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Abstract

We present a scaling analysis method for the sound transmission loss of thin acoustic
metamaterial plates which can achieve high transmission loss at certain frequencies. The
practical design and experimental validation of such metamaterial plates often faces
challenges due to dimensional sensitivities and constraints dictated by experimental
equipment and computational resources. To address this, a scaling analysis method is
proposed which establishes simple relationships between the sound transmission loss of
geometrically scaled acoustic metamaterial plates. Scaling formulas are derived
mathematically based on the plate equation with variable bending stiffness and three
scaling cases are considered: complete scaling, mass-neutral scaling, and thickness
scaling. The scaling relationships are validated using finite element simulations of
different plate-type acoustic metamaterial examples (i.e., thin plates with periodically
attached rigid masses). The proposed scaling relationships will be valuable in simplifying
the design of acoustic metamaterial plates, speeding up numerical optimizations, or

enabling scaled-down acoustic experiments.
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1. Introduction

Acoustic metamaterials are artificially engineered materials that can control waves
propagating through a medium [1-3]. Acoustic metamaterials can exhibit unusual
properties, such as negative effective density or bulk modulus, which cannot be found in
nature. Recently, various studies have been reported on acoustic metamaterial plates,
which utilize acoustic metamaterials in soundproofing panel designs to achieve high
sound transmission loss (STL) [4-24]. These plates include several types: where local
resonators functioning as mass-spring systems are attached to a plate to reduce vibration
[4-8], designs that combine acoustic resonators with a plate to reduce noise through
acoustic resonances [9-11], sandwich panels made up of top and bottom plates with
meticulously designed pathways between them [12-15], plate structures integrated with
periodic stub or pillar attachments made of heavy metal or rubber materials to control
flexural waves by forming band gaps in targeted frequency ranges [16-18], and plate-type
acoustic metamaterials (PAMs) composed of rigid masses periodically distributed on a
thin plate achieving noise reduction from their anti-resonances [19-24]. These acoustic
metamaterial plates have gained significant attention due to their ability to reduce sound
and vibration effectively without relying on thick and heavy materials (e.g. conventional

panels), which are governed by the mass-law.

Despite these advantages, several challenges arise in the design and experimental
validation phase: The noise attenuation characteristics of acoustic metamaterial plates are
highly related to the geometry of the unit cell design, such as the mass shape, size, and
thickness in PAMs. These relationships are particularly complicated when broadband
sound transmission loss improvements are desired, e.g. by designing multi-modal local

resonators [7,8] or using PAM designs with multiple masses in a single unit cell [20].



When geometrical dimensions required to position anti-resonances within the desired
frequency range are unknown, iterative calculations are often necessary, leading to
considerable time consumption. Furthermore, during experimental validation using sound
transmission loss tests, the maximum test sample size can be limited by the experimental

facilities.

A solution to these challenges can be found in the scaling and similitude analysis
method. Scaling or similitude analysis investigates the effects of altering the size of a
structure on its performance and establishes relationships between original and scaled
geometries through governing equations or dimensionless parameters [25,26]. A well-
known example for the benefits of scaling can be found in fluid dynamics, where
Reynolds similarity is exploited in both experimental and computational applications. In
structural dynamics, methodologies for correlating dynamic characteristics using scaling
or similitude analysis have been proposed [27-31]. However, applying scaling analysis
methods to the analysis and prediction of the sound insulation characteristics of acoustic

metamaterial plates has not yet been reported.

In this letter, we introduce a scaling analysis method for the sound transmission loss of
thin acoustic metamaterial plates, enabling the prediction of the sound insulation
performance of scaled metamaterial plates based on results for the original geometry. We
consider two types of scaling coefficients (in-plane and out-of-plane) and mathematically
derive scaling relationships for the sound transmission loss using a PAM as an example.
Based on this, three scaling cases are considered: Complete scaling, which scales the unit
cell geometry equally in all three spatial directions; mass-neutral scaling, which preserves

the total mass of the metamaterial; and thickness scaling, which only changes the overall



thickness of the metamaterial. The effectiveness of the proposed scaling analysis method

is validated using finite element simulations.

2. Modeling and method

In this section, we introduce the analytical scaling law for the sound transmission loss
of thin plate-like acoustic metamaterials. The derivation is based on the assumptions of
normal incidence of acoustic waves, infinite periodicity of the metamaterials in the in-
plane directions, sub-wavelength size of the metamaterial unit cells, and the applicability
of the Kirchhoff-Love plate theory, which requires the plate to be thin relative to its lateral

dimensions.

2.1.  Analysis model and sound transmission characteristics of PAMs

Fig. 1 shows an example configuration of a PAM and the unit cell comprising it. In this
example, each unit cell, shown on the right, consists of a plate with a circular mass
attached on its top, and the PAM is configured with these unit cells periodically arranged
along the x and y directions as defined in the three-dimensional Cartesian coordinate
system (x, y, z) shown on the left. It should be noted that the configuration shown in Fig.
1 has been chosen for simplicity — the analysis proposed in this paper also applies to more
complicated acoustic metamaterial plate designs, e.g. PAMs with multiple masses in a
unit cell or more complicated mass geometries. Without loss of generality, the unit cell
lengths in both the x and y directions are assumed to be equal (a) and the thickness of
the plate is denoted as h,. The diameter and height of the circular mass positioned in the
center of the unit cell are denoted as d,, and h,,, respectively. The frequency-dependent

characteristics of PAMs can be identified from the effective surface mass density (mgg),



which is defined as follows [32]:

Mege(f) = (D

(Zﬂf)Z(W(f))

where f is the frequency, (w(f)) indicates the surface-averaged complex normal
displacement amplitude of the PAM in response to a uniform pressure p applied to the
PAM. In general, the normal displacement of a thin plate is governed by the Kirchhoff-
Love plate equation. The displacement field of the PAM can be calculated using the plate

equation with variable bending stiffness [33]:

(Z(p(E+vim))+ 255 (00 -0;0) 4 (0 (v ) -
ph(Zﬂf)2>w=p, )

where D indicates the local bending stiffness, defined as D = Eh3/(12(1 — v?)),
E,v,p, and h are the local Young’s modulus, Poisson’s ratio, density, and thickness
(equal to h, or h, + hy), depending on the location within the unit cell, respectively.
Once the effective surface mass density is known, the noise attenuation characteristics of
the PAM can be evaluated through the frequency-dependent STL, which is derived from

the sound transmission factor (t) via[34]:

t(f) = (1 I(an) eff(f)) ,i=v-1, (3a)

TL(f) = —201og,[t(f)], (3b)

where p, and c, are the density and speed of sound of the acoustic medium

surrounding the PAM, respectively.
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Fig. 1 Configuration of a PAM with a unit cell composed of circular mass

2.2.  Derivation of the scaling law

As the dimensions of the PAM unit cell change, the displacement field w will be
altered and the STL varies correspondingly. To establish a relationship between the STL
of scaled and original PAMs, a scaling law based on Eq. (2) is derived. Starting from the
original coordinate system, defined as x, y, and z, when the in-plane dimensions (x-
and y-directions) are scaled by y, and the thickness of the plate and height of the mass
are equally scaled by y;,, the new coordinate system of the scaled geometry can be
denoted as xg, y, and z;, with the relationships between the scaled and original

coordinates given by

Xs = VaX, Ys = VaY> (4a)

hs = yrh, (4b)

If the material composition of the scaled metamaterial remains identical to the original

design, the plate equation in Eq. (2) can be rewritten in terms of the scaled coordinate

system as follows:



0? 92 92 92 9? 02 02 92
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where wg, f;, and hg represent the normal displacement, frequency, and local
thickness of the scaled PAM, respectively. Along with the coordinate scaling, the partial
differential notation was modified correspondingly. Although the material composition

remains constant, the local bending stiffness of the PAM is affected by the thickness

Eh3
12(1-v?2)

scaling ratio (yj), resulting in Dy = . Based on the relationships in Eq. (4a), the

partial differential operators of the scaled geometry can be expressed as

0xs = Ya0x, 0Ys = Y0y, (6)

Additionally, from Eq. (4b) it follows that the bending stiffnesses of the original and

scaled PAM follow the relationship

_ E 3 _ .3 E
ST 12(1-v2) S T Yh 12(1-v2)

h? = y;D. (7)
By inserting Egs. (6) and (7) in Eq. (5), the plate equation of the scaled metamaterial can

be expressed as follows:
a2 a2 a2 a2 a2 a2 a2 a2
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When comparing Egs. (2) and (8), differences exist only in the terms related to the

frequency (f and f;) and the normal displacement (w and wy); all other terms remain



identical. This indicates that the displacement and corresponding frequency calculated or

measured on the scaled geometry can be scaled to match that of the original geometry by

using the following scaling relationships:

2

f= Z_h - (92)
3

W= Z_hw (9b)

From these displacement and frequency scaling relationships, the definition of the
effective surface mass density is used to derive a scaling law for the STL of the scaled
PAM, relating its STL to that of the original PAM. Following the definition in Eq. (1), the

effective surface mass density of the scaled PAM (mg'ffs) is expressed as

" _ |4
Metts (s) = ety (10)

Substituting the relevant terms from Eq. (9), this can be rewritten as

Mege (f) =¥ = YaMege(f), (11)

which provides a direct scaling relationship between the scaled and original PAM at the
same frequency f. It should be noted that even though the metamaterial was scaled based
on two coefficients, the terms involving Y, in the scaling relationships for f; and wy

involving y, canceled each other out, resulting in the effective surface mass density of

the scaled geometry depending solely on the out-of-plane scaling factor y;,. This is



consistent with the case of a homogeneous plate where the surface mass density is

independent of frequency and only changes when the thickness of the plate is scaled.

Using Egs. (9a) and (11), the sound transmission factor of the scaled metamaterial (¢;)

is given by

-1
?m&gﬂ)l=(1+6§%mﬂm&vﬁ SNGE)

0 2poco

_ i(2m
() = (1+5Z
Using Eq. (3a), Eq. (12) can be rearranged to establish the following relationship between

the sound transmission factors of the scaled and original metamaterials:

-1

Wh@+%ﬂ@mﬁ—® . (13)

By substituting this result into Eq. (3b), the rescaled transmission loss (TL(f)) can be

obtained from the sound transmission factor of the scaled geometry t,:

(1 + (;—h)2 ((tsh)™ - 1)>_1 .

The notation TL(f) has been introduced to make a clear distinction between the STL of

TL(f) = —201log,, (14)

the original metamaterial (TL(f)) and the rescaled STL calculated via Eq. (14) and using

transmission factor values of the scaled metamaterial (obtained using, for example,

numerical simulations or experiments). It should be noted that Eq. (14) is also valid for

homogeneous plates, although not immediately obvious because y, appears in Eq. (14),

which should not affect the STL in case of a homogeneous plate. However, when

10



assuming a frequency-independent surface mass density, inserting Eq. (12) in Eq. (14)

cancels the dependency on y,, as would be expected for homogeneous plates.

3. Numerical validation and discussion

To validate the proposed method, three scaling cases are considered based on the two
scaling coefficients y, and yj;: (1) scaling in all directions (x,y,z) (complete scaling),
(2) scaling in-plane dimensions only (x,y) while the height remains identical (y, = 1)
(mass-neutral scaling), and (3) only scaling out-of-plane dimensions (z) while the in-
plane dimensions remain identical (y, = 1) (thickness scaling). As a representative
example, the PAM shown in Fig. 1 with material parameters and dimensions based on
[35] was used as the original design. The plate material was polycarbonate (E = 2.3 GPa,
v = 0.40, p = 1310 kg/m?) with a structural loss factor of 5%. The mass was made of
steel (E = 205 GPa, v = 0.28, p = 7850 kg/m3) with a structural loss factor of 1%.
The acoustic medium was air (p, = 1.23 kg/m3, ¢, = 343 m/s). The numerical
analysis was conducted based on the finite element method (FEM) using COMSOL
Multiphysics (ver. 6.2), and the simplified metamaterial plate modeling method described
in Ref. [36] was followed to calculate the STL. Further details of the numerical simulation

setup are provided in Appendix A. For a finite array, the dynamic behavior converges to

11



that of an infinite array once a sufficient number of unit cells are used, as shown in Ref.

[35]. Therefore, the scaling relationships derived in this letter are expected to remain valid

even for finite acoustic metamaterial plates of practical size.

Fig. 2(a) shows the STL curves of the original and scaled PAMs calculated via finite

element simulations using complete scaling (i.e., ¥, = ¥p). In this case, the geometry is

scaled uniformly in all directions and the dimensions of the scaled and original geometries

are detailed in Table 1, including the corresponding static surface mass density (1) of each

configuration. The STL of the original PAM is represented by the black dash-dotted line.

Between 100 to 1000 Hz, two anti-resonances are observed in the form of STL peaks.

The first anti-resonance occurs at 257 Hz with a STL of 27.4 dB and the second anti-

resonance at 670 Hz with a STL of 22.9 dB. From observing the STL curves of the scaled

PAMs, it can be seen that if the scaling factors increase (i.e., the unit cell becomes bigger),

the anti-resonance frequencies shift to lower frequencies, while they shift to higher

frequencies if the scaling factors decrease. However, the STL values at both anti-

resonance frequencies remain at the same level, regardless of the scaling. For example,

when y, = y, = 3, the first and second anti-resonances shift to 85.7 Hz and 223.3 Hz,

with corresponding STL values of 27.4 dB and 22.9 dB, respectively. Conversely, when

Yo = Yn = 1/3, the anti-resonances shift to 771 Hz and 2010 Hz, with STL values of 27.4

12



dB and 22.9 dB. This behavior aligns with Eq. (14), where y, and y; cancel each other

out when they are equal, resulting in consistent STL values for complete scaling.

Therefore, complete scaling can be useful, for example, to achieve a fixed STL level at

different anti-resonance frequencies by scaling the unit cell geometry according to the

frequency scaling law given in Eq. (9a), which reduces to f = y,f; in the case of

complete scaling. Fig. 2(b) shows the STL curves that have been analytically rescaled by

applying the scaling law in Eq. (14) to the FEM results of the scaled PAMs. Despite the

high range of scaling factors, ranging from 1/3 to 3, and the different materials used in

the PAM designs, the rescaled TL curves exhibit remarkable consistency with almost no

visible differences. Fig. 3 shows the normal displacement fields of each scaled PAM at

their respective anti-resonance frequencies. For both the first and second anti-resonance,

it can be observed that the locations of high and low displacement regions remain

identical across different scaling factors.

13
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Fig. 2 STL curves of the original and scaled PAMs with complete scaling (y, = y3):
(a) STL curves calculated via FEM, plotted against the frequency f; of the scaled PAM
and (b) STL curves analytically rescaled by applying the scaling law in Eq. (14) to the
FEM results, plotted against the rescaled frequency f.
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Fig. 3 Normal displacement fields of the scaled PAMs in complete scaling.

Table 1 Dimensions of the original and scaled PAMs using complete scaling (original
PAM: y, =1, y, =1).

Ya Yh a (mm) dy (mm) hy (um) hy (mm) u (g/m?)
1/3 1/3 25.83 10 250 0.333 635
1/2 1/2 38.75 15 375 0.5 953
1 77.5 30 750 1 1906
2 2 155 60 1500 2 3813

3 232.5 90 2250 3 5719
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In some applications it is desirable to alter the anti-resonance frequencies of a
metamaterial plate without changing the overall (static) mass of the metamaterial. This
leads to the case of mass-neutral scaling, for which the static surface mass density remains
constant. This is achieved if y; remains at 1 while only y, is varied, i.e. the thickness
of the metamaterial plate remains constant and only the in-plane dimensions are adjusted.
Fig. 4(a) shows the STL of the scaled PAMs with mass-neutral scaling, calculated via
finite element simulations. The corresponding dimensions of the scaled PAMs are
summarized in Table 2, also demonstrating how the static surface mass density u
remains constant in this case. As shown in Fig. 4(a) and as follows from Eq. (9a), if y,
increases, the anti-resonance frequency decreases (according to f = y2f;), along with a
corresponding decrease in the STL values (because now the y, and y; do not cancel in
Eq. (14)). Conversely, if y, decreases, the anti-resonance frequency increases, and the
STL values increase. For instance, when y, = 3, the first and second anti-resonances
shift to 28.8 Hz and 75.2 Hz, with STL values of 10.9 dB and 7.4 dB, respectively. In
contrast, when y, = 1/3, the first and second anti-resonances shift to 2251 Hz and 5851
Hz, with STL values 0f46.1 dB and 41.1 dB, respectively. Fig. 4(b) shows the STL curves
analytically rescaled by applying Eq. (14) to the FEM results from mass-neutral scaling.

Overall, the rescaled STL values exhibit good agreement, in particular for scaled PAMs

16



with high y, values. In contrast, for low values of y,, gradually increasing differences
are observed as y, decreases. Fig. 5 shows the normal displacement fields of each scaled
PAM under mass-neutral scaling at their respective anti-resonance frequencies. As Y,
decreases, it can be seen that the relative heights of the mass and plate increase compared
to the unit cell length. For both the first and second anti-resonance, the locations of high
and low displacement regions remain almost identical across different scaling factors,

despite the variations in geometry.
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Fig. 4 STL curves of the original and scaled PAMs with mass-neutral scaling (y, = 1):
(a) STL curves calculated via FEM, plotted against the frequency f; of the scaled
system and (b) STL curves analytically rescaled by applying the scaling law in Eq. (14)
to the FEM results, plotted against the rescaled frequency f.
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Fig. 5 Normal displacement fields of the scaled PAMs in mass-neutral scaling.

Table 2 Dimensions of the original and scaled PAMs using mass-neutral scaling

(original PAM: y, =1, y, = 1).

Ya ¥ a (mm) dy (mm) hp (um) hy (mm) u (g/m?)
1/3 1 25.83 10 750 1 1906
1/2 1 38.75 15 750 1 1906

1 1 77.5 30 750 1 1906

2 1 155 60 750 1 1906

3 1 232.5 90 750 1 1906
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Another scaling case that can be considered using the proposed method is thickness
scaling, for which the in-plane dimensions remain constant while only y; varies, thereby
only adjusting the thickness of the metamaterial. Fig. 6(a) shows the STL curves of the
PAMs with thickness scaling, calculated via finite element simulations. The dimensions
and static surface mass densities of the thickness-scaled PAMs are summarized in Table
3. The results show that by decreasing y; (resulting in a thinner, more lightweight PAM),
the anti-resonance frequencies decrease according to f = y;, ' f,. Conversely, when ¥,
increases (resulting in a thicker, heavier PAM), the anti-resonance frequencies shift to
higher frequencies. Furthermore, the STL values decrease as y; decreases and vice versa.
For instance, when y, = 1/3, the first and second anti-resonances shift to 86.3 Hz and
225.7 Hz, with STL values of 10.9 dB and 7.4 dB, respectively. In contrast, when y;, =
3, the first and second anti-resonances shift to 748 Hz and 1951 Hz, with STL values of
46.1 dB and 41.1 dB, respectively. Fig. 6(b) shows the STL curves analytically rescaled
by applying Eq. (14) to the FEM results of the thickness scaled PAMs. When y;, < 1, the
results for the rescaled STL align closely with the STL curve of the original PAM.
However, when y,, is set higher than 1, the rescaled STL curve starts to deviate from the
original PAM STL. Fig. 7 shows the normal displacement fields of each scaled PAM

under thickness scaling at their respective anti-resonance frequencies. As yj, increases,
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the heights of the mass and plate increase compared to the unit cell length. For both the

first and second anti-resonance, the locations of high and low displacement regions

remain almost identical across different scaling factors, despite the variations in geometry.
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Fig. 6 STL curves of the original and scaled PAMs with thickness scaling (y, = 1): (a)
STL curves calculated via FEM, plotted against the frequency f; of the scaled PAMs

and (b) STL curves analytically rescaled by applying the scaling law in Eq. (14) to the

FEM results, plotted against the rescaled frequency f.
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Fig. 7 Normal displacement fields of the scaled PAMs in thickness scaling.

Table 3 Dimensions of the original and scaled PAMs using thickness scaling (original

PAM: y, =1, y, =1).

Ya ¥ a (mm) dy (mm) hp (um) hy (mm) u (g/m?)
1 1/3 77.5 30 250 0.333 635
1 1/2 77.5 30 375 0.5 953
1 1 77.5 30 750 1 1906
1 2 77.5 30 1500 2 3813
1 3 77.5 30 2250 3 5719
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To further analyze the validity and limits of the proposed scaling method, additional
calculations were conducted for the two scaling cases for which discrepancies were
observed. Fig. 8(a) shows the absolute difference between the STL of the original PAM
(TL) and of the scaled PAMs (TL) with mass-neutral scaling. Here, y, was varied from
1 to 0.3, with an interval of 0.01. When y, decreases from 1 to 0.77, the errors in the
rescaled STL are almost negligible, remaining within 1 dB. However, for y, as low as
0.55, the observed differences begin to exceed 3 dB at 686 Hz, and starting from y, =
0.39, discrepancies of more than 6 dB are observed at 683 Hz. Fig. 8(b) shows the
absolute difference between the original STL and TL with thickness scaling. Here, ¥},
was varied from 1 to 3, with an interval of 0.02. For y;, between 1 and 1.3, the errors in
the rescaled STL are within 1 dB. However, for y; exceeding 1.82, discrepancies larger
than 3 dB can be observed at 685 Hz, and discrepancies larger than 6 dB are observed at

682 Hz if y,, > 2.56.
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Fig. 8 Difference between the original PAM STL and the rescaled STL for different
scaling approaches: (a) mass-neutral scaling and (b) thickness scaling.
The increasing discrepancies for small y, (mass-neutral scaling) or large y,
(thickness scaling) can be explained as follows: In these cases, the plate and mass become

considerably thick compared to the unit cell length a of the PAMs. The scaling analysis

method proposed in this letter was derived mathematically based on the Kirchhoff-Love



plate equation with variable bending stiffness, which assumes that the thickness of the

plate is much smaller than the lateral dimensions (a). If this is violated, dynamic

characteristics, such as in-plane motion or torsion, which were not considered during the

derivation of the plate equation, become non-negligible, and the error in the rescaled STL

increases. One possible explanation can be found in the limitation of the Kirchhoff-Love

plate theory, which does not account for transverse shear deformation or rotary inertia.

As a result, the structural stiffness tends to be overestimated, since the theory assumes

that the system does not respond to such effects. In contrast, real systems may exhibit

these dynamic behaviors, and in such cases, the actual stiffness is lower than that

estimated by the Kirchhoff-Love plate theory due to the presence of shear and rotational

effects. In general, for a given mass, lower structural stiffness leads to lower characteristic

frequencies. In cases where consistent discrepancies are observed, the rescaled STL

exhibit a gradual downward shift in the anti-resonance frequency relative to the original

STL. This trend aligns with the theoretical assumptions discussed above.

Nevertheless, even in the cases where discrepancies occurred, the rescaled STL curves

exhibit relatively minor errors, despite considerable changes in dimensions. Additionally,

the present scaling analysis incorporates material losses through the loss factors in both

the plate (5%) and the mass (1%). Within the investigated range (< 5%), the derived
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scaling law remains valid, indicating that moderate damping does not impair their

applicability. For viscoelastic metamaterials that require higher loss factor, however,

additional analysis may be required to extend the applicability of the proposed approach.

4. Conclusions

In this letter, a scaling analysis method for the sound transmission through acoustic

metamaterial plates was proposed. Two types of scaling factors, in-plane and out-of-plane,

were introduced and the scaling relationships between the frequencies and STL of the

original and scaled metamaterial were established using the plate equation with variable

bending stiffness. Based on the two scaling factors, three scaling cases were explored

using numerical simulations of PAMs as an example for metamaterial plate: complete

scaling, mass-neutral scaling, and thickness scaling. It could be shown that for complete

scaling, a perfect agreement between the STL of the original and scaled metamaterial can

be achieved using the proposed STL rescaling in Eq. (14). Minor discrepancies were

observed in the mass-neutral and thickness scaling cases, which can be explained by the

utilized thin plate-assumption being violated if the thickness becomes large compared to

the unit cell size of the metamaterial. Nevertheless, even with substantial changes in the
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frequency range due to large variations in the scaling coefficients, the rescaled STL curves

demonstrated a high degree of agreement with the original PAM.

The proposed scaling methodology can be applied to greatly simplify numerical or

experimental studies of the sound transmission properties of acoustic metamaterial plates,

like how Reynolds-similarity is exploited in fluid mechanics. While this letter focused on

rescaling the STL of scaled metamaterial plates, the proposed method can also be reversed,

which will allow to intentionally shift anti-resonances of a metamaterial plate to desired

frequency ranges using the scaling formulas proposed in this letter. This will reduce the

computational effort in designing complex metamaterial plate structures (e.g. using

optimization procedures) and significantly simplify the tailoring of acoustic metamaterial

plate designs towards different noise control applications with different problematic

frequency ranges.
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Appendix A: Details of finite element simulation

Fig. A.1(a) shows the meshed model used for the finite element simulation of the
original PAM. The plate was modeled as a thin, uniform-thickness shell using two-
dimensional shell elements, while the mass was modeled as a cylindrical geometry using
three-dimensional solid elements. Quadratic shape functions were applied to both shell
and solid elements. To simulate an infinitely periodic structure, periodic boundary
conditions were applied to all four edges of the unit cell. Owing to the use of periodic
boundary conditions, the global response of an infinite PAM can be obtained through the
numerical analysis of a single unit cell. As illustrated in Fig. A1(b), at the overlapping
boundaries of shell and solid, the shell and solid elements were rigidly connected via a
solid-thin structure connection. A normally incident acoustic wave was simulated by

applying a uniform pressure to the bottom of the PAM.

(a)

.~. Mass (solid)
Plate (shell) .

Periodic boundaries
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Fig. A.1. Schematic diagram of the numerical setup: (a) isometric view of the meshed

model, (b) side view of the unit cell.
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