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Abstract
The track is the main contributor to railway rolling noise below 2 kHz. In this frequency
range it is usually acceptable to represent the rail vibration using a Timoshenko beam. At higher
frequencies, however, cross-section deformation occurs in the rail, which requires more
complex track models. In this paper a vibroacoustic 2.5D Finite Element and Boundary
Element model of a continuously supported rail is implemented for studying the effect of cross-
section deformation on sound radiation. A novel interpolation strategy is developed to
significantly reduce the solution time by interpolating element coefficient vectors. Results are
calculated for vertical or lateral excitation applied to the rail head and comparisons are made
with a Timoshenko beam model in which the cross-section remains undeformed. For vertical
excitation, the sound power from both models is identical below 3 kHz, while for lateral
excitation, the Timoshenko beam has differences of up to 25 dB below 200 Hz owing to the
missing rail torsion and foundation eccentricity. Above 3 kHz for vertical excitation and from
1 kHz for lateral excitation, higher-order waves contribute to the sound power, causing an
underestimation of up to 15 dB if the cross-section deformation is neglected. The calculated
transfer functions of rail sound power per unit squared force are incorporated in a rolling noise
prediction model that includes vertical and lateral dynamics. The results show that the
Timoshenko beam rail underestimates the rail sound power by up to 5 dB in comparison with
the 2.5D rail model in one-third octave bands.
Keywords: rolling noise, rail vibration, rail sound radiation, 2.5D Finite Elements,

2.5D Boundary Elements, Timoshenko beam



1 Introduction

Rolling noise is the main source of noise in railways for conventional train speeds and the
contribution of the track is usually dominant in the frequency range below 2 kHz, while the
wheel contribution is important at higher frequencies [1]. In this frequency range below 2 kHz
it is usually acceptable to represent the rail vibration using a Timoshenko beam, which neglects
the effect of rail cross-section deformation. However, such cross-section deformation becomes
significant at higher frequencies, so excluding this effect could potentially underestimate the
sound radiated from the rail at high frequencies, leading to incorrect rolling noise predictions.
In the context of auralisation, a rail model that is accurate at high frequencies can improve the
quality of the audio signals produced [2, 3].

Several modelling approaches for modelling a railway track have been proposed, depending
on the frequency range of interest. Knothe and Grassie [4] developed a dynamic railway track
model consisting of an infinite Euler-Bernoulli or Timoshenko beam on a double-layer
foundation formed by the rail pad, a sleeper and the ballast. The Timoshenko rail model of
Grassie [5] can be used for studying vertical or lateral vibrations, assuming they are uncoupled
and that the rail cross-section remains rigid. For vertical rail vibration, this is a suitable
approximation of the point mobility below 4 kHz [1]. It was also implemented in the Track-
Wheel Interaction Noise Software (TWINS), see [6, 7], where the vertical/lateral coupling is
approximated as weighted average of the vertical and lateral rail receptances [8].

To approximate the cross-section deformation in the rail, Wu and Thompson [9, 10]
employed multiple beam models, linking two Timoshenko beams representing the rail foot and
head linked via a layer of springs. For the lateral vibration, the web was represented by an array
of vertical beams that couple the rotations of the rail head and foot.

Kostovasilis et al. [11] developed a semi-analytical track model that combines Timoshenko
beam theory for vertical/lateral bending with the theories of a rod (torsional waves) and a bar
(axial waves) allowing for an elastic support. By including torsion, allowing for the eccentricity
of the foundation, and applying an off-centre excitation, they could observe different wave
types in the vertical or lateral rail responses, which would not be predicted with the classical
Timoshenko rail model from [5].

Modelling a section of the track using conventional 3D Finite Elements (FE) can lead to a
model with many degrees of freedom (DoFs), as the rail has to be discretised with sufficient
elements over its cross-section and needs a sufficient length to approximate an infinite rail and
capture the relevant waves at high frequencies. Nielsen et al. [12] used beam elements to

approximate an infinitely supported rail from a finite-length FE model. To minimise
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interference with reflections coming from the ends, the track needed to be sufficiently long to
ensure the propagating waves have decayed away sufficiently. To minimise the reflections and
allow a shorter rail section to be modelled, Yang and Thompson [13] applied a non-reflective
termination via damped tapered beam elements to the rail ends.

The analytical or FE models based on beams cannot rigorously include rail cross-section
deformation, thus, omitting the higher-order waves, which makes them unsuitable for high
frequency rail computations. To overcome these limitations, semi-analytical FE approaches
have been employed. They take advantage of the invariant rail cross-section. Two different
approaches exist: Thompson [14] applied periodic structure theory, see Mead [15], to form an
infinite rail from only a short section; this approach is also known as the Wave Finite Element,
see Mace et al. [16]. In the 2.5D FE method, as used e.g. by Gavric [17] or Gry [18], the rail
cross-section is modelled in two dimensions (2D), assuming wave propagation in the third
direction. By applying a spatial Fourier transformation to the equation of motion (EoM), the
information in the infinite third direction is retained in the wavenumber domain. Hence the
approach is termed as 2.5D.

Nilsson et al. [19] combined the 2.5D FE with a 2.5D Boundary Element (BE) model, which
was used for calculating the sound radiation of an infinite rail with an elastic single-layer
support representing a rail pad and an embedded tram rail. Similar 2.5D modelling procedures
have since been employed in several studies related to vibration and sound radiation of a
railway track [2, 20-24].

The simulations with the 2.5D BE model can become computationally expensive, as it needs
to be solved repeatedly for a large range of frequency/wavenumber combinations. Unlike an
FE model, the BE model requires re-assembly of the fully populated matrices for each
combination. In their model of a rail above an absorptive ballast layer, therefore, Ryue et
al. [21] limited their solution to the wavenumber of the dominant wave, omitting other waves
that are present. Theyssen et al. [25] proposed an interpolation method that they used to
calculate acoustic transfer functions per unit velocity on each element for evaluating the sound
field around a rail. In their method, results obtained for a fixed set of frequency/wavenumber
combinations are mapped and re-scaled between different combinations. A similar
interpolation approach was proposed by Thompson et al. [26]. However, neither approach
allows for frequency-dependent boundary conditions, e.g. for including absorptive properties
of the railway ballast.

In [2], Theyssen compared the sound power radiated by a continuously or discretely

supported Timoshenko beam and 2.5D FE rail for a vertical unit force applied at the rail centre
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or off-centre in one-third octave bands. An underestimation of up to 10 dB was found in some
bands, when using the Timoshenko beam, suggesting the 2.5D FE rail on average radiates more
sound power. However, the influence of cross-section deformation on rolling noise was not
specifically addressed, and lateral excitation of the Timoshenko beam was not considered.

In this paper the effect of rail cross-section deformation on the radiated sound power is
assessed by comparison of the normalised sound power per unit force squared obtained from a
2.5D BE model using a 2.5D FE rail and Timoshenko beam rail model for calculating the
vertical and lateral vibration input in the vibroacoustic simulations. To achieve this, an efficient
way of solving the 2.5D BE model is introduced, in which the solution times are significantly
reduced by interpolation of the element coefficient vectors instead of requiring a recalculation
at each computation. This approach is more versatile compared with existing literature (e.g.
[21, 25, 26]) as it allows for frequency-dependent boundary conditions and fast calculations up
to high frequencies with a narrow resolution. The results allow for a thorough investigation of
the effect of the cross-section deformation on the rail sound power in rolling noise calculations.

The remainder of this paper is structured as follows. In Section 2, the vibroacoustic model
of a supported railway track is described that combines the 2.5D FE and 2.5D BE methods to
evaluate the vibration and sound radiation from the rail. In Section 3, methods for efficient
solving of 2.5D FE and BE models are proposed. The vibration of the rail is investigated in
Section 4, by studying the dispersion characteristics of different waves and examining the
frequency responses for different types of excitation, after the experimental validation of the
model. In Section 5, the effect of rail cross-section deformation on vibration and sound
radiation is evaluated by a comparison of the 2.5D FE rail with a Timoshenko beam rail model.
In Section 6, both rail models are used in rolling noise predictions to assess the effects in overall

terms.



2 Vibroacoustic 2.5D model of the supported railway track

In this section, the numerical model used to calculate the vibration and sound radiation from
the rail in a ballasted railway track is presented using the 2.5D FE and 2.5D BE methods. These
approaches assume the rail is an infinite waveguide with an invariant cross-section.

The coordinates adopted in the 2.5D models can be seen in Fig. 1, showing the mesh of the
rail. It consists of 126 quadratic finite elements with 1413 DoFs. A foundation is applied to the
boundary [} at the bottom of the rail foot. The meshes of the 2.5D FE and BE models coincide
on the boundary I' of the rail perimeter. The BE mesh consists of 92 quadratic boundary
elements, the size of which is chosen to ensure that there are at least four elements per acoustic
wavelength at the highest frequency of interest, which was set to 10 kHz. Besides, the
excitation point N; at the rail head centre and a position on the rail foot N, at which vibration

is additionally observed, are marked.
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Fig. 1 Coordinate system in the 2.5D FE/BE model of the supported rail; e rail head centre
node N; (excitation point); e, rail foot node N,.

2.1 2.5D Finite Element model of the rail

For modelling the rail vibration, the 2.5D FE approach is used [17, 19]. The structure is
modelled in 2D in the y-z plane, assuming time-harmonic wave propagation in the x-direction.
Consequently, the displacement field can be decomposed as

ux (Y; Z) ) )
u(x,y,z,w) = uy(y,2) p e "¥elet (D
u, (¥, 2)
where u, (v, z), uy,(y,2z) and u,(y,z) are the displacement amplitudes in the x-, y- and z-

direction in the 2D y-z plane, k is the axial wavenumber in the x-direction in which the waves

propagate, and w is the circular frequency.



Following the derivation in [17, 19], the EoM in the spatial domain can be written as

02 d
<W K, + - K; + Ko + Kp — w2M> u(x) = f(x), (2)
where K, K; and K, are the stiffness matrices, K is the foundation stiffness matrix, and M

is the mass matrix of the structure, u and f are the vectors of the nodal displacement and force

amplitudes. The definition of the matrices, except K¢, can be found in the above references and
they are assembled using the FE procedure [27]. The foundation stiffness matrix Ky represents

the rail support and will be introduced in Section 2.2. Damping in the rail is included by means
of a complex Young’s modulus E (1 + in) with a constant loss factor 7.

By defining the spatial Fourier transform pairs of the displacements in the x-direction as
(k) = f_o:ou(x)ei"x dx and ux)= %f_o:oﬁ(lc)e‘i"x dx, 3)
and likewise those of the force as
f(x) = Lif(x)eikx dx and f(x)= %f_o;f(lc)e_i"x dk, 4)
the EoM in Eq. (2) can be expressed in the wavenumber domain as
[(—iK)?K; + (—iK)K; + Ko + Kf — w?M]ui(x) = f(x). (5)

By setting f(x) = 0 in Eq. (5), an eigenvalue problem (EVP) can be obtained that is linear
in w? or quadratic in (—ix), which can be used to obtain the results for free wave propagation
in the rail. Solving the linear EVP in w? is straightforward; moreover, by setting k = 0, the
cut-on frequencies f. = w./2m of the waves in the rail can be obtained [17].

In this application, the quadratic EVP needs to be solved to calculate the forced response

for a given w, which can be achieved by applying a linearisation of the quadratic EVP as

0 Ko + Kr — w*M — w?
K, + K; — w*M K, 0 -K,1) A,
where A is the eigenvalue, which yields the wavenumber of the n-th wave as A = —ik,, and ¢,

is the corresponding eigenvector that contains the wave shape. In a damped waveguide (n #
0), the wavenumbers are generally complex k, = *k. * ikj, and occur in doublets or
quadruples, where the real part +x.. corresponds to the wavenumber of wave propagation in
the positive or negative direction and the imaginary part —k;,, corresponds to the rate of decay.
Thus, the wave solutions correspond to propagating, evanescent, or evanescent oscillating

waves that propagate or decay in the positive and negative directions [17].



To recover the response in the spatial domain, the inverse Fourier transform in Eq. (3) is
replaced by a contour integration enclosing N poles at the wavenumbers of the 2N waves. The
N poles corresponding to waves propagating towards +x lie in the upper complex half plane
(Kim > 0) and the other N propagating in direction of —x are in the lower half-plane (kj,, <

0). The forced response is then calculated as [28]
N

— ¢n f(K) —mnx
W09 = 1) SR, — 2 K dl ¥ "

where ¢pL and ¢R are the left and right eigenvectors of the n-th wave corresponding to
wavenumber k,; if x < 0 the positive sign is used, and for x > 0 the negative sign is used
instead, and the summation is over the respective set of N poles. At each circular frequency w,
the forced response can thus be determined using the wave solutions obtained from Eq. (6). By
multiplication with iw or (iw)?, the velocity (1) or acceleration (ii) amplitude can be obtained.
If the force amplitude is set to unity at the DoF used as driving point in the rail at x = 0, the
frequency response function (FRF) is obtained. Here, results will be presented as mobility
throughout.

The forced response in the wavenumber domain, as required for the vibroacoustic
simulations with the 2.5D BE model, can be calculated as [29]

N I A () 1 ®
W09 = ) R, 281

where the summation is now over all 2N waves.
Since the nodes on the rail perimeter in the FE mesh and the BE mesh coincide, the normal
velocities 7, (k) = iwl (k). n can be obtained and used as input to the 2.5D BE model, where

n is the inward pointing normal vector.

2.2 Introducing the foundation stiffness of the track support

In the supported track model, the rail is resting on a continuous elastic foundation that is
applied to the rail foot, as shown in Fig. 1, which yields the foundation stiffness matrix Ky in
the EoM in Eqs (2) and (5). Discrete support effects such as the pinned-pinned resonances are
neglected in this study [1].

The matrix K is calculated by numerically distributing the dynamic support stiffness matrix
K over the finite element nodes along %, which coincide with the rail foot. A double-layer
support consisting of a rail pad in series with a ballasted sleeper is used, for which the dynamic

stiffness matrix (per unit length) is given as



1 _
k; = E(ap + ay) Y ©)

where a, and «; are the receptance matrices of the rail pad and the ballasted sleeper which
have a size of 3 X 3, as each node has 3 DoFs, and d is the distance between the supports.
The sleeper DoFs need to be coupled to the corresponding rail DoFs at the nodes of the rail
foot I, to assemble the global foundation stiffness matrix Ky. Equation (9) allows a rigid
sleeper or a flexible sleeper model to be used. In this paper, the sleeper is represented as a
Timoshenko beam embedded in ballast, using the model developed by Kostovasilis [30]. This
model is used to calculate o at the rail seat location on the sleeper, assuming a single point
connection to the sleeper. Damping in the rail pad is included via a complex stiffness
kp(l + inp), where 1, is the loss factor of the rail pad, while in the ballast a viscous damper
is added as kj, + iwc,, where cj, is the ballast damping coefficient. The viscous damper is

preferred here, as it better represents the dynamic stiffness of the ballast at high frequencies

[31].

2.3 Timoshenko beam model of the rail

To assess the effect of rail cross-section deformation, the 2.5D FE model is compared with
a Timoshenko beam model of the rail, in which higher-order waves and cross-section
deformation of the rail are neglected.

Following the structure of the EoM of the 2.5D model given in Eq. (6), the EoM of the
Timoshenko beam after transforming to the frequency/wavenumber domain can be written as
[30]

oa[~GAy 07, . . [0 GAy] [EI o] Kk 0]
(( LN EI]+( K _Gay o |*lo caylTlo &,

i 2)6)-E)

where A is the cross-section area and I the second moment of area of the rail, p is the density,

(10)

E the Young’s modulus and G the shear modulus of the material, y is the shear correction, k¢
and ky, are the translational and rotational dynamic stiffness per unit length of the track
support. Equation (10) is used for both vertical and lateral vibration. The classic Timoshenko
beam model only allows for a translation and a rotation DoF, # and v, respectively, for either

vertical bending (@i, and ) or lateral bending (%, and v,). Both beam equations need to be

solved separately for a unit force input in either vertical (f, = 1 N) or lateral (f;, =1N)



direction, setting the torques to zero 7, = 71, = 0. As before, rail damping is included by
using a complex Young’s modulus E (1 + in).

Writing the Timoshenko beam equation in the frequency/wavenumber domain allows the
same solution procedures to be used to solve the EoM as in Section 2.1. The resulting vertical
or lateral velocities per unit force are applied to each node of the BE mesh for the vibroacoustic
simulations with the 2.5D BE model, after resolving them in the normal direction. In this way,

the results of the Timoshenko beam rail can be compared with the 2.5D FE rail.

2.4 2.5D Boundary Element model of the rail
For modelling the 3D sound field generated by the rail, the 2.5D BE method is used. Similar
to the displacement in the 2.5D FE method, see Eq. (3), the sound pressure p can be written as

a Fourier transform pair
@ . 1 (* .
P00 = [ pCoe™rdr and  p() =5 | ke di ()

and likewise, the normal particle velocity v, (or pressure gradient dp/dn = —iwpyvy,). In the
2.5D approach, classic 2D BE problems governed by the 2D Kirchhoff-Helmholtz integral

equation need to be solved over a range of wavenumbers in the 2D plane a given by [19]

a=+k?—x2?, (12)

which is the in-plane component of the wavenumber in air k = 2nf /c,, with the speed of
sound ¢y = 343 m/s. For each frequency f, the calculations are repeated for a range of axial
wavenumbers k. For the case in which kK > k, a is real and the sound field consists of
propagating waves, i.e. sound is radiated into the far-field. On the contrary, if k < k, a is
imaginary which produces exponentially decaying near-fields in the y-z plane. If k = k, the
radiated sound power would theoretically tend to infinity [32], thus, this case is excluded from
the calculations [33].

The 2.5D boundary integral equation governing the sound radiation into an unbounded

exterior fluid domain is

CY)p(k,y) = — (f iwpoG (k, y[x) T, (1, X) + P (K, X)w dF>, (13)
r

where p(k,y) is the sound pressure at the field position y(y, z) in the fluid domain, 7, (x, X)
and p(k, X) are the normal velocity and sound pressure at a position X(y, z;) on the boundary
I of the vibrating structure, p, = 1.21 kg/m? is the density of air, G (x, y|x) and 0G (k, y|x) /dn

are the Green’s function and its normal derivative, that determine the response at field position
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y for a source located at X, and C(y) is a coefficient that depends on the position y of the
receiver. Thus, knowing 7, (k, X) and p(x,X) on the boundary I', allows the sound pressure
P(k,y) to be calculated at any field position y in the 2D plane and wavenumber domain. From
the sound pressure p(k,y) in the wavenumber domain, the solution in the spatial domain
p(x,y), i.e. along the rail, can be obtained via the inverse Fourier integral given in Eq. (11).
The range of k needs to be set sufficiently large, including solutions with real and imaginary
@, to ensure a correct calculation of the sound pressure p(x, y) at any receiver position y in the
near- or far-field.

The fundamental solution of the 2D wave equation can be employed as Green’s function in
the 2.5D BE integral equation as [19]
% _ia

)
G=—--Hy"(ar) and
470 on 4

or
WP @ 14

where Héz) and Hl(z) are Hankel functions of the second kind and order 0 and 1, respectively,
r = |x — y| is the distance between the source and receiver, and dr/dn its normal derivative.
The difference from the classic 2D Green’s function, e.g. found in [34], is that the wavenumber
k is replaced with a [19].

The Green’s function given in Eq. (14) can be used for the case where k > k with a real-
valued a. To include the exponentially decaying near-field solutions with an imaginary-valued

a,i.e. k < k, a near-field Green’s function was defined in [33] as

06__F or (15)
on 2 K, (rp) on’

where K, and K; are the modified Bessel functions of the second kind and order 0 and 1,

1
G = %Ko(rﬂ) and

respectively, and their argument B is defined as B = Vk? — k2. This Green’s function is
essentially valid for all cases [33], i.e. k < k (f = —ia) and k > k (f = ia), and can replace
Eq. (14). A rigid ground could be added in the model by adjusting the Green’s function to
account for the contribution of the mirror source [34].

The BE collocation process requires numerical integration of the Green’s function and its
normal derivative over the boundary I element-by-element to obtain the element coefficient
vectors h® and g° for each collocation point, see [34]. Following this, the discretised 2.5D

boundary integral equation can be written in matrix form as [34]

(C+H)p = —iwp,Gv,, , (16)
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where H and G are system matrices that contain the Green’s function and its normal derivative,
C is a diagonal matrix of the leading order coefficients C(y), p and v,, are the vectors of nodal
sound pressure and normal velocity on the boundary.

To solve Eq. (16), boundary conditions need to be applied to the nodes of each element in
the BE mesh, by specifying either a sound pressure, a normal velocity, or an impedance as the
ratio between the two. One-way coupling is assumed here, which means that the vibration field
in the structure is not affected by the sound field, and both can be solved separately. Since the
rail is much heavier than the surrounding air, this is a reasonable approximation. Consequently,
the nodal normal velocities on the boundary I' of the 2.5D FE mesh are mapped to the 2.5D
BE mesh.

By applying the boundary conditions to each element, the element coefficients h® and g° of

the matrices in Eq. (16), can be written as a system of equations [34]
Aq =b, (17)

where A and b are the system coefficient matrix and vector, and q is the vector of the unknown
amplitudes of nodal sound pressures p and normal velocities #, on the boundary I'. To avoid
cavity resonances in the interior of boundary I', ten CHIEF points are added inside the rail, to
force zero sound pressure inside [35]. Consequently, the system matrix A is no longer square
and Eq. (17) needs to be solved in a least-squares sense [34].

The sound power W radiated by the infinite rail and its spatially averaged mean square
velocity (v2);n averaged over the rail perimeter are calculated by integrating the 2.5D BE

solutions over the wavenumber k and the boundary I" as [19]

1 Ko
S 5% (1) T 18
w 2Re <J‘_KO frp (1) 7, (1) dFdrc), (18)

and
R Vi R
(OF)ing = - f f 15,0017 drdee, (19)
L)..).2

where L is the perimeter length of the vibrating rail in the BE mesh, over which 7, is averaged
in Eq. (19). The integral of sound power in Eq. (18) needs to be evaluated over the whole
boundary, which apart from the rail, could also include other geometries such as the train, the
track, or a noise barrier. It should be noted that the integration over wavenumber in these
equations corresponds to an integration in the axial direction [19]. In terms of sound power in

Eq. (18), it is sufficient to integrate over wavenumbers up to k,, which is defined here as the
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largest wavenumber k that produces positive and real-valued « at the corresponding frequency.
For sound power, the near-field solution is not required, as these waves do not contribute to the
far-field [19], whereas it is required for the near-field pressure. The integral over wavenumber
k in Eq. (19) is generally unbounded, but it is sufficient to extend the wavenumber range above
the largest k,, of the waves that are cut on at a given frequency. The results of both integrals
converge for sufficiently closely spaced wavenumber points k. Due to symmetry of the
wavenumber spectra, the integration limits can be reduced to positive wavenumbers only, and
the results multiplied by a factor of 2.

From the radiated sound power and the spatially averaged mean square velocity, the
radiation efficiency of the infinite rail can be obtained as [19]

w

PoCoL{VE int
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3 Methods for efficient solution of the 2.5D FE/BE model

To accelerate the calculation times while ensuring an accurate solution of the 2.5D FE/BE
model, methods for efficient solution are proposed in this section. First an optimum distribution
of wavenumbers k is found at each frequency in terms of the vibration, which reduces the
number of computations per frequency. Then, a novel interpolation method for solving the
sound power calculations from the 2.5D BE model is introduced and compared with the classic

approach.

3.1 Optimisation of the wavenumber distribution

For Egs. (18) and (19) to converge, a suitable wavenumber discretisation is required when
calculating the velocity in the wavenumber domain from the 2.5D FE model with Eq. (8) as
boundary condition for the 2.5D BE model. The velocity spectrum consists of peaks occurring
at wavenumbers equal to the real part k.. of the n-th propagating wave and their width is
determined by the corresponding imaginary part k;;,,. A wave with a high decay rate (large ;)
occurs as a wide peak, while a wave with low decay rate (small k;,,) produces a sharp peak;
the half power bandwidth in the wavenumber response can be found as Akyp = 2Kjp,.
Therefore, rather than using a regular wavenumber discretisation which is fine enough to
capture all peaks sufficiently, an irregular wavenumber spacing is introduced to reduce the
overall number of computations [19, 36].

To parametrise the selection of wavenumbers k for use in the calculations, three integers are
introduced, X, Y and Z. Around each wavenumber k,, that produces a peak in the velocity
spectrum, X wavenumbers are distributed between k.. + Yk;,, for some value Y; if Y = 1, the
points are within the half power band and an increasing value of Y widens the band. Similar to
Theyssen [36], the wavenumbers are distributed symmetrically about the peak at k.. with a
logarithmic spacing in the defined band, i.e. around k.. there are more closely spaced points in
comparison to the outer bounds k.. * Yk;,,. Whether a wave is excited and produces a peak
depends on the position and direction of the force f(x) in Eq. (8) and the corresponding wave
shape ¢,,. To include enough wavenumber points between each peak, Z wavenumber points
between Kpin < K < Kpax are added, here with a logarithmic spacing. This irregular
wavenumber discretisation is illustrated in Fig. 2 for the spatially averaged mean square
velocity (v2);n¢ over wavenumber k, where a single wave n with wavenumber k,, is present,
using arbitrary values X = 30, Y = 14, and Z = 20 for the purpose of visualisation. Any n-th
wave that is propagative, i.e. produces a peak at its corresponding k.. in the wavenumber

spectra, can be added this way.
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Fig. 2 Irregular wavenumber k distribution in the band Y Axyp around the peak at k¢
produced by the n-th wave, using parameters X = 30, Y = 14, Z = 20.

Depending on the material properties, the mesh, and the frequency range of interest,
different combinations of the parameters X, Y, Z, kpyin, and k. may be sufficient. Results
shown below are tailored to the rail studied in the remainder of this paper, but the above
approach provides guidance for obtaining a well discretised wavenumber spectrum in general.

In the wavenumber convergence study, the parameters are set to kK, = 107! rad/m and
Kmax = 27 fmax/Co = 183 rad/m, with f,.. = 10 kHz, Z is varied between 50 and 300, Y is
varied between 1 and 24, while X is varied between 1 and 101 (odd numbers only) to calculate
the spatially averaged normal velocity from Eq. (19) over a range of frequencies. For the
comparison, a reference solution with a dense regular wavenumber spacing Ak = m/cy was
calculated between 0 and k,,x Which ensured enough wavenumbers to reach convergence
(20,001 points). Convergence needs to be ensured at each frequency, as the wavenumber
spectrum changes with frequency, since real and imaginary parts k.. and k;, of each
wavenumber k, are frequency-dependent. A total of 400 logarithmically spaced frequency
points between fi, = 10 Hz and f,,x = 10 kHz were used here. Vertical excitation is
considered, but for lateral excitation a similar agreement was found.

To find a minimum number of wavenumbers with the irregular x distribution, which gives
a sufficiently accurate solution but allows for an efficient calculation, the maximum error (over
all frequencies) in comparison with the reference solution with a regular Ax was set to 0.1 dB.
Out of all tested combinations, the optimal values of X = 25 and Y = 20 and Z = 79 were
found, requiring 230 wavenumbers k per frequency, with up to five propagative waves being
present in the case of a vertical excitation at the rail head centre. As an example, in Fig. 3, the

maximum error (over all frequencies) is shown for different values of X and Y with Z = 79,
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where the cross denotes the optimised combination. The isolines show how changes in X and
Y can affect the error for this value of Z, while other values Z can show slightly different

behaviour, i.e. the larger is Z, the fewer values of X may be required for a similar error with a

given Y.
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Fig. 3 Maximum error of the spatially averaged rail vibration for varying values of X
(number of points per peak) and Y (bandwidth scaling around peak) with Z = 79
wavenumbers between Kp,i, = 107! rad/m and k., = 183 rad/m; the cross (X) denotes
the optimised set of parameters with X = 25 and Y = 20.

3.2 Solving the 2.5D BE model by an interpolation method

Solving the 2.5D BE calculations requires the BE system matrices to be computed using the
Green'’s functions for each wavenumber a, including the wave solution in Eq. (14) and the near
field solution defined in Eq. (15). This spans an infinite number of combinations of k and k
[25]. In practice, only a limited range of wavenumbers k is required at each frequency w to
ensure convergence of the integrals in Egs. (11), (18) and (19). Most of the computation time
is required for assembling the fully populated system matrices. Making this process more
efficient has the potential to reduce overall computation times. Including the near-field solution
where a is imaginary can be done analogously. An interpolation method is proposed to make
the 2.5D BE assembly more efficient by approximating H(«) and G(a) for each a. It consists
of three steps:

First, the element coefficient vectors h®(«;) and g°(a;) are calculated for each collocation
point [34] over a range of pre-defined values a; between @i, < @; < @pax- The lower limit
Qmin 18 set close to zero, as the Hankel functions Héz)(air) and Hl(z)(air) in Eq. (14) are not
defined if their argument a;r = 0, while the upper limit is determined by the highest frequency
of interest as ay,,x = 27 fimax/Co- The spacing between each value of a; needs to be sufficiently

narrow and depends on the largest distance 1;,,4, between the nodes in the BE mesh. The larger
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the distance r between two nodes, the faster the Hankel functions oscillate, and consequently
spatial aliasing could occur if the points a; are not sampled close enough. In the case of the
near-field solution this is less of a problem, as the modified Bessel functions of the second kind
in Eq. (15) are exponentially decaying if k < k.

In the second step, from the pre-calculated element coefficients h®(a;) and g¢(«;), the
hé(a) and g¢(a) for the required a are obtained by interpolation between the results for

different values of a; as

M M
he(@) = ) i(@h®(@) and g°(@) = ) i(@)g*(@), 1)
i=1 i=1
using the interpolation functions ¥; (a), that are constructed from Lagrange polynomials as
M
(o) = 1—[ a—ay

i@ = | oo (22)

k=1

ki

where a;, and @; denote the k-th and i-th wavenumber points for which h¢(«;) and g°(«a;) are
pre-calculated that lie closest to the targeted a. The interpolation order (P =M — 1)
determines the required number of points M to be used for each a. While a first order
interpolation with linear polynomials (P = 1) requires M = 2 wavenumber points «; close to
@, a quartic interpolation (P = 4) requires M = 5. Hence, h®(a) and g°(a) are reconstructed
between o, < @ < ayax Y @ M-point stencil of wavenumbers @, to a,,, that changes as a
changes. If P > 1 and the number of «; is small, the reconstructed function may suffer from
discontinuities in the slope, but they are negligible if the number of «; used is sufficient.

Finally, the interpolated element coefficients h®(a) and g¢(a) can be inserted in the system
of equations given in Eq. (17), by applying the boundary conditions to solve for p and 7¥,,. By
interpolating the element coefficients, rather than the full matrices, boundary conditions can be
applied to each element node, allowing for different normal vectors at nodes shared by adjacent
elements. Solving Eq. (17) for each combination of k and x enables frequency-dependent
boundary conditions to be added, e.g. the velocity profile from the 2.5D FE model or the
representation of an absorptive boundary defined by an acoustic impedance. This is not
possible using the interpolation procedures of Theyssen or Thompson et al. [25, 26], where
results are calculated for unit excitation and mapped across different frequencies.

Once obtained for a given BE mesh, the element coefficients h®(a;) and g°(a;) can be
stored and re-used for 2.5D BE calculations within the valid range of a, allowing for parametric

studies to be carried out efficiently. The process of implementing the interpolation method in
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the 2.5D FE/BE model is illustrated in Fig. 4. Without the interpolation, the pre-calculation of
the BE matrices would not be required; instead, the assembly of BE matrices is done within

the nested w-k-loop, replacing the interpolation.

Define
parameters
Pre-calculate BE
matrices for a;
Solve integrals
Generate FE over K
and BE mesh
Assemble FE Free vibration loop over k
matrices from 2.5D FE finished?
loff)p' O}Yeéqw Forced vibration Interpolate BE
tushed: from 2.5D FE matrices for @
Apply BC for
w and
Store results l
Solve 2.5D BE
for a

Fig. 4 Solving the 2.5D FE/BE model using the interpolation method.
To achieve a small approximation error in the interpolation, an appropriate number N, of

values of «; is necessary. To illustrate this, Hl(z) (a;r) is calculated up to a wavenumber @, =
183 rad/m, using r = T2 = 173 mm (from the mesh in Fig. 1) using 20 linearly spaced
points of a; and reconstructed via interpolation. The results for different orders of interpolation
(P=1,2,4) from 20 discrete @; points are shown in Fig. 5. With a higher order of
interpolation, the differences from the exact solution generally reduce. For pairs of nodes
having smaller distances r < 1%, better agreement can be seen, i.e. using 1,5 represents the
worst case. A mesh with larger or smaller 7,4 requires a different spacing of the discrete «;
points that needs to be determined case-by-case. A more detailed error analysis is presented in

Section 3.3.
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Fig. 5 Comparison of the real part of Hl(z)(ocr) with the reconstruction using N, = 20

values of the discrete 2D wavenumbers a; (*) for different orders of interpolation P; ==,
continuous « (exact); = = =, linear (P = 1); == = == quadratic (P = 2); == == quartic (P =
4).

To include the near-field solution where k < k, this process would need to be repeated using
Eq. (15) with the argument f instead of a, to assemble the element H® (—ia) and G¢(—ia).
However, since the near-field Green’s function is a rapidly decaying exponential, much fewer
points are already sufficient to cover the required wavenumber/frequency combinations. In the
studies presented in this paper, the sound power is of interest. Hence, the near-field solutions

were not included.

3.3 Error of the interpolation method

To investigate the error in the interpolation method proposed in Section 3.2, results are
compared with the classic 2.5D BE solution, which requires re-assembly of the H(a) and G(«@)
matrices at each frequency/wavenumber combination. Due to the minimisation of the number
of wavenumbers k required at each frequency in Section 3.1, the 2.5D BE calculation (55k
frequency/wavenumber combinations) without interpolation could be performed within
reasonable time and is used here as benchmark.

The maximum error from the interpolation method is shown in Fig. 6 for different orders of
interpolation (P = 1,2,4) and pre-assemblies of h®(a;) and g®(«;) for an increasing number
N, of wavenumbers a;, which were linearly distributed between ap,;, = 1073 rad/m and
Amax = 183 rad/m, setting f,;n = 10 Hz and f;,,.x = 10 kHz. For linear interpolation, the
solution requires N, > 300 for convergence, while for quadratic interpolation N, > 280 is
required. With a quartic interpolation the error is less than 0.1 dB if the pre-assembly is done
for N, = 140. Using the interpolation method with N, = 140, the computation was 116 times

faster in comparison with the classic method. The efficiency will be further increased, for
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example, if more frequency lines are studied. The solving times of both approaches will be
identical, but the number of assemblies in the classic approach will be increased, while no

additional pre-assemblies are required in the interpolation method.
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Fig. 6 Maximum error of the rail sound power using the 2.5D BE interpolation method in
comparison with the classic 2.5D BE (re-assembly at each a, i.e. 55k computations), for
increasing number of a; points used in the pre-assembly and different interpolation order
P; === linear (P = 1); == = == quadratic (P = 2); == == quartic (P = 4).
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4 Vibration of a supported railway track

The vibration of a supported rail is investigated using the models developed in
Sections 2.1—2.3. First, an experimental validation of the 2.5D FE model is presented. Then,
the dispersion characteristics and the FRFs are investigated using the 2.5D FE and the

Timoshenko beam model of the rail to discuss some notable differences between them.

4.1 Experimental validation of the 2.5D FE model

The vibration behaviour obtained using the 2.5D FE rail model has been compared with
measurements to ensure that the vibration used as input to the 2.5D BE model is representative
for a railway track. These measurements were made on a track near Munich as part of the
European Roll2Rail project [37]. To obtain the track decay rates according to EN 15641 [38],
the FRFs (driving point and transfer) were measured via impact testing. An accelerometer was
fixed at a stationary receiver position on the rail using a magnetic mount, while the excitation
was applied at different distances from the accelerometer. This procedure was replicated with
the 2.5D FE model, but instead of a fixed receiver, the force was applied at a fixed position to
calculate the FRFs at the identical distances using reciprocity.

The parameters used in the 2.5D FE rail model (and the Timoshenko beam model considered
later) are listed in Table 1, along with the properties for the sleeper modelled as a Timoshenko
beam. The cross-sectional area A and second moment of the area I of the rail were obtained
numerically from the FE mesh, while the shear coefficients were taken from [11]. For the
sleeper, the cross-section area A, and second moments of area I are geometric averages of
values at the rail seat and centre to approximate the non-uniform sleeper cross-section as a
uniform Timoshenko beam [30]. The density was adjusted to retain a mass of 280 kg for a

sleeper length of 2.6 m.
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Table 1: Parameters of the UIC60 rail and the sleeper.

Parameter Units Rail Sleeper
Young’s modulus GPa 210 57
Poisson’s ratio — 0.3 0.2
Density kg/m® | 7850 2400
Material loss factor — 0.005 0.0083
Cross-section area m? | 7.7x103 | 4.5x10?

Second moment of the area (vertical) | m* | 30.3x10” | 1.2x10*

Second moment of the area (lateral) | m* | 5.1x103 |2.2x10*
Shear coefficient (vertical) — 0.393 0.83
Shear coefficient (lateral) - 0.539 0.83

To give a good fit of the 2.5D FE rail model with measurements, the parameters used in the
simulations for the rail pad and ballast were adjusted based on the measured FRFs and TDR.
The final parameters used are listed in Table 2. Measurements of the longitudinal FRFs were

not available so the parameters are assumed identical to the lateral ones.

Table 2: Rail pad and ballast parameters obtained from measurements.

Parameter Units | Vertical | Lateral/Longitudinal
Rail pad stiffness | MN/m 105 20

Rail pad loss factor — 0.15 0.10

Ballast stiffness MN/m 100 5

Ballast damping kNs/m 50 150

The calculated driving point mobilities in the vertical direction for a force applied at the top
of the rail head centre, and in the lateral direction for a force applied at the centre of the rail
head side, are compared with the corresponding measurements in Fig. 7. Overall, there is good
agreement of the main trends in the magnitude and phase for both the vertical and lateral FRFs.
In the vertical mobility, the two peaks around 80 and 300 Hz, are well captured. The first
represents the resonance of the combined rail and sleeper mass on the ballast stiffness and the
second is the rail-on-pad resonance [1]. This confirms that the vertical track support parameters
were well estimated. Some peaks are missing in the predictions, e.g. the sharp peak around

1060 Hz in Fig. 7(a) corresponding to the vertical pinned-pinned resonance. This is a
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consequence of using the equivalent continuous support instead of discrete supports. In the
lateral mobility there is a mismatch of the fundamental peak around 80 Hz in the measurement
which is closer to 50 Hz in the predictions. The lateral mobility is constrained by the lateral
and vertical support dynamics due to the rotation in the rail foot and the eccentricity of the
support. Although the stiffness is distributed across the rail foot (as shown in Fig. 1) it is
connected to a single point on the sleeper, which does not allow for coupling the sleeper
rotation with the rail foot rotation appropriately. Increasing the vertical rail pad stiffness could
lead to better agreement in the lateral mobility, while at the same time causing a disagreement
in vertical mobility. In comparison to the model, the measured lateral mobility increases above
5 kHz. Additional measurements (not reported here) have confirmed that this is due to a

resonance in the mounting of the accelerometer.
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Fig. 7 Comparison of the driving point mobilities from the 2.5D FE model with
measurements performed on a track in (a) vertical and (b) lateral direction; = = =, 2.5D FE
model; ==, measurement ([37])

The corresponding vertical and lateral track decay rates obtained from the model and the
measurement are compared in Fig. 8. A close agreement can be seen in the vertical decay rate
over the whole frequency range. The lateral decay rates agree well between 100 Hz and
2.5 kHz. Below 100 Hz, the mismatch of the fundamental peak causes an underestimation of
the measured decay rate. Above 2.5 kHz the predicted lateral decay rate is lower than the

measurement.
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Fig. 8 Comparison of the track decay rates from the 2.5D FE model with measurements
performed on a track in Munich in (a) vertical and (b) lateral direction; = = =, 2.5D FE rail;
= measurement ([37]).

Overall, the implemented 2.5D FE model of the rail shows a good agreement with
measurements performed on a track. Remaining differences may be reduced by using a
discretely supported track model. However, in this work a continuously supported track is
preferred, as the support dynamics can be directly implemented in the EoM of the 2.5D FE

model, allowing a more thorough analysis of the wave propagation in the supported rail.

4.2 Waves in the supported 2.5D FE and Timoshenko beam models

The dispersion curves of the supported rail (including the sleepers) were calculated using
the 2.5D FE model and the Timoshenko beam models by solving for the free vibration via
Eq. (6). A total number of 80 waves were extracted from the 2.5D FE calculations to ensure all
propagating waves that are of interest are included. The wave solutions were ordered to allow
them to be shown as continuous lines over frequency, using the wave assurance criterion, as
defined by Houillon et al. in [39] for comparing the wave shapes between consecutive
frequencies. The axial wavenumbers k,, of the ten waves that cut on below 10 kHz are shown
in Fig. 9 in terms of their real part k.e; they are plotted separately for symmetric waves [ -V
in which vibration is predominantly vertical/longitudinal, and antisymmetric waves i —Vv in
which vibration is predominantly lateral. For comparison, the wavenumber k in air is added.
The deformed shapes of the different wave types are illustrated in Fig. 10 at their cut-on

frequency.
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Fig. 9: Real part of the wavenumbers of the waves that propagate below 10 kHz separated
between (a) symmetric waves [ — V and (b) antisymmetric waves i — v; ==, 2.5D FE rail;
= = »_ Timoshenko rail; — - —, wavenumber in air; — —, cut-on frequencies.

The vertical bending wave I, the longitudinal wave II, the lateral bending wave i, and the
torsion wave ii are shown for all frequencies. At low frequencies, they correspond to waves in
which the whole rail section vibrates rigidly. Due to the added support, small peaks or dips in
wavenumber can be observed at frequencies below 300 Hz; they correspond to resonances of
the rail on the support [1]. In the case of a dynamic support stiffness, the cut-on frequencies f
of these four waves used in Fig. 10 were estimated from the frequency of the rail-on-pad
resonance [1]. For clarity of presentation, the higher-order waves are only shown in Fig. 9
above their cut-on frequency, which is denoted by the vertical lines. For these waves, f. was
obtained more accurately by solving the linear EVP given in Eq. (5) for k = 0. Three higher-
order symmetric waves cut on below 10 kHz. Around 5.1 kHz, waves III and IV (foot flapping
and shear wave) and at 9.8 kHz wave V cut on. The higher-order antisymmetric waves iii — v

(web bending waves) cut on around 1.4 kHz, 4.2 kHz, and 9.6 kHz, respectively.
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Fig. 10: Shapes of the symmetric waves [ — V in (a) — (e) and the antisymmetric waves
1— v in (f) — (j) at their cut-on frequency (k = 0).

Waves I and IV correspond to the two waves present in the Timoshenko beam model for
vertical vibration. The vertical wave I is well captured below 4 kHz and the shear wave IV up
to 10 kHz. The waves in the 2.5D FE model start coupling with other higher-order waves,
which are not included in the classical Timoshenko beam model. The coupling of vibration
occurs gradually when approaching the cut-on frequencies of higher-order waves, as can be
seen in a change of slope of the corresponding wavenumbers. As an example, wave I includes
foot flapping from around 2 — 3 kHz, see e.g. the illustrations in [14, 40].

In the lateral direction, only the lateral bending wave exists as a propagating wave in the
Timoshenko beam results below 10 kHz. It follows wave ii below 100 Hz and above 4 kHz,
while between these frequencies it follows the trend of wave i. In the 2.5D FE model, the
dynamic stiffness of the support is applied to the rail foot, i.e. with a vertical distance from the
rail centroid, whereas in the Timoshenko beam model the stiffness is applied at the centroid.
Thus, there is a mismatch in the lateral direction since there is no torsion or cross-section
deformation in the Timoshenko beam model. In the vertical direction, where the stiffness is
aligned with the rail centre, a good fit of both models can be seen.

The corresponding imaginary parts of the wavenumbers k;,, are plotted in Fig. 11 in terms
of their decay rate A = —8.686 k;,. Again, peaks and dips below 300 Hz are related to the

track resonances and denote zones with lesser/stronger attenuation. The higher-order waves
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have high decay rates below their cut-on frequency, as they only exist as near-field waves, but
they tend to a value between 0.1 and 10 dB/m after cutting on in the frequency range up to
10 kHz. The peaks in the decay rates around 400 Hz, 750 Hz and 1150 Hz, correspond to
vertical sleeper resonances, which dissipate energy from the waves in the rail. As the rail foot
rotation in the antisymmetric waves is constrained by the vertical stiffness of the support, the
same peaks can be seen in symmetric and antisymmetric waves. Due to the low lateral pad
stiffness, the lateral sleeper modes (longitudinal to the sleeper) do not appear.

The decay rate of the vertical bending wave in the Timoshenko beam model matches well
with wave I below 2 kHz but underestimates it at higher frequencies. The vertical shear wave
of the Timoshenko beam model matches well with wave IV. The lateral bending wave of the
Timoshenko beam has a decay rate that follows wave ii below 100 Hz and follows wave i above
this. Above about 3 kHz, it follows wave iii. The decay rate of the second wave in the
Timoshenko beam is also shown, but it does not follow any of the depicted waves of the 2.5D

FE model, as the corresponding wave cuts on only above 10 kHz.
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Fig. 11: Decay rates of the waves that become propagative below 10 kHz separated
between (a) symmetric waves [ — V and (b) antisymmetric waves i — v; == 2.5D FE model;
= = »_Timoshenko beam; — —, cut-on frequencies.

4.3 Frequency response of the supported rail

The wave propagation characteristics of the waves that exist in a railway track have been
observed. However, whether one of these waves is excited in the rail depends on the direction
of the applied force, the location of the driving point on the rail and the location at which the

vibration is observed.
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4.3.1 Mobilities at the driving point

In Fig. 12 the rail point mobility for a vertical force applied to the centre of the rail head (N;
in Fig. 1) is shown. The Timoshenko beam and the 2.5D FE model are compared with each
other. For the latter, the magnitudes of the FRFs of the individual waves that cut on below
10 kHz are shown, as well as the sum over the first 80 waves. Only symmetric waves (I - V)
contribute significantly to the vertical mobility for the vertical force applied at the rail head
centre. There is good agreement between the two models up to about 4 kHz, although first
deviations occur from 1 kHz. This is due to the missing cross-section deformation and the

higher-order waves.
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Fig. 12: Vertical rail driving point mobility at x = O for a vertical force applied to the rail
head centre (N;), separated between the different waves; == 2.5D FE sum of all waves; —,
2.5D FE waves I — V; = = = Timoshenko beam.

By separating the wave solutions, the contribution of each wave in specific frequency
regions can be observed. Waves [ and IV dominate the driving point FRF at low frequencies.
Wave IV is a near-field wave below 5 kHz. Above 3 kHz, the amplitude of wave I gradually
reduces, as it is transformed from a vertical bending to a foot flapping wave, meaning there is
less rail head vibration. Around 5.1 kHz, the cut on of waves III and IV causes a strong peak
in the vertical FRF, i.e. these two waves have a strong vertical component at the rail head in
this frequency region. At higher frequencies, wave Il dominates the vertical FRF, as it develops
a strong vertical component in the rail head above 5 kHz, whereas waves III and IV become
longitudinal in nature. The peak around 9.8 kHz is caused by the cut on of wave V.

Fig. 13 shows the vertical transfer mobility at the rail foot node (N, in Fig. 1) for a force
applied at the rail head (N;) at x = 0 in the 2.5D FE model. For comparison, the vertical
mobility of the Timoshenko beam model is added. While the latter result is unchanged from
Fig. 12, the 2.5D FE model has an increased vertical vibration, from about 1 kHz, compared

with the driving point FRF in Fig. 12. This occurs because the contribution of the waves is

27



slightly different compared with the rail head, i.e. waves I, Il and V are more dominant between
1 and 5 kHz at the rail foot. Above 1 kHz, there also is a significant phase difference between
the overall FRF and that in Fig. 12, i.e. at x = 0 the foot flapping motion is out-of-phase with

the vertical vibration at the rail head over some frequency range. This may change over

distance, as each wave has a different phase speed and decay rate.
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Fig. 13: Vertical rail mobility at the rail foot (N,) at x = 0 for a vertical force applied to
the rail head centre (N;), separated between the different waves; ==, 2.5D FE sum of all
waves; —, 2.5D FE waves I — V; = = =, Timoshenko beam.

The lateral driving point mobility for the force applied to the rail head centre at N; is shown
in Fig. 14, including the solution for the Timoshenko beam and the 2.5D FE model, for which
the overall FRF is again separated into the contribution per wave. For the lateral force, only
antisymmetric waves contribute significantly to the overall FRF. There is a large difference
between the two models over the whole frequency range. This is mainly because, in the 2.5D
FE model, the force is applied with a vertical offset from the shear centre of the rail, which
couples bending and torsion of the section; the foundation eccentricity also has an influence.
In the lateral Timoshenko beam model, the force and foundation are assumed to be co-located
with the shear centre and torsion is neglected. To correct for this, a semi-analytical rail model
including torsion, as in [11], could be used. In the 2.5D FE model, at frequencies below 1 kHz,
wave 1 mostly dominates the FRF, with a contribution of wave ii around 200 — 700 Hz. Waves
iii, iv and v produce peaks around 1.5 kHz, 4.3 kHz and 9.7 kHz, respectively, and each of

these waves dominates the FRF above its cut-on frequency.
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Fig. 14: Lateral rail driving point mobility at x = 0 for a lateral force applied to the rail
head centre (N;) separated between the different waves; ==, 2.5D FE sum of all waves; —,
2.5D FE waves i — v; = = », Timoshenko beam.

While the Timoshenko beam model can represent the vertical rail mobility at the driving
point reasonably well up to about 4 kHz, in the lateral direction it is not a good approximation

for the rail mobility.

4.3.2 Adjusting the decay rates of the Timoshenko beam

As seen from the driving point mobilities, depending on the force location and direction,
only some of the waves are excited in the rail. Different waves can dominate the FRF in certain
frequency regions, and given their different decay rates, it may also be different waves that
dominate the FRF at a certain distance x. As the decay rates in the Timoshenko beam model
are different from those from the 2.5D FE model in some frequency regions, see Fig. 11, the
transfer FRFs over larger distances will be affected. Consequently, to isolate the effect of cross-
section deformation on the radiated sound power, the differences in TDR should be taken into
account, to ensure that differences in radiated noise are only due to the cross-section
deformation.

For the vertical rail vibration, the decay rates of waves I and IV of the 2.5D FE model agree
reasonably well with the corresponding waves in the Timoshenko model, see Fig. 11(a). The
differences are equalised by adjusting the imaginary part of the wavenumber k;,, of the
Timoshenko beam model to match those of the corresponding waves of the 2.5D FE model.
Therefore, the propagating vertical bending wave in the Timoshenko beam model is assigned
the imaginary part of wave I and the shear wave of the Timoshenko beam model, which is a
near-field wave below 5.1 kHz, is given that of wave IV.

In Fig. 15, the vertical transfer mobility of the 2.5D FE model at position N; is compared

with the Timoshenko beam model with the corrected wavenumbers over a distance of 25 m at
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the frequencies of 1 kHz and 5.1 kHz. For reference, the results from the Timoshenko beam
with the original wavenumbers are added. At 1 kHz, the transfer mobility of all three models
aligns well, as the original wavenumbers of the two models are almost identical. Within the
distance of 25 m, the propagating wave I dominates the transfer FRF, while the near-field wave
IV quickly decays away, as expected from their decay rates. At 5.1 kHz, a mismatch occurs if
the original Timoshenko beam wavenumber is used. Thus, the radiated sound would be
overestimated using the Timoshenko beam model. Adjusting the imaginary part of the
wavenumber ensures a good match. Close to the driving point, wave III contributes to the FRF
of the 2.5D FE model, which is why the Timoshenko beam result does not align well near x =
0. Due to interference between multiple waves in the 2.5D FE model, the transfer FRF shows

oscillations about the average wave decay.
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Fig. 15: Vertical transfer mobility over distance x for a vertical force applied to the rail
head centre (N;) at frequencies of (a) 1 kHz and (b) 5.1 kHz; ==, 2.5D FE model sum of all
waves; —, 2.5D FE model waves I — V; = = =, Timoshenko beam; == ==; Timoshenko beam

with corrected wavenumber.

For the lateral vibration, from Fig. 11(b), it can be seen the decay rate of the bending wave
from the Timoshenko beam envelopes the decay rates of waves i — iv that dominate the FRF in
certain frequency regions. As there is a larger mismatch between the driving point FRFs of the
two models in Fig. 14, a correction of the wavenumbers will not further improve the transfer

FRFs and the original wavenumbers from the Timoshenko beam model are retained.
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5 Effect of the rail cross-section deformation on the radiated sound

Using the wavenumber domain formulation, the rail vibration of the 2.5D FE and
Timoshenko models can be obtained for a unit force applied at the rail head centre and used in
the 2.5D BE model presented in Section 2.4 with the interpolation method from Section 3.2 to
calculate the radiated sound power of the infinite rail. The results are then used to quantify the
effect of the rail cross-section deformation on the radiated sound power. For simplicity, in the
2.5D BE model, the effect of the ground is neglected and, in both cases, the rail is assumed to

radiate sound into free space.

5.1 Radiated sound power

The sound power per unit squared force at the driving point N; on the rail head was
calculated from the 2.5D FE and Timoshenko beam models in the frequency/wavenumber
domain for 400 logarithmically spaced frequency points between 10 Hz and 10 kHz for vertical
and lateral excitation. The results from the 2.5D FE model are shown in Fig. 16 in the
frequency/wavenumber domain. Hence, these results are before performing the integration
over wavenumber k in Eq. (18). This highlights the contribution of different waves to the
overall power. The wavenumber in air is also indicated, which denotes the limit of axial

wavenumber k considered at each frequency, i.e. k < k.
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Fig. 16: Sound power level of the 2.5D FE rail per unit squared force applied to the rail
head in (a) vertical and (b) lateral direction as a function of frequency and wavenumber;
= == corresponding wavenumber in air.

For the vertical excitation, the sound power maxima follow the dispersion curves of the
symmetric waves [ — V in Fig. 9(a). Below 60 Hz, only the vibrating near-fields contribute to
the sound power, see also Fig. 9(a). Thus, the sound power is very low in this region. It remains

low until 300 Hz, where the decay rate of wave I reduces. Between 300 Hz and 5 kHz, wave I
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radiates the most sound, but above 5 kHz its contribution diminishes and wave II becomes the
dominant one [36], with a smaller contribution from the other waves.

For the lateral excitation, only antisymmetric waves i — v are contributing, which follow the
dispersion curves shown in Fig. 9(b). Between 200 Hz and 1.4 kHz, wave i radiates most
sound, with a lesser contribution from wave ii. Above 1.4 kHz, the higher-order waves cut on
and different waves contribute in different frequency regions, so it is not as clear as for the
vertical excitation which wave is the dominant one.

By evaluating the integral given in Eq. (18) over the perimeter I and wavenumber k, the
overall sound power per unit squared force from the 2.5D FE and Timoshenko models was
obtained as a function of frequency. Fig. 17(a) compares the sound power from the 2.5D FE
model to that from the Timoshenko beam model with and without adjusted wavenumbers for
a vertical excitation, with the corresponding level differences shown in Fig. 17(b), where a

positive value denotes an increase of the 2.5D FE model relative to the Timoshenko beam.
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Fig. 17: (a) Sound power level per unit vertical squared force applied to the rail head at N;

comparing the 2.5D FE and Timoshenko beam models; (b) level difference of sound power

level per unit squared force of the Timoshenko beam models in comparison to the 2.5D FE

model; = = =, Timoshenko beam; == ==; Timoshenko beam with corrected wavenumber; ==,
2.5D FE model.

Below 3 kHz, the sound power of all three models is identical since vertical bending occurs
with little or no cross-section deformation. The dips around 400, 700 and 1100 Hz are due to
the increased decay rates at the vertical sleeper resonances. Above 3 kHz, the 2.5D FE rail has
up to 15 dB higher sound power than the Timoshenko beam under vertical excitation. This
increase is smaller if the Timoshenko beam wavenumbers remain uncorrected, since the
original Timoshenko beam wave decay rates are lower than the 2.5D FE wave decay rate, see

Fig. 11(a), which increases the effective vibrating length and thereby the sound power.
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With the correction included, the effect of cross-section deformation can be addressed.
Between 3 and 5 kHz, foot flapping increases the sound power by approximately 4 dB. In this
frequency range, wave I transitions from vertical bending to foot flapping, while wave II has
increased vertical rail head vibration. Around 5 kHz, the contributions of waves III and IV
cause up to 13 dB increase. Wave V causes an increase of sound power by 15 dB at its cut-on
frequency just below 10 kHz.

In Fig. 18, the sound power per unit squared force from the 2.5D FE model is compared
with Timoshenko beam model for lateral excitation. In contrast to the vertical excitation, there
are larger differences. Below 200 Hz, differences of up to 25 dB can be seen, due to the
mismatch of the lateral track resonance and missing rail torsion. Between 200 Hz and 1.3 kHz
the Timoshenko beam underestimates sound power by up to 3 dB, while above 1.5 kHz the
average increase is about 8 dB. Above 1.3 kHz, wave iii contributes to the 2.5D FE rail
vibration which increases sound power. Around 4.2 kHz wave iv cuts on leading to a peak in

sound power with an increase of 17 dB.
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Fig. 18: (a) Sound power level per unit squared lateral force applied to the rail head at N;
comparing the 2.5D FE and Timoshenko beam models; (b) level difference of sound power
per unit squared force of the Timoshenko beam model in comparison to the 2.5D FE
model; ==, 2.5D FE model; = = =, Timoshenko beam model.

5.2 Spatially averaged mean square velocity

Calculating the normal velocity on the rail perimeter in the wavenumber domain and
evaluating Eq. (19), the spatially averaged mean square velocity of the infinite rail was
obtained. The results are shown in Fig. 19, including the 2.5D FE and Timoshenko beam rail
models. For vertical excitation, results from the Timoshenko beam model both with and

without corrected decay rates are shown. The results for vertical excitation show similar trends

to the sound power in Fig. 17. Above 2 kHz, the results of the models start to diverge, and
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cross-section deformation leads to an increase in vibration per unit squared force. The lateral
Timoshenko beam model shows larger differences relative to the 2.5D FE model, as already

seen in Fig. 18 and explained above.
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Fig. 19: Spatially averaged mean square velocity per unit squared force applied in (a)
vertical and (b) lateral direction to the rail head at N; comparing the 2.5D FE and
Timoshenko beam models; = = =, Timoshenko beam; == ==; Timoshenko beam with
corrected wavenumber; ==, 2.5D FE model.

5.3 Radiation efficiency

From the spatially averaged mean square velocity and the radiated sound power, the
radiation efficiencies of the rail radiating sound into free space were obtained from Eq. (20).
Fig. 20 compares the radiation efficiency based on the vibration from the 2.5D FE model and
from the Timoshenko beam model for vertical and lateral excitation at the rail head. The
correction of the wavenumber has no effect on the radiation efficiency for the Timoshenko
beam model, as both the sound power and the spatially averaged vibration are affected
identically.

For vertical excitation, in Fig. 20(a), the radiation efficiency from both models is well
aligned up to 3 kHz. Below the first resonance of the track on its foundation stiffness, around
80 Hz, the radiation efficiency increases by about 40 dB/decade (~f*) which corresponds to a
point dipole. Due to the support, wave propagation is highly attenuated below this frequency
and the vibration is concentrated around the driving point, which leads to the point source-like
behaviour [41]. Above 300 Hz, where the decay rate of the vertical wave I decreases, the
increase with frequency tends to be closer to 30 dB/decade (~f3) corresponding to the
behaviour of a line dipole. As the wavelength in air becomes more comparable to the distance
between the rail head and foot, the interaction of the sound field produced by the two vibrating

components leads to a dip around 1 kHz and a peak around 2 kHz [42]. Above 3 kHz,
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differences between the two models can be seen since the different waves in the 2.5D FE rail
model cause stronger interference if parts of the rail head and foot vibrate in- or out-of-phase.
Thus, in comparison with the Timoshenko beam model there are more oscillations around 0 dB.

For lateral excitation, see Fig. 20(b), differences are present from lower frequencies. This is
mainly due to the missing torsional motion of the rail and the mismatch of the resonances in
the rail support, i.e. the peaks are not aligned, as shown e.g. in Fig. 14. However, the overall
trend is still captured. Around 700 Hz, both curves reach a peak, and above 1 kHz, there are
dips and peaks in the results from the 2.5D FE model due to the presence of the different waves,
which do not occur in the Timoshenko beam results, which have a smoother radiation

efficiency close to unity.
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Radiation efficiency, dB re 1
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Fig. 20: Radiation efficiency of the rail for (a) vertical and (b) lateral excitation, comparing
the two different models; ==, 2.5D FE; = = =, Timoshenko.

Although the radiation efficiencies suggest there are no large differences between the two
models, in Section 5.1 it was shown that there are much larger differences in the radiated sound

power due to the cross-section deformation.
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6 Applying the 2.5D FE and Timoshenko beam models in rolling noise predictions

The results in the previous section were calculated for a unit squared force applied to the
rail to study the sound radiation of the Timoshenko beam and 2.5D FE model. In this section,
the rail models are included in a wheel/track interaction model for comparison of rail sound
power with and without cross-section deformation in a full rolling noise prediction scheme
based on the TWINS approach [6]. Results are calculated for a roughness corresponding to the
TSI limit given in [43], including the contact filter effect [1].

The multi-DoF wheel/track interaction, including the vertical (i = z) and the lateral (i = y)

DoFs is solved in the frequency domain, giving the contact forces f, as [44]

f, = {’;Z } =[Y, +Y, +Y,]? {inr} (23)

where Y,, Y,,, Y. are the 2 X 2 mobility matrices of the wheelset, rail and contact zone,
comprising lateral and vertical driving point mobilities Y,, and Y,, respectively, as well as the
vertical-lateral cross mobility Y,,,, and r is the magnitude of roughness in the vertical direction.
The rail mobilities in Y,. are based on the models presented in this paper (see Fig. 12 and Fig.
14), while the wheel mobilities Y,, are calculated from the rotating wheelset model developed
by the authors in [45], and the contact zone mobilities Y., including coupling through the
contact spring and creep forces, are calculated according to Thompson [46].

From the transfer functions Wi‘mit of rail sound power per unit squared force applied to the
rail head in the i-th direction (see Fig. 17 and Fig. 18) and the corresponding contact force
components f.; from Eq. (23), the total rail sound power is summed over the M = 2

components W; as

M M
W — Z Wi — Z Vl/l'unitlfc,ilz- (24)
i i

By employing the 2.5D FE and the Timoshenko beam rail models (the latter with or without
corrected decay rates) in the rolling noise model, the effect of cross-section deformation on the
rolling noise is calculated. The results of rail sound power are shown in Fig. 21, including
relative differences, where a positive value denotes an underestimation in comparison with the
2.5D FE model. Differences of up to 5 dB occur below 315 Hz, due to differences in the track
resonances in the Timoshenko beam model. Up to 2.5 kHz, the results are almost equal, but
above this the Timoshenko beam models diverge from the 2.5D FE model, causing an

underestimation of up to 8 dB due to the missing cross-section deformation. Using the original
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wave decay rates in the Timoshenko beam, the underestimation is reduced to 4-5 dB, since the

decay rates are lower at higher frequencies.
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Fig. 21 Comparison of rail sound power in rolling noise predictions using different models
in terms of (a) absolute levels and (b) relative differences; = = =, Timoshenko beam; == ==;
Timoshenko beam with corrected wavenumber; ==, 2.5D FE model.

The above calculations assumed the wheel/rail contact position on the rail is at the rail head
centre (see N; in Fig. 1), which induces no vertical/lateral coupling via rail torsion. In TWINS,
the vertical/lateral rail cross mobility is approximated as a weighted average of the vertical (V)

and lateral (Y,)) Timoshenko beam mobilities as [47]

Yy, =Y, = 10%aB/20 /yy Y, (25)

where X4g 1s an empirical correction factor that scales the cross mobility.

The calculations were repeated with a lateral offset of 10 mm of the contact position from
the rail head centre. In the 2.5D FE model, this offset can be directly implemented by shifting
the excitation position, while for the Timoshenko beam model, different values of X4z between

—8 dB and —16 dB were used. The vertical/lateral rail cross mobility is shown in Fig. 22. The
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coupling induced in the Timoshenko beam rail via Eq. (25) can approximate the 2.5D FE rail
only in a limited frequency region, depending on the value of X4g5. At frequencies above 1 kHz,
the approximation is inaccurate due to the missing higher-order waves seen as peaks in the

2.5D FE rail.
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Fig. 22 Vertical/lateral mobility cross-term Y),, of the rail comparing the 2.5D FE rail with
10 mm offset of the excitation (==) with the Timoshenko beam rail using different
correction factors X4g: —, —8 dB; - -+, =10 dB; ——, —12dB; — - —, —14 dB; = = =,
—16 dB.

Due to the additional vertical/lateral coupling in the rail contact mobility, the contact forces
from the wheel/track interaction change, and consequently also the rail vibration response and
its radiated sound power. For the 2.5D FE rail, another 2.5D BE calculation was required to
obtain new transfer functions W;"™® with the offset due to the added torsion. The difference in
the rail sound power between the 2.5D FE and the Timoshenko rail (original wavenumbers)
for the same values of X4g is shown in Fig. 23, including the case where Y,,, = 0 (as in Fig.
21). Results are separated between the power W, and W, for lateral and vertical rail excitation
and total sound power W. A positive value denotes an underestimation of the 2.5D FE rail.
Again, the correction may only improve the difference of the sound power in a limited
frequency range, depending on the value of X4g. For vertical excitation, results differ by up to
6 dB and are generally close to the case of Y,, = 0. For lateral excitation, the differences are
largest and reach 25 dB, similar to the transfer functions in Fig. 18, and the added coupling Yy,
does not approximate rail torsion well at low frequencies. Since the vertical excitation is
dominating large parts of the spectrum, the maximum difference in overall rail sound power is
reduced to about 8 dB. From above 1 kHz, the overall sound power tends to be identical to the
case where vertical/lateral coupling is neglected (Y,, = 0) and the missing cross-section
deformation leads to an underestimation of the rail sound power of up to 5 dB in one-third

octave bands.
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Fig. 23 Difference of rail sound power in rolling noise predictions for (a) vertical
excitation W, (b) lateral excitation W, and (c) combined sound power W, comparing the

2.5D FE rail with off-centre excitation (10 mm offset) with a Timoshenko beam rail using
correction factors X4g to approximate Y,,: —, —8 dB; - -+, =10 dB; ——, —12 dB; — - —,

—14dB; ===, —16 dB; =, V), = 0.
Above about 2 kHz, the wheel dominates the sound power of rolling noise [1]. However,
depending on the track parameters, the rail sound power at higher frequencies can be more
significant when using the 2.5D FE rail than with the Timoshenko beam rail, especially for a

soft rail pad.
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7 Conclusions

For accurate high frequency rolling noise predictions, it is important to use a track model
that adequately represents the rail vibration and the consequent sound radiation. Simpler rail
models based on a Timoshenko beam neglect the effects of the rail torsion and cross-section
deformation. A vibroacoustic model of a supported rail was implemented based on the 2.5D
FE and BE approach. This uses an equivalent continuous support with a flexible sleeper and
accounts for cross-section deformation of the rail and the sleeper flexibility. A novel
interpolation method that interpolates the element coefficient vectors used to determine the
system matrices of the 2.5D BE model has been developed. This approach significantly reduces
the computational time for sound radiation calculations by avoiding the re-assembly of the fully
populated matrices required in the classical approach.

The rail vibration obtained from the 2.5D FE model was compared with measurements
showing good agreement and confirming the rail vibration input in the 2.5D BE model is
representative. While the Timoshenko beam model only contains two waves for each direction,
in the 2.5D FE model up to ten waves cut on below 10 kHz. The vertical bending and shear
waves of the Timoshenko beam were clearly identified with waves in the 2.5D FE model,
showing very similar dispersion characteristics, whereas in the lateral direction the
correspondence was not as good. In the driving point mobilities, peaks produced by the higher-
order waves are missing in the Timoshenko beam results. While there is good agreement
between the vertical mobility of both models below 4 kHz, a larger difference occurs in the
lateral mobility. From the wave decay rates and the transfer mobilities it could be seen that rail
vibration decays differently over distance in the two models. To avoid the influence of this
difference on the radiated sound, the wave decay of the Timoshenko beam was adjusted to
match that of the 2.5D model.

For a vertical unit force applied to the rail head, the Timoshenko beam and 2.5D FE models
radiate sound equally below 3 kHz. At frequencies around 3 — 4 kHz, where foot flapping starts
occurring, and above 5 kHz, where several waves are cut-on, the Timoshenko beam model
underestimates the sound power; differences of up to 15 dB occur around 5 — 6 kHz. If the
wave decay rates are not adjusted, the underestimation is smaller. For lateral excitation by a
unit force, larger differences in sound power occur over the whole frequency range, as the
Timoshenko beam is not a good representation of the rail vibration. Below 200 Hz, differences
of up to 25 dB occur due to the mismatch of the track resonance from the missing rail torsion
and foundation eccentricity, while above 1 kHz an underestimation of up to 15 dB is possible

since the higher-order waves with cross-section deformation are not included.
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Finally, the 2.5D FE and Timoshenko beam rail models were coupled in a rolling noise
prediction scheme that follows the TWINS approach using the transfer functions of sound
power per unit squared force. The results demonstrate that the Timoshenko beam
underestimates the rail noise by 4 — 5 dB at frequencies above 2.5 kHz in one-third octave band
resolution, due to the missing cross-section deformation. For an offset excitation, the missing
rail torsion in the Timoshenko beam further reduces the accuracy. Whether this increase
changes the overall sound power depends on the track parameters. Thus, in general the 2.5D

FE model provides a better representation of the rail sound power.
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