
1

Novel time aggregation based algorithms for
Markov Decision Processes

João Marcelo L. G. Leite, Lino G. Marujo and Edilson F. Arruda

Abstract—We present two novel approaches to accelerate the
convergence of a class of Markov decision problems (MDPs)
with stationary state space components, which iterate on reduced
state and action spaces and converge to an optimal policy. The
time aggregation based algorithm (TABA) partitions the state
space into disjoint sets, one for each possible combination of the
non-stationary components, and iterates in the sets. The local
search policy set iteration (LSPSI) algorithm introduces a novel
modified policy evaluation procedure that seamlessly performs
a local search over a very large set of candidate policies, by
sampling a reduced subset of actions at each state’s value function
update. Both approaches, as well as a combination of them, are
validated by means of a mining supply chain application with
a large number of stationary state components and a large set
of feasible actions. The experiments suggest that the proposed
frameworks are very efficient for such a class of problems.

Index Terms—Markov decision processes, Stochastic systems,
Optimization under uncertainty, Supply Chains

I. INTRODUCTION
There are multiple stochastic optimisation frameworks de-

vised for specific problem classes [1]. Sequential decision
problems under uncertainty are particularly relevant, compris-
ing a sequence of decision periods, feasible control actions,
and costs incurred in an uncertain environment [2]–[4]. At
each period and depending on the system’s state, a decision
incurs a cost and triggers a probabilistic transition to another
state, where another decision re-initiates the loop. The aim
is to find an optimal control sequence with respect to a
performance criterion over a typically long horizon. Markov
decision processes [5] are the modelling framework, leading
to dynamic programming (DP) algorithms that find an optimal
policy whilst implicitly considering all possible uncertain
scenarios in the long run [2, 6]. Classical value (VI) and policy
(PI) iteration are arguably the most utilised DP algorithms.

The computational complexity of DP algorithms is a func-
tion of the number of states and control actions [7, 8]. How-
ever, complex problems require increasingly large numbers of
states and actions, effectively rendering moderately complex
problems virtually intractable. Termed curse of dimensionality,
this phenomenon has motivated a large body of literature. To
reduce the computational complexity and accelerate conver-
gence, one can utilise a series of increasingly accurate and
computationally more tractable approximate models [9], apply
sampling techniques to the VI and PI algorithms [10, 11],
optimise the computational performance of specific steps of
the classical algorithms [12] or build a graph starting from an
initial state and, taking advantage of the problem’s topology,
deploy DP only in the visited states [13]. While these tech-
niques do improve performance, the curse of dimensionality
remains an open problem in the literature.

Using approximations is an intuitive and widely utilised
alternative to counter dimensionality. Designed to tackle prob-

J. M. L. G. Leite is with Instituto de Ensino e Pesquisa - INSPER, São
Paulo, Brazil (e-mail: joaomlgl@insper.edu.br).

L. G. Marujo is with Industrial Engineering Program, Alberto Luiz Coimbra
Institute – Graduate School and Research in Engineering, Federal University
of Rio de Janeiro, Rio de Janeiro, Brazil (e-mail: lgmarujo@ufrj.br).

E. F. Arruda is with Southampton Business School, University of Southamp-
ton, Building 175, Boldrewood Innovation Campus, Burgess Road, Southamp-
ton, SO16 7QF (e-mail: e.f.arruda@southampton.ac.uk).

lems with an incomplete knowledge of the transition probabili-
ties, reinforcement learning (RL) algorithms exploit stochastic
approximation concepts [14] to learn the system’s dynamics
whilst searching for the optimal solution [4, 15]. The classical
Q-learning and SARSA algorithms employ temporal difference
learning to update the value of taking an action at some
state, considering the observed rewards and future states [16].
Variations of these algorithms have been combined and amply
utilised [17]. Approximate dynamic programming (ADP) is
another influential approach that uses approximate functions to
estimate state values and near-optimal policies. Proposed in the
early years of the field [18], it has recently attracted attention
in the literature with the approximate value iteration (AVI) and
the least squares policy iteration algorithms [19, 20]. While
successful in some classes of problems, these approaches may
face convergence issues and their effectiveness hinges on the
quality of the proposed approximation scheme.

Reducing the state space’s size by aggregating states [21]–
[24] can mitigate the curse of dimensionality, but simple state
aggregation does not mpreserve the Markov property and
effectively solves an alternative problem [25]. Proposed to find
an equivalent embedded formulation when no control choices
exist for the majority of states, time aggregation reduces the
state space’s size whilst retaining the Markov property [25].
The approach was later extended to general MDPs via a two-
phase algorithm [26, 27]. The first phase keeps a constant
control policy in the bulk of the state space whilst optimising
the performance in a comparatively small subset of states. The
second step applies policy improvement to produce a better
policy for the next iteration of the first phase; the two phases
alternate up to convergence. Despite the performance gains, the
approach is limited by the size of the state space in the policy
improvement step. To circumvent this issue, [28] proposed a
generalised decomposition in multiple subsets of reduced size
to calculate the steady state of a Markov chain. The approach,
however, does not include optimisation.

This paper proposes a combination of two algorithms for
large-scale MDPs. The first is a novel multi-cluster time ag-
gregation algorithm, called time aggregation based algorithm
(TABA). Designed for a class of Markov decision problems
with stationary state components, here called semi stationary
MDPs (SSMDP), TABA uses time aggregation to divide the
state space into multiple subsets and utilises properties of
the stationary components to accelerate convergence. One of
TABA’s novel contributions is that it uses the properties of SS-
MDPs to seamlessly derive a multi-subset partition of the state
space that can be solved directly, in a single stage, without the
need to alternate policy evaluation and improvement steps as
in [26]. TABA extends the multi-subset partitioning approach
in [28] by introducing optimisation. Unlike state aggregation
approaches, TABA maintains the Markov property.

The second algorithm is called local search policy set
iteration (LSPSI), and its novel contribution is a powerful local
search step within a policy iteration framework. Inspired by
policy set iteration (PSI) [10], which samples a number (N)
of policies per iteration, LSPI optimises over an exponential
number of candidate policies in one iteration by sampling a
fixed proportion of the action space in each state. If n actions
are sampled per state in the state space S, the local search will
cover n|S| feasible policies, thereby accelerating convergence.

2

Finally, as TABA and LSPSI act on different aspects of
the curse of dimensionality - the size of the state space and
the size of the action space - we propose a novel combined
algorithm termed (TABA+LSPSI). To validate the approach,
we explore an interesting and complex mining supply chain
problem. The field has evolved from classical open pit mine
design and optimisation [29]–[31] to approaches that analyse
the full operation across the entire mining supply chain [32]–
[34]. Specifically, the case study explores the novel applica-
tion of an MDP formulation to the whole logistics network,
from mine to client, involving complex configurations of the
state and action spaces, as well as uncertainties spread over
the supply chain. The numerical experiments illustrate the
strengths of the proposed algorithms. Both TABA and LSPSI
significantly reduce the convergence time with respect to value
and policy iteration; they are also considerably faster than
policy set iteration (PSI). Finally, the combination of TABA
and LSPSI produces the best results over all experiments.
Indeed, (TABA+LSPSI) converges in a matter of seconds in
all experiments and the performance is relatively insensitive
to increasing discount factors.

The remainder of this work is organised as follows. Section
II introduces Markov decision processes and the optimality
conditions. Section III defines semi-stationary Markov deci-
sion processes (SSMDP), introduces the proposed algorithms,
and discusses their convergence. Section IV utilises a mining
supply chain problem to validate the algorithms and compare
their results to value iteration, policy iteration and policy set
iteration [10]. Finally, Section V concludes the paper.

II. MATHEMATICAL MODEL

Consider a discrete-time dynamic system with time index
t ≥ 0 and discrete, finite state space S. At each period t ≥ 0,
the decision-maker observes the environment’s state st = s ∈
S and selects an action at = a from the discrete, finite set A(s)
of possible actions in s. The action space A =

⋃
s∈S A(s) is

the set of all available actions. The system then experiences
a probabilistic transition to some state st+1 = s′ ∈ S, which
happens with probability p(s′|s, a). Since p : S × A × S →
[0, 1] is an indexed transition probability function, it follows
that

∑
s′∈S

p(s′|s, a) = 1, ∀a ∈ A(s).

At each step, the decision maker observes the state s
and selects an action a ∈ A(s), whereupon the system
incurs a reward r(s, a) determined by the reward function
r : S×A → R+, bounded from below and above. To select an
action, the decision maker uses a decision rule dt at t ≥ 0. This
paper considers the class of stationary control policies Π that
comprises policies π = {d, d, . . .} and πt(s) = π(s) = d(s),
which prescribe the same decision rule dt = d, ∀t ≥ 0.
Starting from state s0 = s, the long-term reward of policy
π ∈ Π is:

V π(s) = Eπ

{
+∞∑
t=0

λtr(st, π(st))|s0 = s

}
,∀s ∈ S,

where 0 < λ < 1 is a discount factor, used to convert
future rewards into net present value [35]. Henceforth, we will
replace st and st+1 by s and s′, respectively. This is to avoid
confusion with sj , where j will indicate the dimension, which
will be used in Section III.

The decision maker seeks a policy π∗ ∈ Π that maximises
the long-term reward from each state s ∈ S and yields

V ∗(s) = V π∗
(s) = max

π∈Π
V π(s),∀s ∈ S. (1)

The existence of a policy satisfying (1) is guaranteed as the
rewards are bounded and do not vary in time, the state (S)
and action (A) spaces are discrete and finite, and the indexed

transition probabilities (p(s′|s, a)) are stationary, i.e., do not
vary over time [2, 3].

A. Optimality equations
To solve (1) we need the value function V ∗ : S → R.

Classical results [2, 3] yield that:

V ∗(s) = max
π∈Π

[
r(s, π(s)) + λ

∑
s′∈S

p(s′|s, π(s))V ∗(s′)

]
, (2)

where:

π∗(s) = argmax
π∈Π

[
r(s, π(s)) + λ

∑
s′∈S

p(s′|s, π(s))V ∗(s′)

]
. (3)

Value iteration (VI) is arguably the most utilised procedure
to find the common solution of (1) and (2). It iterates on the
space of real-valued functions V : S → R, starting from V0 ∈
V . It uses following value function update:

Vt+1(s) = TVt(s) := max
a∈A(s)

{
r(s, a) + λ

∑
s′∈S

p(s′|s, a)Vt(s
′)

}
(4)

Under the same conditions that ensure the existence of
a solution to (1), see Section II, value iteration converges
linearly and monotonically V ∗ [2, 3], with convergence rate
λ. Like policy iteration [2, 3], it is very efficient, but rendered
intractable for moderate problem dimensions due to the curse
of dimensionality [19].

In the next section, we will introduce two new algorithms to
mitigate this effect for a class of MDPs with partly stationary
exogenous uncertainty. They use time aggregation [25, 26] and
policy set manipulation [10] to exploit the problem structure
and accelerate convergence, and can be applied to real-world
problems such as iron-ore logistics networks, see Section IV.

III. TIME-AGGREGATION AND POLICY SET MANIPULATION
BASED APPROACHES TO LARGE-SCALE MDPS

Consider an MDP wherein each state s ∈ S is multi-
dimensional (belongs to ℜI), with sj , j ∈ {1, . . . , I} de-
noting the state’s value in dimension j, and 1 < I < ∞
corresponding to the number of dimensions. Assume that
K ≤ I dimensions follow a traditional MDP, in which the state
transition depends on the state-action pair. The other I − K
dimensions evolve according to a stationary stochastic process
that is not influenced by the system’s state or the control policy.
Without loss of generality, we can simply relabel dimensions
appropriately if necessary, so that these are the last I − K
components of the state. This gives rise to Assumption 1.

Assumption 1: Let S = Sc × Sn, where Sc is the space of
the first K components of the state and Sn corresponds to the
remaining components. Assume that

p(s′|s, a) = p(s′1, . . . , s
′
K |s, a)P (ξ = (s′K+1, . . . , s

′
I)), (5)

where ξ is a random variable with sample space Sn.
Assumption 1 is typical in some real-world problems. It

holds, for example, in inventory management problems for
complex supply chains. The first K components correspond to
storage levels, which depend on previous states and actions.
On the other hand, contracted demand volumes and market
prices change every period according to a prescribed prob-
ability distribution that does not depend on previous states
and actions. Hence, they can be modelled as the last I − K
elements. Typically, their realization needs to be known before
making a new decision, therefore they must be included in the
system’s state. Another area where Assumption 1 is frequently
applied is wireless communication. The transition probabilities
depend only on the previously known error probabilities, and

3

are independent of the state (age-transmission) and the action
(re-transmission or generation) [36, 37].

Definition 1: A semi-stationary Markov decision process
(SSMDP) is an MDP for which Assumption 1 holds.

We will now introduce novel time-aggregation-based algo-
rithms that are especially efficient for SSMDPs.

A. Time-aggregation-based algorithm (TABA)
Consider a state space (S) partition into Z disjoint sets (Gz):

S =

Z⋃
z=1

Gz, Gi ∩Gj = ∅,∀ i, j ≤ Z such that i ̸= j.

For each Gz let us define:
• V

Gz : a vector with the current value function estimate of
each state s ∈ Gz . Its cardinality is |Gz|:

V
Gz

= [V (s)], s ∈ Gz.

• µz: the normalised steady-state distribution in Gz

µz = [µz(s)], s ∈ Gz,
∑
s∈Gz

µz(s) = 1.

• pG(G
′
z|s, a): the probability of reaching subset G′z from

state s under control action a

pG(G
′
z|s, a) =

∑
s′∈G′

z

p(s′|s, a). (6)

Assuming that µz is known for all subsets Gz in the
partition, it follows that

V (Gz) = µz · V
Gz (7)

is the expected value function estimate at subset Gz . We can
then reformulate the value iteration update in (4) as follows:

TVt(s) = max
a∈A(s)

{
r(s, a) + λ

Z∑
z=1

pG(G
′
z|s, a)Vt(G

′
z)

}
. (8)

Algorithm 1 is TABA’s pseudo-code. Observe that the compu-
tational cost of Eq. (8) is proportional to the number of subsets
in the state space partition, given by Z. Hence, replacing (4)
with (8) in the value iteration algorithm can produce significant
computational savings when Z ≪ |S|. This is the motivation
for the algorithm.

One difficulty with the value function update in (8) is that it
assumes that the steady state probability µz is known across
all subsets Gz ∈ S. While this distribution is a function of
optimal policy π∗ in a general MDP setting, we can exploit the
structure of SSMDPs in Definition 1 to derive an appropriate
partition whereby µz can be easily attained. For SSMDPs,
Assumption 1 suggests a straightforward partition whereby
each subset corresponds to a unique combination of the first
K components of the state:

Gz = {s ∈ S : {s1, . . . , sK} = sz ∈ Sc and z ∈ {1, . . . , |Sc|}.

Using this suggested partition, the steady-state distribution
within subset Gz can be calculated as:

µz = [µz(sn)] = [P (ξ = sn)], ∀ sn ∈ Sn,

where sn ∈ Sn and ξ is a random variable with known
probability distribution.

Therefore, TABA iterates across all possible combinations
of the first K components of the state space, as each gives
rise to a subset Gz . The computational gains happen because,
for each subset Gz , we need not consider each combination
of the last I −K components individually. Instead, for each
subset Gz , we use the expected value given by Eq. (7), which
depends on the steady-state distribution µz over the set of
states {sK+1, . . . , sI} = sn ∈ Sn. Note that Assumption 1
implies that µz is independent of the control policy, does not

Algorithm 1: TABA
Input: An arbitrary initial solution V0 ∈ V , a state space (S) partition into Z

disjoint sets (Gz), the normalised steady-state distribution within
subset Gz (µz), an arbitrary discount factor λ ∈ [0, 1) and an
arbitrary tolerance ϵ

Output: Optimal solution V ∗, and optimal stationary policy π∗

1 t← 0;
2 Vt(Gz)←

∑
s∈Gz

µz(s)Vt(s) ∀z = {1, 2, · · · , Z};

3 repeat
4 for each Gz do
5

Vt(Gz) :=
∑

s∈Gz

µz(s)Vt(s)

6 end
7 for each s ∈ S do
8

TVt(s) := max
a∈A(s)

{
r(s, a) + λ

Z∑
z=1

pG(G
′
z|s, a)Vt(G

′
z)

}

Vt+1(s) := TVt(s)

9 end
10 t← t + 1;
11 until ∥Vt − Vt−1∥∞ ≤ ϵ ;
12 V ∗ ← Vt;

13 π∗(s)← arg max
a∈A(s)

[
r(s, a) + λ

Z∑
z=1

pG(G
′
z|s, a)Vt(G

′
z)

]
, ∀s ∈ S;

14 return V ∗, π∗.

vary over time, and can be calculated a priori. These properties
enable us to use (8) in the value function update step.

A preliminary version of this algorithm [34] utilised a more
complicated and less efficient value function update:

v∗(s)
s∈GS

= max
π

{ ∑
s′∈GS

pd(s
′|s, π(s))

{
r(s, π(s), s′) + λvt+1

∗ (s′)
}
+

∑
z ̸=S

pG(G
′
z|s, π(s))

{
r(s, π(s), G′

z) + λV t+1(G′
z)
}}

(9)

that differentiated states from the same subset GS and states
from other subsets in S\GS. By realising that (9) is equivalent
to (8), we are able to not only simplify the value function
update, but also increase computational efficiency. Next, we
prove the convergence of Algorithm 1.

Lemma 1: Under the proposed partitioning scheme, Equa-
tion (8) in Algorithm 1 is equivalent Eq. (4) in VI Algorithm
for an SSMDP.

Proof 1: Substituting (7) into (8) yields:

TVt(s) := max
a∈A(s)

{
r(s, a) + λ

Z∑
z=1

pG(G
′
z|s, a)µzV

G′
z

t

}

= max
a∈A(s)

{
r(s, a) + λ

Z∑
z=1

pG(G
′
z|s, a)

∑
s′∈Gz

µz(s
′)Vt(s

′)

}

= max
a∈A(s)

{
r(s, a) + λ

Z∑
z=1

∑
s′∈Gz

pG(G
′
z|s, a)µz(s

′)Vt(s
′)

}
.

Now, by realising that µz(s
′) = P (ξ = s′) in Eq. (5) and by

substituting (6) into the last expression, we obtain:

TVt(s) = max
a∈A(s)

{
r(s, a) + λ

∑
s′∈S

p(s′|s, a)Vt(s
′)

}
.

We conclude the proof by noting that the expression above
is equal to Eq. (4).

Theorem 1: Algorithm 1 converges to the solution of (2)-(3).
Proof 2: From Lemma 2, it follows that each iteration of the

4

TABA algorithm is equivalent to an iteration of the classical
value iteration algorithm. Convergence follows because the
classical value iteration algorithm has guaranteed convergence
to the solution of (2)-(3) [2].

Remark 1: Although the value function update in Algorithm
1 is equivalent to the value iteration update, the computational
effort is reduced as TABA uses the Z aggregate values
from Eq. (7) instead of the whole vector Vt. That generates
significant computational savings when Z ≪ |S|.

B. Local search policy set iteration (LSPSI)
Based on the value iteration algorithm, TABA exploits the

structure of SSMDPs to reduce the computational effort. Sim-
ilarly, Policy Set iteration (PSI) [10] is designed to accelerate
the policy iteration convergence by sampling multiple policies
at each iteration and using the maximum value over these
policies in the policy improvement step.

In this section, we introduce a novel algorithm inspired
by PSI and called LSPSI, that takes advantage of the com-
binatorial nature of the problem to expand the set of policies
compared at each iteration. We start with the policy iteration
algorithm structure, combining policy evaluation and policy
improvement steps. However, instead of using matrix inver-
sion for policy evaluation, we use value iteration, albeit not
constrained to a single policy. We use a reduced subset of
actions H(s) ⊂ A(s) for each state s ∈ S, turning the policy
evaluation step into a local search over the exponentially large
set of all policies produced by the combination of the actions
in H(s), for all s ∈ S. We randomly select H(s) to comprise
a fixed proportion (α) of all possible actions in s such that:

|H(s)|
|A(s)| = α ≤ 1.

To ensure that the next selected action is at least as good as
the last, the algorithm always includes the greedy actions with
respect to the last value function update (at−1(s)):

D(s) = H(s) ∪ at−1(s). (10)

Policy evaluation updates the value function with:

TVt eval(s) = max
a∈D(s)

{
r(s, a) + λ

∑
s′∈S

p(s′|s, a)Vt eval(s
′)

}
,

(11)
where D(s) comes from Eq. (10) at each iteration. Sampling

different actions at each iteration ensures that nearly all actions
are tried before convergence, whilst reducing each iteration’s
computational effort. Algorithm 2 details the LSPSI’s steps.

Both PSI and LSPSI introduce a policy update opportunity
to the policy evaluation step. While PSI evaluates N = |Ψ|
policies in parallel at each policy set evaluation step (where
Ψ is a set that contains N policies sampled from Π), LSPSI
evaluates n = |D(s)| distinct actions for each state s ∈ S
at each value iteration. Hence, LSPSI evaluates n|S| policies
at each modified policy evaluation, covering a much larger
number of policies. When the modified policy evaluation step
converges, the policy obtained will be the best among all pos-
sible combinations of the actions in D(s), s ∈ S. Furthermore,
actions not contained in the last set D(s) will have been tried
before convergence, thus increasing the probability of attaining
a near-optimal policy at the modified policy evaluation step.

After the modified policy evaluation step in Algorithm 2,
there is a complete policy improvement step which evaluates
all possible actions. This step was missing in the preliminary
algorithm introduced in [34]:

TVt(s) := max
a∈A(s)

{
r(s, a) + λ

∑
s′∈S

p(s′|s, a)Vt(s
′)

}
. (12)

Eq. (12) is equivalent to a policy improvement step in a
classical PI algorithm [2]. Since the resulting improved policy

Algorithm 2: LSPSI algorithm
Input: An arbitrary initial solution V0 ∈ V , an arbitrary initial policy

π0 ∈ Π, an arbitrary discount factor λ ∈ [0, 1) and an arbitrary
tolerance ϵ

Output: Optimal solution V ∗, and optimal stationary policy π∗

1 t← 0;
2 repeat
3 Modified policy evaluation step: t eval← 0; Vt eval ← Vt;

πt eval ← πt;
4 repeat
5 for each s ∈ S do
6 Choose H(s) ⊂ A(s) at random;

D(s)← H(s) ∪ πt eval(s)

TVt eval(s) := max
a∈D(s)

{
r(s, a)+

λ
∑
s′∈S

p(s
′|s, a)Vt eval(s

′
)

}

Vt eval+1(s) := TVt eval(s)

πt eval+1(s)← arg max
a∈D(s)

[
TVt eval(s)

]
, ∀s ∈ S

7 end
8 t eval← t eval + 1;
9 until ∥Vt eval − Vt eval−1∥∞ ≤ ϵ ;

10 Policy update step: Vt ← Vt eval;
11 for each s ∈ S do
12

TVt(s) := max
a∈A(s)

r(s, a) + λ
∑
s′∈S

p(s
′|s, a)Vt(s

′
)


Vt+1(s) := TVt(s)

πt+1(s)← arg max
a∈A(s)

[TVt(s)] , ∀s ∈ S

13 end
14 t← t + 1;
15 until ∥Vt − Vt−1∥∞ ≤ ϵ ;
16 V ∗ ← Vt; π∗ ← πt;
17 return V ∗, π∗.

is among the policies evaluated in the next modified policy
evaluation step (line 3), it is clear that the LSPI algorithm
encompasses the PI algorithm. To verify convergence to an
optimal policy, it suffices to see that, when LSPI converges,
the PI algorithm embedded in it also converges, as the current
policy can no longer be improved. Therefore, convergence
to the optimal policy follows from Theorem 6.4.6 in [2]. A
similar argument is applied in [10] to prove the convergence
of PSI to the solution of (1).

Observe that when α = 0, H(s) = ∅ ∀s ∈ S in Algorithm
2. Therefore, only the incumbent policy will be evaluated in
the policy evaluation step, rendering LSPI equivalent to PI.
Conversely, α = 1 implies H(s) = A(s)∀s ∈ S, rendering
LSPI equivalent to VI as all actions are considered.

C. Combined algorithm: TABA and LSPSI
Finally, we propose an algorithm that combines the comple-

mentary properties of TABA (state space reduction) and LSPSI
(action space reduction). The new algorithm follows the same
steps as Algorithm 2, but instead of the value function update
in Eq. (11), it uses:

TVt eval(s) = max
a∈D(s)

{
r(s, a) + λ

Z∑
z=1

pG(G
′
z|s, a)Vt eval(G

′
z)

}
,

and the policy update step in Eq. (12) becomes:

TVt(s) = max
a∈A(s)

{
r(s, a) + λ

Z∑
z=1

pG(G
′
z|s, a)Vt(G

′
z)

}
.

5

As detailed in Section IV, combining the properties of
TABA and LSPSI tends to be very effective to circumvent
the curse of dimensionality in SSMPDs. Section IV compares
the performance of the algorithms in the light of a mining
supply chain example.

D. Computational complexity analysis
Compared with traditional MDP algorithms, the computa-

tional complexity analysis of the proposed algorithms indicates
a way to circumvent the curse of dimensionality. It is well
known that each VI iteration has a computational complexity
O(|S|2×|A|) [2]. On the other hand, each PI iteration’s effort
is of O((N+m+1)×(|X|2×|A|+|X|3)), however the conver-
gence rate is quadratic with respect to the number of policy
evaluations [2]. This can abbreviate the overall convergence
time. PSI’s iteration effort O((N+m+1)×(|X|2×|A|+|X|3))
exceeds that of PI; the expectation, however, is that increasing
the number of evaluated policies will reduce the number of
iterations [10].

TABA algorithm uses the VI approach, although it does not
traverse all possible future states. Using the SSMDP properties
in Eq. (7), Algorithm 1 needs only to evaluate the values of
Z disjoint sets. Therefore, each iteration has computational
complexity O(|S| × |A| × Z). As Z ≤ |S| and the number
of iterations is the same as that of VI, TABA converges faster

than VI with rate
Z

|S|
.

LSPSI evaluates |D| = α × |A| + 1 actions in each policy
evaluation iteration. After convergence of the policy evaluation
(k iterations) steps, we have a full policy improvement step.
Each LSPSI iteration has a computational complexity of O(k×
|S|2×|D|+ |S|2×|A|). As with PSI, convergence is quadratic
and the number of LSPSI iterations, i.e., the number of policy
evaluation steps in Alg. 2, is lower than or equal to that of PI.
The rationale is that the decrease in the number of iterations
up to convergence will reduce the overall convergence time.

Finally, the computational complexity of the combined algo-
rithm TABA and LSPSI is O(k×|S|×|D|×Z+|S|×|A|×Z).
This proposed algorithm will benefit both TABA and LSPSI
computational gains.

Since LSPSI’s modified policy evaluation step can be seen
as the application of TABA with a reduced number of actions,
one can expect the number iterations of this step to be
similar to TABA’s for each application of the policy update
step within LSPSI. Hence, one can expect the number of
iterations, counted as the number of modified policy evaluation
steps, to be bounded by the product of the number of TABA
and PI iterations. The same applies to TABA+LSPSI. The
computational gains stem from the reduced computational
complexity at each iteration.

IV. NUMERICAL EXPERIMENTS

To illustrate the application and provide insights into the
performance of the proposed algorithms, we will use an
important example from the area of supply chains.

A. Mining industry supply chain problem
We evaluate our algorithms in the light of the iron ore

logistics operations introduced in [34]. The explored mining
enterprise encompasses the whole supply chain, with mines,
port, intermediate storage (IS), customers under contract and
a spot market (Figure 1).

At each decision epoch, the decision maker observes the
system’s state and selects a feasible decision whilst aiming to
maximise the net present value of the company’s future profit.
The decision variables (available actions at time t, at ∈ A,
arrows and black bold underlined text in Figure 1) are: Mine

production (a1t); Volume sent from port to intermediate storage
(IS) (a2t); Volume sent from port to customers under contract
(a3t); Volume sent from port to spot market (a4t); Volume sent
from IS to customer under contract (a5t); Volume sent from IS
to spot market (a6t).

Figure 1. Mine-to-client supply chain model

To choose the best actions, the company should evaluate
seven state variable components (st ∈ S, ∀ t, black text in Fig.
1): Port flow capacity (s1t); IS flow capacity (s2t); Demand for
customers under contract (s3t); Spot price (s4t); International
shipping price from port (s5t); Port initial storage volume (s6t);
IS initial storage volume (s7t).

The random variable vector has 5 components, also de-
scribed in Figure 1: Port flow capacity (ξ1t); IS flow capacity
(ξ2t); Demand for customers under contract (ξ3t); Spot price
(ξ4t); International shipping price from port (ξ5t).

After state, action and random variable vectors are pre-
sented, it is possible to describe the transition function
(st+1 = f(st, at, ξt)) as: s1t+1 = ξ1t ; s2t+1 = ξ2t ; s3t+1 = ξ3t ;
s4t+1 = ξ4t ; s5t+1 = ξ5t ; s6t+1 = s6t + a1t − a2t − a3t − a4t ;
s7t+1 = s7t + a2t − a5t − a6t .

This is clearly an SSMDP (see Assumption 1), with K =
2 components depending on previous states and actions, and
(I −K) = 5 stationary stochastic components.

The model contains eight fixed parameters: maximum pro-
duction capacity (c1); production cost(c2); port storage capac-
ity (c3); IS storage capacity (c4); local shipping cost (c5);
contractual customer price (c6); contractual penalty for unmet
demand (c7); minimum production capacity (c8).

The system has typical supply chain constraints relating
to capacity, flow conservation and demand: 1) Max. Prod.
Capacity: a1t ≤ c1; 2) Min. Prod. Capacity: a1t ≥ c8; 3) Port
Max. Flow: a2t +a3t +a4t ≤ s1t ; 4) IS Max. Flow: a5t +a6t ≤ s2t ;
5) Port Stor. Cap.: s6t+a1t−a2t−a3t−a4t ≤ c3; 6) IS Stor. Cap.:
s7t + a2t − a5t − a6t ≤ c4; 7) Contract Demand: a3t + a5t ≤ s3t .

The single period profit (rt(s, a)) is the total revenue
(TotRev), minus total production and logistics cost (TC), minus
penalty cost (Penal) for undelivered contract volumes:

rt(s, a) = TotRev(s, a)− TC(s, a)− Penal(s, a),

T otRev(s, a) = c6 · (a3
t + a5

t) + s4t · (a4
t + a6

t),

TC(s, a) = c2 · a1
t + s5t · (a2

t + a3
t + a4

t) + c5 · (a5
t + a6

t),

P enal(s, a) = c7 · (s3t − a3
t − a5

t).

The goal is to maximise the long-term discounted reward Eq. (1),
with discount factor 0 ≤ λ < 1.

B. Experimental results
We ran the experiments in a personal computer with Intel® Core™

i7-7500 CPU, @2.70GHz 2.9GHz processor and 16,00GB RAM,

6

running Windows 10. We optimised the logistics operations described
in Section IV-A, with the parameters in Table I, where p(x) means
“probability that x will occur”. Considering all possible system’s
configurations, there are 1,296 possible states which, combined with
all feasible decisions, result in more than 169 million of achievable
transitions (initial state, decision and final state) and more than 1.5
million transitions to groups (initial state, decision and final group). In
our experiment, each time period (t) represents one calendar month.

Table I
PARAMETER SETTINGS

Category Parameter settings

Mines
c1 = 13 kt (kt = 1, 000t)

c8 = 8 kt

c2 = $12

Port
and IS

c3 = 3 kt

s1 ∈ {10; 11; 12} kt;

{
p(10) = p(12) = 20%

p(11) = 60%

c4 = 2 kt

s2 ∈ {2; 3} kt;

{
p(2) = 40%
p(3) = 60%

Shipping s5 ∈ {16; 18; 20} kt;

{
p(16) = p(20) = 20%

p(18) = 60%

c5 = $1

Customers

c6 = $60

s3 ∈ {8; 9} kt;
{

p(8) = p(9) = 50%

c7 = $100

s4 ∈ {30; 60; 90} kt;

{
p(30) = p(90) = 25%

p(60) = 50%

c5 = $1

To implement LSPSI and LSPSI+TABA, it is necessary to define
parameter α, recalling that when α = 0 LSPSI becomes PI and when
α = 1 it becomes VI. To measure the impact of α, 5 different values
are applied (0.1%, 1.0%, 5.0%, 10.0% e 20.0%) with 3 different
values of λ (0.99, 0.95 and 0.9). Since both LSPSI and LSPSI+TABA
involve a random selection of actions, the results include the mean,
standard deviation and 95% confidence interval of each analysed
outcome over multiple runs.

Table II summarises the LSPSI results for different values of α,
under 50 runs. For all experiments, we report the number of LSPI
iterations as the number of modified policy evaluation steps in Alg.
2. As expected, the number of iterations decreases as α increases.
For λ = 0.90, the fastest convergence is for α = 1.0%, whilst for
λ = 0.95 and λ = 0.99, α = 0.1% attains fastest convergence.

Table II
LSPI PERFORMANCE FOR DIFFERENT PARAMETERS α

λ α’s
0, 1% 1, 0% 5, 0% 10% 20%

0.90
Num.

Itera-
tions

Mean 110.1 55.1 37.5 32.0 28.3
SD 5.8 2.5 0.9 0.7 0.8

CI (95%) [98.8,

121.5]

[50.2,
60.0]

[35.7,
39.4]

[30.6,
33.4]

[26.8,
29.8]

Tot.
Time
(s)

Mean 166.1 117.6 166.4 219.7 313.6
SD 11.5 13.5 3.1 3.9 18.9

CI (95%) [143.5,
188.7]

[91.1,
144.2]

[160.4,
172.4]

[212.0,
227.5]

[276.5,
350.6]

0.95
Num.

Itera-
tions

Mean 129.3 68.1 46.7 41.0 37.7
SD 5.0 1.5 0.9 0.4 0.7

CI (95%) [119.5,
139.0]

[65.2,
71.0]

[45.0,
48.4]

[40.1,
41.8]

[36.4,
39.0]

Tot.
Time
(s)

Mean 171.2 184.4 237.0 266.2 404.7
SD 23.6 15.7 24.4 15.3 23.1

CI (95%) [124.9,
217.4]

[153.6,
215.2]

[189.2,
284.7]

[236.2,
296.2]

[359.3,
450.1]

0.99
Num.

Itera-
tions

Mean 199.3 112.6 91.0 88.7 87.8
SD 2.7 1.1 0.0 0.7 0.4

CI (95%) [194.0,
204.6]

[110.4,
114.8]

[91.0,
91.0]

[87.2,
90.1]

[87.1,
88.6]

Tot.
Time
(s)

Mean 149.1 165.4 289.4 504.2 877.7
SD 13.5 21.5 2.8 35.7 57.2

CI (95%) [122.6,
175.6]

[123.2,
207.6]

[283.9,
294.9]

[434.1,
574.2]

[765.6,
989.8]

Table III summarises the results for LSPSI+TABA over 100 differ-
ent runs. For all experiments, we report the number of LSPI+TA iter-

ations as the number of modified policy evaluation steps in Alg. 2. As
expected, it outperforms LSPSI under all parameter configurations.
Note that as α increases, the total number of iterations decreases,
however the total time increases. For LSPSI+TABA, α = 0.1%
attained the fastest convergence for all discount factors. Based on
these results, we will subsequently use the value α = 0, 1% for both
LSPSI and LSPSI+TABA in the next experiment.

Table III
LSPSI+TABA PERFORMANCE FOR DIFFERENT PARAMETERS α

λ α’s
0.1% 1.0% 5.0% 10% 20%

0.90
Num.

Itera-
tions

Mean 118.7 59.6 40.0 34.3 30.7
SD 6.6 1.9 0.7 0.6 0.5

CI (95%) [105.8,
131.6]

[55.8,
63.3]

[38.6,
41.4]

[33.2,
35.5]

[29.7,
31.6]

Tot.
Time
(s)

Mean 5.8 6.5 10.3 14.1 21.7
SD 0.7 0.7 0.6 0.8 1.4

CI (95%) [4.3,
7.2]

[5.2,
7.8]

[9.1,
11.5]

[12.5,
15.8]

[19.1,
24.4]

0.95
Num.

Itera-
tions

Mean 130.6 69.1 45.6 40.1 37.0
SD 5.2 1.4 0.6 0.4 0.2

CI (95%) [120.5,
140.7]

[66.4,
71.8]

[44.4,
46.8]

[39.3,
40.8]

[36.5,
37.4]

Tot.
Time
(s)

Mean 6.2 7.1 11.3 16.5 25.2
SD 0.6 0.4 0.9 1.0 1.8

CI (95%) [4.9,
7.4]

[6.2,
7.9]

[9.5,
13.1]

[14.6,
18.4]

[21.6,
28.8]

0.99
Num.

Itera-
tions

Mean 204.1 116.0 95.0 93.0 92.0
SD 2.8 0.8 0.1 0.0 0.0

CI (95%) [198.6,
209.5]

[114.4,
117.6]

[94.8,
95.2]

[93.0,
93.0]

[92.0,
92.0]

Tot.
Time
(s)

Mean 5.8 8.6 19.3 32.6 56.9
SD 0.4 1.1 1.2 1.9 3.7

CI (95%) [5.1,
6.5]

[6.5,
10.7]

[17.0,
21.7]

[28.9,
36.2]

[49.7,
64.1]

To illustrate the effect of α on the convergence time, Fig. 2 depicts
the variation of the cost-to-go function, calculated as the logarithm
of the infinite norm percentage, over time - for all values of λ and α.
The error tolerance ϵ was set to 10−4. Note that with lower values of
α the convergence of the modified policy evaluation step is faster, but
the algorithm needs more policy improvement steps to converge - as
fewer actions are examined. The opposite holds for higher values of
α. Fig. 2 shows that, even needing more policy improvement steps,
α = 0.1% attains the fastest convergence for all values of λ.

Figure 2. LSPSI+TABA convergence overt the time for different λ’s and α’s

To evaluate the comparative efficiency of the proposed algorithms,
we implemented value iteration (VI), policy iteration (PI) and policy
set iteration (PSI) [10] in addition to TABA, LSPSI and TABA+LSPI.
We considered three distinct discount factors (λ): 0.9, 0.95 and 0.99.
As expected, all algorithms converged to the same optimal policy for
each λ. The structure of the optimal policy is detailed in [34], and
the results are summarised in Table IV.

As expected, Table IV shows that VI and PI take longer to
converge. To serve as another baseline, we also implemented the
PSI algorithm [10] with 10 additional random policies at each policy
set evaluation step. As expected, PSI needed less iterations than PI in

7

Table IV
COMPARISON BETWEEN IMPLEMENTED ALGORITHMS

λ VI PI PSI LSPSI TABA LSPSI+TABA

0.90
Iterations 23 6 4 110.1 27 118.7
Tot. Time (s) 1,151 298 287 166.1 31.5 5.8
Iter. Time (s) 50.0 49.7 71.8 1.51 1.17 0.05

0.95
Iterations 33 8 5 129.3 34 130.6
Tot. Time (s) 2,117 495 488 171.2 44.8 6.2
Iter. Time (s) 64.1 61.8 97.6 1.32 1.32 0.05

0.99
Iterations 85 11 5 199.3 92 204.1
Tot. Time (s) 4,743 596 1,034 149.1 114 5.8
Iter. Time (s) 55.8 54.2 206 0.75 1.24 0.03

all examples; however the policy set evaluation time was so large for
λ = 0.99 as to render the algorithm slower than PI in this instance.
Observe that LSPSI outperforms PSI, as well as VI and PI. TABA is
even more efficient and considerably outperforms LSPSI, converging
about five times as fast for λ = 0.9 and nearly four times as fast for
λ = 0.95.

Finally, LSPSI+TABA attains the best overall results; it is orders
of magnitude better than VI, PI and PSI, whilst also topping TABA
and LSPSI. The increased efficiency is due to a very fast iteration
time, owing to both LSPSI’s action sampling and TABA’s state-space
partition. When compared to standard VI, LSPSI+TABA converged
nearly 200 times as fast for λ = 0.9, 340 times as fast for λ = 0.95,
and almost 820 times as fast for λ = 0.99. This is a very interesting
result, as it suggests that LSPSI+TABA is relatively insensitive
to increasing discount factors, whilst standard VI and PI become
increasingly slower as the discount factor approaches one.

Notice that, as anticipated in Section III-D, TABA’s iteration count
is similar to VI’s. Furthermore, the iteration count for LSPI and
LSPI+TABA is similar for all experiments, never exceeding the
product between TABA’s and PI’s iteration counts.

C. Problem variations
To better understand how LPSI+TABA performs when the com-

plexity of the problem increases, the algorithm was tested in two
variations of the original problem. Table V details the comparison
among the three problem instances.

Table V
COMPARISON AMONG THE THREE PROBLEM INSTANCES

States Decisions
(average)

Total
Transitions Sets Transitions

to sets
Elements
per set

Original problem 1,296 101 169,435,152 12 1,568,844 108
Instance 2 5,400 101 2,941,582,500 12 6,536,850 450
Instance 3 2,160 221 1,030,970,268 20 9,546,021 108

1) Instance 2 - Increase only in the number of group
elements: In this variation, we increased the number of possible
states for certain stationary components of the state. Table VI details
the parameter variations, which resulted in an increase of the number
of group elements in each set Gz , from 108 to 450. The number
of states increased from 1,296 to 5,400, which, combined with
all feasible decisions, resulted in more than 2.9 billion achievable
transitions (initial state, decision, and final state).

As detailed in Section III-D, the computational complexity of the
combined algorithm TABA and LSPSI is O(k×|S|×|D|×Z+|S|×
|A|×Z). When Z remains the same, the computational complexity is
linear in |S|. As the number of elements in the group and the number
of states (|S|) increased 4.16 times and the number of decisions (|D|)
and the number of groups (Z) remained the same, it was expected
that the total convergence time would be almost 4 times longer. Table
VII confirms this: as an example for λ = 0.90 and α = 20%, the
total average time increased approximately four times, from 21.7 to
84.3 seconds. However, the number of iterations remained similar:
as an example for λ = 0.99 and α = 0.1%, the average number of
iterations increased from 204.1 to 214.4.

2) Instance 3 - Increase in the number of groups and
decisions: In this variation, the number of group elements remained
the same; however, the number of groups (|Z|) increased, from 12 to
20 (1.7 times). The number of decisions (|D|) also increased, from
101 to 221 (2.2 times). Table VIII details the parameter variations
for this instance. The number of states (|S|) rose from 1,296 to 2,160
(1.7 times), which, combined with all feasible decisions, resulted in
more than 1.0 billion achievable transitions.

Table VI
PARAMETER CHANGES - INSTANCE 2 VS. ORIGINAL PROBLEM

Category Parameter settings

Shipping s5 ∈ {16; 17; 18; 19; 20} kt;

 p(16) = p(20) = 15%;
p(17) = p(19) = 20%;

p(18) = 30%;

Customers s3 ∈ {7; 8; 9} kt;
{

p(7) = p(8) = p(9) = 33.3%

s4 ∈ {30; 45; 60; 75; 90} kt;

 p(30) = p(90) = 15%
p(45) = p(75) = 20%

p(60) = 30%

Table VII
LSPSI+TABA PERFORMANCE FOR INSTANCE 2

λ α’s
0.1% 1.0% 5.0% 10% 20%

0.90
Num.

Itera-
tions

Mean 121.5 59.5 39.5 34.1 30.0
SD 4.5 0.9 0.5 0.3 0.0

CI (95%) [112.6,
130.4]

[57.6,
61.3]

[38.5,
40.5]

[33.5,
34.7]

[30.0,
30.0]

Tot.
Time
(s)

Mean 22.1 25.8 39.8 56.3 84.3
SD 3.3 2.7 2.1 2.9 4.3

CI (95%) [15.6,
28.6]

[20.5,
31.1]

[35.7,
43.9]

[50.6,
62.0]

[75.8,
92.7]

0.95
Num.

Itera-
tions

Mean 131.6 68.9 45.6 40.0 37.0
SD 3.1 0.8 0.5 0.0 0.0

CI (95%) [125.5,
137.7]

[67.4,
70.4]

[44.6,
46.6]

[40.0,
40.0]

[37.0,
37.0]

Tot.
Time
(s)

Mean 21.6 28.0 43.2 64.5 102.1
SD 2.3 1.7 2.3 3.1 4.5

CI (95%) [17.1,
26.1]

[24.7,
31.4]

[38.6,
47.7]

[58.5,
70.6]

[93.3,
110.8]

0.99
Num.

Itera-
tions

Mean 214.4 125.1 102.9 100.0 99.0
SD 1.3 0.4 0.3 0.0 0.0

CI (95%) [212.0,
216.9]

[124.2,
126.0]

[102.4,
103.5]

[100.0,
100.0]

[99.0,
99.0]

Tot.
Time
(s)

Mean 22.8 32.9 82.2 138.7 251.2
SD 2.7 1.8 3.9 5.0 7.3

CI (95%) [17.5,
28.1]

[29.3,
36.4]

[74.6,
89.8]

[129.0,
148.5]

[236.9,
265.6]

As |S|, |D|, and Z increased, it was expected that the total
convergence time would be almost 6.1 times longer (1.7×2.2×1.7).
Table IX confirms this: as an example for λ = 0.90 and α = 20%,
the total average time increased about sixfold from 21.7 to 136.6
seconds. However, the number of iterations reduced, as an example
for λ = 0.99 and α = 0.1%, the average number of iterations fell
13% from 204.1 to 177.4.

Table VIII
PARAMETER CHANGES - INSTANCE 3 VS. ORIGINAL PROBLEM

Category Parameter settings
Mines c1 = 14 kt (kt = 1, 000t)

Port and
IS

c3 = 4 kt

s1 ∈ {12; 13; 14} kt;

{
p(12) = p(14) = 20%

p(13) = 60%

c4 = 3 kt

s2 ∈ {3; 4} kt;

{
p(3) = 40%
p(4) = 60%

V. CONCLUDING REMARKS
This work presented TABA, an MDP algorithm based on time ag-

gregation for a class of MDPs with stationary state space components.
The algorithm establishes and solves an equivalent problem with a
reduced state space and is able to converge orders of magnitude faster
than traditional value and policy iteration algorithms. By clustering
the states according to the components that depend upon the state-
action pair, the approach iterates on the clusters and is proved to
converge to the optimal solution. The algorithm is especially efficient
when the number of clusters is significantly smaller than the size
of the state space. That happens, for example, in mining supply
chain problems that are subject to a large number of exogenous
uncertainties, which should be realised before taking a decision.

8

λ α’s
0.1% 1.0% 5.0% 10% 20%

0.90
Num.

Itera-
tions

Mean 106.1 55.8 37.2 32.5 29.6
SD 5.6 1.8 0.7 0.5 0.5

CI (95%) [95.1,
117.2]

[52.3,
59.3]

[35.8,
38.6]

[31.5,
33.4]

[28.6,
30.5]

Tot.
Time
(s)

Mean 31.3 38.1 59.9 86.3 136.6
SD 3.4 3.2 4.0 4.2 6.4

CI (95%) [24.6,
38.0]

[31.8,
44.4]

[52.1,
67.8]

[78.1,
94.5]

[124.0,
149.2]

0.95
Num.

Itera-
tions

Mean 116.6 64.6 43.9 39.0 36.3
SD 3.2 1.2 0.6 0.5 0.5

CI (95%) [110.3,
123.0]

[62.2,
67.1]

[42.7,
45.0]

[38.1,
39.9]

[35.4,
37.2]

Tot.
Time
(s)

Mean 35.2 40.7 66.4 100.1 158.7
SD 3.8 2.3 3.2 4.4 8.1

CI (95%) [27.8,
42.5]

[36.2,
45.1]

[60.1,
72.6]

[91.6,
108.6]

[142.8,
174.6]

0.99
Num.

Itera-
tions

Mean 177.4 96.6 79.6 78.0 77.0
SD 2.1 0.6 0.5 0.0 0.0

CI (95%) [173.3,
181.5]

[95.5,
97.7]

[78.7,
80.6]

[78.0,
78.0]

[77.0,
77.0]

Tot.
Time
(s)

Mean 32.7 44.9 105.1 181.2 319.8
SD 2.9 3.9 4.1 5.9 9.9

CI (95%) [27.0,
38.5]

[37.2,
52.7]

[97.2,
113.1]

[169.7,
192.7]

[300.5,
339.2]

Table IX
LSPSI+TABA PERFORMANCE FOR INSTANCE 3

To circumvent the size of the action space, we also proposed LSPI,
which uses a generalised policy evaluation that applies value iteration
whilst considering only a sample of actions from the action space.
This amounts to a local search within a very large set of available
policies that accelerates convergence. Albeit simple, the approach
introduces a novel way of sampling policies that produces a powerful
local search, is guaranteed to reach the optimal solution and can
produce significant computational savings in settings with a large
number of feasible actions, such as mining supply chain logistics.

Finally, the paper also introduces (TABA+LSPSI), an algorithm
that combines the previous approaches. By simultaneously reducing
the size of the state space and effectively sampling from the action
space, the algorithm’s iterations are fast and effective and the con-
vergence time is significantly reduced with respect to both TABA
and LSPSI in the numerical experiments. The three algorithms are
compared in the light of a complex mining supply chain problem.
All of them outperform classical value and policy iteration, as well
as the policy set iteration algorithm by a significant margin.

Possible extensions of this work include testing the algorithms
with large scale synthetic problems and an attempt to extend TABA
for general MDPs that do not meet the semi-stationarity assumption.
In such cases, there may not exist an intuitive state space partition
with Z ≪ |S| and the steady state probability (µz) may not
be trivially calculated. Another research direction is to investigate
distinct sampling strategies for the LSPSI algorithm and to infer the
impact of such strategies in the convergence time of the algorithm.
Finally, with some adaptations, TABA can be an alternative when it
is possible to convert infinite state spaces into finite disjoint sets, and
the sampling scheme used by LSPSI can be an alternative to infinite
action spaces.

ACKNOWLEDGMENT
This work was partially supported by the National Coun-

cil for Scientific and Technological Development (CNPq), under
grants #311075/2018-5 and #305180/2016-9; by the Carlos Chagas
Filho Foundation for Research Support of the State of Rio de
Janeiro (FAPERJ), under Grant no. E-26/202.789/2015; and by the
Coordenação de Aperfeiçoamento de Pessoal de Nı́vel Superior
(CAPES) - Finance Code 001.

REFERENCES
[1] W. Powell, “A unified framework for stochastic optimization,” European

Journal of Operational Research, vol. 275, no. 3, pp. 795–821, 6 2019.
[2] M. Puterman, Markov Decision Processes: Discrete Stochastic Dynamic

Programming, 1st ed. New York, NY, USA: John Wiley & Sons, Inc.,
1994.

[3] D. Bertsekas, Dynamic Programming and Optimal Control Volume II.
Belmont, Massachusetts: Athena Scientific, 1995.

[4] R. S. Sutton and A. G. Barto, Reinforcement Learning: An Introduction,
2nd ed. The MIT Press, 2018.

[5] R. Bellman, “A Markovian decision process,” Journal of Mathematics
and Mechanics, vol. 6, pp. 679–684, 1957.

[6] R. Howard, Dynamic programming and Markov processes. New York:
The MIT Press, 1960.

[7] E. A. Feinberg and J. Huang, “The value iteration algorithm is not
strongly polynomial for discounted dynamic programming,” Operations
Research Letters, vol. 42, no. 2, pp. 130–131, 2014.

[8] B. Scherrer, “Improved and generalized upper bounds on the complexity
of policy iteration,” Mathematics of Operations Research, vol. 41, no. 3,
pp. 758–774, 2016.

[9] A. Almudevar and E. Arruda, “Optimal approximation schedules for
a class of iterative algorithms, with an application to multigrid value
iteration,” IEEE Transactions on Automatic Control, vol. 57, no. 12, pp.
3132–3146, 2012.

[10] H. Chang, “Policy set iteration for Markov decision processes,” Auto-
matica, vol. 49, no. 12, pp. 3687–3689, 12 2013.

[11] ——, “Value set iteration for Markov decision processes,” Automatica,
vol. 50, no. 7, pp. 1940–1943, 7 2014.

[12] D. Bertsekas, “Lambda-Policy Iteration: A Review and a New Im-
plementation,” in Reinforcement learning and approximate dynamic
programming for feedback control. Hoboken, New Jersey: John Wiley
& Sons, Inc., 2013, pp. 381–409.

[13] E. A. Hansen and S. Zilberstein, “LAO*: A heuristic search algorithm
that finds solutions with loops,” Artificial Intelligence, vol. 129, no. 1-2,
pp. 35–62, 6 2001.

[14] H. Robbins and S. Monro, “A Stochastic Approximation Method,” pp.
400–407, 1951.

[15] C. Watkins and P. Dayan, “Q-learning,” Machine Learning, vol. 8, no.
3-4, pp. 279–292, 5 1992.

[16] W. Sun, Y. Wang, F. Zhang, and Y. Zhao, “Dynamic allocation of surplus
by-product gas in a steel plant by dynamic programming with a reduced
state space algorithm,” Engineering Optimization, vol. 50, no. 9, pp.
1578–1592, 9 2018.

[17] A. M. Devraj and S. P. Meyn, “Q-Learning With Uniformly Bounded
Variance,” IEEE Transactions on Automatic Control, vol. 67, no. 11, pp.
5948–5963, 11 2022.

[18] R. Bellman and S. Dreyfus, “Functional Approximations and Dynamic
Programming,” Mathematical Tables and Other Aids to Computation,
vol. 13, no. 68, p. 247, 10 1959.

[19] W. Powell, Approximate Dynamic Programming Solving the Curses of
Dimensionality. New Jersey, USA: John Wiley & Sons, Inc., 2011.

[20] L. Busoniu, R. Babuska, B. De Schutter, and D. Ernst, Reinforcement
Learning and Dynamic Programming Using Function Approximators.
Boca Raton: CRC Press, 7 2017.

[21] M. N. Katehakis and L. C. Smit, “A successive lumping procedure
for a class of Markov chains,” Probability in the Engineering and
Informational Sciences, vol. 26, pp. 483–508, 2012.

[22] B. C. Geiger, T. Petrov, G. Kubin, and H. Koeppl, “Optimal Kullback-
Leibler aggregation via information bottleneck,” IEEE Transactions on
Automatic Control, vol. 60, pp. 1010–1022, 4 2015.

[23] M. N. Katehakis, L. C. Smit, and F. M. Spieksma, “A comparative anal-
ysis of the successive lumping and the lattice path counting algorithms,”
Journal of Applied Probability, vol. 53, pp. 106–120, 7 2016.

[24] R. Amjad, C. Blochl, and B. Geiger, “A generalized framework for
Kullback-Leibler Markov aggregation,” IEEE Transactions on Automatic
Control, vol. 65, pp. 3068–3075, 7 2020.

[25] X. Cao, Z. Ren, S. Bhatnagar, M. Fu, and S. Marcus, “A time aggrega-
tion approach to Markov decision processes,” Automatica, vol. 38, no. 6,
pp. 929–943, 6 2002.

[26] E. Arruda and M. Fragoso, “Solving average cost Markov decision pro-
cesses by means of a two-phase time aggregation algorithm,” European
Journal of Operational Research, vol. 240, no. 3, pp. 697–705, 2 2015.

[27] ——, “Discounted Markov decision processes via time aggregation,” in
2016 European Control Conference, ECC 2016. Institute of Electrical
and Electronics Engineers Inc., 1 2016, pp. 2578–2583.

[28] E. Arruda, M. Fragoso, and F. Ourique, “A multi-cluster time aggrega-
tion approach for Markov chains,” Automatica, vol. 99, pp. 382–389, 1
2019.

[29] R. Dimitrakopoulos, C. Farrelly, and M. Godoy, “Moving forward from
traditional optimization: grade uncertainty and risk effects in open-pit
design,” Mining Technology, vol. 111, no. 1, pp. 82–88, 2002.

[30] L. Montiel and R. Dimitrakopoulos, “A heuristic approach for the
stochastic optimization of mine production schedules,” Journal of
Heuristics, vol. 23, no. 5, pp. 397–415, 2017.

[31] Y. A. Sari and M. Kumral, “Dig-limits optimization through mixed-
integer linear programming in open-pit mines,” Journal of the Opera-
tional Research Society, vol. 69, no. 2, pp. 171–182, 2018.

[32] R. Goodfellow and R. Dimitrakopoulos, “Simultaneous Stochastic Opti-
mization of Mining Complexes and Mineral Value Chains,” Mathemat-
ical Geosciences, vol. 49, no. 3, pp. 341–360, 2017.

[33] J. Zhang and R. Dimitrakopoulos, “Stochastic optimization for a mineral
value chain with nonlinear recovery and forward contracts,” Journal of
the Operational Research Society, vol. 69, no. 6, pp. 864–875, 6 2018.

[34] J. Leite, E. Arruda, L. Bahiense, and L. Marujo, “Mine-to-client planning
with Markov Decision Process,” in 2020 European Control Conference
(ECC), 2020, pp. 1123–1128.

[35] R. A. Brealey, S. C. Myers, F. Allen, and A. Edmans, Principles of
corporate finance, 14th ed. Boston, MA: McGraw Hill LLC, 2023.

[36] D. Qiao and M. C. Gursoy, “Age-optimal power control for status update
systems with packet-based transmissions,” IEEE Wireless Communica-
tions Letters, vol. 8, pp. 1604–1607, 12 2019.

[37] H. Huang, D. Qiao, and M. C. Gursoy, “Age-energy tradeoff optimiza-
tion for packet delivery in fading channels,” IEEE Transactions on
Wireless Communications, vol. 21, pp. 179–190, 1 2022.

