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A B S T R A C T

We present a scaling analysis method for the sound transmission loss of thin acoustic metamaterial plates which 
can achieve high transmission loss at certain frequencies. The practical design and experimental validation of 
such metamaterial plates often faces challenges due to dimensional sensitivities and constraints dictated by 
experimental equipment and computational resources. To address this, a scaling analysis method is proposed 
which establishes simple relationships between the sound transmission loss of geometrically scaled acoustic 
metamaterial plates. Scaling formulas are derived mathematically based on the plate equation with variable 
bending stiffness and three scaling cases are considered: complete scaling, mass-neutral scaling, and thickness 
scaling. The scaling relationships are validated using finite element simulations of different plate-type acoustic 
metamaterial examples (i.e., thin plates with periodically attached rigid masses). The proposed scaling re
lationships will be valuable in simplifying the design of acoustic metamaterial plates, speeding up numerical 
optimizations, or enabling scaled-down acoustic experiments.

1. Introduction

Acoustic metamaterials are artificially engineered materials that can 
control waves propagating through a medium [1–3]. Acoustic meta
materials can exhibit unusual properties, such as negative effective 
density or bulk modulus, which cannot be found in nature. Recently, 
various studies have been reported on acoustic metamaterial plates, 
which utilize acoustic metamaterials in soundproofing panel designs to 
achieve high sound transmission loss (STL) [4–24]. These plates include 
several types: where local resonators functioning as mass-spring systems 
are attached to a plate to reduce vibration [4–8], designs that combine 
acoustic resonators with a plate to reduce noise through acoustic reso
nances [9–11], sandwich panels made up of top and bottom plates with 
meticulously designed pathways between them [12–15], plate struc
tures integrated with periodic stub or pillar attachments made of heavy 
metal or rubber materials to control flexural waves by forming band 
gaps in targeted frequency ranges [16–18], and plate-type acoustic 
metamaterials (PAMs) composed of rigid masses periodically distributed 
on a thin plate achieving noise reduction from their anti-resonances 
[19–24]. These acoustic metamaterial plates have gained significant 
attention due to their ability to reduce sound and vibration effectively 
without relying on thick and heavy materials (e.g. conventional panels), 
which are governed by the mass-law.

Despite these advantages, several challenges arise in the design and 

experimental validation phase: The noise attenuation characteristics of 
acoustic metamaterial plates are highly related to the geometry of the 
unit cell design, such as the mass shape, size, and thickness in PAMs. 
These relationships are particularly complicated when broadband sound 
transmission loss improvements are desired, e.g. by designing multi- 
modal local resonators [7,8] or using PAM designs with multiple 
masses in a single unit cell [20]. When geometrical dimensions required 
to position anti-resonances within the desired frequency range are un
known, iterative calculations are often necessary, leading to consider
able time consumption. Furthermore, during experimental validation 
using sound transmission loss tests, the maximum test sample size can be 
limited by the experimental facilities.

A solution to these challenges can be found in the scaling and 
similitude analysis method. Scaling or similitude analysis investigates 
the effects of altering the size of a structure on its performance and es
tablishes relationships between original and scaled geometries through 
governing equations or dimensionless parameters [25,26]. A 
well-known example for the benefits of scaling can be found in fluid 
dynamics, where Reynolds similarity is exploited in both experimental 
and computational applications. In structural dynamics, methodologies 
for correlating dynamic characteristics using scaling or similitude 
analysis have been proposed [27–31]. However, applying scaling anal
ysis methods to the analysis and prediction of the sound insulation 
characteristics of acoustic metamaterial plates has not yet been 
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reported.
In this letter, we introduce a scaling analysis method for the sound 

transmission loss of thin acoustic metamaterial plates, enabling the 
prediction of the sound insulation performance of scaled metamaterial 
plates based on results for the original geometry. We consider two types 
of scaling coefficients (in-plane and out-of-plane) and mathematically 
derive scaling relationships for the sound transmission loss using a PAM 
as an example. Based on this, three scaling cases are considered: Com
plete scaling, which scales the unit cell geometry equally in all three 
spatial directions; mass-neutral scaling, which preserves the total mass 
of the metamaterial; and thickness scaling, which only changes the 
overall thickness of the metamaterial. The effectiveness of the proposed 
scaling analysis method is validated using finite element simulations.

2. Modeling and method

In this section, we introduce the analytical scaling law for the sound 
transmission loss of thin plate-like acoustic metamaterials. The deriva
tion is based on the assumptions of normal incidence of acoustic waves, 
infinite periodicity of the metamaterials in the in-plane directions, sub- 
wavelength size of the metamaterial unit cells, and the applicability of 
the Kirchhoff-Love plate theory, which requires the plate to be thin 
relative to its lateral dimensions.

2.1. Analysis model and sound transmission characteristics of PAMs

Fig. 1 shows an example configuration of a PAM and the unit cell 
comprising it. In this example, each unit cell, shown on the right, con
sists of a plate with a circular mass attached on its top, and the PAM is 
configured with these unit cells periodically arranged along the x and y 
directions as defined in the three-dimensional Cartesian coordinate 
system (x, y, z) shown on the left. It should be noted that the configu
ration shown in Fig. 1 has been chosen for simplicity – the analysis 
proposed in this paper also applies to more complicated acoustic met
amaterial plate designs, e.g. PAMs with multiple masses in a unit cell or 
more complicated mass geometries. Without loss of generality, the unit 
cell lengths in both the x and y directions are assumed to be equal (a) and 
the thickness of the plate is denoted as hp. The diameter and height of the 
circular mass positioned in the center of the unit cell are denoted as dM 
and hM, respectively. The frequency-dependent characteristics of PAMs 

can be identified from the effective surface mass density 
(

mʹ́
eff

)
, which is 

defined as follows [32]: 

mʹ́
eff(f) =

p
− (2πf)2

〈w(f)〉
, (1) 

where f is the frequency, 〈w(f)〉 indicates the surface-averaged complex 
normal displacement amplitude of the PAM in response to a uniform 
pressure p applied to the PAM. In general, the normal displacement of a 
thin plate is governed by the Kirchhoff-Love plate equation. The 
displacement field of the PAM can be calculated using the plate equation 

with variable bending stiffness [33]: 
(
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D
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where D indicates the local bending stiffness, defined as D =

Eh3/
(
12
(
1 − ν2)), E, ν, ρ, and h are the local Young’s modulus, Pois

son’s ratio, density, and thickness (equal to hp or hp + hM), depending on 
the location within the unit cell, respectively. Once the effective surface 
mass density is known, the noise attenuation characteristics of the PAM 
can be evaluated through the frequency-dependent STL, which is 
derived from the sound transmission factor (t) via [34]: 

t(f) =
(

1 +
i(2πf)
2ρ0c0

mʹ́
eff(f)

)− 1

, i =
̅̅̅̅̅̅̅
− 1

√
, (3a) 

TL(f) = − 20log10|t(f)|, (3b) 

where ρ0 and c0 are the density and speed of sound of the acoustic 
medium surrounding the PAM, respectively.

2.2. Derivation of the scaling law

As the dimensions of the PAM unit cell change, the displacement 
field w will be altered and the STL varies correspondingly. To establish a 
relationship between the STL of scaled and original PAMs, a scaling law 
based on Eq. (2) is derived. Starting from the original coordinate system, 
defined as x, y, and z, when the in-plane dimensions (x- and y-directions) 
are scaled by γa and the thickness of the plate and height of the mass are 
equally scaled by γh, the new coordinate system of the scaled geometry 
can be denoted as xs, ys, and zs, with the relationships between the scaled 
and original coordinates given by 

xs = γax, ys = γay, (4a) 

hs = γhh, (4b) 

If the material composition of the scaled metamaterial remains 
identical to the original design, the plate equation in Eq. (2) can be 
rewritten in terms of the scaled coordinate system as follows: 
(
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s
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∂x2
s

))

− ρhs(2πfs)
2
)

ws = p,
(5) 

where ws, fs, and hs represent the normal displacement, frequency, and 
local thickness of the scaled PAM, respectively. Along with the coordi
nate scaling, the partial differential notation was modified correspond
ingly. Although the material composition remains constant, the local 
bending stiffness of the PAM is affected by the thickness scaling ratio 

Fig. 1. Configuration of a PAM with a unit cell composed of circular mass.
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(γh), resulting in Ds =
Eh3

s
12(1− ν2)

. Based on the relationships in Eq. (4a), the 
partial differential operators of the scaled geometry can be expressed as 

∂xs = γa∂x, ∂ys = γa∂y, (6) 

Additionally, from Eq. (4b) it follows that the bending stiffnesses of 
the original and scaled PAM follow the relationship 

Ds =
E

12(1 − ν2)
h3

s = γ3
h

E
12(1 − ν2)

h3 = γ3
hD. (7) 

By inserting Eqs. (6) and (7) in Eq. (5), the plate equation of the 
scaled metamaterial can be expressed as follows: 
(
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(8) 

When comparing Eqs. (2) and (8), differences exist only in the terms 
related to the frequency (f and fs) and the normal displacement (w and 
ws); all other terms remain identical. This indicates that the displace
ment and corresponding frequency calculated or measured on the scaled 
geometry can be scaled to match that of the original geometry by using 
the following scaling relationships: 

f =
γ2

a
γh

fs, (9a) 

w =
γ3

h
γ4

a
ws, (9b) 

From these displacement and frequency scaling relationships, the 
definition of the effective surface mass density is used to derive a scaling 
law for the STL of the scaled PAM, relating its STL to that of the original 
PAM. Following the definition in Eq. (1), the effective surface mass 

density of the scaled PAM 
(

mʹ́
effs
)

is expressed as 

mʹ́
effs(fs) =

p
− (2πfs)

2
〈ws(fs)〉

, (10) 

Substituting the relevant terms from Eq. (9), this can be rewritten as 

mʹ́
effs(f) = γh

p
− (2πf)2

〈w(f)〉
= γhmʹ́

eff(f), (11) 

which provides a direct scaling relationship between the scaled and 
original PAM at the same frequency f . It should be noted that even 
though the metamaterial was scaled based on two coefficients, the terms 
involving γa in the scaling relationships for fs and ws involving γa 
canceled each other out, resulting in the effective surface mass density of 
the scaled geometry depending solely on the out-of-plane scaling factor 

Fig. 2. STL curves of the original and scaled PAMs with complete scaling (γa = γh): (a) STL curves calculated via FEM, plotted against the frequency fs of the scaled 
PAM and (b) STL curves analytically rescaled by applying the scaling law in Eq. (14) to the FEM results, plotted against the rescaled frequency f .
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γh. This is consistent with the case of a homogeneous plate where the 
surface mass density is independent of frequency and only changes when 
the thickness of the plate is scaled.

Using Eqs. (9a) and (11), the sound transmission factor of the scaled 
metamaterial (ts) is given by 

ts(f) =
(

1 +
i(2πfs)

2ρ0c0
mʹ́

effs
(f)
)− 1

=

(

1 +

(
γh

γa

)2i(2πf)
2ρ0c0

mʹ́
eff(f)

)− 1

. (12) 

Using Eq. (3a), Eq. (12) can be rearranged to establish the following 
relationship between the sound transmission factors of the scaled and 
original metamaterials: 

t(f) =
(

1 +

(
γa

γh

)2(
(ts(f))− 1

− 1
)
)− 1

. (13) 

By substituting this result into Eq. (3b), the rescaled transmission loss 

(T̂L(f)) can be obtained from the sound transmission factor of the scaled 
geometry ts: 

T̂L(f) = − 20log10

⃒
⃒
⃒
⃒

(

1 +

(
γa

γh

)2(
(ts(f))− 1

− 1
)
)− 1⃒⃒

⃒
⃒. (14) 

The notation T̂L(f) has been introduced to make a clear distinction 
between the STL of the original metamaterial (TL(f)) and the rescaled 
STL calculated via Eq. (14) and using transmission factor values of the 
scaled metamaterial (obtained using, for example, numerical simula
tions or experiments). It should be noted that Eq. (14) is also valid for 
homogeneous plates, although not immediately obvious because γa ap
pears in Eq. (14), which should not affect the STL in case of a homo
geneous plate. However, when assuming a frequency-independent 
surface mass density, inserting Eq. (12) in Eq. (14) cancels the de
pendency on γa, as would be expected for homogeneous plates.

3. Numerical validation and discussion

To validate the proposed method, three scaling cases are considered 
based on the two scaling coefficients γa and γh: (1) scaling in all di
rections (x, y, z) (complete scaling), (2) scaling in-plane dimensions only 
(x, y) while the height remains identical (γh = 1) (mass-neutral scaling), 
and (3) only scaling out-of-plane dimensions (z) while the in-plane di
mensions remain identical (γa = 1) (thickness scaling). As a represen
tative example, the PAM shown in Fig. 1 with material parameters and 

Table 1 
Dimensions of the original and scaled PAMs using complete scaling (original 
PAM: γa = 1, γh = 1).

γa γh a (mm) dM (mm) hp (μm) hM (mm) μ
(
g /m2)

1/3 1/3 25.83 10 250 0.333 635
1/2 1/2 38.75 15 375 0.5 953
1 1 77.5 30 750 1 1906
2 2 155 60 1500 2 3813
3 3 232.5 90 2250 3 5719

Fig. 3. Normal displacement fields of the scaled PAMs in complete scaling.
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dimensions based on [35] was used as the original design. The plate 
material was polycarbonate (E = 2.3 GPa, ν = 0.40, ρ = 1310 kg /m3) 
with a structural loss factor of 5 %. The mass was made of steel (E =

205 GPa, ν = 0.28, ρ = 7850 kg/m3) with a structural loss factor of 1 
%. The acoustic medium was air (ρ0 = 1.23 kg/m3, c0 = 343 m /s). The 
numerical analysis was conducted based on the finite element method 
(FEM) using COMSOL Multiphysics (ver. 6.2), and the simplified met
amaterial plate modeling method described in Ref. [36] was followed to 
calculate the STL. Further details of the numerical simulation setup are 
provided in Appendix A. For a finite array, the dynamic behavior con
verges to that of an infinite array once a sufficient number of unit cells 
are used, as shown in Ref. [35]. Therefore, the scaling relationships 
derived in this letter are expected to remain valid even for finite acoustic 
metamaterial plates of practical size.

Fig. 2(a) shows the STL curves of the original and scaled PAMs 
calculated via finite element simulations using complete scaling (i.e., γa 
= γh). In this case, the geometry is scaled uniformly in all directions and 
the dimensions of the scaled and original geometries are detailed in 
Table 1, including the corresponding static surface mass density (μ) of 
each configuration. The STL of the original PAM is represented by the 
black dash-dotted line. Between 100 to 1000 Hz, two anti-resonances are 
observed in the form of STL peaks. The first anti-resonance occurs at 257 
Hz with a STL of 27.4 dB and the second anti-resonance at 670 Hz with a 
STL of 22.9 dB. From observing the STL curves of the scaled PAMs, it can 

be seen that if the scaling factors increase (i.e., the unit cell becomes 
bigger), the anti-resonance frequencies shift to lower frequencies, while 
they shift to higher frequencies if the scaling factors decrease. However, 
the STL values at both anti-resonance frequencies remain at the same 
level, regardless of the scaling. For example, when γa = γh = 3, the first 
and second anti-resonances shift to 85.7 Hz and 223.3 Hz, with corre
sponding STL values of 27.4 dB and 22.9 dB, respectively. Conversely, 
when γa = γh = 1/3, the anti-resonances shift to 771 Hz and 2010 Hz, 
with STL values of 27.4 dB and 22.9 dB. This behavior aligns with Eq. 
(14), where γa and γh cancel each other out when they are equal, 
resulting in consistent STL values for complete scaling. Therefore, 
complete scaling can be useful, for example, to achieve a fixed STL level 
at different anti-resonance frequencies by scaling the unit cell geometry 
according to the frequency scaling law given in Eq. (9a), which reduces 
to f = γafs in the case of complete scaling. Fig. 2(b) shows the STL curves 
that have been analytically rescaled by applying the scaling law in Eq. 
(14) to the FEM results of the scaled PAMs. Despite the high range of 
scaling factors, ranging from 1/3 to 3, and the different materials used in 
the PAM designs, the rescaled TL curves exhibit remarkable consistency 
with almost no visible differences. Fig. 3 shows the normal displacement 
fields of each scaled PAM at their respective anti-resonance frequencies. 
For both the first and second anti-resonance, it can be observed that the 
locations of high and low displacement regions remain identical across 
different scaling factors.

In some applications it is desirable to alter the anti-resonance fre

Fig. 4. STL curves of the original and scaled PAMs with mass-neutral scaling (γh = 1): (a) STL curves calculated via FEM, plotted against the frequency fs of the 
scaled system and (b) STL curves analytically rescaled by applying the scaling law in Eq. (14) to the FEM results, plotted against the rescaled frequency f .

J. Cho and F. Langfeldt                                                                                                                                                                                                                        Physics Letters A 555 (2025) 130799 

5 



quencies of a metamaterial plate without changing the overall (static) 
mass of the metamaterial. This leads to the case of mass-neutral scaling, 
for which the static surface mass density remains constant. This is ach
ieved if γh remains at 1 while only γa is varied, i.e. the thickness of the 
metamaterial plate remains constant and only the in-plane dimensions 
are adjusted. Fig. 4(a) shows the STL of the scaled PAMs with mass- 
neutral scaling, calculated via finite element simulations. The corre
sponding dimensions of the scaled PAMs are summarized in Table 2, also 
demonstrating how the static surface mass density μ remains constant in 
this case. As shown in Fig. 4(a) and as follows from Eq. (9a), if γa in
creases, the anti-resonance frequency decreases (according to f = γ2

afs), 
along with a corresponding decrease in the STL values (because now the 
γa and γh do not cancel in Eq. (14)). Conversely, if γa decreases, the anti- 
resonance frequency increases, and the STL values increase. For 
instance, when γa = 3, the first and second anti-resonances shift to 28.8 
Hz and 75.2 Hz, with STL values of 10.9 dB and 7.4 dB, respectively. In 

contrast, when γa = 1/3, the first and second anti-resonances shift to 
2251 Hz and 5851 Hz, with STL values of 46.1 dB and 41.1 dB, 
respectively. Fig. 4(b) shows the STL curves analytically rescaled by 
applying Eq. (14) to the FEM results from mass-neutral scaling. Overall, 
the rescaled STL values exhibit good agreement, in particular for scaled 
PAMs with high γa values. In contrast, for low values of γa, gradually 
increasing differences are observed as γa decreases. Fig. 5 shows the 
normal displacement fields of each scaled PAM under mass-neutral 
scaling at their respective anti-resonance frequencies. As γa decreases, 
it can be seen that the relative heights of the mass and plate increase 
compared to the unit cell length. For both the first and second anti- 
resonance, the locations of high and low displacement regions remain 
almost identical across different scaling factors, despite the variations in 
geometry.

Another scaling case that can be considered using the proposed 
method is thickness scaling, for which the in-plane dimensions remain 
constant while only γh varies, thereby only adjusting the thickness of the 
metamaterial. Fig. 6(a) shows the STL curves of the PAMs with thickness 
scaling, calculated via finite element simulations. The dimensions and 
static surface mass densities of the thickness-scaled PAMs are summa
rized in Table 3. The results show that by decreasing γh (resulting in a 
thinner, more lightweight PAM), the anti-resonance frequencies 
decrease according to f = γ− 1

h fs. Conversely, when γh increases (resulting 
in a thicker, heavier PAM), the anti-resonance frequencies shift to higher 
frequencies. Furthermore, the STL values decrease as γh decreases and 
vice versa. For instance, when γh = 1/3, the first and second anti- 

Table 2 
Dimensions of the original and scaled PAMs using mass-neutral scaling (original 
PAM: γa = 1, γh = 1).

γa γh a (mm) dM (mm) hp (μm) hM (mm) μ
(
g /m2)

1/3 1 25.83 10 750 1 1906
1/2 1 38.75 15 750 1 1906
1 1 77.5 30 750 1 1906
2 1 155 60 750 1 1906
3 1 232.5 90 750 1 1906

Fig. 5. Normal displacement fields of the scaled PAMs in mass-neutral scaling.
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resonances shift to 86.3 Hz and 225.7 Hz, with STL values of 10.9 dB and 
7.4 dB, respectively. In contrast, when γh = 3, the first and second anti- 
resonances shift to 748 Hz and 1951 Hz, with STL values of 46.1 dB and 
41.1 dB, respectively. Fig. 6(b) shows the STL curves analytically 
rescaled by applying Eq. (14) to the FEM results of the thickness scaled 
PAMs. When γh < 1, the results for the rescaled STL align closely with 
the STL curve of the original PAM. However, when γh is set higher than 
1, the rescaled STL curve starts to deviate from the original PAM STL. 
Fig. 7 shows the normal displacement fields of each scaled PAM under 
thickness scaling at their respective anti-resonance frequencies. As γh 
increases, the heights of the mass and plate increase compared to the 
unit cell length. For both the first and second anti-resonance, the loca
tions of high and low displacement regions remain almost identical 

across different scaling factors, despite the variations in geometry.
To further analyze the validity and limits of the proposed scaling 

method, additional calculations were conducted for the two scaling 
cases for which discrepancies were observed. Fig. 8(a) shows the abso
lute difference between the STL of the original PAM (TL) and of the 
scaled PAMs (T̂L) with mass-neutral scaling. Here, γa was varied from 1 
to 0.3, with an interval of 0.01. When γa decreases from 1 to 0.77, the 
errors in the rescaled STL are almost negligible, remaining within 1 dB. 
However, for γa as low as 0.55, the observed differences begin to exceed 
3 dB at 686 Hz, and starting from γa = 0.39, discrepancies of >6 dB are 
observed at 683 Hz. Fig. 8(b) shows the absolute difference between the 
original STL and T̂L with thickness scaling. Here, γh was varied from 1 to 
3, with an interval of 0.02. For γh between 1 and 1.3, the errors in the 
rescaled STL are within 1 dB. However, for γh exceeding 1.82, discrep
ancies larger than 3 dB can be observed at 685 Hz, and discrepancies 
larger than 6 dB are observed at 682 Hz if γh > 2.56.

The increasing discrepancies for small γa (mass-neutral scaling) or 
large γh (thickness scaling) can be explained as follows: In these cases, 
the plate and mass become considerably thick compared to the unit cell 
length a of the PAMs. The scaling analysis method proposed in this letter 
was derived mathematically based on the Kirchhoff-Love plate equation 
with variable bending stiffness, which assumes that the thickness of the 
plate is much smaller than the lateral dimensions (a). If this is violated, 
dynamic characteristics, such as in-plane motion or torsion, which were 

Fig. 6. STL curves of the original and scaled PAMs with thickness scaling (γa = 1): (a) STL curves calculated via FEM, plotted against the frequency fs of the scaled 
PAMs and (b) STL curves analytically rescaled by applying the scaling law in Eq. (14) to the FEM results, plotted against the rescaled frequency f .

Table 3 
Dimensions of the original and scaled PAMs using thickness scaling (original 
PAM: γa = 1, γh = 1).

γa γh a (mm) dM (mm) hp (μm) hM (mm) μ
(
g /m2)

1 1/3 77.5 30 250 0.333 635
1 1/2 77.5 30 375 0.5 953
1 1 77.5 30 750 1 1906
1 2 77.5 30 1500 2 3813
1 3 77.5 30 2250 3 5719
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not considered during the derivation of the plate equation, become non- 
negligible, and the error in the rescaled STL increases. One possible 
explanation can be found in the limitation of the Kirchhoff-Love plate 
theory, which does not account for transverse shear deformation or 
rotary inertia. As a result, the structural stiffness tends to be over
estimated, since the theory assumes that the system does not respond to 
such effects. In contrast, real systems may exhibit these dynamic be
haviors, and in such cases, the actual stiffness is lower than that esti
mated by the Kirchhoff-Love plate theory due to the presence of shear 
and rotational effects. In general, for a given mass, lower structural 
stiffness leads to lower characteristic frequencies. In cases where 
consistent discrepancies are observed, the rescaled STL exhibit a gradual 
downward shift in the anti-resonance frequency relative to the original 
STL. This trend aligns with the theoretical assumptions discussed above.

Nevertheless, even in the cases where discrepancies occurred, the 
rescaled STL curves exhibit relatively minor errors, despite considerable 
changes in dimensions. Additionally, the present scaling analysis in
corporates material losses through the loss factors in both the plate (5 %) 
and the mass (1 %). Within the investigated range (≤ 5%), the derived 
scaling law remains valid, indicating that moderate damping does not 
impair their applicability. For viscoelastic metamaterials that require 
higher loss factor, however, additional analysis may be required to 
extend the applicability of the proposed approach.

4. Conclusions

In this letter, a scaling analysis method for the sound transmission 

through acoustic metamaterial plates was proposed. Two types of 
scaling factors, in-plane and out-of-plane, were introduced and the 
scaling relationships between the frequencies and STL of the original 
and scaled metamaterial were established using the plate equation with 
variable bending stiffness. Based on the two scaling factors, three scaling 
cases were explored using numerical simulations of PAMs as an example 
for metamaterial plate: complete scaling, mass-neutral scaling, and 
thickness scaling. It could be shown that for complete scaling, a perfect 
agreement between the STL of the original and scaled metamaterial can 
be achieved using the proposed STL rescaling in Eq. (14). Minor dis
crepancies were observed in the mass-neutral and thickness scaling 
cases, which can be explained by the utilized thin plate-assumption 
being violated if the thickness becomes large compared to the unit cell 
size of the metamaterial. Nevertheless, even with substantial changes in 
the frequency range due to large variations in the scaling coefficients, 
the rescaled STL curves demonstrated a high degree of agreement with 
the original PAM.

The proposed scaling methodology can be applied to greatly simplify 
numerical or experimental studies of the sound transmission properties 
of acoustic metamaterial plates, like how Reynolds-similarity is exploi
ted in fluid mechanics. While this letter focused on rescaling the STL of 
scaled metamaterial plates, the proposed method can also be reversed, 
which will allow to intentionally shift anti-resonances of a metamaterial 
plate to desired frequency ranges using the scaling formulas proposed in 
this letter. This will reduce the computational effort in designing com
plex metamaterial plate structures (e.g. using optimization procedures) 
and significantly simplify the tailoring of acoustic metamaterial plate 

Fig. 7. Normal displacement fields of the scaled PAMs in thickness scaling.
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designs towards different noise control applications with different 
problematic frequency ranges.
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Appendix A. Details of finite element simulation

Fig. A.1(a) shows the meshed model used for the finite element simulation of the original PAM. The plate was modeled as a thin, uniform-thickness 
shell using two-dimensional shell elements, while the mass was modeled as a cylindrical geometry using three-dimensional solid elements. Quadratic 
shape functions were applied to both shell and solid elements. To simulate an infinitely periodic structure, periodic boundary conditions were applied 
to all four edges of the unit cell. Owing to the use of periodic boundary conditions, the global response of an infinite PAM can be obtained through the 
numerical analysis of a single unit cell. As illustrated in Fig. A1(b), at the overlapping boundaries of shell and solid, the shell and solid elements were 
rigidly connected via a solid-thin structure connection. A normally incident acoustic wave was simulated by applying a uniform pressure to the bottom 
of the PAM. 

Fig. 8. Difference between the original PAM STL and the rescaled STL for different scaling approaches: (a) mass-neutral scaling and (b) thickness scaling.
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Fig. A.1. Schematic diagram of the numerical setup: (a) isometric view of the meshed model, (b) side view of the unit cell.

Data availability

Data will be made available on request.
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