] Pixtral 0.75 41
ReAct prompting [23] Pixtral 0.81 44
Zero-shot prompting [15] Pixtral 0.54 29
AccessGuru w/o reprompting (Ours) Pixtral 0.83 46
AccessGuru(Ours) Pixtral 0.92 51
Contextual prompting [37] Qwen-VL 0.60 32
ReAct prompting [23] Qwen-VL 0.37 20
Zero-shot prompting [15] Qwen-VL 0.18 8
AccessGuru w/o reprompting (Ours) | Qwen-VL 0.69 37
AccessGuru(Ours) Qwen-VL 0.75 41

Table 7. Sentence-BERT similarity between AccessGuru (GPT-4) and human corrections across semantic violation categories

Violation Category # Violations | Avg. Similarity
image-alt-not-descriptive 6 0.83
lang-mismatch 18 0.84
link-text-mismatch 11 0.68
form-label-mismatch 5 0.70
ambiguous-heading 4 0.68
page-title-not-descriptive 3 0.86
button-label-mismatch 8 0.83
Average Across 55 Violations 0.77

While overall similarity scores indicate strong semantic alignment, certain categories—most notably 1ink-text-mismatch and
form-label-mismatch—had lower scores. For 1ink-text-mismatch, this is likely due to the LLM’s inability to access the target
of hyperlinks, especially when the destination is a downloadable file (e.g., Click here). Without
knowing the link’s content, the model cannot generate a descriptive label like Download quarterly report.In contrast, when
the link points to another section of the same page (e.g., #contact), the LLM performs better by using the surrounding context. In
the case of form-label-mismatch, the LLM sometimes fails to infer connections between labels and input fields.

A full comparison of all methods across LLMs and violation types is provided in Tables 5 and 6, showing that AccessGuru

consistently outperforms baselines on both datasets and across syntactic, layout, and semantic accessibility violations.

7 Limitations

We have shown that AccessGuru works conceptually and have evaluated it thoroughly. However, several non-trivial engineering
efforts have not yet been integrated into our current implementation. These include the reconstruction of a fully corrected
HTML document. While our correction module outputs individual corrected segments per violation, reintegrating these into
the original document requires resolving potential conflicts, particularly when multiple overlapping corrections affect nested
or related elements. For instance, corrections to a list and an image within a list item must be merged carefully to preserve the
semantic structure.

Manuscript submitted to ACM

916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975

976

AccessGuru: Leveraging LLMs to Detect and Correct Web Accessibility Violations in HTML Code 17

Fig. 4. Breakdown of top 10 uncorrected Web accessibility violations by AccessGuru across three LLMs (GPT-4, Mistral, and Qwen).

page-has-heading-one -

color-contrast A

link-name -

duplicate-id 1

region -

landmark-one-main -

Violation Type

landmark-unique -

landmark-no-duplicate-main -

role-img-alt 1

aria-tooltip-name A

0 2 4 6 8 10 12 14
Number of Unfixed Violations

Model
AccessGuru (GPT-4) AccessGuru (Mistral) AccessGuru (Qwen)

Another limitation is the reliability of the LLM-based semantic detector; in our observations, the LLM occasionally hallucinated
accessibility violations or misidentified affected elements due to a lack of grounding in HTML attributes or structures. Long HTML
documents pose challenges; they increase the prompt length, potentially overwhelming the model’s context window and leading
to incomplete reasoning or fabricated results. The LLM-based semantic detector relies on a static screenshot of the web page,
which doesn’t capture dynamic content or alternate views such as drop-down menus, pop-ups, or language toggles.

While we manually verified the correctness of detected violations, we did not establish the complete set of ground-truth
violations for each Web page. As a result, we do not report recall or precision metrics. This limits our ability to quantify undetected
violations and fully assess detection completeness.

Finally, correcting accessibility violations is exceptionally difficult, as it requires a nuanced understanding of user needs, Web
design principles, and advanced reasoning capabilities to ensure effective correction [8, 14]. To better understand which violations
remained uncorrected, we analyzed the corrections produced by three AccessGuru models—GPT-4, Mistral, and Qwen. As shown
in Figure 4, certain violations such as page-has-heading-one, color-contrast, and link-name were consistently difficult to correct. A
limitation of AccessGuru is that it corrects color-contrast accessibility violations by adjusting foreground and background values to
meet WCAG thresholds only. However, it does not account for cases where color is used to convey meaning, such as red for errors
or green for success. In such scenarios, even after contrast improvements, users with color vision deficiencies may still struggle to
understand the intended message. Future work should investigate how visual cues like color can be supplemented with alternative

representations (e.g., icons, text labels, or ARIA attributes) to ensure the semantic meaning is preserved for all users.

8 Conclusion and Future work

Our proposed solution, AccessGuru, helps to improve Web accessibility by detecting and correcting accessibility violations in
HTML documents. AccessGuru combines automated evaluation tools with prompting strategies for pre-trained LLMs to generate
compliant corrections. AccessGuru Detect is evaluated by comparing its accessibility violation coverage against existing accessibility
detection datasets. AccessGuruCorrect is evaluated on two datasets using three different LLMs, with additional human studies to
assess the semantic quality of the corrections compared to human-generated solutions. Our benchmark extends beyond automatic
evaluation tools’ conformance by addressing semantic accessibility violations. Future work should follow this direction by also

Manuscript submitted to ACM

977
978
979
980
981
982
983
984
985

986

988

989

990

991

992

993

994

995

996

997

998

999

1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036

1037

18 Nadeen Fathallah, Daniel Hernandez, and Steffen Staab

moving beyond conformance checks and incorporating measures like task completion and usability, which automatic evaluation
tools alone do not fully capture.

An important future direction is the reconstruction of fully corrected Web pages. While our system outputs individual corrected
HTML snippets per violation, these must be re-integrated into the original document to form a coherent and fully accessible Web
page. This reconstruction process involves merging overlapping or nested corrections while preserving the semantic structure,
layout, and any unaffected content. We intend to address this engineering effort in future iterations of our system.

Additionally, future research should explore more robust grounding techniques, multi-view analysis of dynamic content—including
the use of video to capture temporal changes—and strategies to handle long-context scenarios—such as hierarchical analysis or
chunked evaluation—to improve the effectiveness of LLMs in detecting semantic accessibility violations. Finally, accessible Web
pages available in the wild could be leveraged in future work to help LLMs retrieve compliant examples and apply similar patterns

in corrections.

9 Acknowledgements

We acknowledge the support of the Stuttgart Research Focus Interchange Forum for Reflection on Intelligent Systems (IRIS).

References

[1] AChecker: IDI Accessibility. [n.d.]. AChecker: IDI Accessibility. http://www.atutor.ca/achecker/. Retrieved 25-06-2024.

[2] Patricia Acosta-Vargas, Mario Gonzalez, and Sergio Lujan-Mora. 2020. Dataset for evaluating the accessibility of the websites of selected Latin American
universities. Data in brief 28 (2020), 105013.

[3] Wasi Uddin Ahmad, Saikat Chakraborty, Baishakhi Ray, and Kai-Wei Chang. 2021. Unified Pre-training for Program Understanding and Generation. In Proceedings
of the 2021 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, NAACL-HLT 2021, Online,
June 6-11, 2021, Kristina Toutanova, Anna Rumshisky, Luke Zettlemoyer, Dilek Hakkani-Tiir, Iz Beltagy, Steven Bethard, Ryan Cotterell, Tanmoy Chakraborty,
and Yichao Zhou (Eds.). Association for Computational Linguistics, 2655-2668. doi:10.18653/V1/2021.NAACL-MAIN.211

[4] Wajdi Aljedaani, Abdulrahman Habib, Ahmed Aljohani, Marcelo Eler, and Yunhe Feng. 2024. Does ChatGPT Generate Accessible Code? Investigating Accessibility
Challenges in LLM-Generated Source Code. In Proceedings of the 21st International Web for All Conference, W4A 2024, Singapore, May 13-14, 2024. ACM, 165-176.
doi:10.1145/3677846.3677854

[5] Suliman K. Almasoud and Hassan I. Mathkour. 2019. Instant Adaptation Enrichment Technique to Improve Web Accessibility for Blind Users. In Proceedings of the
3rd International Conference on Information System and Data Mining, ICISDM 2019, Houston, TX, USA, April 6-8, 2019. ACM, 159-164. doi:10.1145/3325917.3325931

[6] Abdulaziz Alshayban, Iftekhar Ahmed, and Sam Malek. 2020. Accessibility issues in Android apps: state of affairs, sentiments, and ways forward. In ICSE °20:
42nd International Conference on Software Engineering, Seoul, South Korea, 27 June - 19 July, 2020, Gregg Rothermel and Doo-Hwan Bae (Eds.). ACM, 1323-1334.
doi:10.1145/3377811.3380392

[7] Jacob Austin, Augustus Odena, Maxwell I. Nye, Maarten Bosma, Henryk Michalewski, David Dohan, Ellen Jiang, Carrie J. Cai, Michael Terry, Quoc V. Le, and
Charles Sutton. 2021. Program Synthesis with Large Language Models. CoRR abs/2108.07732 (2021). arXiv:2108.07732 https://arxiv.org/abs/2108.07732

[8] Ana Baptista, José Martins, Ramiro Goncalves, Frederico Branco, and Tania Rocha. 2016. Web accessibility challenges and perspectives: A systematic literature
review. In 2016 11th Iberian Conference on Information Systems and Technologies (CISTI). IEEE, 1-6.

[9] Tingting Bi, Xin Xia, David Lo, John C. Grundy, Thomas Zimmermann, and Denae Ford. 2022. Accessibility in Software Practice: A Practitioner’s Perspective.
ACM Trans. Softw. Eng. Methodol. 31, 4 (2022), 66:1-66:26. doi:10.1145/3503508

[10] Ben Caldwell, Michael Cooper, Loretta Guarino Reid, Gregg Vanderheiden, Wendy Chisholm, John Slatin, and Jason White. 2008. Web content accessibility
guidelines (WCAG) 2.0. WWW Consortium (W3C) 290, 1-34 (2008), 5-12.

[11] Carmine Cesarano, Anna Rita Fasolino, and Porfirio Tramontana. 2007. Improving Usability of Web Pages for Blinds. In Proceedings of the 9th IEEE International
Symposium on Web Systems Evolution, WSE 2009, 5-6 October 2007, Paris, France, Shihong Huang and Massimiliano Di Penta (Eds.). IEEE Computer Society, 97-104.
doi:10.1109/WSE.2007.4380250

[12] Jieshan Chen, Chunyang Chen, Zhenchang Xing, Xiwei Xu, Liming Zhu, Guogiang Li, and Jinshui Wang. 2020. Unblind your apps: predicting natural-language

labels for mobile GUI components by deep learning. In ICSE "20: 42nd International Conference on Software Engineering, Seoul, South Korea, 27 June - 19 July, 2020,

Gregg Rothermel and Doo-Hwan Bae (Eds.). ACM, 322-334. doi:10.1145/3377811.3380327

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponda de Oliveira Pinto, Jared Kaplan, Harrison Edwards, Yuri swear here Nicholas Joseph, Greg

Brockman, Alex Ray, Raul Puri, Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry, Pamela Mishkin, Brooke Chan, Scott Gray, Nick Ryder, Mikhail

Pavlov, Alethea Power, Lukasz Kaiser, Mohammad Bavarian, Clemens Winter, Philippe Tillet, Felipe Petroski Such, Dave Cummings, Matthias Plappert, Fotios

Chantzis, Elizabeth Barnes, Ariel Herbert-Voss, William Hebgen Cast, Alex Nichol, Alex Paino, Nikolas Tezak, Jie Tang, Igor Babuschkin, Suchir Balaji, Shantanu

Jain, William Saunders, Christopher Hesse, Andrew N. Carr, Jan Leike, Joshua Achiam, Vedant Misra, Evan Morikawa, Alec Radford, Matthew Knight, Miles

Brundage, Mira Murati, Katie Mayer, Peter Welinder, Bob McGrew, Dario Amodei, Sam McCandlish, Ilya Sutskever, and Wojciech Zaremba. 2021. Evaluating

Large Language Models Trained on Code. CoRR abs/2107.03374 (2021). arXiv:2107.03374 https://arxiv.org/abs/2107.03374

[14] Jenny Craven. 2006. Web accessibility: A review of research and initiatives. (2006).

(13

[15] Giovanni Delnevo, Manuel Andruccioli, and Silvia Mirri. 2024. On the Interaction with Large Language Models for Web Accessibility: Implications and Challenges. In
21st IEEE Consumer Communications & Networking Conference, CCNC 2024, Las Vegas, NV, USA, January 6-9, 2024. IEEE, 1-6. doi:10.1109/CCNC51664.2024.10454680

[16] Iyad Abu Doush and Reem Qasem. 2024. Evaluating AI-Generated Web Code for Accessibility Compliance: A Metric-Driven Approach. In Proceedings of Software
Development and Technologies for Enhancing Accessibility and Fighting Info-exclusion (DSAI °24). ACM.

[17] Nadeen Fathallah, Monika Bhole, and Steffen Staab. 2024. Empowering the Deaf and Hard of Hearing Community: Enhancing Video Captions Using Large
Language Models. In Proceedings of Software Development and Technologies for Enhancing Accessibility and Fighting Info-exclusion (DSAI °24). ACM, New York,
USA, 1-9. doi:10.48550/arXiv.2412.00342

Manuscript submitted to ACM

http://www.atutor.ca/achecker/
https://doi.org/10.18653/V1/2021.NAACL-MAIN.211
https://doi.org/10.1145/3677846.3677854
https://doi.org/10.1145/3325917.3325931
https://doi.org/10.1145/3377811.3380392
https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2108.07732
https://doi.org/10.1145/3503508
https://doi.org/10.1109/WSE.2007.4380250
https://doi.org/10.1145/3377811.3380327
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://doi.org/10.1109/CCNC51664.2024.10454680
https://doi.org/10.48550/arXiv.2412.00342

1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097

1098

AccessGuru: Leveraging LLMs to Detect and Correct Web Accessibility Violations in HTML Code 19

(18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]
[29]

[30]

[31]

(32]

(33]
[34]

[35]

[36]
[37

[38]

[39]
[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

Nadeen Fathallah, Arunav Das, Stefano De Giorgis, Andrea Poltronieri, Peter Haase, and Liubov Kovriguina. 2024. NeOn-GPT: A Large Language Model-Powered
Pipeline for Ontology Learning. In The Extended Semantic Web Conference.

Mexhid Ferati and Lirim Sulejmani. 2016. Automatic Adaptation Techniques to Increase the Web Accessibility for Blind Users. In HCI International 2016 - Posters’
Extended Abstracts - 18th International Conference, HCI International 2016, Toronto, Canada, July 17-22, 2016, Proceedings, Part II (Communications in Computer and
Information Science, Vol. 618), Constantine Stephanidis (Ed.). Springer, 30-36. doi:10.1007/978-3-319-40542-1_5

Stephen M Fleming and Hakwan C Lau. 2014. How to measure metacognition. Frontiers in human neuroscience 8 (2014), 443.

Chris D Frith. 2012. The role of metacognition in human social interactions. Philosophical Transactions of the Royal Society B: Biological Sciences 367, 1599 (2012),
2213-2223.

Xiaodong Gu, Kang Min Yoo, and Sang-Woo Lee. 2021. Response Generation with Context-Aware Prompt Learning. CoRR abs/2111.02643 (2021). arXiv:2111.02643
https://arxiv.org/abs/2111.02643

Calista Huang, Alyssa Ma, Suchir Vyasamudri, Eugenie Puype, Sayem Kamal, Juan Belza Garcia, Salar Cheema, and Michael Lutz. 2024. ACCESS: Prompt
Engineering for Automated Web Accessibility Violation Corrections. CoRR abs/2401.16450 (2024). doi:10.48550/ARXIV.2401.16450 arXiv:2401.16450

Andrew Kirkpatrick, Joshue O’Connor, Alastair Campbell, and Michael Cooper. 2023. Web Content Accessibility Guidelines (WCAG) 2.1. Technical report. World
Wide Web Consortium (W3C). https://www.w3.0rg/TR/2023/REC-WCAG21-20230921/

Satwik Ram Kodandaram, Utku Uckun, Xiaojun Bi, IV Ramakrishnan, and Vikas Ashok. 2024. Enabling Uniform Computer Interaction Experience for Blind Users
through Large Language Models. In Proceedings of the 26th International ACM SIGACCESS Conference on Computers and Accessibility. 1-14.

Aobo Kong, Shiwan Zhao, Hao Chen, Qicheng Li, Yong Qin, Ruiqi Sun, Xin Zhou, Enzhi Wang, and Xiaohang Dong. 2024. Better Zero-Shot Reasoning with
Role-Play Prompting. In Proceedings of the 2024 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language
Technologies (Volume 1: Long Papers), NAACL 2024, Mexico City, Mexico, June 16-21, 2024, Kevin Duh, Helena Gémez-Adorno, and Steven Bethard (Eds.). Association
for Computational Linguistics, 4099-4113. doi:10.18653/V1/2024. NAACL-LONG.228

Yang Li, Gang Li, Luheng He, Jingjie Zheng, Hong Li, and Zhiwei Guan. 2020. Widget Captioning: Generating Natural Language Description for Mobile User
Interface Elements. In Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing, EMNLP 2020, Online, November 16-20, 2020, Bonnie
Webber, Trevor Cohn, Yulan He, and Yang Liu (Eds.). Association for Computational Linguistics, 5495-5510. doi:10.18653/V1/2020.EMNLP-MAIN.443
Chin-Yew Lin. 2004. Rouge: A package for automatic evaluation of summaries. In Text summarization branches out. 74-81.

Jiawei Liu, Chungiu Steven Xia, Yuyao Wang, and Lingming Zhang. 2023. Is Your Code Generated by ChatGPT Really Correct? Rigorous Evaluation of Large
Language Models for Code Generation. In Advances in Neural Information Processing Systems 36: Annual Conference on Neural Information Processing Systems 2023,
NeurlIPS 2023, New Orleans, LA, USA, December 10 - 16, 2023, Alice Oh, Tristan Naumann, Amir Globerson, Kate Saenko, Moritz Hardt, and Sergey Levine (Eds.).
http://papers.nips.cc/paper_files/paper/2023/hash/43e9d647ccd3e4b7b5baab53f0368686- Abstract-Conference.html

Juan-Miguel Lopez-Gil and Juanan Pereira. 2024. Turning manual web accessibility success criteria into automatic: an LLM-based approach. Universal Access in
the Information Society (2024), 1-16.

Andrea Mangiatordi and Marco Lazzari. 2018. Combined use of artificial intelligence and crowdsourcing to provide alternative content for images on websites. In 15th
IEEE Annual Consumer Communications & Networking Conference, CCNC 2018, Las Vegas, NV, USA, January 12-15, 2018. IEEE, 1-6. doi:10.1109/CCNC.2018.8319312
Shridhar Mehendale and Ankit Walishetti. 2024. DexAssist: A Voice-Enabled Dual-LLM Framework for Accessible Web Navigation. arXiv preprint arXiv:2411.12214
(2024).

Microsoft. 2024. Playwright APL https://playwright.dev. Accessed: 2024-06-30.

Daye Nam, Andrew Macvean, Vincent J. Hellendoorn, Bogdan Vasilescu, and Brad A. Myers. 2024. Using an LLM to Help With Code Understanding. In Proceedings
of the 46th IEEE/ACM International Conference on Software Engineering, ICSE 2024, Lisbon, Portugal, April 14-20, 2024. ACM, 97:1-97:13. doi:10.1145/3597503.3639187
Ahmed Njifenjou, Virgile Sucal, Bassam Jabaian, and Fabrice Lefévre. 2024. Role-Play Zero-Shot Prompting with Large Language Models for Open-Domain
Human-Machine Conversation. CoRR abs/2406.18460 (2024). doi:10.48550/ARXIV.2406.18460 arXiv:2406.18460

OpenAl 2023. GPT-4 Technical Report. CoRR abs/2303.08774 (2023). doi:10.48550/ARXIV.2303.08774 arXiv:2303.08774

Achraf Othman, Amira Dhouib, and Aljazi Nasser Al Jabor. 2023. Fostering websites accessibility: A case study on the use of the Large Language Models ChatGPT
for automatic remediation. In Proceedings of the 16th International Conference on PErvasive Technologies Related to Assistive Environments, PETRA 2023, Corfu,
Greece, July 5-7, 2023. ACM, 707-713. doi:10.1145/3594806.3596542

Leticia Seixas Pereira, Jodo Guerreiro, André Rodrigues, Tiago Jodo Guerreiro, and Carlos Duarte. 2024. From Automation to User Empowerment: Investigating
the Role of a Semi-automatic Tool in Social Media Accessibility. ACM Trans. Access. Comput. 17, 3 (2024), 13:1-13:25. doi:10.1145/3647643

Matt Post. 2018. A call for clarity in reporting BLEU scores. arXiv preprint arXiv:1804.08771 (2018).

Shreyas Sundara Raman, Vanya Cohen, Eric Rosen, Ifrah Idrees, David Paulius, and Stefanie Tellex. 2022. Planning with Large Language Models via Corrective
Re-prompting. CoRR abs/2211.09935 (2022). doi:10.48550/ARXIV.2211.09935 arXiv:2211.09935

Yongming Rao, Wenliang Zhao, Guangyi Chen, Yansong Tang, Zheng Zhu, Guan Huang, Jie Zhou, and Jiwen Lu. 2022. DenseCLIP: Language-Guided Dense
Prediction with Context-Aware Prompting. In IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2022, New Orleans, LA, USA, June 18-24,
2022. IEEE, 18061-18070. doi:10.1109/CVPR52688.2022.01755

Nils Reimers and Iryna Gurevych. 2019. Sentence-bert: Sentence embeddings using siamese bert-networks. arXiv preprint arXiv:1908.10084 (2019).

Richard Rutter, Patrick H Lauke, Cynthia Waddell, Jim Thatcher, Shawn Lawton Henry, Bruce Lawson, Andrew Kirkpatrick, Christian Heilmann, Michael R Burks,
Bob Regan, et al. 2007. Web accessibility: Web standards and regulatory compliance. Apress.

Pranab Sahoo, Ayush Kumar Singh, Sriparna Saha, Vinija Jain, Samrat Mondal, and Aman Chadha. 2024. A Systematic Survey of Prompt Engineering in Large
Language Models: Techniques and Applications. CoRR abs/2402.07927 (2024). doi:10.48550/ARXIV.2402.07927 arXiv:2402.07927

Elliot Salisbury, Ece Kamar, and Meredith Ringel Morris. 2017. Toward Scalable Social Alt Text: Conversational Crowdsourcing as a Tool for Refining Vision-to-
Language Technology for the Blind. In Proceedings of the Fifth AAAI Conference on Human Computation and Crowdsourcing, HCOMP 2017, 23-26 October 2017,
Québec City, Québec, Canada, Steven Dow and Adam Tauman Kalai (Eds.). AAAI Press, 147-156. doi:10.1609/HCOMP.V5I1.13301

Murray Shanahan, Kyle McDonell, and Laria Reynolds. 2023. Role play with large language models. Nat. 623, 7987 (2023), 493-498. d0i:10.1038/541586-023-06647-8
Darja Smite, Claes Wohlin, Zane Galvina, and Rafael Prikladnicki. 2014. An empirically based terminology and taxonomy for global software engineering.
Empirical Software Engineering 19 (2014), 105-153.

Dat Trinh Tuan, Van-Hung Phan, et al. 2012. Checking and correcting the source code of web pages for accessibility. In 2012 IEEE RIVF International Conference on

Computing & Communication Technologies, Research, Innovation, and Vision for the Future. IEEE, 1-4.

Manuscript submitted to ACM

https://doi.org/10.1007/978-3-319-40542-1_5
https://arxiv.org/abs/2111.02643
https://arxiv.org/abs/2111.02643
https://doi.org/10.48550/ARXIV.2401.16450
https://arxiv.org/abs/2401.16450
https://www.w3.org/TR/2023/REC-WCAG21-20230921/
https://doi.org/10.18653/V1/2024.NAACL-LONG.228
https://doi.org/10.18653/V1/2020.EMNLP-MAIN.443
http://papers.nips.cc/paper_files/paper/2023/hash/43e9d647ccd3e4b7b5baab53f0368686-Abstract-Conference.html
https://doi.org/10.1109/CCNC.2018.8319312
https://playwright.dev
https://doi.org/10.1145/3597503.3639187
https://doi.org/10.48550/ARXIV.2406.18460
https://arxiv.org/abs/2406.18460
https://doi.org/10.48550/ARXIV.2303.08774
https://arxiv.org/abs/2303.08774
https://doi.org/10.1145/3594806.3596542
https://doi.org/10.1145/3647643
https://doi.org/10.48550/ARXIV.2211.09935
https://arxiv.org/abs/2211.09935
https://doi.org/10.1109/CVPR52688.2022.01755
https://doi.org/10.48550/ARXIV.2402.07927
https://arxiv.org/abs/2402.07927
https://doi.org/10.1609/HCOMP.V5I1.13301
https://doi.org/10.1038/S41586-023-06647-8

1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148

1149

20

[49]

[50]

[51]

[52]

(53]

[54]
[55]

[56]

[57]

[58]

[59]
[60]

Nadeen Fathallah, Daniel Hernandez, and Steffen Staab

Muhammad Usman, Ricardo Britto, Jirgen Bérstler, and Emilia Mendes. 2017. Taxonomies in software engineering: A systematic mapping study and a revised
taxonomy development method. Information and Software Technology 85 (2017), 43-59.

Priyan Vaithilingam, Tianyi Zhang, and Elena L. Glassman. 2022. Expectation vs. Experience: Evaluating the Usability of Code Generation Tools Powered by
Large Language Models. In CHI °22: CHI Conference on Human Factors in Computing Systems, New Orleans, LA, USA, 29 April 2022 - 5 May 2022, Extended Abstracts,
Simone D. J. Barbosa, Cliff Lampe, Caroline Appert, and David A. Shamma (Eds.). ACM, 332:1-332:7. doi:10.1145/3491101.3519665

Oriol Vinyals, Alexander Toshev, Samy Bengio, and Dumitru Erhan. 2015. Show and tell: A neural image caption generator. In IEEE Conference on Computer Vision
and Pattern Recognition, CVPR 2015, Boston, MA, USA, June 7-12, 2015. IEEE Computer Society, 3156-3164. doi:10.1109/CVPR.2015.7298935

Noah Wang, Z. y. Peng, Haoran Que, Jiaheng Liu, Wangchunshu Zhou, Yuhan Wu, Hongcheng Guo, Ruitong Gan, Zehao Ni, Jian Yang, Man Zhang, Zhaoxiang
Zhang, Wanli Ouyang, Ke Xu, Wenhao Huang, Jie Fu, and Junran Peng. 2024. RoleLLM: Benchmarking, Eliciting, and Enhancing Role-Playing Abilities of Large
Language Models. In Findings of the Association for Computational Linguistics, ACL 2024, Bangkok, Thailand and virtual meeting, August 11-16, 2024, Lun-Wei Ku,
Andre Martins, and Vivek Srikumar (Eds.). Association for Computational Linguistics, 14743-14777. doi:10.18653/V1/2024.FINDINGS-ACL.878

Yuqing Wang and Yun Zhao. 2023. Metacognitive Prompting Improves Understanding in Large Language Models. CoRR abs/2308.05342 (2023). doi:10.48550/
ARXIV.2308.05342 arXiv:2308.05342

WebAIM. 2025. WAVE. https://wave.webaim.org/api/. Retrieved 2025-01-11.

WebAIM. 2025. The WebAIM Million - An Annual Accessibility Analysis of the Top 1,000,000 Home Pages. Technical Report. WebAIM.org. https://webaim.org/
projects/million/

Jules White, Quchen Fu, Sam Hays, Michael Sandborn, Carlos Olea, Henry Gilbert, Ashraf Elnashar, Jesse Spencer-Smith, and Douglas C. Schmidt. 2023. A Prompt
Pattern Catalog to Enhance Prompt Engineering with ChatGPT. CoRR abs/2302.11382 (2023). doi:10.48550/ARXIV.2302.11382 arXiv:2302.11382

Shaomei Wu, Jeffrey Wieland, Omid Farivar, and Julie Schiller. 2017. Automatic Alt-text: Computer-generated Image Descriptions for Blind Users on a Social
Network Service. In Proceedings of the 2017 ACM Conference on Computer Supported Cooperative Work and Social Computing, CSCW 2017, Portland, OR, USA, February
25 - March 1, 2017, Charlotte P. Lee, Steven E. Poltrock, Louise Barkhuus, Marcos Borges, and Wendy A. Kellogg (Eds.). ACM, 1180-1192. doi:10.1145/2998181.2998364
Yeliz Yesilada, Giorgio Brajnik, Markel Vigo, and Simon Harper. 2012. Understanding web accessibility and its drivers. In International Cross-Disciplinary Conference
on Web Accessibility, W4A °12, Lyon, France, April 16-17, 2012, Markel Vigo, Julio Abascal, Rui Lopes, and Paola Salomoni (Eds.). ACM, 19. doi:10.1145/2207016.2207027
Yeliz Yesilada and Simon Harper (Eds.). 2019. Web Accessibility - A Foundation for Research, Second Edition. Springer. doi:10.1007/978-1-4471-7440-0

Yujia Zhou, Zheng Liu, Jiajie Jin, Jian-Yun Nie, and Zhicheng Dou. 2024. Metacognitive Retrieval-Augmented Large Language Models. In Proceedings of the ACM
on Web Conference 2024, WWW 2024, Singapore, May 13-17, 2024, Tat-Seng Chua, Chong-Wah Ngo, Ravi Kumar, Hady W. Lauw, and Roy Ka-Wei Lee (Eds.). ACM,
1453-1463. doi:10.1145/3589334.3645481

A Appendix

This appendix complements our methodology by providing prompting templates and a subset of our proposed taxonomy for

categorizing Web accessibility violations.

Manuscript submitted to ACM

https://doi.org/10.1145/3491101.3519665
https://doi.org/10.1109/CVPR.2015.7298935
https://doi.org/10.18653/V1/2024.FINDINGS-ACL.878
https://doi.org/10.48550/ARXIV.2308.05342
https://doi.org/10.48550/ARXIV.2308.05342
https://arxiv.org/abs/2308.05342
https://wave.webaim.org/api/
https://webaim.org/projects/million/
https://webaim.org/projects/million/
https://doi.org/10.48550/ARXIV.2302.11382
https://arxiv.org/abs/2302.11382
https://doi.org/10.1145/2998181.2998364
https://doi.org/10.1145/2207016.2207027
https://doi.org/10.1007/978-1-4471-7440-0
https://doi.org/10.1145/3589334.3645481

1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219

1220

AccessGuru: Leveraging LLMs to Detect and Correct Web Accessibility Violations in HTML Code 21

Table 8. Prompt template used in the LLM-based semantic detector within the AccessGuruDetect module. The prompt guides the LLM to detect
semantic Web accessibility violations. We structure the prompt into fixed and dynamic components. Fixed components remain constant
across all HTML documents, while dynamic fields are populated based on the specific web page input.

Type Prompt Template
Fixed You are a Web accessibility expert. Your task is to detect semantic accessibility violations in the given HTML Web page.
These accessibility violations are often not detectable by standard automated tools and require interpretation of the content’s
meaning and user context.
Fixed A semantic violation occurs when:
- Attributes like alt text, language, or link/button labels are present but do not provide meaningful information.
- Visual or multimedia content is not described in a way that conveys its purpose to users with disabilities.
Fixed Use the information below to guide your analysis. You are operating on:
- The domain of the web page:
Dynamic {Insert Web page Domain}
Fixed - The URL of the web page:
Dynamic {Insert Web page URL}
Fixed You are provided with:
- The HTML code of the web page to analyze.
- The full semantic accessibility violation taxonomy.
This taxonomy defines specific types of semantic accessibility violations and their descriptions.
[Semantic Accessibility Violation Taxonomy]
- A screenshot of the rendered view of the web page.
Dynamic {Insert HTML here}
Dynamic {Insert Web page screenshot}
Fixed Now, review the HTML and supplementary data. List all semantic accessibility violations you detect, and for each:

1. Identify the affected HTML element. Enclose the exact HTML snippet using the markers [START] and [END].

2. Specify the violation name.

Table 9. Role-play persona used in the AccessGuruCorrect module to guide the LLM in generating WCAG-compliant HTML corrections.

Persona

You are a Web accessibility expert with a strong proficiency in HTML and a deep commitment to fixing Web accessibility

violations. You specialize in analyzing Web pages, identifying accessibility violations, and providing immediate,

corrected HTML code solutions that meet WCAG 2.1 standards. Your expertise includes resolving problems like missing

or improper alt text, insufficient heading structure, non-semantic elements, inaccessible forms, and color contrast

accessibility violations.

You are adept at transforming flawed code into compliant, clean HTML that works seamlessly with assistive technologies,

ensuring that Websites are fully navigable by keyboard and readable by screen readers. You provide the corrected code

necessary for immediate implementation, ensuring that Websites are not only compliant but truly inclusive for users

with disabilities.

Your mission is to ensure that every website and application is accessible to all users by providing expertly corrected

HTML, making the web a more inclusive space.

Manuscript submitted to ACM

1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248

1249

1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280

1281

22 Nadeen Fathallah, Daniel Hernandez, and Steffen Staab

Table 10. Initial prompt template used in the AccessGuruCorrect module. The prompt integrates role-play, contextual, and metacognitive
prompting strategies and is structured around five metacognitive stages: comprehension clarification, preliminary judgment, critical evaluation,
decision confirmation, and confidence assessment. The prompt is structured into fixed and dynamic components. The fixed components remain
constant across all samples, while dynamic fields are populated based on the violation instance. (For semantic violations involving visual content,
an additional instruction guides the LLM to reason over webpage screenshots—see purple-highlighted rows.)

Metacognitive Type Prompt Template
Stage

Comprehension ~ Fixed {Role-play persona} + Clarify your understanding of the following web accessibility violation:
Clarification

Dynamic {Category}
{Category description}
{Violation name}
{Violation description}
{URL}
{HTMLElement}
{Impact}

Fixed Impact is a rating determined by the severity of the violation, indicating the extent to which it hinders user
interaction with the Web content. The scale is [cosmetic, minor, moderate, serious, critical]

Fixed Prioritize the attached screenshot of the Web page (which visually shows the UI element with a possible Web
accessibility violation). Your tasks:

(1) Interpret the visual content of the attached image.

(2) Identify the UI element (e.g., a button or icon) shown in the image.

(3) Determine whether the element is accessible (i.e., if an image element has a meaningful alt text)
(4) Compare your findings with the corresponding HTML provided and highlight any mismatches.
(5) Suggest an accessibility-compliant fix if there’s a violation.

Dynamic {Web page screenshot}

Preliminary Fixed Based on your understanding, provide a preliminary correction for the web accessibility violation based on the
Judgment following WCAG guideline(s):

Dynamic {Relevant WCAG guideline}

Fixed Make sure your generated code corrects the web accessibility violation without introducing new accessibility
violations. Ensure you generate the complete corrected code, not just a snippet.

Critical Fixed Critically assess your preliminary correction, make sure to correct the initial web accessibility violation
Evaluation without introducing new web accessibility violations. Only make corrections if the previous answer is incorrect.
Make sure your generated code corrects the web accessibility violation without introducing new accessibility

violations.

Decision Fixed Confirm your final decision on whether the correction is accurate or not and provide the reasoning for your
Confirmation decision. Only suggest further corrections if the initial response contains errors. Make sure your generated
code corrects the web accessibility violation without introducing new accessibility violations. Enclose your
corrected HTML code to replace the initial code with accessibility violations between these two marker strings:

"###START###" as first line and "###END###" as last line.

Confidence Fixed Evaluate your confidence (0-100%) in your correction, enclose your confidence score between these two

Assessment marker strings: "###START1###" as first line and "###END1###" as last line. Provide an explanation for this
confidence level; enclose your explanation between these two marker strings: "###START2###" as the first line
and "###END2###" as last line.

Manuscript submitted to ACM

1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341

1342

AccessGuru: Leveraging LLMs to Detect and Correct Web Accessibility Violations in HTML Code 23

Table 11. Corrective re-prompting template used in the AccessGuruCorrect module. The prompt is structured into fixed and dynamic
components. The fixed components remain constant across all samples, while dynamic fields are populated based on the violation instance.
(For semantic violations involving visual content, an additional instruction guides the LLM to reason over webpage screenshots—see purple-

highlighted rows.)

Metacognitive
Prompting
Stage

Type Prompt Template

Comprehension
Clarification

Fixed {Role-play persona} + You are analyzing a web accessibility issue using a
snippet of Affected HTML Element(s) , Web page screenshot and related metadata.

The screenshot reflects exactly what is rendered to users. Follow these strict rules:

e Prioritize visual analysis: list at least three specific details observable in the image

(e.g., color, shape, text, or spatial arrangement).

e Analyze only the provided HTML snippet and metadata. Do not infer or invent additional structure,
styles, or UI elements beyond what is given.

e Avoid introducing or rewriting content not present in the HTML. Do not add or alter CSS, forms,
headers, sections, scripts, or attributes unnecessarily. Modify only the minimal code needed
to resolve the violation.

e Return only the modified lines in a fenced code block. Leave all other parts of the HTML
unchanged.

e Justify every accessibility concern directly with observable evidence from the HTML.

Clarify your understanding of the following web accessibility violation:

Dynamic {Category}

{Category description}
{Violation name}
{Violation description}
{URL}
{HTMLElement}
{Impact}

{Web page screenshot}

Fixed Impact is a rating determined by the severity of the violation, indicating the extent to which it hinders user
interaction with the Web content. The scale is [cosmetic, minor, moderate, serious, critical]

Preliminary
Judgment

Fixed Based on your understanding, provide a preliminary correction for the web accessibility violation based on the
following WCAG guideline(s):

Dynamic {Relevant WCAG guideline}

Fixed Make sure your generated code corrects the web accessibility violation without introducing new accessibility
violations. Ensure you generate the complete corrected code, not just a snippet.

Critical
Evaluation

Fixed Critically assess your preliminary correction, make sure to correct the initial web accessibility violation
without introducing new web accessibility violations. Only make corrections if the previous answer is incorrect.
Make sure your generated code corrects the web accessibility violation without introducing new accessibility
violations.

Decision
Confirmation

Fixed Confirm your final decision on whether the correction is accurate or not, and provide the reasoning for your
decision. Only suggest further corrections if the initial response contains errors. Make sure your generated
code corrects the web accessibility violation without introducing new accessibility violations. Enclose your
corrected HTML code to replace the initial code with accessibility violations between these two marker strings:
"###START###" as the first line and "###END###" as the last line.

Confidence
Assessment

Fixed Evaluate your confidence (0-100%) in your correction, enclose your confidence score between these two
marker strings: "###START1###" as first line and "###END1###" as last line. Provide an explanation for this
confidence level; enclose your explanation between these two marker strings: "###START2###" as the first line
and "###END2###" as last line.

Manuscript submitted to ACM

24 Nadeen Fathallah, Daniel Hernandez, and Steffen Staab

1343 Table 12. Prompt templates used for baseline methods, structured into fixed and dynamic components. Fixed components remain constant
across all samples, while dynamic fields are populated based on the specific violation instance. These templates are directly adapted from
the original works. (For semantic violations involving visual content, we added an additional instruction that guides the LLM to reason over
webpage screenshots—see purple-highlighted rows.)

1344

1345

1346
1347

1348 Baseline Method Type Prompt Template

1349

1350 Contextual Fixed Given the following Web page screenshot and source code, can you fix the accessibility issue related
1351 Prompting to the success criteria according to WCAG 2.1?

1352 (Othman et al.[37])

1353

1354 Dynamic {HTML}, {WCAG relevant to the violation} ,{Web page screenshot}
1355

1356 ReAct Prompting Fixed You are a helpful assistant who will correct accessibility issues of a provided website.
1357 (Huang et al. [23]) Provide your thought before you provide a fixed version of the results.
1358

1350 E.g. Incorrect: Search

1360 Thought: because ... I will ...

1361

1362 Correct: Search
1363 You are operating on this website:

1364

1365 Dynamic {Web page URL}, {violation name}, {violation description}, {fix advice}, {HTML}
1366 Fixed Given the Web page screenshot:

1367

1368 Dynamic {Web page screenshot}

1369 Zero-shot Fixed Is the following HTML code accessible?

1370 Prompting

7 (Delnevo et al. [15])

1372

1373 Dynamic {HTML}

1374

1375 Fixed Given the Web page screenshot:

1376 Dynamic {Web page screenshot}

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401
1402
1403 Manuscript submitted to ACM

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449

1450

1458
1459
1460
1461
1462
1463

1464

AccessGuru: Leveraging LLMs to Detect and Correct Web Accessibility Violations in HTML Code

25

Table 13. Subset of our Proposed Taxonomy to Categorize Web Accessibility Violations. The full taxonomy can be found in our supplementary

material.
Category Violation Description Violated Impact Supplementary In-
Name Guide- formation
lines
image-alt-not- | Inaccurate or misleading alternative text that fails to | WCAG Critical Image
Semantic descriptive describe the purpose of the image. 1.1.1
Accessibility | video-captions- | Inaccurate video captions. WCAG Critical Video
Violations | not-descriptive 1.2.1,1.2.3
lang-mismatch | Page language attribute does not match the actual lan- | WCAG Serious -
guage of the content. 3.1.1
link-text- Links fail to convey their purpose or are ambiguous. WCAG Serious -
mismatch 244,249
button-label- Button labels are unclear or fail to specify their purpose. | WCAG Critical -
mismatch 4.1.2,25.3
ambiguous- Headings are vague, repetitive, or fail to describe the | WCAG Moderate -
heading content. 2.4.6,2.4.10
incorrect- A non-semantic tag (e.g., div or span) is used instead of | WCAG Serious Document structure
semantic-tag a proper semantic element (e.g., header, nav, main). 1.3.1 (other headings, sec-
tion context)
color-only- Visual information is conveyed using color alone with- | WCAG Serious Web page Screenshot
distinction out additional indicators like text, shape, or pattern, | 1.4.1
making it inaccessible to users with color vision defi-
ciencies.
meta-viewport | Ensure <meta name="viewport"> does not disable text | WCAG Critical -
Layout scaling and zooming 1.4.4
Accessibility | color-contrast Ensure the contrast between foreground and back- | WCAG Serious Color Information
Violations ground colors meets WCAG 2 AA minimum contrast | 1.4.3 (Background and
ratio thresholds Foreground)
avoid-inline- Ensure that text spacing set through style attributes can | WCAG Serious -
spacing be adjusted with custom stylesheets 1.4.12
target-size Ensure touch targets have sufficient size and space WCAG Serious -
2.5.5
duplicate-id- Ensure every id attribute value used in ARIA and in | WCAG Critical -
Syntax aria labels is unique 4.1.2
Accessibility | tabindex Ensure tabindex attribute values are not greater than 0 | WCAG Serious -
Violations 2.1.1
duplicate-id- Ensure every id attribute value used in ARIA and in | WCAG Critical -
aria labels is unique 4.1.2
tabindex Ensure tabindex attribute values are not greater than 0 | WCAG Serious -
2.1.1
valid-lang Ensure lang attributes have valid values 3.1.2 Serious -
aria-required- | Ensure elements with ARIA roles have all required ARIA | WCAG Critical -
attr attributes 4.1.2
meta-refresh Ensure <meta http-equiv="refresh"> is not used for de- | WCAG Critical -
layed refresh 2.2.1
empty-table- Ensure table headers have discernible text WCAG Minor -
header 1.3.1,2.4.6
empty-heading | Ensure headings have discernible text WCAG Minor -
1.3.1,2.4.6

Manuscript submitted to ACM

	Abstract
	1 Introduction
	2 Related Work
	2.1 WCAG Guidelines
	2.2 Web Accessibility Violation Detection
	2.3 Web Accessibility Violation Correction
	2.4 Prompt Engineering Techniques

	3 Our Taxonomy of Web Accessibility Violations
	4 Methodology
	4.1 AccessGuruDetect: Web Accessibility Violation Detection
	4.2 AccessGuruCorrect: Web Accessibility Violation Correction

	5 Evaluation
	5.1 Dataset of Web Accessibility Violations from DBLP:journals/corr/abs-2401-16450
	5.2 Our novel dataset for benchmarking corrections of syntactic, layout, and semantic accessibility violations
	5.3 Prompt-based baseline methods for accessibility violation correction
	5.4 Implementation
	5.5 Evaluation Metrics

	6 Experiments and Results
	6.1 Detecting Accessibility Violations Experiments and Results (RQ1)
	6.2 Syntactic and Layout Correction Experiments and Results (RQ2)
	6.3 Semantic Correction Experiments and Results (RQ3)

	7 Limitations
	8 Conclusion and Future work
	9 Acknowledgements
	References
	A Appendix

