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Abstract

Explainable artificial intelligence (XAI) has emerged as a crucial field for understanding and
interpreting the decisions of complex machine learning models, particularly deep neural
networks. This review presents a structured overview of XAI methodologies, encompassing
a diverse range of techniques designed to provide explainability at different levels of
abstraction. We cover pixel-level explanation strategies such as saliency maps, perturbation-
based methods and gradient-based visualisations, as well as concept-based approaches
that align model behaviour with human-understandable semantics. Additionally, we touch
upon the relevance of XAI in the context of weakly supervised semantic segmentation.
By synthesising recent developments, this paper aims to clarify the landscape of XAI
methods and offer insights into their comparative utility and role in fostering trustworthy
AI systems.

Keywords: explainable AI; post hoc explanations; saliency maps; concept-based XAI; deep
neural networks; semantatic segmentation

1. Introduction
Deep neural networks (DNNs) have demonstrated impressive predictive performance

across various domains, including medicine [1,2], robotics [3,4] and economics [5]. They
have been successfully applied to a wide range of problems, such as object detection [6,7],
stock prediction [8], image generation [9,10], and machine translation [11,12], among many
others. This success can be attributed to advancements in deep learning [13], the availability
of massive datasets [14], and the increasing computational power provided by graphics
processing units (GPUs) [15].

Despite the significant performance improvements in DNNs over recent years, gaining
trust in their predictions remains a challenge due to the complex and opaque nature of
their decision-making processes [16–21]. To address this, model interpretability has become
essential in uncovering the “black box” of deep networks. Interpretability, often defined as
the ability to provide explanations in terms understandable to humans [22], plays a crucial role in
bridging the gap between DNNs’ performance and user trust. Ongoing discussions have
explored the distinctions between terms like interpretability, explainability, trustworthiness,
and transparency, debating their appropriate use in the field [18,23–25]. In this review, we
focus on the shared goal of explainable artificial intelligence (XAI) methodologies—to make
AI more understandable to humans—and leave a detailed discussion of the differences
among these approaches for future work.

The techniques developed to interpret and explain machine learning (ML) models
are broadly categorised as XAI methodologies [26,27]. Consequently, this review adopts
XAI as its core term. In recent years, the field of XAI has experienced exponential growth,
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with numerous approaches proposed to address the transparency challenge of black-box
models. These approaches aim to make such models safer for deployment, especially in
sensitive domains, including healthcare [28,29] and law [30]. By improving transparency,
XAI seeks to achieve several objectives, such as ensuring fairness by detecting and mitigat-
ing discrimination or unexpected behaviours in ML systems. XAI techniques also assist
practitioners in debugging their systems by identifying biases in data or in the models
themselves [20,31]. Furthermore, explainability is not merely a desirable feature; since 2018,
the General Data Protection Regulation (GDPR) in Europe has mandated that artificial
intelligence (AI) systems provide justifications for their decisions, further underscoring the
critical role of XAI [32,33].

There have been a significant number of reviews on XAI focusing on different aspects
of this important subfield. These reviews share many common goals, such as the definition
of interpretability and its types [16,17]. Some of these reviews specifically focus on the
detailed taxonomy of existing methodologies and providing the differences between terms
like explainability, interpretability and transparency [18,34]. Some surveys, on the other
hand, highlight the importance of explainability in modern technologies, particularly
within the application domains of Industry 4.0 [35].

Our main contribution is, however, the definition of the dimensions of XAI, which,
to the best of our knowledge, has never been explicitly put together before. We define
six main dimensions, where each of them is further divided into two subcategories. We
claim that any XAI methodology currently exists or proposed in the future could be put
under these categories. Proposed techniques frequently belong to multiple subcategories
within these dimensions. For instance, a single method might generate both visual and
conceptual explanations or be applicable to both traditional ML models and deep learning
architectures. This overlapping nature reflects the versatility and multifaceted nature of
XAI techniques, which are not confined to a single category but instead span across several,
depending on their design and application.

We analyse the advantages and limitations of a variety of methodologies across these
categories. This review is intended to serve both practitioners and researchers: for end
users, it provides guidance on selecting the most appropriate XAI technique for their
specific use case; for researchers, it highlights current gaps and challenges in the field,
potentially inspiring new directions for future work.

We then focus on one specific dimension, i.e., explanation modality, which involves the
subcategories visual and conceptual. We argue that the modality of explanations is the most
crucial aspect, especially for visual tasks, and the future of explainability depends on the
ability of methodologies to provide both visual and conceptual explanations.

Although this review focuses on XAI for architectures processing static data, explaining
models such as LSTMs [36], GRUs [37], and Transformers [38] has also become increas-
ingly important as countless real-world applications employ these models for sequential
data processing. In this direction, many works have either adapted existing XAI method-
ologies to temporal data or developed novel ones specifically for them. TimeSHAP [39],
for instance, extends KernelSHAP [40] to explain the predictions of recurrent neural net-
works (RNNs) [41]. Similarly, explainable attention-based methods—e.g., RETAIN [42]
or Temporal Fusion Transformer (TFT) [43]— aim to embed interpretability within the
model architecture by highlighting key timesteps or variables directly via learned attention
weights. Despite these advances, translating dynamic model behaviours into human-centric
insights is still a significant challenge for dynamic XAI. In this survey, we do not delve into
the dynamic XAI or propose solutions to its challenges, as we reserve this for a separate,
more detailed future work.
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This paper is structured as follows. Section 2 discusses the black-box nature of convolu-
tional neural networks (CNNs) and provides a brief history of their development. Section 3
introduces the overarching categorisation of XAI methodologies, laying the foundation for
the detailed discussions that follow. Visual explanation techniques are covered in Section 4,
while concept-based approaches are reviewed in Section 5. In Section 6, we explore the
close relationship between XAI and the field of weakly supervised semantic segmentation
(WSSS), highlighting key methodologies and their shared objectives. Finally, Section 7
offers concluding remarks and perspectives on future directions.

2. Black-Box Nature of CNNs
First proposed in 1998 for handwritten character recognition [44], CNNs have shown

a remarkable performance, especially in vision tasks. Thanks to the ImageNet dataset [14]
and efficient GPUs that enabled thousands of computations in parallel, AlexNet by
Krizhevsky et al. achieved state-of-the-art performance in ImageNet LSVRC-2012 com-
petition [45]. Following AlexNet, several even more performant architectures have been
proposed including but not limited to VGG [46], GoogleNet [47], ResNet [48], DenseNet [49],
MobileNet [50], EfficientNet [51], and ConvNeXt [52,53]. With these CNN-based architec-
tures, human-level performance has already been reached and arguably outperformed in
various tasks. However, CNNs’ black-box nature has been seen as the main obstacle to
their further deployment, especially in fields where human life is at stake.

The so-called black-box nature of CNNs arises from their end-to-end learning process,
which contrasts with traditional ML methods such as decision trees [54] and support vector
machines (SVMs) [55] where features are manually designed by experts—for example,
edge and texture detectors or colour histograms—tailored to specific tasks [56,57]. As the
decision process of traditional ML techniques is built around these predefined, human-
understood features, it is relatively easy to follow the reasoning behind their predictions.
In contrast, CNNs automatically learn features directly from data through multiple layers
of abstraction without any human intervention. This automatic feature extraction helps
CNNs achieve state-of-the-art performance, but it also complicates our understanding of
what the model is learning at each stage. The learned representations are highly complex
and the decision process is non-linear, which leads to an opaque decision-making that
obscures the internal workings of the model [58].

Several methodologies were proposed to tackle these opaque predictions and make
deep networks more transparent. In this direction, efforts to enhance the interpretability of
CNNs have focused on two primary strategies: visualising model behaviour and aligning
learnt high-level features with human-understandable concepts.

Visualisation techniques aim to illuminate how CNNs build complex representations
hierarchically from simpler ones, as early studies revealed that initial layers learn basic
features like edges and lines, while later layers capture textures and patterns, culminating
in the penultimate layer focusing on object parts—insights contributing to what in [59]
is described as Algorithmic Transparency [60–62]. Additionally, pixel attribution methods
highlight specific regions of input images that most strongly influence model predictions,
providing a clearer understanding of what drives specific decisions [63,64].

In contrast, feature–concept alignment methodologies seek to map high-level features
learnt by CNNs to human-interpretable concepts [65–67]. These approaches reconnect ab-
stract representations of deep networks with predefined, semantically meaningful concepts,
akin to the handcrafted features used in traditional models. By doing so, they aim to bridge
the gap between the opaque, high-dimensional workings of CNNs and human intuition,
making the decision-making process more transparent and understandable.
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An ideal XAI methodology would seamlessly address both directions detailed above: it
would not only match high-level features automatically extracted during training to human-
understandable concepts but also localise these concepts spatially within an examined
input sample. Such methodology would provide a more holistic explanation, enabling
users to understand not only what the model has learned but also where these concepts
are represented in the input. This dual capability would allow for more intuitive and
interpretable model explanations, improving trust and transparency in AI systems across
various domains.

3. Overview of XAI Categorisation: Key Dimensions
This section explores six critical dimensions for categorising XAI methodologies: ex-

planation phase, explanation level, model specificity, target audience, granularity, and
modality of explanations. These dimensions provide a structured framework for under-
standing how XAI techniques differ in their approaches and applications; please also refer
to Figure 1 for an overview. Additionally, Table 1 presents the categories of some well-
known XAI methodologies along these dimensions, and it can be used as a guide when
choosing the right technique for a given task.

XAI 
Dimensions

Explanation
     Phase

Explanation
    Level

Model 
Specificity

Target 
     Audience

Granularity

Explanation 
     Modality

Post-hoc Ad-hoc Visual Conceptual

Global

Local

Model 
specific

Model 
agnostic Researchers End users

Fine 
grained

Coarse
grained

Figure 1. XAI dimensions for various applications.

Explanation Phase. XAI techniques are typically categorised into two main types:
post hoc and ad hoc methods. Post hoc methods are applied after the model has been
trained and offer explanations without altering the model structure or any training/test
time intervention [63,68]. These methods aim to interpret the decision-making process
retrospectively, often using visualisations or perturbation techniques. In contrast, ad hoc
methods refer to models that are either inherently interpretable, such as linear models
and decision trees, or that incorporate explainability directly into their architecture during
training [66,69]. While inherently interpretable methods often have limited predictive
capacity, techniques that integrate explainability into black-box models typically experience
a performance trade-off due to the structural training/test time interventions. Unlike post
hoc methods, which provide explanations after the fact, ad hoc techniques offer immediate
by-product interpretability.
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Table 1. Categories of some well-known XAI methodologies.

Methodology

Category Phase Level Specificity Audience Granularity Modality

Post hoc Ad hoc Global Local Specific Agnostic Researchers End Users Fine-Grained Coarse-Grained Visual Conceptual

Activation maximisation [61,70–72] ✓ ✗ ✓ ✗ ✓ ✗ ✓ ✓ ✗ ✓ ✓ ✗

Saliency mapping [60,63,73] ✓ ✗ ✗ ✓ ✓ ✗ ✓ ✓ ✗ ✓ ✓ ✗

Integrated Gradients [74] ✓ ✗ ✗ ✓ ✓ ✗ ✓ ✓ ✗ ✓ ✓ ✗

Multilevel XAI [75] ✗ ✓ ✗ ✓ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓

CBM [67] ✗ ✓ ✗ ✓ ✓ ✗ ✓ ✓ ✓ ✗ ✗ ✓

CAM [76] ✓ ✗ ✗ ✓ ✓ ✗ ✓ ✗ ✗ ✓ ✓ ✗

LIME [77] ✓ ✗ ✗ ✓ ✗ ✓ ✓ ✓ ✗ ✓ ✓ ✗

Anchors [78] ✓ ✗ ✗ ✓ ✗ ✓ ✓ ✓ ✗ ✓ ✓ ✗

Network dissection [79] ✓ ✗ ✓ ✗ ✓ ✗ ✓ ✓ ✓ ✓ ✓ ✓

TCAVs [66] ✓ ✗ ✓ ✗ ✓ ✗ ✓ ✓ ✓ ✗ ✗ ✓

Post hoc CBM [69] ✓ ✗ ✓ ✗ ✓ ✗ ✓ ✓ ✓ ✗ ✗ ✓
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Explanation Level. XAI methods can also be distinguished by whether they provide
global or local explanations. Global explanations aim to give a comprehensive view of how
a model behaves across a wide range of inputs, offering insight into the overall functioning
of the model. Local explanations, in contrast, focus on specific predictions, providing details
on why the model makes a certain decision for a particular input. In short, this category
highlights the scale at which a model’s behaviour is interpreted, whether explaining its
behaviour in general or for individual instances.

Model Specificity. For this aspect, XAI methods are labelled as either model-specific or
model-agnostic. Model-specific methods [67,76,80,81] are designed to work with particular
types of architectures, such as CNNs, utilising their unique architecture for explanations.
Model-agnostic methods [40,66,77,78,82], however, can be applied to any ML model, re-
gardless of its structure, as they only require test inputs and the prediction function. This
categorisation reflects the adaptability of XAI techniques, indicating whether they are
specialised for certain architectures or can be broadly applied across different models.

Target Audience. XAI methods are designed to cater to different groups of users with
varying needs. Some tools are tailored for researchers and developers who require deep
insights into model behaviour to refine and improve model architectures. These tools often
provide detailed, technical explanations and are useful during model development. On
the other hand, there are methods aimed at end users who need to understand model
outputs without delving into the underlying technical details. For these users, interactive
visualisations or simplified explanations are more appropriate, helping them trust and
comprehend a system’s decisions. Google’s what-if tool [83], AI Explainability 360 toolkit
by IBM [84], and H2O AutoML platform [85] are some user-friendly examples.

Granularity. Granularity refers to the level of detail provided by an XAI technique. In
this direction, methodologies can be categorised as offering fine-grained or coarse-grained
explanations. Fine-grained explanations, such as concept-level insights, delve into more
detail of a model’s decisions, offering feature-specific information [75,79]. In contrast,
coarse-grained explanations, like class-level or object-level insights, offer a more general
understanding of why a model made a particular prediction, typically explaining what
contributed to the decision overall [63,68,80]. This category helps determine the level of
precision or detail in the explanations, depending on the needs of the user. To give an
example, for an animal classification task, a coarse-grained explanation would be a saliency
map highlighting the class of interest for a test image, whereas a fine-grained explanation
would generate more granular, concept-wise heatmaps highlighting different parts of the
object in an input image alongside their textual descriptions.

Modality of Explanations. In this aspect, the distinction lies between the types of
generated explanations. For visual tasks, there are two common modalities: visual and
conceptual. Visual explanations often involve heatmaps that highlight important regions
of an image, giving an intuitive, visual representation of what influenced the model’s
decision [40,77]. Conceptual explanations, on the other hand, ideally offer explanations as
human-understandable concepts, e.g., stripe for a zebra image [66,67]. In the next sections,
we delve deeper into these two modalities, offering more detailed insights and a review
of the relevant literature surrounding both modalities. An overview of the next section
is also presented in Figure 2. For each modality, we explore key methodologies, drawing
on existing research to highlight the strengths and limitations of these approaches. This
examination also aims to provide a comprehensive understanding of the role each modality
plays in enhancing AI interpretability and trustworthiness.
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Figure 2. An overview of XAI methodologies based on their modalities.

4. Visual Explanations
Visual explanations are arguably the most widely used XAI techniques for computer

vision tasks as they offer a direct way to interpret model decisions by providing visual
representations of what a model makes its decisions based on. This category encompasses
a wide range of methods, often focusing on how particular parts of an image contribute to
a model’s output. The goal of visual explanations is to make the inner workings of deep
networks, especially CNNs, more transparent and interpretable.

4.1. Activation Maximisation

Visual explanations for CNN decisions can take the form of patterns that strongly
activate a neuron, a feature map, an entire layer, or a predicted class—a process commonly
referred to as activation maximisation. A notable methodology in this direction is random
noise image optimisation. This approach starts with a random noise image, and the gradi-
ents of a specific unit are computed with respect to this image. The process identifies the
patterns that most strongly activate the targeted unit, resulting in visionary pattern images
that offer insights into the network’s learnt representations [61,70–72]. Activation max-
imisation with random image optimisation, while useful for understanding which input
patterns maximise the response of specific neurons or layers in black-box models, comes
with several limitations. One significant drawback is that the generated visualisations often
lack interpretability and clarity, especially for higher-level neurons. The images produced
tend to be highly abstract and sometimes visually unrealistic, making it difficult for humans
to intuitively grasp what the model is focusing on. Additionally, they require numerous
optimisation steps to generate meaningful activations, which makes them computationally
expensive and hence their real-time or large-scale applications challenging.

An alternative approach, which eliminates these drawbacks, outputs real images
instead. This is achieved by feeding the entire training set to the trained model and
selecting a group of images that highly activate a specific unit [61,86]. However, this
approach places a significant burden on end users, who must manually sift through highly
activating images to identify common patterns—a process that is highly susceptible to
human bias.

In addition to the mentioned drawbacks, activation maximisation techniques are
also prone to adversarial artefacts—small changes in the input can drastically change the
output activation without corresponding to any meaningful difference in the input image,
undermining the reliability of the explanations. Overall, while activation maximisation
offers insights into model behaviour, its limitations in clarity, computational cost, and
susceptibility to noise reduce its practical utility in explainability.
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4.2. Pixel Attribution

Pixel attribution techniques aim to find out image parts that contribute to their class
predictions the most by creating heatmaps. These maps are used to mask input images to
highlight specific parts crucial for a specific prediction. A heatmap is obtained by assigning
an importance score to each pixel or a group of pixels. The intuition behind pixel attribution
draws from the principles of linear models. In the case of a simple linear model where an
input x = (x(1), · · · , x(P))⊤ with P features is classified by, say, a single neuron without any
non-linear activation, the class score for a particular class c is computed as Sc = ∑i w(i)

c x(i),
where wc = (w(1)

c , · · · , w(P)
c )⊤ is a weight vector. This intuitively means that each feature

in x contributes to the overall score based on its corresponding weight in wc. A feature with
a higher score, i.e., w(i)

c ∗ x(i), has a greater impact on the class score, as Sc is a weighted
sum of the feature values. Thus, features with higher values after being multiplied by their
corresponding weights are considered more important in determining the class prediction.
This simple idea is the foundation of pixel attribution methodologies which assign a score
to each pixel in an input image based on its contribution to the class prediction.

We can adapt the linear example above to a more complex image classification scenario
achieved by CNNs. We let x ∈ RP denote an input image with P pixels to be classified as
one of the C classes. A trained model defines a mapping function f : RP → RC, which
generates a probability vector expressed as g(x) = [S1, · · · , SC], where Sc represents the
probability score for class c. Attribution methods assign a relevance score to each pixel
in x, denoted as rc = [r(1)c , · · · , r(P)

c ], where r(i)c represents the relevance score of pixel i
for class c. Obtaining these relevance scores helps us mask the input image accordingly
and derive a saliency map [59]. As CNNs are complex architectures and include multiple
layers with nonlinearities, the linear approach cannot be directly applied, i.e., obtaining rc

is not as straightforward as wc. However, various approximations have been proposed as
detailed below.

4.2.1. Backpropagation-Based Saliency Mapping

Backpropagation-based methods are widely used for saliency mapping [60,63,73]. In
this direction, Simonyan et al. presented the first saliency mapping technique where they
take gradients of a class score Sc for class c with respect to the pixels of the input image
x [63]. These gradients result in a relevance score vector, rc =

∂Sc
∂x , with the same size as

the input image. Higher positive relevance scores indicate important pixels for class c,
while lower ones show insignificance. In addition, high negative values can be seen as
an indicator of other classes or backgrounds. These relevance scores then can be used
to weigh the pixels to create a saliency map [59,63]. As Springenberg et al. presented,
the other two well-known gradients-based methods, deconvolution [60,87] and guided
backpropagation, indeed follow the same process as Simonyan’s approach apart from the
way they backpropagate through the activation functions [73].

Integrated Gradients [74] provides a principled way to quantify the contribution of
each input feature to a model’s prediction. It addresses some of the limitations of the
early gradient-based methods, which can be noisy or misleading due to local irregularities
in the model’s gradients. They compute attributions by integrating the gradients of the
model’s output with respect to the input along a straight path from a baseline (e.g., a black
image or zero vector) to the actual input. Mathematically, it averages these gradients over
multiple steps along the path, ensuring that the attributions are both robust and meaningful.
The author claims that their approach satisfies desirable theoretical properties, such as
completeness, which ensures that the sum of all attributions matches the difference between
the model output for the input and the baseline. By providing a clear and interpretable
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mapping of input features to their contributions, Integrated Gradients has been recognised
as an important technique in XAI research.

Deep learning important features (DeepLIFT) [88] is another backpropagation-based
pixel attribution method that provides a robust framework for explaining the predictions
of deep networks by comparing the activations of neurons to their reference activations.
Unlike gradient-based methods, which can suffer from issues such as vanishing gradients
or noise, DeepLIFT assigns contribution scores by tracking the changes in outputs relative
to a baseline input. It propagates these contributions backwards through the network
using a set of predefined rules to ensure consistency and efficiency. The key innovation
of DeepLIFT lies in its ability to handle nonlinearities more effectively by considering
both the input and the reference, allowing it to capture meaningful attributions even in
complex networks. DeepLIFT is also claimed to satisfy the completeness property (the
sum of attributions matches the difference between the model output for the input and
the baseline) similar to the Integrated Gradients approach. In addition, it also holds the
symmetry (equal changes in symmetric inputs receive equal attributions) property which
contributes to their robustness and safe use.

LRP (layer-wise relevance propagation) [68,89–91] is a powerful explainability tech-
nique designed to interpret the decisions of DNNs by tracing back the contributions of
individual input features to the model’s output. LRP works by decomposing the prediction
score and redistributing it layer by layer, from the output back to the input, using a set of
conservation rules. This redistribution ensures that the total relevance is preserved at each
layer, ultimately assigning relevance scores to input features in a way that reflects their
contribution to the prediction. By doing so, LRP is claimed to satisfy important properties
such as relevance conservation and provides insights into how specific features, such as
pixels in an image, influence the model’s output.

Backpropagation-based XAI methodologies have been pivotal in unravelling the inner
workings of complex neural networks. They offer a relatively efficient way to link input
features to model predictions, enabling practitioners to gain insights into model behaviour
and hence increase trustworthiness. These methods are particularly appealing due to their
simplicity and adaptability across various neural architectures. However, their limitations
are equally noteworthy. One key issue is their lack of precision, as they often produce
coarse, blurry visualisations that highlight large, indistinct regions of the image, making it
difficult to pinpoint exactly what features the model is focusing on. This can be particularly
problematic when interpreting decisions in tasks like medical imaging or autonomous
driving, where fine-grained details are critical. These methodologies also often suffer
from instability and lack of robustness, with explanations being sensitive to minor input
perturbations. They may also struggle to capture global model behaviour, instead focusing
on local feature importance, which can lead to misleading or incomplete interpretations.
Furthermore, the ones that employ gradients may be vulnerable to vanishing gradients and
susceptible to noise. Additionally, saliency maps by backpropagation-based methodologies
tend to be post hoc explanations, meaning they provide insights only after a decision is
made, which might not always reflect the true reasoning process of the model.

In summary, these shortcomings reduce the effectiveness of backpropagation-based
methodologies in providing clear, consistent, and trustworthy interpretations, especially in
high-stakes applications, which underline the need for complementary XAI approaches
that provide more consistent and comprehensive explanations.

4.2.2. Class Activation Mapping (CAM)

Another group of methods, CAM, leverage the final convolutional layer of DNNs,
which is shown to capture the most meaningful and complete object signals [62]. Unlike
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backpropagation-based approaches, CAM focuses on high-level features within these layers
rather than tracing gradients or activations back to the input pixels. The first CAM method,
introduced by Zhou et al., was designed for architectures incorporating a global average
pooling (GAP) layer between the final convolutional and classification layers [76]. In this
method, the GAP layer computes a scalar value Fk for each feature map f k, which is then
passed to the classification layer along with weights w for k = 1, . . . , K. The class score
for a particular class c is calculated as Sc = ∑ wk

c Fk, where wk
c denotes the contribution of

Fk—and by extension, the feature map f k—to the score for class c. Each feature map f k in
the final convolutional layer, prior to the GAP operation, is expected to highlight the region
that corresponds to the concept it represents when scaled by its calculated weight wk

c .
For instance, in a face recognition task, a feature map activated by the nose might

receive a high weight, while one responding to unrelated features, such as a car wheel,
would be assigned a low or even negative weight. The weighted sum of these feature
maps is then upsampled to the input image’s resolution, producing a saliency map that
highlights the most relevant regions for the examined class.

A key limitation of the CAM approach is that it can only be applied to CNNs with a
GAP layer between the last convolutional and classification layers, such as GoogleNet [47].
For architectures lacking this structure, CAM requires modifying the model by adding a
GAP layer after the final convolutional layer. However, this alteration necessitates model
retraining, which can lead to performance degradation compared to the original model.

GradCAM [80] was introduced to overcome the limitations of CAM, particularly its
dependency on GAP and successfully used in case studies such as in [92]. As a general-
isation of CAM, GradCAM eliminates the need for specific model types or architectural
modifications, making it more versatile and broadly applicable. This is achieved thanks to
the way GradCAM weighs each feature map; differently from CAM, it takes the gradients
of the output score Sc for a given class c with respect to each feature map f k at the last
convolutional layer, i.e., ∂Sc

∂ f k , k = 1, . . . , K. After this process, K different gradient maps are

obtained. Finally, by applying GAP, a single weight

wk
c =

1
Z ∑

i

∂Sc

∂ f k
i

(1)

for each feature map is obtained, where i indicates the location of each pixel and Z is the
total number of pixels in the feature map f k. Following that, similar to CAM, a weighted
sum of the feature maps generates a heatmap with the same dimensions as f k; also, see
Figure 3 for an illustration. ReLU is also applied to keep features that positively affect a
given class and ignore the negative signals that probably are for the other classes. Lastly,
acquired heatmaps are upsampled to the size of the input image to highlight important
parts of it. In addition, the authors showed how to obtain more class-discriminative
and fine-grained results using simple element-wise multiplication between saliency maps
generated with GradCAM and guided backpropagation [73].

More approaches were proposed to further refine the resulting activation maps of
GradCAM. For instance, Chattopadhay et al. proposed the GradCAM++ method to gen-
erate better localisation and handle multiple instances in a single image [93]. The main
difference of this approach from GradCAM is taking into account only positive partial
derivatives of feature maps at the last convolutional layer. ScoreCAM [64], presented by
Wang et al., gets rid of the dependency on gradients of the GradCAM method by masking
input images according to feature maps to obtain perturbed images. Scores obtained by
forward passes of these images are used as weights, for instance, wk

c for feature map k. This
method claims to reduce noise in the saliency maps caused by gradients.
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Figure 3. An overview of GradCAM (gradient-weighted class activation mapping) [80]. Gradients of
the predicted class score with respect to the feature maps of the last convolutional layer are computed
to obtain weights wc. These weights are used to linearly combine the feature maps, and the resulting
weighted sum is used to mask the input image to obtain a saliency map, highlighting the regions
most relevant to the prediction.

Advanced CAM methods, including Grad-CAM and Grad-CAM++, have been widely
adopted for visualising the important regions of an image that contribute to a model’s
decision, but they also come with notable limitations. One key issue is that while they can
be applied to a broader range of architectures than traditional CAM (which requires GAP),
the visualisations they produce are often still relatively coarse and low-resolution. This
can obscure fine details that might be critical in tasks such as medical image analysis or
detailed object recognition, where understanding subtle features is essential. Moreover,
CAM-based methods generally highlight large regions of an image, making it difficult to
differentiate between important and unimportant features within these highlighted areas.
Additionally, CAM methods typically focus on explaining a model’s final decision for a
specific class, offering little insight into the intermediate layers or the broader decision-
making process across the network. This narrow focus limits their ability to provide a
holistic understanding of how the model processes and interprets input data. Overall,
while CAM methods offer valuable insights, their lack of spatial precision and limited
scope reduce their effectiveness in generating deep, fine-grained explanations.

4.2.3. Perturbation-Based Methodologies

Another approach to pixel attribution involves perturbation-based methodologies.
These methods use altered versions of an image to gain insights into a model’s inner
workings. For example, in the occlusion sensitivity technique by Zeiler et al. [60], a portion
of an image is replaced with a patch that contains either the average pixel value of the
entire image or a uniform colour. Newly created perturbations are then passed through
the trained model to see the effect of the occluded area on the prediction. Despite being
as simple as blocking a part of an image, occlusion is shown to be an effective approach.
To give an example, the authors showed that when they occlude a dog’s head in a given
image, the probability for the dog class drops significantly, which indicates that the head of
the dog is crucial for the trained model when making that specific prediction.

In a similar methodology, RISE [82] employs an automated approach to generate
perturbations for attribution maps. Given a trained CNN model f : RH×W → RC that
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maps an input image X of size H × W to an output class c, RISE introduces a binary mask
M sampled from a random distribution and of the same size as X. By performing element-
wise multiplication of M and X, a perturbed image is created with random occlusions
at specific pixel locations. Repeating this process with multiple masks produces a set of
perturbed images. The model’s prediction probabilities for class c are then computed
for each perturbed image and used as weights. Finally, a weighted sum of all perturbed
images is used to generate an attribution map. The idea of occluding parts of an image
or starting from a blank image and incrementally adding random patches (or pixels) to
observe changes in the classification score for a given output class has inspired many
model-agnostic methods, which we discuss next.

We now review some well-known model-agnostic methods, which fall under the
category of perturbation-based pixel attribution techniques. These methodologies are not
designed specifically for CNNs and can be applied to any trained ML model, as they only
require the investigated input sample and the prediction function. Often referred to as
“black-box” XAI techniques, these methods do not rely on access to the trained model’s
internal components, such as weights or feature maps, unlike most of the approaches
reviewed so far.

One of the well-known model-agnostic techniques, local interpretable model-agnostic
explanations (LIME) [77], was presented by Ribeiro et al., and followed by different variants
such as G-LIME [94] and S-LIME [95]. The idea behind LIME is to approximate a trained
complex ML model with a simpler linear model in the local vicinity of an input sample. In
this context, LIME is based on the assumption that we introduced earlier in this section:
linear models can be interpreted by evaluating the weights they optimise per feature. LIME
works by first splitting an input image into superpixels which are contiguous regions of
similar pixels. It then perturbs the image by randomly turning some superpixels on and off
to create variations of the original image. For each of these perturbed images, the distance
to the original image is calculated to capture how much they differ. The original black-box
model is then used to classify these perturbed images, and the predictions are recorded.
Based on the distances and the corresponding predictions, LIME constructs a new, simpler
linear model that approximates the behaviour of the original complex model in the local
region around the investigated sample. Finally, the most important superpixels—those that
have the greatest impact on the prediction—are highlighted as pixel attribution maps for
the model’s decision. By doing so, LIME helps identify which parts of the image were most
influential for the model’s decision.

To illustrate how LIME works, we present Figure 4a for a binary classification task. As
shown, a complex pattern, highlighted in brown colour, is captured by the original trained
model. The big red star is the instance to be explained, and other red stars represent the
perturbed samples from the same class while the blue octagrams are the samples from the
opposite class. The larger the instance, the closer it is to the data point being queried. Using
the predicted classes from the original complex model for the perturbed instances, along
with the calculated distances, the linear model (represented by the blue line) is optimised to
approximate and explain the class prediction of the red star in its local vicinity. Although
this new model does not reflect the global behaviour of the complex model, it is locally
faithful, meaning that it reflects the behaviour of the complex model in the local area of the
given instance. The weights of this linear line show the importance of each image patch in
the input image [77].
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(a) (b)

D

D

Figure 4. The difference between LIME (a) and Anchors approaches (b). LIME fits the best possible
linear line while anchors “guarantee” that almost all the examples satisfying the rules are from the
same class. D is the perturbation space for both approaches, the straight blue line is the linear model
that LIME proposes, and the dashed box is the local area that the Anchor method “anchors” the
explanations. (a) LIME. Adapted from [77]. (b) Anchors. Adapted from [78].

One major issue that LIME and other linear approximation approaches face is to
determine the neighbourhood in which the given explanations are valid. There is no
specified way to decide which data points these explanations are applicable to. This is a
vital issue as the coverage of explanations is not clear. In other words, explanations would
be tricky and unstable when trying to predict unseen examples by relying on the weights
of the newly fitted model. An attempt to mitigate this limitation was performed by the
same authors in [78], where a novel method called Anchors, high-precision model-agnostic
explanations, is presented. The difference between Anchors and LIME can be seen in
Figure 4b. Anchors aim to fix a local area where all the instances are from the same class to
achieve consistent “anchored” explanations. In this way, explanations help users predict
unseen data points with high precision and less effort. This approach is presented in the
form of a rule-based system, and an example explanation may be the following:

• if you are [younger than 50] and [female], then you are very unlikely to have cancer,

where [age: under 50] and [gender: female] are referred to as anchors. As long as these
anchors are present in new input, it is highly likely to be predicted as belonging to the
same class as samples sharing these feature values. These features are assumed to cause
the classification and provided that they are held; changes in the rest of the features do
not affect the prediction. Similarly, for an image classification task, the anchors may be the
following:

• if the given image includes [stripes], then it is almost guaranteed that the model will
classify it correctly as a zebra,

and hence the super-pixels involving [stripes] are called anchors. Anchors aim to meet
two main requirements: precision and coverage. The former is about how precise the
explanations are, while the latter defines the local area where these explanations are
applicable. For a zebra classification task, precision is the percentage of perturbed examples
from the same class as the input image that also contains [stripes], whereas coverage is
defined as the fraction of the number of samples that hold the given anchor [stripes] to all
perturbed instances [78].

Shapley Additive Explanations (SHAP) by Lundberg et al. is another powerful and
widely used model-agnostic XAI approach [40]. It is rooted in the concept of Shapley values
from cooperative game theory, where the goal is to fairly attribute the contribution to each
player in a game based on their impact on the overall outcome. Applied to ML, SHAP
assigns a value to each feature, representing its contribution to the final prediction for an
individual instance. What makes SHAP particularly appealing is its theoretical rigour and
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its ability to provide consistent, model-agnostic explanations, making it highly versatile
across different types of ML models, from linear to deep learning architectures. This versa-
tility is achieved through several specialised variants designed to enhance both efficiency
and accuracy depending on the model type. For instance, Kernel SHAP is the most general
version, allowing SHAP values to be computed for any ML model. However, it relies on a
kernel-based approximation technique that samples many combinations of feature subsets,
which can be computationally intensive, particularly for high-dimensional data. Despite its
flexibility, Kernel SHAP’s high computational cost often limits its scalability, especially for
large datasets or complex models.

To address these performance limitations, model-specific variants of SHAP have been
developed, with Tree SHAP [96] standing out as a prominent example. Tailored for tree-
based models like decision trees, random forests, and gradient boosting machines, Tree
SHAP leverages the structure of these models to compute exact SHAP values much more
efficiently than Kernel SHAP. This makes it an ideal choice for structured data, where
tree-based models are often preferred due to their predictive power and interpretability. In
a similar vein, Deep SHAP combines SHAP values with DeepLIFT [88] to provide efficient
explanations for deep learning models. By utilising backpropagation, Deep SHAP makes it
feasible to explain complex neural networks in a computationally efficient manner, which
is critical for tasks involving unstructured data like images or text.

These various SHAP variants highlight the method’s remarkable adaptability across
different ML models which helped SHAP to become one of the cornerstone techniques
in XAI. Its versatility in offering both local explanations (detailing the contributions of
individual features to specific predictions) and broader global insights (captured through
aggregations across the entire model) makes it an invaluable tool for diagnosing model
behaviour, ensuring fairness, and promoting accountability in ML systems.

Perturbation-based XAI methodologies, such as SHAP and LIME, have gained consid-
erable traction for their flexibility and ability to provide model-agnostic explanations. These
methods excel at generating intuitive local explanations by estimating the contribution of
individual features to a model’s predictions, making them valuable tools for interpreting
complex ML models. Their general applicability across different model types is a significant
strength, allowing practitioners to apply them to a wide range of tasks without requiring
specific model architecture knowledge.

However, these methodologies are not without limitations. One significant challenge
is their computational complexity. Estimating feature attributions often requires multiple
model evaluations for various perturbed inputs, which can become infeasible for high-
dimensional datasets or computationally expensive models. Another drawback is their
reliance on assumptions about the data, such as feature independence, which is rarely
true in real-world datasets. This can lead to misleading or less accurate interpretations
in the presence of feature correlations. Additionally, while perturbation-based methods
are effective at providing local explanations, deriving consistent global insights can be
difficult, especially when local attributions vary widely across instances. Finally, being
model-agnostic, these approaches might not fully capture the internal mechanics or nuances
of a model, potentially limiting their utility in domains requiring a deep understanding of
a model’s workings.

5. Conceptual Explanations
While visual explanations by activation maximisation and pixel attribution techniques

are widely employed for computer vision tasks, there is also a growing interest in con-
ceptual forms of explanations. Methodologies proposed in this direction aim to provide a
high-level understanding of how models make decisions by linking their internal repre-
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sentations to human-interpretable concepts. This is particularly useful when the goal is to
explain complex models in terms of concepts or features that align with human reasoning.

Network dissection [79] is a systematic methodology for interpreting the internal
representations of neural networks by quantifying how individual neurons encode specific
human-interpretable concepts. It provides a way to analyse the emergent structure within
deep networks, particularly CNNs. The technique involves mapping the activation patterns
of neurons to a predefined set of semantic concepts derived from labelled datasets, such
as object categories, textures, or scenes. By evaluating the alignment between neuron
activations and these concepts, network dissection enables researchers to understand the
role and specialisation of neurons in the decision-making process of a model. This method
is significant in demystifying the “black-box” nature of neural networks, providing insights
into their transparency and interpretability, which are critical for debugging, enhancing
trustworthiness, and identifying biases in AI systems.

Despite these advantages, network dissection has significant limitations. A key
drawback is its reliance on segmentation maps for concepts, which are costly and time-
consuming to create, especially for large and diverse datasets. This dependence can intro-
duce biases and restrict the scope of analysis to predefined, segmented concepts, potentially
overlooking emergent or complex features not present in the available segmentation maps.
Additionally, network dissection focuses on individual units, which may fail to account
for the collective behaviour of multiple units crucial for encoding higher-level abstractions.
Lastly, it is better suited for static, pre-trained models and may struggle to offer insights for
fine-tuned or dynamically evolving architectures.

Concept whitening [65] is another well-known technique. It works by modifying
the latent space of neural networks to improve interpretability and disentanglement of
learned representations. It introduces a specialised transformation layer into the network,
which ensures that specific latent dimensions are decorrelated and aligned with human-
understandable concepts. This is achieved through a whitening process that removes
redundancy among features, making each dimension orthogonal to others while simul-
taneously associating them with predefined semantic concepts. By explicitly controlling
the latent dimensions to represent interpretable concepts, concept whitening facilitates
understanding and debugging of model behaviour and can potentially lead to better
generalisation by reducing overfitting to irrelevant correlations in the data.

Concept activation vectors (CAVs), presented by Kim et al., represent one of the key
methodologies in the concept-based explanations realm [66]. By defining a set of high-level
concepts, such as “striped” or “spotted” for, say, animal classification, CAVs measure the
alignment of these concepts with the model’s internal representations and allow researchers
to examine how a deep learning model responds to these human-interpretable concepts.
This is achieved by calculating directional derivatives of model predictions with respect
to the predefined concepts at an intermediate layer of the examined model. This enables
the generation of more meaningful explanations in the form of human-understandable
concepts compared to the CNNs’ learnt high-level features or highlighted coarse-grained
object locations. CAVs have been particularly valuable in medical imaging where model
domain-specific explanations are crucial [97,98].

Crabbe et al. [99] proposed concept activation regions (CARs) which extend the
CAV approach to address its limitations in modelling scattered concept examples in a
DNN’s latent space. Unlike CAVs, which assume that concept examples align with a single
direction in the latent space, CARs represent concepts as regions encompassing multiple
clusters. This representation uses the kernel trick and support vector classifiers to define
CARs. CARs enable describing how concepts relate to DNN predictions and also show how
specific features correspond to concepts. Additionally, CARs demonstrate the potential for
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DNNs to autonomously identify established scientific concepts such as grading systems in
prostate cancer analysis.

Presented as an extension to the earlier idea [100,101] of first predicting the concepts
and then using the predicted concepts to predict a final target, concept bottleneck models
(CBMs) [67] offer a compelling approach within the realm of conceptual explanations in XAI.
These models were designed to provide interpretable decisions by incorporating human-
understandable concepts into their decision-making process. In a CBM, the model first
predicts a set of predefined concepts—such as “texture”, “shape”, or “tumour size”—which
serve as high-level, interpretable features. These predicted concepts are then used as inputs
to make the final decision. By doing so, CBMs allow users to directly inspect the model’s
reasoning at an intermediate level, offering transparency into how each concept contributes
to the outcome. This structured approach not only makes the decision-making process
more understandable but also allows for interventions at the concept level, enabling users
to correct mispredicted concepts before they affect the final output. In this direction, there
have been several works exploring efficient ways to achieve systematic interventions and
model corrections [102–105].

CBMs differ from CAVs in how they treat concepts. While CBMs are trained with
the explicit goal of predicting and utilising predefined concepts as an integral part of their
decision pipeline, CAVs operate in a post hoc manner. CAVs are used to probe and analyse
a trained model’s internal representations to measure how well these representations align
with specific concepts, without requiring the model to explicitly predict those concepts
during training. In other words, CAVs extract and quantify the influence of concepts
after the model has been trained, while CBMs actively incorporate and rely on concepts
throughout the learning process. This distinction gives CBMs a unique advantage when
it comes to interpretability and control, as they offer built-in transparency and allow for
direct correction at the concept level, enhancing both the interpretability and robustness of
the model. Several extensions were introduced to improve CBMs [106–110].

One key drawback of CBMs is their high cost as they require manual concept annota-
tion for every training image. This process can be time-consuming and resource-intensive,
especially when working with large datasets. One solution is proposed in [75] where class-
wise attributes are used to train CBMs which significantly reduced the annotation cost.
Another solution is to integrate CAVs [66] in CBMs, which requires only a set of positive
and negative examples per concept, making them less annotation-intensive compared to
the full concept annotations required by CBMs. Moreover, CAVs can even be derived from
a completely different dataset to form concept banks which then can be employed to explain
models trained with related datasets, making CAVs more flexible and scalable.

In this context, post hoc CBMs [69] achieve this integration to create a more efficient
and controlled approach. They work by leveraging CAVs to obtain concept values, elim-
inating the need for intermediate concept predictions. Following that, a single layer is
introduced as a bottleneck inspired by CBMs to map the concept values to the final classes.
By doing so, post hoc CBMs maintain the model intervention property of traditional CBMs
while avoiding the high costs of concept annotation for every image thanks to CAVs. This
approach efficiently brings together the flexibility of CAVs and the structured decision-
making process of CBMs, allowing for more scalable and transparent model analysis. Even
though post hoc CBMs were shown to be effective as a global explicator via model editing
experiments, their concept prediction and localisation abilities are under-explored. This
is due to post hoc CBMs not being trained to explicitly predict the concepts unlike tra-
ditional CBMs, which hinders the possibility to do any direct evaluation on individual
concept predictions.
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Another methodology that aims to reduce the concept annotation cost, the CounTEX
framework, connects image classifiers with textual concepts, leveraging a multi-modal
embedding space, such as that provided by CLIP [111], to generate counterfactual explana-
tions. It aims to explain classifier decisions by identifying and quantifying the contribution
of specific, human-interpretable concepts derived from text. By mapping between the latent
spaces of the target classifier and the CLIP model, CounTEX creates a projection mechanism
to explain both correct and incorrect classifications in terms of these textual concepts. This
approach aims to address the challenge of concept-annotated datasets requirement by
utilising text-driven concepts [112].

An essential aspect of concept-based interpretability is the accurate prediction and
localisation of highly important concepts. For example, if an animal classifier identifies an
image as an antelope and indicates the horn as a critical concept for this prediction, the horn
should not only be present in the input image but also activate the network in a way that
aligns with the image region containing the horn.

While several methodologies discussed earlier provide relatively efficient solutions for
concept-based explanations, their outputs are typically limited to a single level of abstrac-
tion. This means they lack the visual components necessary to highlight the precise regions
corresponding to concepts in a given image. Furthermore, there is a noticeable absence of
standardised evaluation metrics and benchmark datasets, making it challenging to compare
these methodologies and comprehensively assess their strengths and limitations.

These gaps in concept-based explanation methodologies are addressed in [75], where
the authors introduced their novel approach, Multilevel XAI, that generates both concepts
and their corresponding heatmaps within the input image. Additionally, to address the
lack of evaluation tools, Aysel et al. [113] proposed novel metrics for concept prediction
and localisation while advocating for the use of an existing dataset, Caltech-UCSD Birds
(CUB) [114], as a benchmark to evaluate concept-based explanation methodologies. These
contributions enable more robust comparisons and comprehensive assessments of concept-
based XAI methodologies.

6. XAI and Weakly Supervised Semantic Segmentation
Semantic segmentation is a core task in computer vision, focused on assigning seman-

tically meaningful labels to every pixel in an image to identify specific objects. This task has
diverse applications, including autonomous driving [115,116], scene understanding [117],
and medical image analysis [118,119]. By enabling machines to extract detailed semantic
information from images, it brings them closer to human-like visual perception. However,
the inherent complexity and variability of real-world scenes, combined with the substantial
need for labelled data to train deep learning models, make semantic segmentation a chal-
lenging problem. To tackle these difficulties, researchers have proposed various methods,
such as fully convolutional networks (FCNs) [120], encoder–decoder architectures [121,122],
and attention mechanisms [123]. These approaches have driven significant progress in
semantic segmentation, establishing it as a vibrant and rapidly evolving research field.

Despite these architectural advancements, the requirement of pixel-wise segmentation
maps remains a significant challenge for successful semantic segmentation applications.
WSSS (weakly supervised semantic segmentation) approaches have been proposed to
address this expensive per-pixel annotation challenge by leveraging less detailed coarse
annotations, such as image-level labels, bounding boxes, scribbles, or points, to significantly
reduce annotation efforts. Depending on the granularity and type of available annotations,
weak supervision can be categorised into these types, each offering unique advantages and
challenges that influence the methods and performance of WSSS approaches.
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XAI has also emerged as a promising avenue for providing weak supervision in this
context, offering significant potential for reducing reliance on fully annotated data. Tech-
niques like Grad-CAM [80], LRP [68], and Integrated Gradients [74] generate saliency maps
that highlight key regions contributing to a model’s predictions, making them valuable for
WSSS. These outputs can serve as pseudo-annotations, guiding segmentation models by lo-
calising salient object parts. Hybrid approaches that combine XAI-generated pseudo-labels
with weak annotations, such as image-level labels or bounding boxes, further enhance seg-
mentation accuracy while minimising annotation costs. By aligning model interpretability
with segmentation tasks, XAI fosters more transparent and explainable WSSS pipelines,
bridging the gap between coarse annotations and precise segmentation, and ultimately
reducing the need for dense supervision.

Below, we explore methodologies that utilise various levels of annotations, ranging
from image-level labels to saliency maps generated by XAI techniques, as forms of weak
supervision for semantic segmentation tasks. These methodologies were shown to be
effective in outputting segmentation maps while keeping the annotation cost relatively low.

Image-level labels indicate the presence of classes in an image without providing
spatial information. They are the weakest form of supervision as they lack localisation
details. Methods using image-level labels often begin with CAM to localise discriminative
regions associated with each class. While CAM-based approaches are computationally
efficient, they tend to focus on the most salient parts of an object, leading to incomplete
segmentations. Recent advancements aim to overcome these limitations through seed
refinement, self-training, and affinity propagation, enabling broader and more accurate
object coverage [124–126].

Bounding box annotations provide a coarse spatial indication of object locations,
offering a balance between annotation cost and localisation precision. Early methods
like BoxSup [127] refine segmentations iteratively within the boundaries defined by the
boxes. Contemporary approaches integrate box constraints into deep learning models,
achieving better spatial precision by aligning predicted masks with bounding box edges
and leveraging region-based loss functions [128,129].

Scribbles and points serve as sparse spatial supervision, offering minimal yet explicit
guidance about object locations. Scribble-based methods propagate annotations to un-
marked regions using edge detection, graph-based propagation, or energy minimisation
techniques [130–132]. Point-based methods rely on a few annotated pixels per object, often
integrating these with background priors and unsupervised techniques to complete the
segmentation [133].

A more recent methodology that gained attention is semantic proportion-based seman-
tic segmentation (SPSS) [134], where only semantic proportions are utilised for semantic
segmentation. Despite being several orders of magnitude cheaper than pixel-wise annota-
tion in terms of annotation cost from both time and computational perspectives, SPSS is
shown to be a promising WSSS methodology in several fields such as medical and aerial
imaging, where obtaining full pixel annotation is challenging.

Several studies have demonstrated the use of XAI outputs as weak supervision for
semantic segmentation, effectively bridging the gap between limited annotations and
high-quality segmentation models [135,136]. For instance, HiResCAM-generated heatmaps
have been used to refine annotations, enhancing segmentation models by highlighting
relevant regions, particularly in complex image scenarios [137]. These approaches have
been especially impactful in fields like medical imaging, where XAI-driven heatmaps help
identify regions of interest for weakly supervised segmentation, reducing reliance on dense
pixel-level annotations while improving model accuracy [138]. This integration of inter-
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pretability and weak supervision demonstrates the dual benefit of enhanced transparency
and reduced annotation efforts.

Core approaches in WSSS revolve around generating and refining pseudo-labels,
designing robust loss functions, and leveraging auxiliary information to improve segmenta-
tion accuracy. Loss functions are tailored to handle weak supervision, employing strategies
to encourage confident predictions, and consistency regularisation to ensure stability under
perturbations. Additionally, auxiliary cues, like saliency maps and edge detectors, help
strengthen spatial information and guide model training.

The evaluation of WSSS methods relies on benchmark datasets and performance
metrics that capture segmentation quality. Popular datasets, such as PASCAL VOC [139],
MS COCO [140], and Cityscapes [141], provide a range of challenges in terms of object
diversity, scale, and complexity. These datasets often include subsets tailored for weak
supervision, with annotations like image-level labels or bounding boxes. The primary
metric for assessing WSSS methods is Intersection over Union (IoU), which quantifies the
overlap between predicted and ground-truth masks. To complement IoU, metrics like
boundary accuracy and object localisation precision are sometimes used to provide finer
insights into model performance. As WSSS research advances, the development of more
diverse datasets and evaluation criteria will play a crucial role in driving progress and
ensuring the robustness of these methods in real-world scenarios.

WSSS has emerged as a promising approach to address the high annotation costs asso-
ciated with fully supervised methods, providing high-quality segmentation with minimal
supervision. By utilising diverse forms of weak annotations, WSSS effectively balances
annotation efficiency with segmentation performance. However, it still faces significant
challenges such as localisation bias, where methods like CAM focus on the most discrimi-
native object parts while neglecting less salient regions and noise in pseudo-labels, which
can propagate errors during training. Scalability and generalisation also remain critical
concerns, as models often struggle to adapt to diverse datasets and real-world scenarios.
To address these challenges, recent trends include the adoption of transformer-based ar-
chitectures [38] for capturing global and contextual information, contrastive learning to
enhance pixel-level discrimination and robust strategies for mitigating pseudo-label noise.
Additionally, hybrid supervision strategies, combining multiple weak annotations and
domain adaptation techniques are gaining traction to improve generalisation across varied
domains. As research continues to evolve, these advancements position WSSS as a key
enabler for robust and scalable segmentation solutions across diverse applications.

7. Conclusions
As ML systems continue to integrate into high-stakes and decision-critical domains,

the demand for transparency and interpretability has never been more urgent. This review
presented a comprehensive examination of XAI methodologies, covering both post hoc and
ad hoc approaches. We explored techniques ranging from low-level pixel-based saliency
maps to high-level concept-based explanations, highlighting their respective advantages,
limitations, and suitability across various application domains. While significant progress
has been made in developing tools that help demystify black-box models, many challenges
remain. Current methods often struggle to balance fidelity, human interpretability, and
computational efficiency. Moreover, there is no universal standard for evaluating expla-
nation quality, making it difficult to benchmark and compare approaches meaningfully.
The relationship between XAI and weakly supervised learning, particularly in semantic
segmentation, presents an exciting intersection where limited supervision automatically
extracted by XAI methodology can be a good starting point. Looking forward, the field will
benefit from more unified frameworks that integrate explanation into the learning process
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itself, as well as deeper collaboration between technical development and domain expertise.
As trust in AI systems becomes increasingly intertwined with their explainability, the role
of XAI will only become more central to responsible and reliable AI deployment.
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The following abbreviations are used in this manuscript:

AI Artificial Intelligence
CAM Class Activation Mapping
CAVs Concept Activation Vectors
CBMs Concept Bottleneck Models
CNNs Convolutional Neural Networks
GAP Global Average Pooling
DNNs Deep Neural Networks
GDPR General Data Protection Regulation
GPUs Graphics Processing Units
LIME Local Interpretable Model-Agnostic Explanations
LRP Layer-wise Relevance Propagation
ML Machine Learning
MLP Multilayer Perceptron
SHAP Shapley Additive Explanations
SVMs Support Vector Machines
WSSS Weakly Supervised Semantic Segmentation
XAI Explainable Artificial Intelligence
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