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Abstract 

We present a scaling analysis method for the sound transmission loss of thin acoustic 

metamaterial plates which can achieve high transmission loss at certain frequencies. The 

practical design and experimental validation of such metamaterial plates often faces 

challenges due to dimensional sensitivities and constraints dictated by experimental 

equipment and computational resources. To address this, a scaling analysis method is 

proposed which establishes simple relationships between the sound transmission loss of 

geometrically scaled acoustic metamaterial plates. Scaling formulas are derived 

mathematically based on the plate equation with variable bending stiffness and three 

scaling cases are considered: complete scaling, mass-neutral scaling, and thickness 

scaling. The scaling relationships are validated using finite element simulations of 

different plate-type acoustic metamaterial examples (i.e., thin plates with periodically 

attached rigid masses). The proposed scaling relationships will be valuable in simplifying 

the design of acoustic metamaterial plates, speeding up numerical optimizations, or 

enabling scaled-down acoustic experiments. 

 

Key words: scaling analysis; structural waves; acoustic metamaterial; plate; unit cell; 

transmission loss. 
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1. Introduction 

Acoustic metamaterials are artificially engineered materials that can control waves 

propagating through a medium [1-3]. Acoustic metamaterials can exhibit unusual 

properties, such as negative effective density or bulk modulus, which cannot be found in 

nature. Recently, various studies have been reported on acoustic metamaterial plates, 

which utilize acoustic metamaterials in soundproofing panel designs to achieve high 

sound transmission loss (STL) [4-24]. These plates include several types: where local 

resonators functioning as mass-spring systems are attached to a plate to reduce vibration 

[4-8], designs that combine acoustic resonators with a plate to reduce noise through 

acoustic resonances [9-11], sandwich panels made up of top and bottom plates with 

meticulously designed pathways between them [12-15], plate structures integrated with 

periodic stub or pillar attachments made of heavy metal or rubber materials to control 

flexural waves by forming band gaps in targeted frequency ranges [16-18], and plate-type 

acoustic metamaterials (PAMs) composed of rigid masses periodically distributed on a 

thin plate achieving noise reduction from their anti-resonances [19-24]. These acoustic 

metamaterial plates have gained significant attention due to their ability to reduce sound 

and vibration effectively without relying on thick and heavy materials (e.g. conventional 

panels), which are governed by the mass-law.  

Despite these advantages, several challenges arise in the design and experimental 

validation phase: The noise attenuation characteristics of acoustic metamaterial plates are 

highly related to the geometry of the unit cell design, such as the mass shape, size, and 

thickness in PAMs. These relationships are particularly complicated when broadband 

sound transmission loss improvements are desired, e.g. by designing multi-modal local 

resonators [7,8] or using PAM designs with multiple masses in a single unit cell [20]. 
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When geometrical dimensions required to position anti-resonances within the desired 

frequency range are unknown, iterative calculations are often necessary, leading to 

considerable time consumption. Furthermore, during experimental validation using sound 

transmission loss tests, the maximum test sample size can be limited by the experimental 

facilities. 

A solution to these challenges can be found in the scaling and similitude analysis 

method. Scaling or similitude analysis investigates the effects of altering the size of a 

structure on its performance and establishes relationships between original and scaled 

geometries through governing equations or dimensionless parameters [25,26]. A well-

known example for the benefits of scaling can be found in fluid dynamics, where 

Reynolds similarity is exploited in both experimental and computational applications. In 

structural dynamics, methodologies for correlating dynamic characteristics using scaling 

or similitude analysis have been proposed [27-31]. However, applying scaling analysis 

methods to the analysis and prediction of the sound insulation characteristics of acoustic 

metamaterial plates has not yet been reported. 

In this letter, we introduce a scaling analysis method for the sound transmission loss of 

thin acoustic metamaterial plates, enabling the prediction of the sound insulation 

performance of scaled metamaterial plates based on results for the original geometry. We 

consider two types of scaling coefficients (in-plane and out-of-plane) and mathematically 

derive scaling relationships for the sound transmission loss using a PAM as an example. 

Based on this, three scaling cases are considered: Complete scaling, which scales the unit 

cell geometry equally in all three spatial directions; mass-neutral scaling, which preserves 

the total mass of the metamaterial; and thickness scaling, which only changes the overall 
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thickness of the metamaterial. The effectiveness of the proposed scaling analysis method 

is validated using finite element simulations. 

 

2. Modeling and method 

In this section, we introduce the analytical scaling law for the sound transmission loss 

of thin plate-like acoustic metamaterials. The derivation is based on the assumptions of 

normal incidence of acoustic waves, infinite periodicity of the metamaterials in the in-

plane directions, sub-wavelength size of the metamaterial unit cells, and the applicability 

of the Kirchhoff-Love plate theory, which requires the plate to be thin relative to its lateral 

dimensions. 

2.1. Analysis model and sound transmission characteristics of PAMs 

Fig. 1 shows an example configuration of a PAM and the unit cell comprising it. In this 

example, each unit cell, shown on the right, consists of a plate with a circular mass 

attached on its top, and the PAM is configured with these unit cells periodically arranged 

along the 𝑥 and 𝑦 directions as defined in the three-dimensional Cartesian coordinate 

system (𝑥, 𝑦, 𝑧) shown on the left. It should be noted that the configuration shown in Fig. 

1 has been chosen for simplicity – the analysis proposed in this paper also applies to more 

complicated acoustic metamaterial plate designs, e.g. PAMs with multiple masses in a 

unit cell or more complicated mass geometries. Without loss of generality, the unit cell 

lengths in both the 𝑥 and 𝑦 directions are assumed to be equal (𝑎) and the thickness of 

the plate is denoted as ℎ!. The diameter and height of the circular mass positioned in the 

center of the unit cell are denoted as 𝑑" and ℎ", respectively. The frequency-dependent 

characteristics of PAMs can be identified from the effective surface mass density (𝑚#$$
%% ), 
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which is defined as follows [32]: 

𝑚#$$
%% (𝑓) = !

&(()*)!〈-(*)〉
,    (1) 

where 𝑓 is the frequency, 〈𝑤(𝑓)〉 indicates the surface-averaged complex normal 

displacement amplitude of the PAM in response to a uniform pressure 𝑝 applied to the 

PAM. In general, the normal displacement of a thin plate is governed by the Kirchhoff-

Love plate equation. The displacement field of the PAM can be calculated using the plate 

equation with variable bending stiffness [33]: 
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where 𝐷 indicates the local bending stiffness, defined as 𝐷 = 𝐸ℎ2/(12(1 − 𝜈()), 

𝐸, 𝜈, 𝜌, and ℎ are the local Young’s modulus, Poisson’s ratio, density, and thickness 

(equal to ℎ! or ℎ! + ℎ"), depending on the location within the unit cell, respectively. 

Once the effective surface mass density is known, the noise attenuation characteristics of 

the PAM can be evaluated through the frequency-dependent STL, which is derived from 

the sound transmission factor (𝑡) via [34]: 

𝑡(𝑓) = 11 + 3(()*)
(4"5"

𝑚#$$
%% (𝑓)7

&6

, i = √−1,   (3a) 

TL(𝑓) = −20 log67|𝑡(𝑓)|,   (3b) 

where 𝜌7  and 𝑐7  are the density and speed of sound of the acoustic medium 

surrounding the PAM, respectively. 
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Fig. 1 Configuration of a PAM with a unit cell composed of circular mass 

 

2.2. Derivation of the scaling law 

As the dimensions of the PAM unit cell change, the displacement field 𝑤 will be 

altered and the STL varies correspondingly. To establish a relationship between the STL 

of scaled and original PAMs, a scaling law based on Eq. (2) is derived. Starting from the 

original coordinate system, defined as 𝑥, 𝑦, and 𝑧, when the in-plane dimensions (𝑥- 

and 𝑦-directions) are scaled by 𝛾8 and the thickness of the plate and height of the mass 

are equally scaled by 𝛾9 , the new coordinate system of the scaled geometry can be 

denoted as 𝑥: , 𝑦: , and 𝑧: , with the relationships between the scaled and original 

coordinates given by 

𝑥: = 𝛾8𝑥, 𝑦: = 𝛾8𝑦,     (4a) 

ℎ: = 𝛾9ℎ,        (4b) 

If the material composition of the scaled metamaterial remains identical to the original 

design, the plate equation in Eq. (2) can be rewritten in terms of the scaled coordinate 

system as follows: 
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where 𝑤: , 𝑓: , and ℎ:  represent the normal displacement, frequency, and local 

thickness of the scaled PAM, respectively. Along with the coordinate scaling, the partial 

differential notation was modified correspondingly. Although the material composition 

remains constant, the local bending stiffness of the PAM is affected by the thickness 

scaling ratio (𝛾9), resulting in 𝐷: =
;9#$

6((6&<!)
. Based on the relationships in Eq. (4a), the 

partial differential operators of the scaled geometry can be expressed as 

𝜕𝑥: = 𝛾8𝜕𝑥, 𝜕𝑦: = 𝛾8𝜕𝑦,      (6) 

Additionally, from Eq. (4b) it follows that the bending stiffnesses of the original and 

scaled PAM follow the relationship 

𝐷: =
;

6((6&<!)
ℎ:2 = 𝛾92

;
6((6&<!)

ℎ2 = 𝛾92𝐷.	    (7) 

By inserting Eqs. (6) and (7) in Eq. (5), the plate equation of the scaled metamaterial can 

be expressed as follows: 
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When comparing Eqs. (2) and (8), differences exist only in the terms related to the 

frequency (𝑓 and 𝑓:) and the normal displacement (𝑤 and 𝑤:); all other terms remain 
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identical. This indicates that the displacement and corresponding frequency calculated or 

measured on the scaled geometry can be scaled to match that of the original geometry by 

using the following scaling relationships: 

𝑓 = =%!

=&
𝑓:,        (9a) 

𝑤 = =&
$

=%'
𝑤:,          (9b) 

From these displacement and frequency scaling relationships, the definition of the 

effective surface mass density is used to derive a scaling law for the STL of the scaled 

PAM, relating its STL to that of the original PAM. Following the definition in Eq. (1), the 

effective surface mass density of the scaled PAM P𝑚#$$
%%
:Q is expressed as 

𝑚#$$
%%
:(𝑓:) =

!
&(()*#)!〈-#(*#)〉

,   (10) 

Substituting the relevant terms from Eq. (9), this can be rewritten as 

𝑚#$$
%%
:(𝑓) = 𝛾9

!
&(()*)!〈-(*)〉

= 𝛾9𝑚#$$
%% (𝑓),    (11) 

which provides a direct scaling relationship between the scaled and original PAM at the 

same frequency 𝑓. It should be noted that even though the metamaterial was scaled based 

on two coefficients, the terms involving 𝛾8 in the scaling relationships for 𝑓: and 𝑤: 

involving 𝛾8 canceled each other out, resulting in the effective surface mass density of 

the scaled geometry depending solely on the out-of-plane scaling factor 𝛾9 . This is 
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consistent with the case of a homogeneous plate where the surface mass density is 

independent of frequency and only changes when the thickness of the plate is scaled. 

Using Eqs. (9a) and (11), the sound transmission factor of the scaled metamaterial (𝑡:) 

is given by 

	𝑡:(𝑓) = 31 + 3(()*#)
(4"5"

𝑚#$$#
%% (𝑓)	6

&6
= 11 + 3=&

=%
6
( 3(()*)
(4"5"

𝑚#$$
%% (𝑓)7

&6

. (12) 

Using Eq. (3a), Eq. (12) can be rearranged to establish the following relationship between 

the sound transmission factors of the scaled and original metamaterials: 

𝑡(𝑓) = 11 + 3=%
=&
6
(
3P𝑡:(𝑓)Q

&6 − 167
&6

	.  (13) 

By substituting this result into Eq. (3b), the rescaled transmission loss (TLR(𝑓)) can be 

obtained from the sound transmission factor of the scaled geometry 𝑡:: 

TLR(𝑓) = −20 log67 S11 + 3
=%
=&
6
(
3P𝑡:(𝑓)Q

&6 − 167
&6

S.        (14) 

The notation TLR(𝑓) has been introduced to make a clear distinction between the STL of 

the original metamaterial (TL(𝑓)) and the rescaled STL calculated via Eq. (14) and using 

transmission factor values of the scaled metamaterial (obtained using, for example, 

numerical simulations or experiments). It should be noted that Eq. (14) is also valid for 

homogeneous plates, although not immediately obvious because 𝛾8 appears in Eq. (14), 

which should not affect the STL in case of a homogeneous plate. However, when 
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assuming a frequency-independent surface mass density, inserting Eq. (12) in Eq. (14) 

cancels the dependency on 𝛾8, as would be expected for homogeneous plates.	  

 

3. Numerical validation and discussion 

To validate the proposed method, three scaling cases are considered based on the two 

scaling coefficients 𝛾8 and 𝛾9: (1) scaling in all directions (𝑥, 𝑦, 𝑧) (complete scaling), 

(2) scaling in-plane dimensions only (𝑥, 𝑦) while the height remains identical (𝛾9 = 1) 

(mass-neutral scaling), and (3) only scaling out-of-plane dimensions (𝑧) while the in-

plane dimensions remain identical (𝛾8 = 1 ) (thickness scaling). As a representative 

example, the PAM shown in Fig. 1 with material parameters and dimensions based on 

[35] was used as the original design. The plate material was polycarbonate (𝐸	 = 	2.3	GPa, 

𝜈 = 0.40, 𝜌 = 1310	kg/m2) with a structural loss factor of 5%. The mass was made of 

steel (𝐸	 = 	205	GPa, 𝜈 = 0.28, 𝜌 = 7850	kg/m2) with a structural loss factor of 1%. 

The acoustic medium was air ( 𝜌7 = 1.23	kg/m2 , 𝑐7 = 343	m/s ). The numerical 

analysis was conducted based on the finite element method (FEM) using COMSOL 

Multiphysics (ver. 6.2), and the simplified metamaterial plate modeling method described 

in Ref. [36] was followed to calculate the STL. Further details of the numerical simulation 

setup are provided in Appendix A. For a finite array, the dynamic behavior converges to 
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that of an infinite array once a sufficient number of unit cells are used, as shown in Ref. 

[35]. Therefore, the scaling relationships derived in this letter are expected to remain valid 

even for finite acoustic metamaterial plates of practical size. 

Fig. 2(a) shows the STL curves of the original and scaled PAMs calculated via finite 

element simulations using complete scaling (i.e., 𝛾8 = 𝛾9). In this case, the geometry is 

scaled uniformly in all directions and the dimensions of the scaled and original geometries 

are detailed in Table 1, including the corresponding static surface mass density (𝜇) of each 

configuration. The STL of the original PAM is represented by the black dash-dotted line. 

Between 100 to 1000 Hz, two anti-resonances are observed in the form of STL peaks. 

The first anti-resonance occurs at 257 Hz with a STL of 27.4 dB and the second anti-

resonance at 670 Hz with a STL of 22.9 dB. From observing the STL curves of the scaled 

PAMs, it can be seen that if the scaling factors increase (i.e., the unit cell becomes bigger), 

the anti-resonance frequencies shift to lower frequencies, while they shift to higher 

frequencies if the scaling factors decrease. However, the STL values at both anti-

resonance frequencies remain at the same level, regardless of the scaling. For example, 

when 𝛾8 = 𝛾9 = 3, the first and second anti-resonances shift to 85.7 Hz and 223.3 Hz, 

with corresponding STL values of 27.4 dB and 22.9 dB, respectively. Conversely, when 

𝛾8 = 𝛾9 = 1/3, the anti-resonances shift to 771 Hz and 2010 Hz, with STL values of 27.4 
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dB and 22.9 dB. This behavior aligns with Eq. (14), where 𝛾8 and 𝛾9 cancel each other 

out when they are equal, resulting in consistent STL values for complete scaling. 

Therefore, complete scaling can be useful, for example, to achieve a fixed STL level at 

different anti-resonance frequencies by scaling the unit cell geometry according to the 

frequency scaling law given in Eq. (9a), which reduces to 𝑓 = 𝛾8𝑓:  in the case of 

complete scaling. Fig. 2(b) shows the STL curves that have been analytically rescaled by 

applying the scaling law in Eq. (14) to the FEM results of the scaled PAMs. Despite the 

high range of scaling factors, ranging from 1/3 to 3, and the different materials used in 

the PAM designs, the rescaled TL curves exhibit remarkable consistency with almost no 

visible differences. Fig. 3 shows the normal displacement fields of each scaled PAM at 

their respective anti-resonance frequencies. For both the first and second anti-resonance, 

it can be observed that the locations of high and low displacement regions remain 

identical across different scaling factors. 
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Fig. 2 STL curves of the original and scaled PAMs with complete scaling (𝛾8 = 𝛾9): 
(a) STL curves calculated via FEM, plotted against the frequency 𝑓: of the scaled PAM 
and (b) STL curves analytically rescaled by applying the scaling law in Eq. (14) to the 

FEM results, plotted against the rescaled frequency 𝑓. 

 

 

!"#

!$#
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Fig. 3 Normal displacement fields of the scaled PAMs in complete scaling. 

 

Table 1 Dimensions of the original and scaled PAMs using complete scaling (original 
PAM: 𝛾8 = 1, 𝛾9 = 1). 

𝛾! 𝛾" 𝑎	(mm) 𝑑#	(mm) ℎ$	(µm) ℎ#	(mm) 𝜇	(g m%⁄ )		 

1/3	 1/3	 25.83	 10	 250	 0.333	 635 
1/2	 1/2	 38.75	 15	 375	 0.5	 953 
1	 1	 77.5	 30	 750	 1	 1906 
2	 2	 155	 60	 1500	 2	 3813 
3 3	 232.5	 90	 2250	 3	 5719 
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In some applications it is desirable to alter the anti-resonance frequencies of a 

metamaterial plate without changing the overall (static) mass of the metamaterial. This 

leads to the case of mass-neutral scaling, for which the static surface mass density remains 

constant. This is achieved if 𝛾9 remains at 1 while only 𝛾8 is varied, i.e. the thickness 

of the metamaterial plate remains constant and only the in-plane dimensions are adjusted. 

Fig. 4(a) shows the STL of the scaled PAMs with mass-neutral scaling, calculated via 

finite element simulations. The corresponding dimensions of the scaled PAMs are 

summarized in Table 2, also demonstrating how the static surface mass density 𝜇 

remains constant in this case. As shown in Fig. 4(a) and as follows from Eq. (9a), if 𝛾8 

increases, the anti-resonance frequency decreases (according to 𝑓 = 𝛾8(𝑓:), along with a 

corresponding decrease in the STL values (because now the 𝛾8 and 𝛾9 do not cancel in 

Eq. (14)). Conversely, if 𝛾8 decreases, the anti-resonance frequency increases, and the 

STL values increase. For instance, when 𝛾8 = 3, the first and second anti-resonances 

shift to 28.8 Hz and 75.2 Hz, with STL values of 10.9 dB and 7.4 dB, respectively. In 

contrast, when 𝛾8 = 1/3, the first and second anti-resonances shift to 2251 Hz and 5851 

Hz, with STL values of 46.1 dB and 41.1 dB, respectively. Fig. 4(b) shows the STL curves 

analytically rescaled by applying Eq. (14) to the FEM results from mass-neutral scaling. 

Overall, the rescaled STL values exhibit good agreement, in particular for scaled PAMs 
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with high 𝛾8 values. In contrast, for low values of 𝛾8, gradually increasing differences 

are observed as 𝛾8 decreases. Fig. 5 shows the normal displacement fields of each scaled 

PAM under mass-neutral scaling at their respective anti-resonance frequencies. As 𝛾8 

decreases, it can be seen that the relative heights of the mass and plate increase compared 

to the unit cell length. For both the first and second anti-resonance, the locations of high 

and low displacement regions remain almost identical across different scaling factors, 

despite the variations in geometry. 
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Fig. 4 STL curves of the original and scaled PAMs with mass-neutral scaling (𝛾9 = 1): 
(a) STL curves calculated via FEM, plotted against the frequency 𝑓: of the scaled 

system and (b) STL curves analytically rescaled by applying the scaling law in Eq. (14) 
to the FEM results, plotted against the rescaled frequency 𝑓. 

!"#

!$#
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Fig. 5 Normal displacement fields of the scaled PAMs in mass-neutral scaling. 

 

Table 2 Dimensions of the original and scaled PAMs using mass-neutral scaling 
(original PAM: 𝛾8 = 1, 𝛾9 = 1). 

𝛾! 𝛾" 𝑎	(mm) 𝑑#	(mm) ℎ$	(µm) ℎ#	(mm) 𝜇	(g m%⁄ ) 

1/3	 1	 25.83	 10	 750	 1	 1906 
1/2	 1	 38.75	 15	 750	 1	 1906 
1	 1	 77.5	 30	 750	 1	 1906 
2	 1	 155	 60	 750	 1	 1906 
3 1	 232.5	 90	 750	 1	 1906 
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Another scaling case that can be considered using the proposed method is thickness 

scaling, for which the in-plane dimensions remain constant while only 𝛾9 varies, thereby 

only adjusting the thickness of the metamaterial. Fig. 6(a) shows the STL curves of the 

PAMs with thickness scaling, calculated via finite element simulations. The dimensions 

and static surface mass densities of the thickness-scaled PAMs are summarized in Table 

3. The results show that by decreasing 𝛾9 (resulting in a thinner, more lightweight PAM), 

the anti-resonance frequencies decrease according to 𝑓 = 𝛾9&6𝑓:. Conversely, when 𝛾9 

increases (resulting in a thicker, heavier PAM), the anti-resonance frequencies shift to 

higher frequencies. Furthermore, the STL values decrease as 𝛾9 decreases and vice versa. 

For instance, when 𝛾9 = 1/3, the first and second anti-resonances shift to 86.3 Hz and 

225.7 Hz, with STL values of 10.9 dB and 7.4 dB, respectively. In contrast, when 𝛾9 =

3, the first and second anti-resonances shift to 748 Hz and 1951 Hz, with STL values of 

46.1 dB and 41.1 dB, respectively. Fig. 6(b) shows the STL curves analytically rescaled 

by applying Eq. (14) to the FEM results of the thickness scaled PAMs. When 𝛾9 < 1, the 

results for the rescaled STL align closely with the STL curve of the original PAM. 

However, when 𝛾9 is set higher than 1, the rescaled STL curve starts to deviate from the 

original PAM STL. Fig. 7 shows the normal displacement fields of each scaled PAM 

under thickness scaling at their respective anti-resonance frequencies. As 𝛾9 increases, 
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the heights of the mass and plate increase compared to the unit cell length. For both the 

first and second anti-resonance, the locations of high and low displacement regions 

remain almost identical across different scaling factors, despite the variations in geometry. 

 

Fig. 6 STL curves of the original and scaled PAMs with thickness scaling (𝛾8 = 1): (a) 
STL curves calculated via FEM, plotted against the frequency 𝑓: of the scaled PAMs 
and (b) STL curves analytically rescaled by applying the scaling law in Eq. (14) to the 

FEM results, plotted against the rescaled frequency 𝑓. 

 

!"#

!$#
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Fig. 7 Normal displacement fields of the scaled PAMs in thickness scaling. 

 

Table 3 Dimensions of the original and scaled PAMs using thickness scaling (original 
PAM: 𝛾8 = 1, 𝛾9 = 1). 

𝛾! 𝛾" 𝑎	(mm) 𝑑#	(mm) ℎ$	(µm) ℎ#	(mm) 𝜇	(g m%⁄ ) 

1	 1/3	 77.5	 30	 250	 0.333	 635 
1	 1/2	 77.5	 30	 375	 0.5	 953 
1	 1	 77.5	 30	 750	 1	 1906 
1	 2	 77.5	 30	 1500	 2	 3813 
1 3	 77.5	 30	 2250	 3	 5719 
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To further analyze the validity and limits of the proposed scaling method, additional 

calculations were conducted for the two scaling cases for which discrepancies were 

observed. Fig. 8(a) shows the absolute difference between the STL of the original PAM 

(TL) and of the scaled PAMs (TLR) with mass-neutral scaling. Here, 𝛾8 was varied from 

1 to 0.3, with an interval of 0.01. When 𝛾8 decreases from 1 to 0.77, the errors in the 

rescaled STL are almost negligible, remaining within 1 dB. However, for 𝛾8 as low as 

0.55, the observed differences begin to exceed 3 dB at 686 Hz, and starting from 𝛾8 =

0.39, discrepancies of more than 6 dB are observed at 683 Hz. Fig. 8(b) shows the 

absolute difference between the original STL and TLR  with thickness scaling. Here, 𝛾9 

was varied from 1 to 3, with an interval of 0.02. For 𝛾9 between 1 and 1.3, the errors in 

the rescaled STL are within 1 dB. However, for 𝛾9 exceeding 1.82, discrepancies larger 

than 3 dB can be observed at 685 Hz, and discrepancies larger than 6 dB are observed at 

682 Hz if 𝛾9 > 2.56. 
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Fig. 8 Difference between the original PAM STL and the rescaled STL for different 
scaling approaches: (a) mass-neutral scaling and (b) thickness scaling. 

The increasing discrepancies for small 𝛾8  (mass-neutral scaling) or large 𝛾9 

(thickness scaling) can be explained as follows: In these cases, the plate and mass become 

considerably thick compared to the unit cell length 𝑎 of the PAMs. The scaling analysis 

method proposed in this letter was derived mathematically based on the Kirchhoff-Love 

!"#
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plate equation with variable bending stiffness, which assumes that the thickness of the 

plate is much smaller than the lateral dimensions (𝑎 ). If this is violated, dynamic 

characteristics, such as in-plane motion or torsion, which were not considered during the 

derivation of the plate equation, become non-negligible, and the error in the rescaled STL 

increases. One possible explanation can be found in the limitation of the Kirchhoff-Love 

plate theory, which does not account for transverse shear deformation or rotary inertia. 

As a result, the structural stiffness tends to be overestimated, since the theory assumes 

that the system does not respond to such effects. In contrast, real systems may exhibit 

these dynamic behaviors, and in such cases, the actual stiffness is lower than that 

estimated by the Kirchhoff-Love plate theory due to the presence of shear and rotational 

effects. In general, for a given mass, lower structural stiffness leads to lower characteristic 

frequencies. In cases where consistent discrepancies are observed, the rescaled STL 

exhibit a gradual downward shift in the anti-resonance frequency relative to the original 

STL. This trend aligns with the theoretical assumptions discussed above. 

Nevertheless, even in the cases where discrepancies occurred, the rescaled STL curves 

exhibit relatively minor errors, despite considerable changes in dimensions. Additionally, 

the present scaling analysis incorporates material losses through the loss factors in both 

the plate (5%) and the mass (1%). Within the investigated range (≤ 5%), the derived 
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scaling law remains valid, indicating that moderate damping does not impair their 

applicability. For viscoelastic metamaterials that require higher loss factor, however, 

additional analysis may be required to extend the applicability of the proposed approach. 

 

4. Conclusions 

In this letter, a scaling analysis method for the sound transmission through acoustic 

metamaterial plates was proposed. Two types of scaling factors, in-plane and out-of-plane, 

were introduced and the scaling relationships between the frequencies and STL of the 

original and scaled metamaterial were established using the plate equation with variable 

bending stiffness. Based on the two scaling factors, three scaling cases were explored 

using numerical simulations of PAMs as an example for metamaterial plate: complete 

scaling, mass-neutral scaling, and thickness scaling. It could be shown that for complete 

scaling, a perfect agreement between the STL of the original and scaled metamaterial can 

be achieved using the proposed STL rescaling in Eq. (14). Minor discrepancies were 

observed in the mass-neutral and thickness scaling cases, which can be explained by the 

utilized thin plate-assumption being violated if the thickness becomes large compared to 

the unit cell size of the metamaterial. Nevertheless, even with substantial changes in the 
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frequency range due to large variations in the scaling coefficients, the rescaled STL curves 

demonstrated a high degree of agreement with the original PAM.  

The proposed scaling methodology can be applied to greatly simplify numerical or 

experimental studies of the sound transmission properties of acoustic metamaterial plates, 

like how Reynolds-similarity is exploited in fluid mechanics. While this letter focused on 

rescaling the STL of scaled metamaterial plates, the proposed method can also be reversed, 

which will allow to intentionally shift anti-resonances of a metamaterial plate to desired 

frequency ranges using the scaling formulas proposed in this letter. This will reduce the 

computational effort in designing complex metamaterial plate structures (e.g. using 

optimization procedures) and significantly simplify the tailoring of acoustic metamaterial 

plate designs towards different noise control applications with different problematic 

frequency ranges. 
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Appendix A: Details of finite element simulation 

Fig. A.1(a) shows the meshed model used for the finite element simulation of the 

original PAM. The plate was modeled as a thin, uniform-thickness shell using two-

dimensional shell elements, while the mass was modeled as a cylindrical geometry using 

three-dimensional solid elements. Quadratic shape functions were applied to both shell 

and solid elements. To simulate an infinitely periodic structure, periodic boundary 

conditions were applied to all four edges of the unit cell. Owing to the use of periodic 

boundary conditions, the global response of an infinite PAM can be obtained through the 

numerical analysis of a single unit cell. As illustrated in Fig. A1(b), at the overlapping 

boundaries of shell and solid, the shell and solid elements were rigidly connected via a 

solid-thin structure connection. A normally incident acoustic wave was simulated by 

applying a uniform pressure to the bottom of the PAM. 
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Fig. A.1. Schematic diagram of the numerical setup: (a) isometric view of the meshed 
model, (b) side view of the unit cell. 
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