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1. Introduction

The main goal of this paper is to calculate the open-string one-loop correlators of the three-
and four-point string amplitudes with a single massive state of (mass)? = 1/a’ using the
pure spinor formalism [1;,2]. In order to do this, we will employ the same BRST-cohomology
techniques that were used in [3,4,5] to obtain the string one-loop amplitudes up to seven
massless external legs.

The answers in pure spinor superspace [(i] can be expressed in different ways, depend-
ing on which feature is emphasized among BRST invariance, single-valuedness and locality.

For instance, the three- and four-point open-string massive correlators at one loop

Ks = Cl|2,37 (11)

Ks= 823f2(§)01|23,4 + 824f2(i)01|24,3 + S34f3§i)0;|34,2 ;

manifest BRST invariance and single-valuedness, where the massive state is labelled by 1

while the other labels 2, 3,4 represent the massless super-Yang-Mills states. In the above,
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C},... are massive BRST invariants defined below and fi(jl) denote single-valued worldsheet
functions on a genus-one surface [7,4].

A BRST cohomology proof that the three-point massive one-loop open-string corre-

tree

lator is proportional to the open-string kinematic factor IC1|2 s

at tree level is presented
in the Appendix A. Using the explicit polarizations and momenta extracted from its pure
spinor superspace expression:l: [9,10], the four-point open-string correlator at one loop is
also shown to be rewritten in terms of open-string kinematic factor ICﬁg’e?’ 4 at tree level,
for the full supermultiplet; this extends the earlier RNS analysis of [11].

We also investigate whether the closed string massive one-loop correlators can be
rewritten in terms of tree-level kinematic factors. For three points, this can be clearly
done. For four points, a vectorial contraction between left- and right-movers present at
one-loop and absent at tree-level has the potential to prevent this rewriting. Rather sur-
prisingly, it turns out that for certain combinations of massive and massless states the
one-loop correlator can be rewritten in terms of its tree-level counterpart. The details are

in section 5.I. Finally, Appendix B reviews the mapping between SO(n) Dynkin labels

and Young diagrams [12], their tensorial description as well as their symmetries.

Conventions. We use s;; = (k; - kj) as a shorthand; these are not proportional to the
usual Mandelstam variables when either ¢ or j represents a massive leg. In addition, the
pure spinor bracket (.) [1] that extracts the component expansions from the pure spinor
superspace expressions is frequently omitted throughout. Its presence is based on context;
sometimes we emphasize the BRST variations of expressions, sometimes we extract their
components. And finally, the word massive in this paper refers to a single massive state of

the first mass level.

2. Review

In this section we will briefly review the discussion of section 2.1 in [3], and refer the reader

to it for any missing details.

1 Available to download in [§].



2.1. The pure spinor amplitude prescription

The one-loop amplitude prescription in the minimal pure spinor formalism is [2],

n
An =3 Con [ ar () 2Vie) I [ a5 U0). 2.1)
top Drop j=2
where the Beltrami differential p and the modulus 7 encode the topological information
of the genus-one surface. The sum over the different genus-one topologies (planar cylinder,
Mébius strip, and non-planar cylinder) implies different integration domains Dy, and color
factors Ciop for each, but in this paper we will not focus on this aspect (see [13] for details).
Rather, we concentrate on the CFT aspect of evaluating the correlation function of the
picture-changing operators Z, the b ghost, and the vertex operators. More specifically,
after integrating out all the non-zero modes as well as the zero modes in (2.1), we obtain

an expression of the form

A=Y Cuop / drdzydzs .. den / PO 1T, (0)] (K (0)) (2.2)
top Diop

where IC,,(¢) is called the correlator, and |Z,,(¢)| denotes the Koba-Nielsen factor arising

from the plane waves of the external vertices whose explicit form is not relevant for the

purpose of this paper but can be looked at in [3,4,5]. In addition, £™ = §, dzII"(z) is the

loop momentum of the chiral splitting formalism [14,15,16] and A denotes the A-cycle of

the genus-one surface under consideration.
Vertex operators. For n-point amplitudes involving one first-level massive state and (n—1)
massless states, we place the massive leg 1 in the unintegrated massive vertex and use [17]

Vi = [A*[06° Bl glolo + A" HYJolo + 2/ [A*[dsCY alolo + /X [N Fy,puJolo s (2:3)

amn

where the superfields Bag, HY, C%g, Famn and G™" = —1; [(Dy™H™) + (Dy"H™)]
describe the open-string massive supermultiplet at the first mass level. This is composed
of the symmetric traceless g,,, and the totally antisymmetric b,,,, bosonic fields and
a fermionic field ¢} comprising 128 + 128 degrees of freedom. They are subject to the
transversality constraint k™ ¢y, = K" bmnp = kmph’ = 0 [17]. For the remaining massless

integrated vertices U;(z;) we use [,

Ui(z) = [00°A% Jo + [O™AL Jo + 20/ [da W + /[N™E! 1, (2.4)

3



where A,, A™, W* and F™" are the super-Yang-Mills superfields of [1§] (for a review, see
[19]). The normal-ordering bracket [...]o is reviewed in [20].

Zero-mode integrations. We refer the reader to the discussion in section 2.1 of [8] for more
details; the summary is that the zero-mode saturation of the pure spinor variables imply
two different contributions from the external vertices: terms proportional to d,dgN™" and
terms proportional to dndgdds. The resulting contribution of the zero-mode integration

can be determined by a group-theory analysis [3],

[ dads N = 00l 30, 5)
[ dadsdids > 09100305 (2:6)

where /,, represents the loop momentum and the integral sign represents the integration
over the different contributions from the b ghost and picture-changing operators using the

zero-mode measures of [2].

Worldsheet functions. Two families of worldsheet functions f(™ (z, 1) and g™ (2, 7) indexed
by the integer n appearing in one-loop amplitudes are discussed at length in [4]. In this
paper, however, only two such functions make an appearance: the meromorphic g(*) (z,7) =
0log 0 (z,7) which captures the simple-pole OPE singularity of a bc system of conformal
weights (1,0), where 01 (z, 7) is the odd Jacobi theta function and the doubly periodic but

non-holomorphic f)(z,7) = ¢M (2, 7) 4+ 2mi(Im 2/ Im 7), with modular weight one.

Equations of motion and BRST charge. The (linearized) massless [A,, A™, W F™"] and
massive [G™", Bog, HJ', C® 3, Fomn| superfields satisfy the following equations of motion

under the supersymmetric derivative D, = % + %(fymH)aﬁm,

m 1
DaAp +DpAa = (7" )apAm DW= 2 (y"")a Foun,
. 4 (2.7)
DO‘Am - ('7 W)O‘ + amAO‘ ’ D.Fyp = am(fYnW)oz - an(VmW)a s
and
DaG™ = — L9 (P H™), — 0, (vP EH™ (2.8)
S T A o« 187V o '
1 /
Do By = =g ("™ HP )+ {5 0uds (1" HP ) = (v*PH")o ) + eye(mnp)
m 9 n 3 abc 1 mabc
DQHIB - _§Gmn7a13 - EaaBbcmlya% + ZaaBbcdfyaﬁb d7
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1
DaCp =~z (") 5 (3P HO).r
D.F _ 3 B 4+ 1 B mmnabc
al Bmn — S amn7a5 320 abc’)/aﬂ

3 1
T 57 | 15Bart0n0 — — Bum o' — 30m0aBanerig ™

_ GabGam,ybna + 428nGam73ﬁ — (m <~ n)

p B,g. If we define

R «
where Brinp = Yoinp

X*Bag = (AB)g, A“HJ'=(AH™), C°\*=(CAN)’, XFamn = AF)mn, (2.9)
and use the BRST charge )

Q= A"Dq (2.10)
the equations of motion (2.8) simplify drastically. In this case we get
Q(AB)a = (M™)a(AH)m , QICN® = (™) (A )mn = 2 (A"™") O (AHy)
QOHT™) = (A™CN), QUAF ) = 500m (M1 CA) = 160" (M CalpA)
(2.11)

Alternatively, the equation of motion of ()\F )mn can also be written as

A n
One can also show that 8mfyg‘50ﬂv = 4%,3047.

(M "B (AB)s + 5 [a (M) (AB)g — (m <> )] . (2.12)

2.2. Tree-level amplitudes with one massive state

The open string n-point amplitudes at tree level with one first-level massive state and n—1
massless states were obtained in [21] in terms of Berends-Giele component currents. Their
pure spinor superspace expressions were subsequently found in [22]. We briefly review the

pure spinor results below.

2.2.1. Three points

At tree-level, the three-point open-string amplitude of one first-level massive state labelled
by 1 and two massless states labelled 2,3 is given in pure spinor superspace by [20,22,23]
K5 = (AHT) Va (M W), (2.13)

where Vo = A*A2. Using the equations of motion (2.7) and (2:8) one can show that (2. 13)
is BRST closed. Computing its component expansion also shows that it is not BRST exactﬂ'

and therefore it is in the cohomology of the BRST charge.

2 It would be BRST exact if the momentum phase space is such that (ki 4 k2)? # 0 [24].
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2.2.2. Four points

At tree-level, the four-point open-string amplitude of one first-level massive state labeled
by 1 and three massless states labeled by 2, 3,4 can be written in terms of its kinematic

factor in pure spinor superspace [Q:Z]‘j,
ICES‘})A = (AHT")C33 - (2.14)
In the above, C’;’[‘?, , denotes the BRST-closed combination [22]
C3sq = Mag(Ay"Wa) + Ma(Ay"Waa) — Mas(Ay"Ws) (2.15)

where Mp and W§ are the multiparticle Berends-Giele currents of the multiparticle su-

perfields Vp and W3, see [19] for a review.

3. Massive multiparticle superfields

It is clear that the massless unintegrated vertex given by V; = A*Al (z,0) does not con-
tribute any d,, or N™" zero modes simply because these variables are absent in the vertex.
However, this is no longer the case when the unintegrated vertex represents a massive
string state. The consequence is that all vertices in V1Us...U, can possibly contribute
those zero modes. Comparing the unintegrated massive vertex (2.3) with the massless in-
tegrated vertex (2.4), it is easy to see that (AH"), (C1A\)® and (AF})my play an analogous
role as the super-Yang-Mills superfields A7, W and F/™",

A™ & (AH™), W%« (CN)Y, Fon < (AF)mn - (3.1)

We will use this observation in the construction of BRST-covariant objects below.

When the saturation of zero modes admits a prior OPE contraction among the ver-
tices, their contribution is summarized by multiparticle superfields. They are defined as
the coefficients of the remaining conformal weight-one variables in a suitable pole of the
OPE. When the vertices involved in the OPE are massless, this is encoded in the massless

multiparticle superfields of [25] (for a review see [19]). In the present case, the OPE may

3 See [21] for the full string amplitude, including the Beta function.
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involve the massive vertex V;. For example, a multiparticle superfield (C12A)® can be read
off from the coefficient of d, in the OPE bracket [V1Us]1,

(C12A\)* = —(AH )Wk — (ChN)*(iky - Ag) + (Dg(CLA)*) Wy

1
Z[ (Y™ CIN)FM — (Ciy ™ A Fy] (3.2)
After contraction with (Ay™),, its BRST variation can be shown to be

QA" C12)) = 512V2(M™ (1), (3.3)

which has the desired properties for our purposes, see below. Unfortunately, the defi-
nition of the multiparticle superfield (AFi2)m, is not so straightforward as reading off
the coefficient of N™" in the OPE [ViUs];. The constraint identity []\f”m)\ﬁ]o'yg%7 =
L[N Jovs, +2(7"0A), leads to a non-unique definition of the coefficient of N™™. Luckily,

BRST covariance can be used to the rescue and we define (AFi2).,, such that
Q[(AF12)mn (M W3) (A" Wa)] = 512Va(AF1 ) mn (A" W3) (A" W) . (3.4)
A solution to (B.4) is given by

(>\F12)mn = —(DQ(AF&)mn)WQa — ()\Fl)mn(lkl . AQ) ()\’yqul)mnF (35)

pq -

In doing the above calculations, it is necessary to use that there is no 4-form irrep in the
decomposition of N3W [28] to conclude (AW )(Ay™P47sI\) = 0. In particular

AW Bl AP EN) =~ M WA B, A5 PEN) (3.6)
+ () Bl A5 (AP )
myyrd npk*k?
+ 3" WH) By Ag(Ay PN

Scalar BRST blocks. Since the massless W and F™" appear in schematic form as
(MW (AY"W) F,p,y, as the result of the zero-mode integration (2.5), we can use the
observation (3.1) to define massive superfield building blocks that are analogous to the
massless T4 g ¢ in [3]
Ti23 = =MW" CLA) MY W) F5™ — (M CLA) FY™ (A" W) (3.7)
= (AFD)mn (A" W2) (A" W3)
Ti23.4 = —(A"Cr2A) (MY " Wa) Ff™" — (MY CraA) F3™" (M " Wy)
— (AF12)mn (A" W3) (A" Wy)
T 23,4 = —(AY"CLA) (A" Wag) E™™ — (A" CLA) F35™ (A" Wa)
— (AF1) i (A" Was) (A" Wa) .
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Their BRST variations can be readily computed to be

QT123=0 (3.8)
QT1234 = 512V2T1 34
QT 23,4 = s23(VaT1 2,4 — VaTi3.4) -

The scalar BRST blocks Ty 5 and T} ;5 for different labels i, j, k are obtained from

relabeling the expressions above.

Vectorial BRST block. Similarly, the zero-mode integration of four d,, given in (2.6) results
in a vector constructed of three massless W< and one massive (CA)®. Inspired by the

massless expression of W' ~ , given in [§] and the correspondence (8.I), we propose

Wi 54 = =55 (A CIA) " W) (WP m e W) (3.9)

5

D (
5

-5 (A CLA) (AW ) (W2 b 1 3)

5
-3 (A CLA) (MY W2) (W Ayl 2)

1

= 7 T W (WO
1

= 7 W WH W (WP

1
= 7 W WH (2O

The relative coefficients in (8.9) are determined from the requirement of BRST covariance;

it follows from the massive and massless superfield equations of motion that

As discussed in [3], considerations of BRST covariance involving a mixture of left- and
right-movers require a vectorial object whose BRST variation carries the vector index
exclusively in momenta. Inspired by the massless case of [3], one is led to consider the
following vectorial BRST block

T 5a=—AH)Tona — [A5 T34 +2 ¢ 3,4] = Wil 5y (3.11)
with BRST variation
QT34 = —iky'VaT1 344 (24 3,4). (3.12)
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Berends-Giele. For convenience, we introduce the Berends-Giele non-local counterparts of
the above BRST blocks as
1 1 1
Mygsa=—Ti234, Migsa=—Ti234, Mizoa=—Tiz24, (3.13)
S$12 523 813
m — m J—
Mis34=T{534, Mi2sz=Ti23

which satisfy

QMia 34 = MsMy 34, QMiz24= M3M; 24, QM1 234 = MzMy 24— MaMi34, (3.14)
QM 54 = —iky'MoMi 34+ (2 ¢ 3,4), QMi23=0.

4. The massive 1-loop amplitude

In this section we will use the multiparticle massive superfields defined in section 3 to
construct a single-valued and BRST-invariant expression for the four-point open string
amplitude at one loop involving one first-level massive state. As a warm-up we will derive,

for the first time, the three-point massive amplitude at one loop.

4.1. Three points

Using the pure spinor prescription (2.1) with a massive V; yields a unique saturation of

the zero modes d,dgN™" as there is only three external vertices. More precisely,

[VleUg] = dpdgN™ ((C’l)\)o‘Wng"” + (CLN)Frmwe + (/\Fl)mnWQO‘Wf). (4.1)

ddN
In particular, there are not enough external vertices to produce a contribution with the
loop momentum, so the three-point correlator defined in (2.4) does not depend on £™.

Integrating out dodgN™" using (2:5) yields

Ky = —(My™CIN) (M W) EIM™ — (Ay™CLN) EP™ (A" W) — (AFL ) yn (M ™ W) (A" W3).
(4.2)

As will be demonstrated in (A.(), this becomes
’Cg = (>\F1>mn(>\’ymW2>(/\’an3> . (43)

The component expansion of (4.3) is straightforward to calculate [9,10] using the pure
spinor bracket ((Ay™0)(Ay"0)(AyP0)(0¥mnpd)) = 1 [1] and the theta expansions of the
various superfields [27,19,2822]. It yields

1
6400/

1
(gl manma ??a - 2—a,b1 mnpfgmeg) + fermions (44)

(Ks3) =
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where g1mn and bymnp are the bosonic massive polarizations [17], and [ =ik

el —
J
ik} e are the linearized field strengths and e} are the gluons.

In the appendix A, we will use BRST cohomology manipulations similar to the ones
used in [29] to show the relation between the one-loop correlator (4.3) and tree-level am-

plitude (2.13):

1 1
(AFD) mn (MY W2) (A" Ws)) = 2—()/<(/\Hf”‘)V2(>\’ymW3)) = Q—O/A(lﬂ,?)), (4.5)
where 1/2a’ = — (ko - k3). For convenience, we define the BRST invariant
Cipps=Tiz23, (4.6)

and write the one-loop three-point correlator as K3 = Cf2 3.

4.2. Four points

The four-point amplitude with one massive state admits two types of zero-mode saturation:
contributions with d,dg/N™" or d,dgd~ds. The first kind leads to OPE contractions among
the vertices leading to the massive multiparticle superfields discussed in section 8 as well as
U NH™ )T 3,4 Or £y, AS'TY 3.4 + (2 <+ 3,4). The zero-mode integration of the second kind
of contribution leads to £,,Wi™ 5 ,. These various contributions are organized according
to a desired property of BRST covariance of the individual blocks of superfields resulting
in an overall BRST-invariant correlator. As the massive four-point amplitude is analogous
to the massless five-point amplitude, the five-point correlator of [§] leads to the following

proposal,

Ka(l) =611 54 + 9\9 T2 3.0 + 935 Tia 20 + 914 Tra .3 (4.7)

+ 959 Tros 4+ 955 Tuoas + 955 Tasaa.
Its BRST variation is a total worldsheet derivative,
Ka(l) = VaTy s — (ik - €) — 521957 — 523955 — 5049y ) + (2 4> 3,4 48
QE4() 241,3,4 (tho - £) — 52199, 523023 $2a94 ) + (24> 3,4). (4.8)

To see this, one uses the worldsheet derivative of the Koba-Nielsen factor [4],

0

g, n(0) = (€-iki 4+ 5101 ) Za(0) (4.9)

J#i
is proportional to the right-hand side of (4.8). Therefore, once the integration over the
worldsheet insertion points is carried out, the amplitude (2.2) is BRST invariant as the

boundary terms vanish using the canceled propagator argument.
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4.2.1. Manifesting BRST invariance

Similarly to the discussion of BRST invariance in the massless one-loop amplitudes of [5],

one can use the integration by parts identities

8129g) ~ (L.ikg) + 8239%) + 3249&1), (4.10)

SlBQg) ~ (L.iks) — 5239%) + 8349;(1,}1),

514981) ~ (Liks) — 5249511) - 8349:(1,}1)7

to obtain the BRST-invariant correlator
Ka(l) ~ €,,C™ e W e 4.11
4(€) ~ € CT5 5.4 + 523993 C1j23,4 + 524954 Cj24,3 + 834934 C1j34,2 - (4.11)
In the above we defined the scalar BRST invariants

4.12
4.13
4.14
4.15

™m m -1, -1. T -1,
Cilo34 = M{5 34+ iky" Mi2 34 + iks" Mi3 2.4 +iky Mia2 3
Cij234 = Mi234 + Mi234 — Mi3 24

(4.12)
(4.13)
Cii243 = Mi234+ Mi243 — Misg23 (4.14)
Ciiza2 = M1z 24+ My342 — Mia 23, (4.15)

in terms of the Berends-Giele currents defined in (B:I3). Using the BRST variations (8:14),

one can show that the above combinations are BRST closed,

QCT 34 = QC1 234 = QC1j243 = QC1j34.2 = 0. (4.16)
The above four-point BRST invariants with one massive state have the same structure as

the five-point BRST invariants in the massless one-loop amplitudes of [3,5].

4.2.2. Manifesting single valuedness

It turns out that the massive BRST invariants (4.12)-(4.15) obey the analog momentum-

contraction identities as their massless counterparts, i.e.,

ik?<cf|12,3,4> - 323<Cl|23,4> - 824<Cl|24,3> =0, (4.17)
ik?<cﬂ2,3,4> =0

As discussed in [§], these identities are sufficient to show that the correlator (4.11) is

single-valued and can be rewritten in a manifestly single-valued manner as

K= 523f2(§)01|23,4 + 524f2(i)01|24,3 + 834f:§z11)01|34,2 ) (4.18)

after integrating out the loop momentum.
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4.2.83. Relation to the four-point tree amplitude

We know that the pure spinor superspace expressions of one-loop and tree-level correlators
are proportional in the massive three-point (4.5) and massless four-point [29] cases. It is
natural to ask what happens in the case of massive four-point correlators. Indeed, one can

show directly via their component expansions that (note s;; = (k; - k;))

1 1
(Cij23,4) = 824534<£ + g)ICﬁS‘?BA (4.19)
1 1 tree
(Clj24,3) = _523534(— + —> 12,3,4
S12 S14 =T
1 1 tree
<C;|34,2> = 823824<— + —>IC1|2 34
513 S14 =T

where the tree-level kinematic factor is given by (2.14) and the one-loop BRST invariant is
given by (4.13). Note that (4.19) has been checked to hold for both bosonic massive states
in the first mass level (g and by,pp). By supersymmetry, also the fermionic components
will match on both sides. Similar identities were found with the RNS formalism in [11],
but the analysis was restricted to the bosonic state g,,, (where they agree).

The above calculations use the convention s;; = k; - k;, and therefore

1
$13 = 5 — S12 — 523, 824 = — 75— + 813 = —S12 — 823,
20 20/
(4.20)
814 = 5, + 523 S34 = —5— 1512
20 20/
where k? = —1/a’ and k3 = k2 = k? = 0. In addition, the relations
si2_ 1 s S12 _ 4 523 s23 11
S13 2a/s13 S13 524 S24 513534 523 534 (4 21)
S23 1 1 S12 o 1 +1 S23 1 1 ’
S14 20/514 S34  2a’s3y 512524 S12 824

follow from (4.20) and are useful in checking (4.19).

5. Closed strings

We have seen in (4:3) and (4:18) that the open-string one-loop three- and four-point corre-
lators with one massive state can be written in terms of tree-level kinematic factors. This
section is motivated by the desire to know to which extent the closed-string four—point:i;
correlator admits a rewriting in terms of tree-level kinematic data, if at all or for which

combination of massive and massless closed-string states.

4 From ('fl-_ﬁl) it immediately follows that the holomorphic square of the open-string three-point

correlator can be written in terms of tree-level amplitudes.
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5.1. The four-point correlator

According to the chiral splitting formalism [14,15,16], the correlator My of the closed string
amplitude is obtained after integrating the loop momentum in the holomorphic square of
the open-string correlator (4.11). Using the techniques described in [5] this leads to the
four-point closed-string correlator My

7

1 m ~m
M, = |523f2(3)01|23,4 +(2,3[2,3,4)]* + ImTCl,2,3,4Cl,2,3,4~ (5.1)
The four-point closed string amplitude at genus-one is then written as

M4:/ dzT/d222d223d2241A-4M4 (52)
f

where F is the fundamental domain of the genus-one moduli space and 7, is the genus-one

Koba-Nielsen factor [5]

5.2. One-loop versus tree-level

The form of the correlator (5.1) featuring two distinct contributions, one with a holomor-
phic square and another with a vectorial contraction between the left- and right-movers,
is reminiscent of the one-loop correlator for five massless closed-string states considered in
[80]. In that case, the analogous vectorial contraction (see their equation (3.35)) was shown
to be rewritten in terms of the massless five-point tree-level amplitudes for type IIB states.
Moreover, that analysis had an immediate impact on the S-duality symmetry of type I1B
strings. While the massive amplitudes considered in this paper have no direct relation to
the S-duality property of massless amplitudes, it is still interesting to check whether the
massive correlator (5.1) at one-loop can be written in terms of its massive counterpart
(2.14) at tree level?. Surprisingly, we will show below that, for certain combinations of

massive and massless states, this is indeed possible.

First-level massive closed-string spectrum. The closed-string states in the first mass level

of bosonic amplitudes can be characterized by the dimension of their SO(9) irrep:

1,36,44,84,126,231, 450,495, 594, 910, 924, 1980, 2457, 2772. (5.3)

® T thank Oliver Schlotterer for raising this question.
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An explicit component expansion using the closed-string state decompositions listed in the
Appendix B, reveals that the left-right contraction term in (5.1:) can be written in terms
of the tree-level amplitude (2.14),
$12513514CT, 5 O™ = 452,52, 52, Ktree,  KCtiee (5.4)
12°13°14%V112,3,4V1|2,3,4 23°24°34/V1]2,3,4"V112,3,4
for the following combination of external states in type IIB
gh®, geh?: g€ {1,44,84,450,495,1980,2457} (5.5)
gh*¢:  ge€{126,231})
g0’ ge {231}
gbo? : g € {2772}
where the massive state is represented by g, the graviton by A, the NS-NS 2-form by b and
the dilaton by ¢. Similarly, equation (5.4) is satisfied in type ITA for®
gh?,gh¢® . g € {84,450,2457} (5.6)
gh*¢:  ge {126,231}
g9’ g€ {231}
Note that the type IIB result (5.5) for the states 44 and 495 is only achieved if their

decompositions coming from ¢, ® gpg and bypp ® Z;qrs are fine-tuned with a relative

coefficient. More explicitly, for 44,

G © G = 700 T G0 (5.7
Brun © Dy = o 0/ TUGID T g
while for 495 we have,
Gmn ® Gpq = Joz000 T 903000 T 902000 T 902000 - (5.8)
b © Bars = — - Q/TIZD, T g

see the appendix B for the definitions and the complete list.

It is interesting to note that a linear combination of massive first-level states in the
scalar representation 1 was considered in [B1]. However the scalar 1 in 44 ® 44 and the
scalar 1 in 84 ® 84 individually satisfy (5.4) in the type IIB theory when paired with A3

or ¢?h, so no linear combination of the scalars is necessary in this case.

6 A natural question to ask, in view of the results of [3d], is whether different states satisfy a
modified version of (5.4) where the relative coefficient 4 is replaced by a rational number. However,

we have not found such a case.
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6. Conclusions

In this paper we used arguments based on pure spinor BRST covariance and single-
valuedness to propose expressions for one-loop correlators of the open string for three
and four points when one of the external legs is a first-level massive state.

We then integrated the loop momentum to obtain the closed-string correlator (5.1) of
the one-loop four-point massive amplitude. Its similarity with the massless five-point one-
loop amplitude in [30] led us to consider whether it can be rewritten in terms of tree-level
massive kinematic factors. We found certain combinations of massive and massless states in
(5.5) for the type IIB and (5.6) for the type IIA string theory for which this rewriting can be
done. It is worth noting that the analogous analysis of the closed-string five-point massless
one-loop correlator [BU] had implications for the S-duality of type IIB string theory. It is
unclear at the moment whether the results of section 5.1 are an indication of something
else than a curiosity. It will be interesting to see if similar results hold for higher-point

and/or higher-loop amplitudes. We leave these investigations for the future.

Acknowledgements: I thank Oliver Schlotterer for asking a question which provided the
motivation for this work, for pointing out the RNS calculations of [11], and for suggesting

the closed-string analysis. I also thank him for comments on the draft.

Appendix A. Proof of tree-level and one-loop relation at three points

Lemma. In on-shell pure spinor superspace we have

(OF ) Ay W) A" W)} = —— ((AHP) V(M ™ W) (A1)

2a
Proof. To see this, we start from the expression (4.J) and observe that (Ay™Ci)\) =
Q(AH™) [22]. Integrating the BRST charge by parts, using QF™" = 9™(Ay"W) —
O™ (Ay™W) and the Dirac equation, leads to
—(MTCA) (MW W) F3 — (A CLA) F (A" W) = (A.2)
— (07 (AHT") = O (AHT)) (A" W) (M W) .
On the other hand, in the Berkovits-Chandia gauge [17] we have

1 1 1
AP ) = 16 (T0m(AHY) = TOLOHT) + O0F ™ HY) = 00" "H)) - (A3)
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and (AH {“1) = 0. After a short calculation using the pure spinor constraint, this implies
2(AF) (M W2) (M W3) = (O (AHT) — 07 (AHT")) My Wa) (M W) (A.4)
Plugging this into (A.2) yields

—(MYTCIA) (A" W) F5™™ — (MY CLA) F" (A" W3) = 2(AF1) mn (A" Wa) (A" W3)

(A.5)
which means that
Tl:2:3 = ()\Fl)mn()\’)/mWQ)()\”}/nW3) . (AG)
Therefore,
T123 = (AF1)mn (A" Wa) (A" W)
1
= S (O OHE) = 07 NHT) ) O™ Wa) (0" W)
1
= SOHD) (0" Ws)0f (0" T73) (A7)
1
— 5 (AHT)OS (A" W2 ) (A" W)
where we used momentum conservation 9" = —05" — 03" and the Dirac equation to

arrive at the third equality. Using (Ay"W3) = QA% — 05V3 in the third line of (A.7) and
(AMy™mWs) = QAT — 05'Vs in the fourth yields

TLQ:?) = %(62 . 63)()\]’[{”) (Vé()\")/mWP,) + V3(>\’)/mW2)> (AS)

1
= Q—O/(AHF)VQ(A’WWP,)

where we dropped BRST-exact terms such as (AH{™")(Ay"W3)05 QA% , used equation (3.9)

of [20] showing that the two terms inside the parenthesis in (A.8) are equal in the BRST

cohomology, and (0 - J3) = —s93 = 2%, Finally, this means
1
(F} ) (0™ W) (0" W) = 5 (AT Vo™ W) (A9)

or equivalently, (K]0°P) = 7 (K1), finishing the proof. [
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Appendix B. Tensorial description of first-level massive closed-string states

In this appendix we briefly review the tensorial description of irreps of SO(9) and SO(10)
using the mapping between Dynkin labels and Young diagrams [12] (see also [B2]). We
also review the symmetries of the associated tensors that are not manifestly encoded in
the Young diagrams [83,84]. Finally, we list the explicit tensorial expressions of how the
closed-string states at the first massive level are constructed from the holomorphic square

of open-string states.

SO(9) tensor irreps. The irreps of SO(9) are labelled by four Dynkin labels (aja2aszay).
They correspond to a tensor (as opposed to a spinor) when ay is even. In this case, the
irrep (ajasasas) encodes a Young diagram with a; columns with ¢ boxes for i = 1,2,3
and a4/2 columns with 4 boxes. For example (2200) maps to - because there are two

columns with one box and two columns with two boxes.

S0O(10) tensor irreps. The irreps of SO(10) labelled by five Dynkin labels (ajasasaqas)
correspond to a tensor when a4 4 a5 is even. Their mapping to Young diagrams works the
same way as in SO(9) for the labels a1, as, as, while the mapping of the labels a4 and a5

to columns require a separate analysis depending on two cases:

1. a4 < as: there are a4 columns of 4 boxes and (a5 — a4)/2 columns of 5 boxes
2. a4 > as: this is the conjugate representation, there are as columns of 4 boxes and

(ag — a5)/2 columns of 5 boxes

For example, (00011) is a tensor that maps to the 4-form E Similarly, both (00002) = E
and (00020) = H constitute 5-forms (self-dual and anti-self-dual).

Young tableaur and tensors. We associate traceless tensors to Young tableaux of SO(n)
by populating the columns with the tensor indices according to the antisymmetric basis

scheme [33]. For example,

5[718]
6

T12345678 = T[1234][56](78)

[1]eevo]—
0

(B.1)

where the labels j in the tensor are a shorthand for vector indices m;. In (B.1) we also

display the explicit (anti)symmetries of the associated tensor. Being traceless irreps of

SO(n) means that the trace with respect to any two indices vanish
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Garnir symmetries. The manifest symmetries in (B.1}) do not describe all the symmetries of
the tensor. In general, tensors obey additional symmetries described by the Garnir relations
among Young tableaux [35,36,84]. Suppose column j of the Young diagram mapped to a
tensor T has b; boxes and let M = mymsy...m, and N = nina...n, be indices from

columns j and j + 1. If p + ¢ > b; then

T mn]... = 0. (B.3)

[T1
[

For example, the Garnir symmetries of the tensor associated to the Young diagram H

(see (B.1)) can be written as

Th23451678 = 0, T1234;56718 = 0, T1[23456]78 = 0. (B.4)

Note that if columns j and j + 1 have the same number q of boxes, then it is also true that

swapping these two columns is a symmetry:

T..ml...mqnl...nq... - T..nl...nqml...mq... (B5>

The symmetry (B.5) is not independent of the symmetries (B.3). This is easier to see with

the alternative description of the Garnir symmetries reviewed in section B.I.T.

B.1. open® open=closed for first-level massive states

The massive states of the superstring combine to representations of SO(9) but the am-
plitude calculations are done in the Wick-rotated ten-dimensional spacetime, where the
states are described by SO(10) irreps.

Consider all the SO(10) irreps in the tensor products [26] of gm, = (20000) and
bmnp = (00100) appearing in the open®open description of the closed-string states:

(20000) ® (00100) = (00100) 4 (10011) + (11000) + (20100) (B.6)
(20000) ® (20000) = (00000) + (01000) + (02000) + (20000) + (21000) + (40000)
(00100) ® (00100) = (00000) -+ 2(00011) + (00200) + (01000) + (01011) + (02000)

+ (10002) + (10020) + (10100) + (20000)

To each irrep (a1a2a3asas) we associate a transverse SO(10) tensor g ;. 0.4, - Lheir pre-

cise ranks and symmetries are determined from the mapping to Young diagrams described
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Dim |Dynkin |[Young |44 ® 44 |84 ® 84 |84 ® 44
1 (0000) | . v v X
36 |(0100) | B v v X
44 | (2000) | ™ v v X
84 |(0010) | B X € v
126 | (0002) | f x v X
231 |(1100) | & X X v
450 | (4000) | == V X X
495 | (0200) | E v v X
594 [(1010) | E X v X
910 |(2100) | B" Vv X X
024 |(1002) | H | «x o v
1980 | (0020) | £ X V X
2457 | (2010) | H” X X v
2772 [ (0102) | N x

Table 1. The first-level massive closed-string states characterized by their dimension, SO(9)
Dynkin labels and Young diagram. The columns dim ® dim indicate the presence (y/) or
absence (x) of the closed-string state in the tensor product of open-string states given in

(B:25). The entries €9 indicate that the state contains a 9-dimensional Levi-Civita tensor.

above. For example, in SO(10) we have 320 = (11000) «+» E and therefore the associated

tensor ¢1106o has three indices with the symmetries of &
mnp __ mnp __ nmp mnp npm pmn
km911000 =0, 911000 = —Y110000 911000 T 911000 T J11000 = O- (B.7)

The branching to SO(9) irreps is given by 320 = 9 + 36 + 44 + 231 [37]. The transverse
and traceless conditions remove the lower dimensional irreps and we are left with 231.
In this sense we will call the tensor ¢i7gh, the 231 of SO(9). This leads to the following
decompositions:

e The closed-string state 1:
Gmn @ Gpg = 111" gooooo (B.8)
bmnp X 6qrs = alﬂgﬁngooooo

e The closed-string state 36 = H

Gmn & Jpg = Hgﬁgl HQ%Zgﬁb%Q (B.9)

7 1y ymnp yrpqr mimso
bmnp ® quS = Habmlnabng()lOOO
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The closed-string state 44 = m

~  __ Trmn 11Pq mimso
Gmn @ Gpq = g TIET, 950000

~ 13
bimnp ® bgrs = 5 @ obm, Mabm, 920000

The closed-string state 84 = H

mimams

7 o~ _Trmn qrs
9mn & bqrs = 9mn ® quS - Ham1 Ham2m3g00100

The closed-string state 126 = E

7 __ _Iyymnp pqr mimomsmy ~mnpqrsabed _abed
brmnp @ bgrs = & g P, G s, 900011 + €10 00011

The closed-string state 231 = H

T _1rmn qrs maMm3ny
Gmn @ qus - Hamlnamzmggllooo

The closed-string state 450 = 00—

~ _ mnpq
Imn @ Gpg = 940000

The closed-string state 495 = H

Imn @ Gpg = 902000 T 902000 T 902000 T 902000
~ 27
_ - Tymnp pqr mi1m21MmMs3ng
bmnp ® bqrs - 5 «a Hamlmznamgm4902000

The closed-string state 594 = Hj

T __ _Ifymnp pqr mi1Mm2m3my
bmnp ® bqrs = Hamlmgnamgm4910100

The closed-string state 910 = £~

Imn @ Ypg = 921000 T 921000 T 921000 T 921000

The closed-string state 924 = Ej

7 _~ ___mpqrn npqrm
Imn @ bpgr = Gmn @ bpgr = G10011 + J10011
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e The closed-string state 1980 = @
binnp @ babe = Ghomeq " (B.19)

e The closed-string state 2457 = Hjj
Imn & qus = Jmn @ bgrs = 930100 (B.20)

e The closed-string state 2772 = Eﬂ

mnpqrs mnpsqr mnprsq

brnp ® bgrs = go1011 + 901011+ Joio11 (B.21)

and we ignore the SO(9) states associated with (10002) and (10020) as their SO(10)
Young diagrams have columns with five boxes which imply that the SO(9) states are
proportional to a nine-dimension Levi-Civita. In the above the various tensors g have
the same symmetries of their associated Young diagrams and II”?" and II)),"” are the

Young projectors [B8] (see also [33,39,40]):

P S

I = 2 oo + Sraboy) %&nnqu (B.22)
e = glmoror!
where
Omn = Omn — % (B.23)
satisfies kmgmn = 0 for the first-level massive condition o’k? = —1. Both projectors
(B.22) are traceless and transverse if a’k? = —1. These conditions are necessary in

order for the above decompositions to be traceless and transverse, since g, and by,ny

are both traceless and transverse (w.r.t k). Furthermore

~mnpqrsabcd _ _mnpqrsabed 11.lm npqrsabed] ki
€10 = €10 — 10’k " €eq (B.24)

satisfies k"€l arsabed — ) 1If we denote gmn and bmnp by their open-string SO(9)
irrep dimensions 44 and 84, the decompositions above can be summarized by the

following tensor products [26]

44 ® 84 = 84 ® 231 @ 924 @ 2457 (B.25)
44944 =1@ 36 ® 44 ® 450 495 © 910
84084 =1d36344F 84 126 © 495 G 594 @ 924 ¢ 1980 & 2772
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B.1.1. Alternative description of the Garnir symmetries

In this subsection we give an alternative description of the Garnir symmetries following
[41], in which all the signs are positive. More precisely, for a given tableau, summing over
all ways of exchanging the top k elements of one column with k elements of the preceding
column while preserving the vertical orders within each set of k£ elements gives back the
original tableau.

As an illustration, consider the tableau in (B.1) and its associated tensor Ti234567s.
To find all its non-trivial symmetries, we start by considering the £ = 1 relation for the

second column. We get the corresponding identity

1[5[718] [5[1[7]8] [112]7[8] [1[3[7[8] [1[4]7[8]
2|6 2|6 5|6 2|6 2|6
13 = 13 + 3] + 5] + 3]
4] 4] 4] 4] 9]
Th2345678 = T52341678 + 115342678 + 112543678 + 112354678 (B.26)
Similarly, £ = 1 for the third column yields
1[5]7]8] 1/7]5]8] 1]5/6/8]
216 216 217
13 =3 + [3]
4] 14] 4]
T12345678 = 112347658 + 112345768 (B.27)

It is easy to see that k = 1 for the fourth column leads to the trivial symmetry (78) that
can be read off from the tableau itself.

Now we consider the k = 2 relation with the top two elements {5,6} of the second
column in (B.1)). This yields

7]8] 1]7]8] 718]

2

1[7]8] 1[7]8] 718]

_|_

2]7]8]

=~

wWINo

5
6

+ + + +

][]
NEEE
NENE
e
N
(o]
EEEE

T19345678 = Th6341278 + 2641378 + Ir2361478 + Ti5642378 + T15362478 + Th2563478 - (B.28)

It is not difficult to show that the above symmetries are equivalent o

Th23451678 = 0, T1234;56718 = 0, T1[23456)78 = 0. (B.29)

" To show the third equation, start from (B:28) and use (B:26) to rewrite T5.. = > Ti...
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In this description of the Garnir symmetries it is easy to see that if two adjacent columns
have the same number of boxes, then swapping the corresponding columns in the Young

tableau is a symmetry (choose k to be the total number of boxes).

Young projections. There is a way to experimentally verify the above Garnir symmetries.

To see this for the specific example in (B.1)), define the tensor as
T(1,...,8) =Wi. g+ (1578) + (26) + [1234] + [56] (B.30)

where W, denote words and the (anti)symmetrizations must follow the specified order:
first symmetrize over 1,5, 7, 8, then symmetrize over 2, 6, then antisymmetrize over 1,2, 3,4
and then antisymmetrize over 5, 6. This yields 2304 words in the right-hand side of (B.30),

and the expression is available to download in [§]. The symmetries (B.29) are then satisfied

by (B.30).
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