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ABSTRACT

We present a scaling analysis method for the sound transmission loss of thin acoustic metamaterial plates which
can achieve high transmission loss at certain frequencies. The practical design and experimental validation of
such metamaterial plates often faces challenges due to dimensional sensitivities and constraints dictated by
experimental equipment and computational resources. To address this, a scaling analysis method is proposed
which establishes simple relationships between the sound transmission loss of geometrically scaled acoustic
metamaterial plates. Scaling formulas are derived mathematically based on the plate equation with variable
bending stiffness and three scaling cases are considered: complete scaling, mass-neutral scaling, and thickness
scaling. The scaling relationships are validated using finite element simulations of different plate-type acoustic
metamaterial examples (i.e., thin plates with periodically attached rigid masses). The proposed scaling re-
lationships will be valuable in simplifying the design of acoustic metamaterial plates, speeding up numerical
optimizations, or enabling scaled-down acoustic experiments.

1. Introduction

Acoustic metamaterials are artificially engineered materials that can
control waves propagating through a medium [1-3]. Acoustic meta-
materials can exhibit unusual properties, such as negative effective
density or bulk modulus, which cannot be found in nature. Recently,
various studies have been reported on acoustic metamaterial plates,
which utilize acoustic metamaterials in soundproofing panel designs to
achieve high sound transmission loss (STL) [4-24]. These plates include
several types: where local resonators functioning as mass-spring systems
are attached to a plate to reduce vibration [4-8], designs that combine
acoustic resonators with a plate to reduce noise through acoustic reso-
nances [9-11], sandwich panels made up of top and bottom plates with
meticulously designed pathways between them [12-15], plate struc-
tures integrated with periodic stub or pillar attachments made of heavy
metal or rubber materials to control flexural waves by forming band
gaps in targeted frequency ranges [16-18], and plate-type acoustic
metamaterials (PAMs) composed of rigid masses periodically distributed
on a thin plate achieving noise reduction from their anti-resonances
[19-24]. These acoustic metamaterial plates have gained significant
attention due to their ability to reduce sound and vibration effectively
without relying on thick and heavy materials (e.g. conventional panels),
which are governed by the mass-law.

Despite these advantages, several challenges arise in the design and
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experimental validation phase: The noise attenuation characteristics of
acoustic metamaterial plates are highly related to the geometry of the
unit cell design, such as the mass shape, size, and thickness in PAMs.
These relationships are particularly complicated when broadband sound
transmission loss improvements are desired, e.g. by designing multi-
modal local resonators [7,8] or using PAM designs with multiple
masses in a single unit cell [20]. When geometrical dimensions required
to position anti-resonances within the desired frequency range are un-
known, iterative calculations are often necessary, leading to consider-
able time consumption. Furthermore, during experimental validation
using sound transmission loss tests, the maximum test sample size can be
limited by the experimental facilities.

A solution to these challenges can be found in the scaling and
similitude analysis method. Scaling or similitude analysis investigates
the effects of altering the size of a structure on its performance and es-
tablishes relationships between original and scaled geometries through
governing equations or dimensionless parameters [25,26]. A
well-known example for the benefits of scaling can be found in fluid
dynamics, where Reynolds similarity is exploited in both experimental
and computational applications. In structural dynamics, methodologies
for correlating dynamic characteristics using scaling or similitude
analysis have been proposed [27-31]. However, applying scaling anal-
ysis methods to the analysis and prediction of the sound insulation
characteristics of acoustic metamaterial plates has not yet been
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Unit cell

Fig. 1. Configuration of a PAM with a unit cell composed of circular mass.

reported.

In this letter, we introduce a scaling analysis method for the sound
transmission loss of thin acoustic metamaterial plates, enabling the
prediction of the sound insulation performance of scaled metamaterial
plates based on results for the original geometry. We consider two types
of scaling coefficients (in-plane and out-of-plane) and mathematically
derive scaling relationships for the sound transmission loss using a PAM
as an example. Based on this, three scaling cases are considered: Com-
plete scaling, which scales the unit cell geometry equally in all three
spatial directions; mass-neutral scaling, which preserves the total mass
of the metamaterial; and thickness scaling, which only changes the
overall thickness of the metamaterial. The effectiveness of the proposed
scaling analysis method is validated using finite element simulations.

2. Modeling and method

In this section, we introduce the analytical scaling law for the sound
transmission loss of thin plate-like acoustic metamaterials. The deriva-
tion is based on the assumptions of normal incidence of acoustic waves,
infinite periodicity of the metamaterials in the in-plane directions, sub-
wavelength size of the metamaterial unit cells, and the applicability of
the Kirchhoff-Love plate theory, which requires the plate to be thin
relative to its lateral dimensions.

2.1. Analysis model and sound transmission characteristics of PAMs

Fig. 1 shows an example configuration of a PAM and the unit cell
comprising it. In this example, each unit cell, shown on the right, con-
sists of a plate with a circular mass attached on its top, and the PAM is
configured with these unit cells periodically arranged along the x and y
directions as defined in the three-dimensional Cartesian coordinate
system (x, y, z) shown on the left. It should be noted that the configu-
ration shown in Fig. 1 has been chosen for simplicity — the analysis
proposed in this paper also applies to more complicated acoustic met-
amaterial plate designs, e.g. PAMs with multiple masses in a unit cell or
more complicated mass geometries. Without loss of generality, the unit
cell lengths in both the x and y directions are assumed to be equal (a) and
the thickness of the plate is denoted as h,. The diameter and height of the
circular mass positioned in the center of the unit cell are denoted as dy
and hy, respectively. The frequency-dependent characteristics of PAMs

can be identified from the effective surface mass density (mgff) , which is

defined as follows [32]:

4 p
Mg (f) =

S 1
P wl) W

where f is the frequency, (w(f)) indicates the surface-averaged complex
normal displacement amplitude of the PAM in response to a uniform
pressure p applied to the PAM. In general, the normal displacement of a
thin plate is governed by the Kirchhoff-Love plate equation. The
displacement field of the PAM can be calculated using the plate equation

with variable bending stiffness [33]:
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where D indicates the local bending stiffness, defined as D =
ER*/(12(1 — 1)), E, v, p, and h are the local Young’s modulus, Pois-
son’s ratio, density, and thickness (equal to h, or h, + hy), depending on
the location within the unit cell, respectively. Once the effective surface
mass density is known, the noise attenuation characteristics of the PAM
can be evaluated through the frequency-dependent STL, which is
derived from the sound transmission factor (t) via [34]:

) = (1 + 2(2”{)

—~

@

=v-1, (3a)
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TL(f) = —20log,, [t(f)], (3b)

where p, and ¢, are the density and speed of sound of the acoustic
medium surrounding the PAM, respectively.

2.2. Derivation of the scaling law

As the dimensions of the PAM unit cell change, the displacement
field w will be altered and the STL varies correspondingly. To establish a
relationship between the STL of scaled and original PAMs, a scaling law
based on Eq. (2) is derived. Starting from the original coordinate system,
defined as x, y, and 2, when the in-plane dimensions (x- and y-directions)
are scaled by y, and the thickness of the plate and height of the mass are
equally scaled by y;, the new coordinate system of the scaled geometry
can be denoted as x;, ys, and z;, with the relationships between the scaled
and original coordinates given by

Xs = YaXsYs = VdY) (4a)

hs = 7hh7 (4b)

If the material composition of the scaled metamaterial remains
identical to the original design, the plate equation in Eq. (2) can be
rewritten in terms of the scaled coordinate system as follows:

02 62 02 62 62
(@ (Ds (@* ”@)) 2oy, (Ds“ - —axsayx)
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where wy, f;, and hs represent the normal displacement, frequency, and
local thickness of the scaled PAM, respectively. Along with the coordi-
nate scaling, the partial differential notation was modified correspond-
ingly. Although the material composition remains constant, the local
bending stiffness of the PAM is affected by the thickness scaling ratio

(5)
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Fig. 2. STL curves of the original and scaled PAMs with complete scaling (y, = y): (@) STL curves calculated via FEM, plotted against the frequency f; of the scaled
PAM and (b) STL curves analytically rescaled by applying the scaling law in Eq. (14) to the FEM results, plotted against the rescaled frequency f.

= %’fﬂ) Based on the relationships in Eq. (4a), the

partial differential operators of the scaled geometry can be expressed as

oxs = yaaxv ays = }'aaya (6)

Additionally, from Eq. (4b) it follows that the bending stiffnesses of
the original and scaled PAM follow the relationship

(yn), resulting in D

E
3 3 3 3
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By inserting Eqgs. (6) and (7) in Eq. (5), the plate equation of the
scaled metamaterial can be expressed as follows:

02 62 02 vi 02
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When comparing Egs. (2) and (8), differences exist only in the terms
related to the frequency (f and f;) and the normal displacement (w and
wy); all other terms remain identical. This indicates that the displace-
ment and corresponding frequency calculated or measured on the scaled
geometry can be scaled to match that of the original geometry by using
the following scaling relationships:

J/2

f = ij’ (9a)
Yh
},3

w ="y, (9b)
Ya

From these displacement and frequency scaling relationships, the
definition of the effective surface mass density is used to derive a scaling
law for the STL of the scaled PAM, relating its STL to that of the original
PAM. Following the definition in Eq. (1), the effective surface mass

density of the scaled PAM (mgﬁs) is expressed as

” p
Ms(fs) = ———5——, 10
—(2af,)* (Wi ()
Substituting the relevant terms from Eq. (9), this can be rewritten as
" 14 "
MyS(f) = 1——5—-— = riMex (f), an
#5(f) Th (27[f)2 w(f) YaMegs (f)

which provides a direct scaling relationship between the scaled and
original PAM at the same frequency f. It should be noted that even
though the metamaterial was scaled based on two coefficients, the terms
involving y, in the scaling relationships for f; and w;s involving y,
canceled each other out, resulting in the effective surface mass density of
the scaled geometry depending solely on the out-of-plane scaling factor
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Table 1
Dimensions of the original and scaled PAMs using complete scaling (original
PAM:y, = 1,7, = 1).

Ta Th a(mm)  dy (mm) Ry (um)  hy (mm) o (g/m?)
/3 1/3 2583 10 250 0.333 635

/2 12 3875 15 375 0.5 953

1 1 77.5 30 750 1 1906

2 2 155 60 1500 2 3813

3 3 232.5 90 2250 3 5719

v This is consistent with the case of a homogeneous plate where the
surface mass density is independent of frequency and only changes when
the thickness of the plate is scaled.

Using Egs. (9a) and (11), the sound transmission factor of the scaled
metamaterial (&) is given by

- () () oo

Using Eq. (3a), Eq. (12) can be rearranged to establish the following
relationship between the sound transmission factors of the scaled and
original metamaterials:

7 2 -1
= (1+ (=) (=) a3

h

By substituting this result into Eq. (3b), the rescaled transmission loss
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(TL(f)) can be obtained from the sound transmission factor of the scaled

geometry t;:
(1+ (i—:)z((tscm*l - 1))_1 ~

The notation 'ﬁ,(f) has been introduced to make a clear distinction
between the STL of the original metamaterial (TL(f)) and the rescaled
STL calculated via Eq. (14) and using transmission factor values of the
scaled metamaterial (obtained using, for example, numerical simula-
tions or experiments). It should be noted that Eq. (14) is also valid for
homogeneous plates, although not immediately obvious because y, ap-
pears in Eq. (14), which should not affect the STL in case of a homo-
geneous plate. However, when assuming a frequency-independent
surface mass density, inserting Eq. (12) in Eq. (14) cancels the de-
pendency on y,, as would be expected for homogeneous plates.

TL(f) = —20log,, 14

3. Numerical validation and discussion

To validate the proposed method, three scaling cases are considered
based on the two scaling coefficients y, and y;: (1) scaling in all di-
rections (x,Y, z) (complete scaling), (2) scaling in-plane dimensions only
(x,y) while the height remains identical (y, = 1) (mass-neutral scaling),
and (3) only scaling out-of-plane dimensions (z) while the in-plane di-
mensions remain identical (y, = 1) (thickness scaling). As a represen-
tative example, the PAM shown in Fig. 1 with material parameters and

2nd gnti-resonance

Normal displacement
e ]
Low High

Fig. 3. Normal displacement fields of the scaled PAMs in complete scaling.
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Fig. 4. STL curves of the original and scaled PAMs with mass-neutral scaling (y, = 1): (a) STL curves calculated via FEM, plotted against the frequency f; of the
scaled system and (b) STL curves analytically rescaled by applying the scaling law in Eq. (14) to the FEM results, plotted against the rescaled frequency f.

dimensions based on [35] was used as the original design. The plate
material was polycarbonate (E = 2.3 GPa,v = 0.40,p = 1310 kg /m®)
with a structural loss factor of 5 %. The mass was made of steel (E =

205 GPa, v = 0.28, p = 7850 kg/m?) with a structural loss factor of 1
%. The acoustic medium was air (p, = 1.23 kg/m?, ¢y =343 m /s). The
numerical analysis was conducted based on the finite element method
(FEM) using COMSOL Multiphysics (ver. 6.2), and the simplified met-
amaterial plate modeling method described in Ref. [36] was followed to
calculate the STL. Further details of the numerical simulation setup are
provided in Appendix A. For a finite array, the dynamic behavior con-
verges to that of an infinite array once a sufficient number of unit cells
are used, as shown in Ref. [35]. Therefore, the scaling relationships
derived in this letter are expected to remain valid even for finite acoustic
metamaterial plates of practical size.

Fig. 2(a) shows the STL curves of the original and scaled PAMs
calculated via finite element simulations using complete scaling (i.e., y,
=yp). In this case, the geometry is scaled uniformly in all directions and
the dimensions of the scaled and original geometries are detailed in
Table 1, including the corresponding static surface mass density (u) of
each configuration. The STL of the original PAM is represented by the
black dash-dotted line. Between 100 to 1000 Hz, two anti-resonances are
observed in the form of STL peaks. The first anti-resonance occurs at 257
Hz with a STL of 27.4 dB and the second anti-resonance at 670 Hz with a
STL of 22.9 dB. From observing the STL curves of the scaled PAMs, it can

be seen that if the scaling factors increase (i.e., the unit cell becomes
bigger), the anti-resonance frequencies shift to lower frequencies, while
they shift to higher frequencies if the scaling factors decrease. However,
the STL values at both anti-resonance frequencies remain at the same
level, regardless of the scaling. For example, when y, =y, = 3, the first
and second anti-resonances shift to 85.7 Hz and 223.3 Hz, with corre-
sponding STL values of 27.4 dB and 22.9 dB, respectively. Conversely,
when y, =y, = 1/3, the anti-resonances shift to 771 Hz and 2010 Hz,
with STL values of 27.4 dB and 22.9 dB. This behavior aligns with Eq.
(14), where y, and y;, cancel each other out when they are equal,
resulting in consistent STL values for complete scaling. Therefore,
complete scaling can be useful, for example, to achieve a fixed STL level
at different anti-resonance frequencies by scaling the unit cell geometry
according to the frequency scaling law given in Eq. (9a), which reduces
to f = 7.fs in the case of complete scaling. Fig. 2(b) shows the STL curves
that have been analytically rescaled by applying the scaling law in Eq.
(14) to the FEM results of the scaled PAMs. Despite the high range of
scaling factors, ranging from 1/3 to 3, and the different materials used in
the PAM designs, the rescaled TL curves exhibit remarkable consistency
with almost no visible differences. Fig. 3 shows the normal displacement
fields of each scaled PAM at their respective anti-resonance frequencies.
For both the first and second anti-resonance, it can be observed that the
locations of high and low displacement regions remain identical across
different scaling factors.

In some applications it is desirable to alter the anti-resonance fre-
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Table 2
Dimensions of the original and scaled PAMs using mass-neutral scaling (original
PAM:y, = 1,7, = 1).

Ta Th a (mm) dy (mm) hy (um) Py (mm) u (g/m?)
1/3 1 25.83 10 750 1 1906
172 1 38.75 15 750 1 1906
1 1 77.5 30 750 1 1906
2 1 155 60 750 1 1906
3 1 232.5 90 750 1 1906

quencies of a metamaterial plate without changing the overall (static)
mass of the metamaterial. This leads to the case of mass-neutral scaling,
for which the static surface mass density remains constant. This is ach-
ieved if y;, remains at 1 while only y, is varied, i.e. the thickness of the
metamaterial plate remains constant and only the in-plane dimensions
are adjusted. Fig. 4(a) shows the STL of the scaled PAMs with mass-
neutral scaling, calculated via finite element simulations. The corre-
sponding dimensions of the scaled PAMs are summarized in Table 2, also
demonstrating how the static surface mass density 4 remains constant in
this case. As shown in Fig. 4(a) and as follows from Eq. (9a), if y, in-
creases, the anti-resonance frequency decreases (according to f = y2f;),
along with a corresponding decrease in the STL values (because now the
74 and y;, do not cancel in Eq. (14)). Conversely, if y, decreases, the anti-
resonance frequency increases, and the STL values increase. For
instance, when y, = 3, the first and second anti-resonances shift to 28.8
Hz and 75.2 Hz, with STL values of 10.9 dB and 7.4 dB, respectively. In

Ist anti-resonance

pein-t

‘-' G

Ya=1/2,vn=1
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contrast, when y, = 1/3, the first and second anti-resonances shift to
2251 Hz and 5851 Hz, with STL values of 46.1 dB and 41.1 dB,
respectively. Fig. 4(b) shows the STL curves analytically rescaled by
applying Eq. (14) to the FEM results from mass-neutral scaling. Overall,
the rescaled STL values exhibit good agreement, in particular for scaled
PAMs with high y, values. In contrast, for low values of y,, gradually
increasing differences are observed as y, decreases. Fig. 5 shows the
normal displacement fields of each scaled PAM under mass-neutral
scaling at their respective anti-resonance frequencies. As y, decreases,
it can be seen that the relative heights of the mass and plate increase
compared to the unit cell length. For both the first and second anti-
resonance, the locations of high and low displacement regions remain
almost identical across different scaling factors, despite the variations in
geometry.

Another scaling case that can be considered using the proposed
method is thickness scaling, for which the in-plane dimensions remain
constant while only y,, varies, thereby only adjusting the thickness of the
metamaterial. Fig. 6(a) shows the STL curves of the PAMs with thickness
scaling, calculated via finite element simulations. The dimensions and
static surface mass densities of the thickness-scaled PAMs are summa-
rized in Table 3. The results show that by decreasing y; (resulting in a
thinner, more lightweight PAM), the anti-resonance frequencies
decrease according tof = y;'f;. Conversely, when y;, increases (resulting
in a thicker, heavier PAM), the anti-resonance frequencies shift to higher
frequencies. Furthermore, the STL values decrease as y, decreases and
vice versa. For instance, when y, = 1/3, the first and second anti-

2nd anti-resonance
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Fig. 5. Normal displacement fields of the scaled PAMs in mass-neutral scaling.
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Fig. 6. STL curves of the original and scaled PAMs with thickness scaling (y, = 1): (a) STL curves calculated via FEM, plotted against the frequency f; of the scaled
PAMs and (b) STL curves analytically rescaled by applying the scaling law in Eq. (14) to the FEM results, plotted against the rescaled frequency f.

Table 3
Dimensions of the original and scaled PAMs using thickness scaling (original
PAM:y, =1,y, =1).

Ya Th a (mm) dy (mm) by (um) hy (mm) # (g/m?)
1 1/3 77.5 30 250 0.333 635

1 1/2 77.5 30 375 0.5 953

1 1 77.5 30 750 1 1906

1 2 77.5 30 1500 2 3813

1 3 77.5 30 2250 3 5719

resonances shift to 86.3 Hz and 225.7 Hz, with STL values of 10.9 dB and
7.4 dB, respectively. In contrast, when y;, = 3, the first and second anti-
resonances shift to 748 Hz and 1951 Hz, with STL values of 46.1 dB and
41.1 dB, respectively. Fig. 6(b) shows the STL curves analytically
rescaled by applying Eq. (14) to the FEM results of the thickness scaled
PAMs. When y;, < 1, the results for the rescaled STL align closely with
the STL curve of the original PAM. However, when y;, is set higher than
1, the rescaled STL curve starts to deviate from the original PAM STL.
Fig. 7 shows the normal displacement fields of each scaled PAM under
thickness scaling at their respective anti-resonance frequencies. As y,
increases, the heights of the mass and plate increase compared to the
unit cell length. For both the first and second anti-resonance, the loca-
tions of high and low displacement regions remain almost identical

across different scaling factors, despite the variations in geometry.

To further analyze the validity and limits of the proposed scaling
method, additional calculations were conducted for the two scaling
cases for which discrepancies were observed. Fig. 8(a) shows the abso-
lute difference between the STL of the original PAM (TL) and of the

scaled PAMs ('ﬁ) with mass-neutral scaling. Here, y, was varied from 1
to 0.3, with an interval of 0.01. When y, decreases from 1 to 0.77, the
errors in the rescaled STL are almost negligible, remaining within 1 dB.
However, for y, as low as 0.55, the observed differences begin to exceed
3 dB at 686 Hz, and starting from y, = 0.39, discrepancies of >6 dB are
observed at 683 Hz. Fig. 8(b) shows the absolute difference between the

original STL and TL with thickness scaling. Here, y, was varied from 1 to
3, with an interval of 0.02. For y, between 1 and 1.3, the errors in the
rescaled STL are within 1 dB. However, for y, exceeding 1.82, discrep-
ancies larger than 3 dB can be observed at 685 Hz, and discrepancies
larger than 6 dB are observed at 682 Hz if y, > 2.56.

The increasing discrepancies for small y, (mass-neutral scaling) or
large y;, (thickness scaling) can be explained as follows: In these cases,
the plate and mass become considerably thick compared to the unit cell
length a of the PAMs. The scaling analysis method proposed in this letter
was derived mathematically based on the Kirchhoff-Love plate equation
with variable bending stiffness, which assumes that the thickness of the
plate is much smaller than the lateral dimensions (a). If this is violated,
dynamic characteristics, such as in-plane motion or torsion, which were
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not considered during the derivation of the plate equation, become non-
negligible, and the error in the rescaled STL increases. One possible
explanation can be found in the limitation of the Kirchhoff-Love plate
theory, which does not account for transverse shear deformation or
rotary inertia. As a result, the structural stiffness tends to be over-
estimated, since the theory assumes that the system does not respond to
such effects. In contrast, real systems may exhibit these dynamic be-
haviors, and in such cases, the actual stiffness is lower than that esti-
mated by the Kirchhoff-Love plate theory due to the presence of shear
and rotational effects. In general, for a given mass, lower structural
stiffness leads to lower characteristic frequencies. In cases where
consistent discrepancies are observed, the rescaled STL exhibit a gradual
downward shift in the anti-resonance frequency relative to the original
STL. This trend aligns with the theoretical assumptions discussed above.

Nevertheless, even in the cases where discrepancies occurred, the
rescaled STL curves exhibit relatively minor errors, despite considerable
changes in dimensions. Additionally, the present scaling analysis in-
corporates material losses through the loss factors in both the plate (5 %)
and the mass (1 %). Within the investigated range (< 5%), the derived
scaling law remains valid, indicating that moderate damping does not
impair their applicability. For viscoelastic metamaterials that require
higher loss factor, however, additional analysis may be required to
extend the applicability of the proposed approach.

4. Conclusions

In this letter, a scaling analysis method for the sound transmission

through acoustic metamaterial plates was proposed. Two types of
scaling factors, in-plane and out-of-plane, were introduced and the
scaling relationships between the frequencies and STL of the original
and scaled metamaterial were established using the plate equation with
variable bending stiffness. Based on the two scaling factors, three scaling
cases were explored using numerical simulations of PAMs as an example
for metamaterial plate: complete scaling, mass-neutral scaling, and
thickness scaling. It could be shown that for complete scaling, a perfect
agreement between the STL of the original and scaled metamaterial can
be achieved using the proposed STL rescaling in Eq. (14). Minor dis-
crepancies were observed in the mass-neutral and thickness scaling
cases, which can be explained by the utilized thin plate-assumption
being violated if the thickness becomes large compared to the unit cell
size of the metamaterial. Nevertheless, even with substantial changes in
the frequency range due to large variations in the scaling coefficients,
the rescaled STL curves demonstrated a high degree of agreement with
the original PAM.

The proposed scaling methodology can be applied to greatly simplify
numerical or experimental studies of the sound transmission properties
of acoustic metamaterial plates, like how Reynolds-similarity is exploi-
ted in fluid mechanics. While this letter focused on rescaling the STL of
scaled metamaterial plates, the proposed method can also be reversed,
which will allow to intentionally shift anti-resonances of a metamaterial
plate to desired frequency ranges using the scaling formulas proposed in
this letter. This will reduce the computational effort in designing com-
plex metamaterial plate structures (e.g. using optimization procedures)
and significantly simplify the tailoring of acoustic metamaterial plate
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Fig. 8. Difference between the original PAM STL and the rescaled STL for different scaling approaches: (a) mass-neutral scaling and (b) thickness scaling.

designs towards different noise control applications with different
problematic frequency ranges.
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Fig. A.1(a) shows the meshed model used for the finite element simulation of the original PAM. The plate was modeled as a thin, uniform-thickness
shell using two-dimensional shell elements, while the mass was modeled as a cylindrical geometry using three-dimensional solid elements. Quadratic
shape functions were applied to both shell and solid elements. To simulate an infinitely periodic structure, periodic boundary conditions were applied
to all four edges of the unit cell. Owing to the use of periodic boundary conditions, the global response of an infinite PAM can be obtained through the
numerical analysis of a single unit cell. As illustrated in Fig. A1(b), at the overlapping boundaries of shell and solid, the shell and solid elements were
rigidly connected via a solid-thin structure connection. A normally incident acoustic wave was simulated by applying a uniform pressure to the bottom

of the PAM.
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