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The open- and closed-string three- and four-point one-loop amplitudes involving massless

states and one first-level massive state are computed in pure spinor superspace. For the

open string, we show that their one-loop correlators can be rewritten in terms of tree-level

kinematic factors. We then analyze the closed string. For three points, this is immediate.

For four points, we show that it is possible to rewrite the one-loop closed-string correlator

using tree-level kinematic factors, but only for certain combinations of massive and massless

states (different for type IIA and IIB).
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1. Introduction

The main goal of this paper is to calculate the open-string one-loop correlators of the three-

and four-point string amplitudes with a single massive state of (mass)2 = 1/α′ using the

pure spinor formalism [1,2]. In order to do this, we will employ the same BRST-cohomology

techniques that were used in [3,4,5] to obtain the string one-loop amplitudes up to seven

massless external legs.

The answers in pure spinor superspace [6] can be expressed in different ways, depend-

ing on which feature is emphasized among BRST invariance, single-valuedness and locality.

For instance, the three- and four-point open-string massive correlators at one loop

K3 = C1|2,3 , (1.1)

K4 = s23f
(1)
23 C1|23,4 + s24f

(1)
24 C1|24,3 + s34f

(1)
34 C1|34,2 ,

manifest BRST invariance and single-valuedness, where the massive state is labelled by 1

while the other labels 2, 3, 4 represent the massless super-Yang-Mills states. In the above,
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C1|... are massive BRST invariants defined below and f
(1)
ij denote single-valued worldsheet

functions on a genus-one surface [7,4].

A BRST cohomology proof that the three-point massive one-loop open-string corre-

lator is proportional to the open-string kinematic factor Ktree
1|2,3 at tree level is presented

in the Appendix A. Using the explicit polarizations and momenta extracted from its pure

spinor superspace expression1 [9,10], the four-point open-string correlator at one loop is

also shown to be rewritten in terms of open-string kinematic factor Ktree
1|2,3,4 at tree level,

for the full supermultiplet; this extends the earlier RNS analysis of [11].

We also investigate whether the closed string massive one-loop correlators can be

rewritten in terms of tree-level kinematic factors. For three points, this can be clearly

done. For four points, a vectorial contraction between left- and right-movers present at

one-loop and absent at tree-level has the potential to prevent this rewriting. Rather sur-

prisingly, it turns out that for certain combinations of massive and massless states the

one-loop correlator can be rewritten in terms of its tree-level counterpart. The details are

in section 5.1. Finally, Appendix B reviews the mapping between SO(n) Dynkin labels

and Young diagrams [12], their tensorial description as well as their symmetries.

Conventions. We use sij = (ki · kj) as a shorthand; these are not proportional to the

usual Mandelstam variables when either i or j represents a massive leg. In addition, the

pure spinor bracket 〈.〉 [1] that extracts the component expansions from the pure spinor

superspace expressions is frequently omitted throughout. Its presence is based on context;

sometimes we emphasize the BRST variations of expressions, sometimes we extract their

components. And finally, the word massive in this paper refers to a single massive state of

the first mass level.

2. Review

In this section we will briefly review the discussion of section 2.1 in [3], and refer the reader

to it for any missing details.

1 Available to download in [8].
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2.1. The pure spinor amplitude prescription

The one-loop amplitude prescription in the minimal pure spinor formalism is [2],

An =
∑

top

Ctop

∫

Dtop

dτ 〈(µ, b)Z V1(z1)
n
∏

j=2

∫

dzj Uj(zj)〉 , (2.1)

where the Beltrami differential µ and the modulus τ encode the topological information

of the genus-one surface. The sum over the different genus-one topologies (planar cylinder,

Möbius strip, and non-planar cylinder) implies different integration domainsDtop and color

factors Ctop for each, but in this paper we will not focus on this aspect (see [13] for details).

Rather, we concentrate on the CFT aspect of evaluating the correlation function of the

picture-changing operators Z, the b ghost, and the vertex operators. More specifically,

after integrating out all the non-zero modes as well as the zero modes in (2.1), we obtain

an expression of the form

An =
∑

top

Ctop

∫

Dtop

dτ dz2 dz3 . . . dzn

∫

dDℓ |In(ℓ)| 〈Kn(ℓ)〉 , (2.2)

where Kn(ℓ) is called the correlator, and |In(ℓ)| denotes the Koba-Nielsen factor arising

from the plane waves of the external vertices whose explicit form is not relevant for the

purpose of this paper but can be looked at in [3,4,5]. In addition, ℓm =
∮

A
dzΠm(z) is the

loop momentum of the chiral splitting formalism [14,15,16] and A denotes the A-cycle of

the genus-one surface under consideration.

Vertex operators. For n-point amplitudes involving one first-level massive state and (n−1)

massless states, we place the massive leg 1 in the unintegrated massive vertex and use [17]

V1 = [λα[∂θβB1
αβ]0]0 + [λα[ΠmHm

1α]0]0 + 2α′[λα[dβC
β
1 α]0]0 + α′[λα[NmnF 1

αmn]0]0 , (2.3)

where the superfields Bαβ, H
m
α , Cα

β, Fαmn and Gmn = − 1
144

[

(DγmHn) + (DγnHm)
]

describe the open-string massive supermultiplet at the first mass level. This is composed

of the symmetric traceless gmn and the totally antisymmetric bmnp bosonic fields and

a fermionic field ψm
α comprising 128 + 128 degrees of freedom. They are subject to the

transversality constraint kmgmn = kmbmnp = kmψ
m
α = 0 [17]. For the remaining massless

integrated vertices Ui(zi) we use [1],

Ui(zi) = [∂θαAi
α]0 + [ΠmAi

m]0 + 2α′[dαW
α
i ]0 + α′[NmnF i

mn]0 , (2.4)
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where Aα, A
m, Wα and Fmn are the super-Yang-Mills superfields of [18] (for a review, see

[19]). The normal-ordering bracket [. . .]0 is reviewed in [20].

Zero-mode integrations. We refer the reader to the discussion in section 2.1 of [3] for more

details; the summary is that the zero-mode saturation of the pure spinor variables imply

two different contributions from the external vertices: terms proportional to dαdβN
mn and

terms proportional to dαdβdγdδ. The resulting contribution of the zero-mode integration

can be determined by a group-theory analysis [3],

∫

dαdβN
mn → (λγ[m)α(λγ

n])β , (2.5)

∫

dαdβdγdδ → ℓm(λγa)[α(λγ
b)β(γ

abm)γδ] , (2.6)

where ℓm represents the loop momentum and the integral sign represents the integration

over the different contributions from the b ghost and picture-changing operators using the

zero-mode measures of [2].

Worldsheet functions. Two families of worldsheet functions f (n)(z, τ) and g(n)(z, τ) indexed

by the integer n appearing in one-loop amplitudes are discussed at length in [4]. In this

paper, however, only two such functions make an appearance: the meromorphic g(1)(z, τ) =

∂ log θ1(z, τ) which captures the simple-pole OPE singularity of a bc system of conformal

weights (1, 0), where θ1(z, τ) is the odd Jacobi theta function and the doubly periodic but

non-holomorphic f (1)(z, τ) = g(1)(z, τ) + 2πi(Im z/ Im τ), with modular weight one.

Equations of motion and BRST charge. The (linearized) massless [Aα, A
m,Wα, Fmn] and

massive [Gmn, Bαβ, H
m
α , C

α
β, Fαmn] superfields satisfy the following equations of motion

under the supersymmetric derivative Dα = ∂
∂θα + 1

2 (γ
mθ)α∂m,

DαAβ +DβAα = (γm)αβAm ,

DαAm = (γmW )α + ∂mAα ,

DαW
β =

1

4
(γmn)α

βFmn,

DαFmn = ∂m(γnW )α − ∂n(γmW )a ,
(2.7)

and

DαG
mn = − 1

18
∂p(γ

pmHn)α − 1

18
∂p(γ

pnHm)α , (2.8)

DαBmnp = − 1

18
(γmnHp)α +

α′

18
∂a∂m

(

(γanHp)α − (γapHn)α

)

+ cyc(mnp) ,

DαH
m
β = −9

2
Gmnγ

n
αβ − 3

2
∂aBbcmγ

abc
αβ +

1

4
∂aBbcdγ

mabcd
αβ ,
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DαC
γ
β = − 1

24
(γmnpq)γβ∂m(γnpHq)α ,

DαFβmn =
3

8α′
Bamnγ

a
αβ +

1

32α′
Babcγ

mnabc
αβ

+
3

64

[

15Bamb∂n∂cγ
cba
αβ − 1

α′
Bambγ

nba
αβ − 3∂m∂dBabcγ

dnbca
αβ

− 6∂bGamγ
bna
αβ + 42∂nGamγ

a
αβ − (m↔ n)

]

where Bmnp = γαβmnpBαβ. If we define

λαBαβ = (λB)β, λαHm
α = (λHm) , Cβ

αλ
α = (Cλ)β , λαFαmn = (λF )mn , (2.9)

and use the BRST charge Q

Q = λαDα (2.10)

the equations of motion (2.8) simplify drastically. In this case we get

Q(λB)α = (λγm)α(λH)m ,

Q(λHm) = (λγmCλ) ,

Q(Cλ)α =
1

4
(λγmn)α(λF )mn =

1

4
(λγmn)α∂m(λHn) ,

Q(λF )mn =
1

2
∂[m(λγn]Cλ) −

1

16
∂p(λγ[mCγn]pλ) ,

(2.11)

Alternatively, the equation of motion of (λF )mn can also be written as

Q(λF )mn = − 1

32α′
(λγmn)β(λB)β +

9

64

[

∂n∂p(λγ
mp)β(λB)β − (m↔ n)

]

. (2.12)

One can also show that ∂mγ
m
αβC

β
γ = 1

4α′
Bαγ.

2.2. Tree-level amplitudes with one massive state

The open string n-point amplitudes at tree level with one first-level massive state and n−1

massless states were obtained in [21] in terms of Berends-Giele component currents. Their

pure spinor superspace expressions were subsequently found in [22]. We briefly review the

pure spinor results below.

2.2.1. Three points

At tree-level, the three-point open-string amplitude of one first-level massive state labelled

by 1 and two massless states labelled 2, 3 is given in pure spinor superspace by [20,22,23]

Ktree
1|2,3 = (λHm

1 )V2(λγ
mW3) , (2.13)

where V2 = λαA2
α. Using the equations of motion (2.7) and (2.8) one can show that (2.13)

is BRST closed. Computing its component expansion also shows that it is not BRST exact2

and therefore it is in the cohomology of the BRST charge.

2 It would be BRST exact if the momentum phase space is such that (k1 + k2)
2 6= 0 [24].
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2.2.2. Four points

At tree-level, the four-point open-string amplitude of one first-level massive state labeled

by 1 and three massless states labeled by 2, 3, 4 can be written in terms of its kinematic

factor in pure spinor superspace [22]3,

Ktree
1|2,3,4 = (λHm

1 )Cm
2|34 . (2.14)

In the above, Cm
2|34 denotes the BRST-closed combination [22]

Cm
2|34 =M23(λγ

mW4) +M2(λγ
mW34)−M24(λγ

mW3) , (2.15)

where MP and Wα
P are the multiparticle Berends-Giele currents of the multiparticle su-

perfields VP and Wα
P , see [19] for a review.

3. Massive multiparticle superfields

It is clear that the massless unintegrated vertex given by V1 = λαA1
α(x, θ) does not con-

tribute any dα or Nmn zero modes simply because these variables are absent in the vertex.

However, this is no longer the case when the unintegrated vertex represents a massive

string state. The consequence is that all vertices in V1U2 . . . Un can possibly contribute

those zero modes. Comparing the unintegrated massive vertex (2.3) with the massless in-

tegrated vertex (2.4), it is easy to see that (λHm
1 ), (C1λ)

α and (λF1)mn play an analogous

role as the super-Yang-Mills superfields Am
i , Wα

i and Fmn
i ,

Am ↔ (λHm), Wα ↔ (Cλ)α, Fmn ↔ (λF )mn . (3.1)

We will use this observation in the construction of BRST-covariant objects below.

When the saturation of zero modes admits a prior OPE contraction among the ver-

tices, their contribution is summarized by multiparticle superfields. They are defined as

the coefficients of the remaining conformal weight-one variables in a suitable pole of the

OPE. When the vertices involved in the OPE are massless, this is encoded in the massless

multiparticle superfields of [25] (for a review see [19]). In the present case, the OPE may

3 See [21] for the full string amplitude, including the Beta function.
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involve the massive vertex V1. For example, a multiparticle superfield (C12λ)
α can be read

off from the coefficient of dα in the OPE bracket [V1U2]1,

(C12λ)
α = −(λHm

1 )Wα
2 ik

m
2 − (C1λ)

α(ik1 ·A2) +
(

Dβ(C1λ)
α
)

W β
2

− 1

4

[

(γmnC1λ)
αFmn

2 − (C1γ
mnλ)αFmn

2

]

. (3.2)

After contraction with (λγm)α, its BRST variation can be shown to be

Q(λγmC12λ) = s12V2(λγ
mC1) , (3.3)

which has the desired properties for our purposes, see below. Unfortunately, the defi-

nition of the multiparticle superfield (λF12)mn is not so straightforward as reading off

the coefficient of Nmn in the OPE [V1U2]1. The constraint identity [Nmnλβ ]0γ
m
βγ =

1
2 [Jλ

β]0γ
n
βγ +2(γn∂λ)γ leads to a non-unique definition of the coefficient of Nnm. Luckily,

BRST covariance can be used to the rescue and we define (λF12)mn such that

Q
[

(λF12)mn(λγ
mW3)(λγ

nW4)
]

= s12V2(λF1)mn(λγ
mW3)(λγ

nW4) . (3.4)

A solution to (3.4) is given by

(λF12)mn = −
(

Dα(λF1)mn

)

Wα
2 − (λF1)mn(ik1 ·A2)− (λγpqF1)mnF

2
pq . (3.5)

In doing the above calculations, it is necessary to use that there is no 4-form irrep in the

decomposition of λ3W [26] to conclude (λγ[mW )(λγnpqrs]λ) = 0. In particular

(λγqW 4)B1
mnpA

2
q(λγ

mnpk1k2

λ) = −(λγk
1

W 4)B1
mnpA

2
q(λγ

qmnpk2

λ) (3.6)

+ (λγk
2

W 4)B1
mnpA

2
q(λγ

qmnpk1

λ)

+ 3(λγmW 4)B1
mnpA

2
q(λγ

qnpk1k2

λ)

Scalar BRST blocks. Since the massless Wα and Fmn appear in schematic form as

(λγmW )(λγnW )Fmn as the result of the zero-mode integration (2.5), we can use the

observation (3.1) to define massive superfield building blocks that are analogous to the

massless TA,B,C in [3]

T1,2,3 = −(λγmC1λ)(λγ
nW2)F

mn
3 − (λγmC1λ)F

mn
2 (λγnW3) (3.7)

− (λF1)mn(λγ
mW2)(λγ

nW3)

T12,3,4 = −(λγmC12λ)(λγ
nW3)F

mn
4 − (λγmC12λ)F

mn
3 (λγnW4)

− (λF12)mn(λγ
mW3)(λγ

nW4)

T1,23,4 = −(λγmC1λ)(λγ
nW23)F

mn
4 − (λγmC1λ)F

mn
23 (λγnW4)

− (λF1)mn(λγ
mW23)(λγ

nW4) .
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Their BRST variations can be readily computed to be

QT1,2,3 = 0 (3.8)

QT12,3,4 = s12V2T1,3,4

QT1,23,4 = s23
(

V3T1,2,4 − V2T1,3,4
)

.

The scalar BRST blocks T1i,j,k and T1,ij,k for different labels i, j, k are obtained from

relabeling the expressions above.

Vectorial BRST block. Similarly, the zero-mode integration of four dα given in (2.6) results

in a vector constructed of three massless Wα and one massive (Cλ)α. Inspired by the

massless expression of Wm
A,B,C,D given in [3] and the correspondence (3.1), we propose

Wm
1,2,3,4 = − 5

12
(λγaC1λ)(λγ

bW 2)(W 3γmabW 4) (3.9)

− 5

12
(λγaC1λ)(λγ

bW 4)(W 2γmabW 3)

− 5

12
(λγaC1λ)(λγ

bW 3)(W 4γmabW 2)

− 1

4
(λγaW 2)(λγbW 3)(W 4γmabC1λ)

− 1

4
(λγaW 4)(λγbW 2)(W 3γmabC1λ)

− 1

4
(λγaW 3)(λγbW 4)(W 2γmabC1λ) .

The relative coefficients in (3.9) are determined from the requirement of BRST covariance;

it follows from the massive and massless superfield equations of motion that

QWm
1,2,3,4 = −(λγmC1λ)T2,3,4 −

[

(λγmW2)T1,3,4 + (2 ↔ 3, 4)
]

. (3.10)

As discussed in [3], considerations of BRST covariance involving a mixture of left- and

right-movers require a vectorial object whose BRST variation carries the vector index

exclusively in momenta. Inspired by the massless case of [3], one is led to consider the

following vectorial BRST block

Tm
1,2,3,4 = −(λHm

1 )T2,3,4 −
[

Am
2 T1,3,4 + 2 ↔ 3, 4

]

−Wm
1,2,3,4 (3.11)

with BRST variation

QTm
1,2,3,4 = −ikm2 V2T1,3,4 + (2 ↔ 3, 4) . (3.12)
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Berends-Giele. For convenience, we introduce the Berends-Giele non-local counterparts of

the above BRST blocks as

M12,3,4 =
1

s12
T12,3,4, M1,23,4 =

1

s23
T1,23,4, M13,2,4 =

1

s13
T13,2,4, (3.13)

Mm
1,2,3,4 = Tm

1,2,3,4 , M1,2,3 = T1,2,3

which satisfy

QM12,3,4 =M2M1,3,4, QM13,2,4 =M3M1,2,4, QM1,23,4 =M3M1,2,4 −M2M1,3,4, (3.14)

QMm
1,2,3,4 = −ikm2 M2M1,3,4 + (2 ↔ 3, 4), QM1,2,3 = 0 .

4. The massive 1-loop amplitude

In this section we will use the multiparticle massive superfields defined in section 3 to

construct a single-valued and BRST-invariant expression for the four-point open string

amplitude at one loop involving one first-level massive state. As a warm-up we will derive,

for the first time, the three-point massive amplitude at one loop.

4.1. Three points

Using the pure spinor prescription (2.1) with a massive V1 yields a unique saturation of

the zero modes dαdβN
mn as there is only three external vertices. More precisely,

[

V1U2U3

]

ddN
= dαdβN

mn
(

(C1λ)
αW β

2 F
mn
3 + (C1λ)

αFmn
2 W β

3 + (λF1)mnW
α
2 W

β
3

)

. (4.1)

In particular, there are not enough external vertices to produce a contribution with the

loop momentum, so the three-point correlator defined in (2.2) does not depend on ℓm.

Integrating out dαdβN
mn using (2.5) yields

K3 = −(λγmC1λ)(λγ
nW2)F

mn
3 − (λγmC1λ)F

mn
2 (λγnW3)− (λF1)mn(λγ

mW2)(λγ
nW3).

(4.2)

As will be demonstrated in (A.6), this becomes

K3 = (λF1)mn(λγ
mW2)(λγ

nW3) . (4.3)

The component expansion of (4.3) is straightforward to calculate [9,10] using the pure

spinor bracket 〈(λγmθ)(λγnθ)(λγpθ)(θγmnpθ)〉 = 1 [1] and the theta expansions of the

various superfields [27,19,28,22]. It yields

〈K3〉 =
1

640α′

(

g1mnf
ma
2 fna

3 − 1

2α′
b1mnpf

mn
2 ep3

)

+ fermions (4.4)
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where g1mn and b1mnp are the bosonic massive polarizations [17], and fmn
j = ikmj e

n
j −

iknj e
m
j are the linearized field strengths and emi are the gluons.

In the appendix A, we will use BRST cohomology manipulations similar to the ones

used in [29] to show the relation between the one-loop correlator (4.3) and tree-level am-

plitude (2.13):

〈(λF1)mn(λγ
mW2)(λγ

nW3)〉 =
1

2α′
〈(λHm

1 )V2(λγ
mW3)〉 =

1

2α′
A(1, 2, 3) , (4.5)

where 1/2α′ = −(k2 · k3). For convenience, we define the BRST invariant

C1|2,3 = T1,2,3 , (4.6)

and write the one-loop three-point correlator as K3 = C1|2,3.

4.2. Four points

The four-point amplitude with one massive state admits two types of zero-mode saturation:

contributions with dαdβN
mn or dαdβdγdδ. The first kind leads to OPE contractions among

the vertices leading to the massive multiparticle superfields discussed in section 3 as well as

ℓm(λHm
1 )T2,3,4 or ℓmA

m
2 T1,3,4 + (2 ↔ 3, 4). The zero-mode integration of the second kind

of contribution leads to ℓmW
m
1,2,3,4. These various contributions are organized according

to a desired property of BRST covariance of the individual blocks of superfields resulting

in an overall BRST-invariant correlator. As the massive four-point amplitude is analogous

to the massless five-point amplitude, the five-point correlator of [5] leads to the following

proposal,

K4(ℓ) = ℓmT
m
1,2,3,4 + g

(1)
12 T12,3,4 + g

(1)
13 T13,2,4 + g

(1)
14 T14,2,3 (4.7)

+ g
(1)
23 T1,23,4 + g

(1)
24 T1,24,3 + g

(1)
34 T1,34,2 .

Its BRST variation is a total worldsheet derivative,

QK4(ℓ) = V2T1,3,4

(

− (ik2 · ℓ)− s21g
(1)
21 − s23g

(1)
23 − s24g

(1)
24

)

+ (2 ↔ 3, 4) . (4.8)

To see this, one uses the worldsheet derivative of the Koba-Nielsen factor [4],

∂

∂zi
In(ℓ) =

(

ℓ · iki +
n
∑

j 6=i

sijg
(1)
ij

)

In(ℓ) (4.9)

is proportional to the right-hand side of (4.8). Therefore, once the integration over the

worldsheet insertion points is carried out, the amplitude (2.2) is BRST invariant as the

boundary terms vanish using the canceled propagator argument.
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4.2.1. Manifesting BRST invariance

Similarly to the discussion of BRST invariance in the massless one-loop amplitudes of [5],

one can use the integration by parts identities

s12g
(1)
12 ∼ (ℓ.ik2) + s23g

(1)
23 + s24g

(1)
24 , (4.10)

s13g
(1)
13 ∼ (ℓ.ik3)− s23g

(1)
23 + s34g

(1)
34 ,

s14g
(1)
14 ∼ (ℓ.ik4)− s24g

(1)
24 − s34g

(1)
34 ,

to obtain the BRST-invariant correlator

K4(ℓ) ∼ ℓmC
m
1|2,3,4 + s23g

(1)
23 C1|23,4 + s24g

(1)
24 C1|24,3 + s34g

(1)
34 C1|34,2 . (4.11)

In the above we defined the scalar BRST invariants

Cm
1|2,3,4 =Mm

1,2,3,4 + ikm2 M12,3,4 + ikm3 M13,2,4 + ikm4 M14,2,3 (4.12)

C1|23,4 =M12,3,4 +M1,23,4 −M13,2,4 (4.13)

C1|24,3 =M12,3,4 +M1,24,3 −M14,2,3 (4.14)

C1|34,2 =M13,2,4 +M1,34,2 −M14,2,3, (4.15)

in terms of the Berends-Giele currents defined in (3.13). Using the BRST variations (3.14),

one can show that the above combinations are BRST closed,

QCm
1|2,3,4 = QC1|23,4 = QC1|24,3 = QC1|34,2 = 0. (4.16)

The above four-point BRST invariants with one massive state have the same structure as

the five-point BRST invariants in the massless one-loop amplitudes of [3,5].

4.2.2. Manifesting single valuedness

It turns out that the massive BRST invariants (4.12)-(4.15) obey the analog momentum-

contraction identities as their massless counterparts, i.e.,

ikm2 〈Cm
1|2,3,4〉 − s23〈C1|23,4〉 − s24〈C1|24,3〉 = 0, (4.17)

ikm1 〈Cm
1|2,3,4〉 = 0

As discussed in [5], these identities are sufficient to show that the correlator (4.11) is

single-valued and can be rewritten in a manifestly single-valued manner as

K4 = s23f
(1)
23 C1|23,4 + s24f

(1)
24 C1|24,3 + s34f

(1)
34 C1|34,2 , (4.18)

after integrating out the loop momentum.
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4.2.3. Relation to the four-point tree amplitude

We know that the pure spinor superspace expressions of one-loop and tree-level correlators

are proportional in the massive three-point (4.5) and massless four-point [29] cases. It is

natural to ask what happens in the case of massive four-point correlators. Indeed, one can

show directly via their component expansions that (note sij = (ki · kj))

〈C1|23,4〉 = s24s34

( 1

s12
+

1

s13

)

Ktree
1|2,3,4 (4.19)

〈C1|24,3〉 = −s23s34
( 1

s12
+

1

s14

)

Ktree
1|2,3,4

〈C1|34,2〉 = s23s24

( 1

s13
+

1

s14

)

Ktree
1|2,3,4

where the tree-level kinematic factor is given by (2.14) and the one-loop BRST invariant is

given by (4.13). Note that (4.19) has been checked to hold for both bosonic massive states

in the first mass level (gmn and bmnp). By supersymmetry, also the fermionic components

will match on both sides. Similar identities were found with the RNS formalism in [11],

but the analysis was restricted to the bosonic state gmn (where they agree).

The above calculations use the convention sij = ki · kj , and therefore

s13 =
1

2α′
− s12 − s23,

s14 =
1

2α′
+ s23

s24 = − 1

2α′
+ s13 = −s12 − s23,

s34 = − 1

2α′
+ s12

(4.20)

where k21 = −1/α′ and k22 = k23 = k24 = 0. In addition, the relations

s12
s13

=
1

2α′s13
− s23
s13

− 1

s23
s14

= 1− 1

2α′s14

s12
s24

= −1− s23
s24

s12
s34

=
1

2α′s34
+ 1

s23
s13s34

= − 1

s23
− 1

s34
s23

s12s24
= − 1

s12
− 1

s24

(4.21)

follow from (4.20) and are useful in checking (4.19).

5. Closed strings

We have seen in (4.3) and (4.18) that the open-string one-loop three- and four-point corre-

lators with one massive state can be written in terms of tree-level kinematic factors. This

section is motivated by the desire to know to which extent the closed-string four-point4

correlator admits a rewriting in terms of tree-level kinematic data, if at all or for which

combination of massive and massless closed-string states.

4 From (4.3) it immediately follows that the holomorphic square of the open-string three-point

correlator can be written in terms of tree-level amplitudes.
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5.1. The four-point correlator

According to the chiral splitting formalism [14,15,16], the correlatorM4 of the closed string

amplitude is obtained after integrating the loop momentum in the holomorphic square of

the open-string correlator (4.11). Using the techniques described in [5] this leads to the

four-point closed-string correlator M4

M4 = |s23f (1)
23 C1|23,4 + (2, 3|2, 3, 4)|2 + π

Im τ
Cm

1,2,3,4C̃
m
1,2,3,4 . (5.1)

The four-point closed string amplitude at genus-one is then written as

M4 =

∫

F

d2τ

∫

d2z2d
2z3d

2z4Î4M4 (5.2)

where F is the fundamental domain of the genus-one moduli space and Î4 is the genus-one

Koba-Nielsen factor [5]

5.2. One-loop versus tree-level

The form of the correlator (5.1) featuring two distinct contributions, one with a holomor-

phic square and another with a vectorial contraction between the left- and right-movers,

is reminiscent of the one-loop correlator for five massless closed-string states considered in

[30]. In that case, the analogous vectorial contraction (see their equation (3.35)) was shown

to be rewritten in terms of the massless five-point tree-level amplitudes for type IIB states.

Moreover, that analysis had an immediate impact on the S-duality symmetry of type IIB

strings. While the massive amplitudes considered in this paper have no direct relation to

the S-duality property of massless amplitudes, it is still interesting to check whether the

massive correlator (5.1) at one-loop can be written in terms of its massive counterpart

(2.14) at tree level5. Surprisingly, we will show below that, for certain combinations of

massive and massless states, this is indeed possible.

First-level massive closed-string spectrum. The closed-string states in the first mass level

of bosonic amplitudes can be characterized by the dimension of their SO(9) irrep:

1, 36, 44, 84, 126, 231, 450, 495, 594, 910, 924, 1980, 2457, 2772. (5.3)

5 I thank Oliver Schlotterer for raising this question.
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An explicit component expansion using the closed-string state decompositions listed in the

Appendix B, reveals that the left-right contraction term in (5.1) can be written in terms

of the tree-level amplitude (2.14),

s12s13s14C
m
1|2,3,4C̃

m
1|2,3,4 = 4s223s

2
24s

2
34Ktree

1|2,3,4K̃tree
1|2,3,4 , (5.4)

for the following combination of external states in type IIB

gh3, gφh2 : g ∈ {1, 44, 84, 450, 495, 1980, 2457} (5.5)

gh2φ : g ∈ {126, 231}
gφ3 : g ∈ {231}
gbφ2 : g ∈ {2772}

where the massive state is represented by g, the graviton by h, the NS-NS 2-form by b and

the dilaton by φ. Similarly, equation (5.4) is satisfied in type IIA for6

gh3, ghφ2 : g ∈ {84, 450, 2457} (5.6)

gh2φ : g ∈ {126, 231}
gφ3 : g ∈ {231}

Note that the type IIB result (5.5) for the states 44 and 495 is only achieved if their

decompositions coming from gmn ⊗ g̃pq and bmnp ⊗ b̃qrs are fine-tuned with a relative

coefficient. More explicitly, for 44,

gmn ⊗ g̃pq = Πmn
am1

Πpq
am2

gm1m2

20000 , (5.7)

bmnp ⊗ b̃qrs =
13

2
α′Πmnp

abm1
Πpqr

abm2
gm1m2

20000

while for 495 we have,

gmn ⊗ g̃pq = gmpqn
02000 + gnpqm02000 + gmqpn

02000 + gnqpm02000 , (5.8)

bmnp ⊗ b̃qrs = −27

5
α′Πmnp

am1m2
Πpqr

am3m4
gm1m2m3m4

02000

see the appendix B for the definitions and the complete list.

It is interesting to note that a linear combination of massive first-level states in the

scalar representation 1 was considered in [31]. However the scalar 1 in 44 ⊗ 44 and the

scalar 1 in 84 ⊗ 84 individually satisfy (5.4) in the type IIB theory when paired with h3

or φ2h, so no linear combination of the scalars is necessary in this case.

6 A natural question to ask, in view of the results of [30], is whether different states satisfy a

modified version of (5.4) where the relative coefficient 4 is replaced by a rational number. However,

we have not found such a case.
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6. Conclusions

In this paper we used arguments based on pure spinor BRST covariance and single-

valuedness to propose expressions for one-loop correlators of the open string for three

and four points when one of the external legs is a first-level massive state.

We then integrated the loop momentum to obtain the closed-string correlator (5.1) of

the one-loop four-point massive amplitude. Its similarity with the massless five-point one-

loop amplitude in [30] led us to consider whether it can be rewritten in terms of tree-level

massive kinematic factors. We found certain combinations of massive and massless states in

(5.5) for the type IIB and (5.6) for the type IIA string theory for which this rewriting can be

done. It is worth noting that the analogous analysis of the closed-string five-point massless

one-loop correlator [30] had implications for the S-duality of type IIB string theory. It is

unclear at the moment whether the results of section 5.1 are an indication of something

else than a curiosity. It will be interesting to see if similar results hold for higher-point

and/or higher-loop amplitudes. We leave these investigations for the future.

Acknowledgements: I thank Oliver Schlotterer for asking a question which provided the

motivation for this work, for pointing out the RNS calculations of [11], and for suggesting

the closed-string analysis. I also thank him for comments on the draft.

Appendix A. Proof of tree-level and one-loop relation at three points

Lemma. In on-shell pure spinor superspace we have

〈(λF1)mn(λγ
mW2)(λγ

nW3)〉 =
1

2α′
〈(λHm

1 )V2(λγ
mW3)〉 . (A.1)

Proof. To see this, we start from the expression (4.3) and observe that (λγmC1λ) =

Q(λHm
1 ) [22]. Integrating the BRST charge by parts, using QFmn = ∂m(λγnW ) −

∂n(λγmW ) and the Dirac equation, leads to

−(λγmC1λ)(λγ
nW2)F

mn
3 − (λγmC1λ)F

mn
2 (λγnW3) = (A.2)

−
(

∂n1 (λH
m
1 )− ∂m1 (λHn

1 )
)

(λγmW2)(λγ
nW3) .

On the other hand, in the Berkovits-Chandia gauge [17] we have

(λF1)mn =
1

16

(

7∂m(λHn
1 )− 7∂n(λH

m
1 ) + (λγk

1mHn
1 )− (λγk

1nHm
1 )

)

, (A.3)
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and (λHk1

1 ) = 0. After a short calculation using the pure spinor constraint, this implies

2(λF1)mn(λγ
mW2)(λγ

nW3) =
(

∂m1 (λHn
1 )− ∂n1 (λH

m
1 )

)

(λγmW2)(λγ
nW3) (A.4)

Plugging this into (A.2) yields

−(λγmC1λ)(λγ
nW2)F

mn
3 − (λγmC1λ)F

mn
2 (λγnW3) = 2(λF1)mn(λγ

mW2)(λγ
nW3) ,

(A.5)

which means that

T1,2,3 = (λF1)mn(λγ
mW2)(λγ

nW3) . (A.6)

Therefore,

T1,2,3 = (λF1)mn(λγ
mW2)(λγ

nW3)

=
1

2

(

∂m1 (λHn
1 )− ∂n1 (λH

m
1 )

)

(λγmW2)(λγ
nW3)

=
1

2
(λHm

1 )(λγmW2)∂
n
2 (λγ

nW3) (A.7)

− 1

2
(λHn

1 )∂
m
3 (λγmW2)(λγ

nW3)

where we used momentum conservation ∂m1 = −∂m2 − ∂m3 and the Dirac equation to

arrive at the third equality. Using (λγnW3) = QAn
3 − ∂n3 V3 in the third line of (A.7) and

(λγmW2) = QAm
2 − ∂m2 V2 in the fourth yields

T1,2,3 =
1

2
(∂2 · ∂3)(λHm

1 )
(

V2(λγ
mW3) + V3(λγ

mW2)
)

(A.8)

=
1

2α′
(λHm

1 )V2(λγ
mW3)

where we dropped BRST-exact terms such as (λHm
1 )(λγmW2)∂

n
2QA

n
3 , used equation (3.9)

of [20] showing that the two terms inside the parenthesis in (A.8) are equal in the BRST

cohomology, and (∂2 · ∂3) = −s23 = 1
2α′

. Finally, this means

〈(λF1)mn(λγ
mW2)(λγ

nW3)〉 =
1

2α′
〈(λHm

1 )V2(λγ
mW3)〉 (A.9)

or equivalently, 〈K1loop
100 〉 = 1

2α′
〈Ktree

100 〉, finishing the proof.
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Appendix B. Tensorial description of first-level massive closed-string states

In this appendix we briefly review the tensorial description of irreps of SO(9) and SO(10)

using the mapping between Dynkin labels and Young diagrams [12] (see also [32]). We

also review the symmetries of the associated tensors that are not manifestly encoded in

the Young diagrams [33,34]. Finally, we list the explicit tensorial expressions of how the

closed-string states at the first massive level are constructed from the holomorphic square

of open-string states.

SO(9) tensor irreps. The irreps of SO(9) are labelled by four Dynkin labels (a1a2a3a4).

They correspond to a tensor (as opposed to a spinor) when a4 is even. In this case, the

irrep (a1a2a3a4) encodes a Young diagram with ai columns with i boxes for i = 1, 2, 3

and a4/2 columns with 4 boxes. For example (2200) maps to because there are two

columns with one box and two columns with two boxes.

SO(10) tensor irreps. The irreps of SO(10) labelled by five Dynkin labels (a1a2a3a4a5)

correspond to a tensor when a4 + a5 is even. Their mapping to Young diagrams works the

same way as in SO(9) for the labels a1, a2, a3, while the mapping of the labels a4 and a5

to columns require a separate analysis depending on two cases:

1. a4 ≤ a5: there are a4 columns of 4 boxes and (a5 − a4)/2 columns of 5 boxes

2. a4 > a5: this is the conjugate representation, there are a5 columns of 4 boxes and

(a4 − a5)/2 columns of 5 boxes

For example, (00011) is a tensor that maps to the 4-form . Similarly, both (00002) =

and (00020) = constitute 5-forms (self-dual and anti-self-dual).

Young tableaux and tensors. We associate traceless tensors to Young tableaux of SO(n)

by populating the columns with the tensor indices according to the antisymmetric basis

scheme [33]. For example,

1 5 7 8
2 6
3
4

↔ T12345678 = T[1234][56](78)
(B.1)

where the labels j in the tensor are a shorthand for vector indices mj . In (B.1) we also

display the explicit (anti)symmetries of the associated tensor. Being traceless irreps of

SO(n) means that the trace with respect to any two indices vanish

δmimjT...mi...mj ... = 0 , ∀i, j . (B.2)
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Garnir symmetries. The manifest symmetries in (B.1) do not describe all the symmetries of

the tensor. In general, tensors obey additional symmetries described by the Garnir relations

among Young tableaux [35,36,34]. Suppose column j of the Young diagram mapped to a

tensor T has bj boxes and let M = m1m2 . . .mp and N = n1n2 . . . nq be indices from

columns j and j + 1. If p+ q > bj then

T...[MN ]... = 0 . (B.3)

For example, the Garnir symmetries of the tensor associated to the Young diagram

(see (B.1)) can be written as

T[12345]678 = 0 , T1234[567]8 = 0 , T1[23456]78 = 0 . (B.4)

Note that if columns j and j+1 have the same number q of boxes, then it is also true that

swapping these two columns is a symmetry:

T...m1...mqn1...nq ... = T...n1...nqm1...mq... (B.5)

The symmetry (B.5) is not independent of the symmetries (B.3). This is easier to see with

the alternative description of the Garnir symmetries reviewed in section B.1.1.

B.1. open⊗open=closed for first-level massive states

The massive states of the superstring combine to representations of SO(9) but the am-

plitude calculations are done in the Wick-rotated ten-dimensional spacetime, where the

states are described by SO(10) irreps.

Consider all the SO(10) irreps in the tensor products [26] of gmn = (20000) and

bmnp = (00100) appearing in the open⊗open description of the closed-string states:

(20000)⊗ (00100) = (00100) + (10011) + (11000) + (20100) (B.6)

(20000)⊗ (20000) = (00000) + (01000) + (02000) + (20000) + (21000) + (40000)

(00100)⊗ (00100) = (00000) + 2(00011) + (00200) + (01000) + (01011) + (02000)

+ (10002) + (10020) + (10100) + (20000)

To each irrep (a1a2a3a4a5) we associate a transverse SO(10) tensor gm...
a1a2a3a4a5

. Their pre-

cise ranks and symmetries are determined from the mapping to Young diagrams described
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Dim Dynkin Young 44⊗ 44 84⊗ 84 84⊗ 44

1 (0000) .
√ √ ×

36 (0100)
√ √ ×

44 (2000)
√ √ ×

84 (0010) × ǫ9
√

126 (0002) × √ ×
231 (1100) × × √

450 (4000)
√ × ×

495 (0200)
√ √ ×

594 (1010) × √ ×
910 (2100)

√ × ×
924 (1002) × ǫ9

√

1980 (0020) × √ ×
2457 (2010) × × √

2772 (0102) × √ ×
Table 1. The first-level massive closed-string states characterized by their dimension, SO(9)
Dynkin labels and Young diagram. The columns dim ⊗ dim indicate the presence (

√
) or

absence (×) of the closed-string state in the tensor product of open-string states given in
(B.25). The entries ǫ9 indicate that the state contains a 9-dimensional Levi-Civita tensor.

above. For example, in SO(10) we have 320 = (11000) ↔ and therefore the associated

tensor gmnp
11000 has three indices with the symmetries of

kmg
mnp
11000 = 0, gmnp

11000 = −gnmp
11000, gmnp

11000 + gnpm11000 + gpmn
11000 = 0 . (B.7)

The branching to SO(9) irreps is given by 320 = 9+ 36+ 44+ 231 [37]. The transverse

and traceless conditions remove the lower dimensional irreps and we are left with 231.

In this sense we will call the tensor gmnp
11000 the 231 of SO(9). This leads to the following

decompositions:

• The closed-string state 1:

gmn ⊗ g̃pq = Πmn
pq g00000 (B.8)

bmnp ⊗ b̃qrs = α′Πmnp
qrs g00000

• The closed-string state 36 =

gmn ⊗ g̃pq = Πmn
am1

Πpq
am2

gm1m2

01000 (B.9)

bmnp ⊗ b̃qrs = α′Πmnp
abm1

Πpqr
abm2

gm1m2

01000
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• The closed-string state 44 =

gmn ⊗ g̃pq = Πmn
am1

Πpq
am2

gm1m2

20000 (B.10)

bmnp ⊗ b̃qrs =
13

2
α′Πmnp

abm1
Πpqr

abm2
gm1m2

20000

• The closed-string state 84 =

gmn ⊗ b̃qrs = g̃mn ⊗ bqrs = Πmn
am1

Πqrs
am2m3

gm1m2m3

00100 (B.11)

• The closed-string state 126 =

bmnp ⊗ b̃qrs = α′Πmnp
am1m2

Πpqr
am3m4

gm1m2m3m4

00011 + ǫ̂mnpqrsabcd
10 gabcd00011 (B.12)

• The closed-string state 231 =

gmn ⊗ b̃qrs = Πmn
am1

Πqrs
am2m3

gm2m3m1

11000 (B.13)

• The closed-string state 450 =

gmn ⊗ g̃pq = gmnpq
40000 (B.14)

• The closed-string state 495 =

gmn ⊗ g̃pq = gmpqn
02000 + gnpqm02000 + gmqpn

02000 + gnqpm02000 (B.15)

bmnp ⊗ b̃qrs = −27

5
α′Πmnp

am1m2
Πpqr

am3m4
gm1m2m3m4

02000

• The closed-string state 594 =

bmnp ⊗ b̃qrs = α′Πmnp
am1m2

Πpqr
am3m4

gm1m2m3m4

10100 (B.16)

• The closed-string state 910 =

gmn ⊗ g̃pq = gmpqn
21000 + gnpqm21000 + gmqpn

21000 + gnqpm21000 (B.17)

• The closed-string state 924 =

gmn ⊗ b̃pqr = g̃mn ⊗ bpqr = gmpqrn
10011 + gnpqrm10011 (B.18)
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• The closed-string state 1980 =

bmnp ⊗ b̃abc = gmnpabc
00200 (B.19)

• The closed-string state 2457 =

gmn ⊗ b̃qrs = g̃mn ⊗ bqrs = gqrsmn
20100 (B.20)

• The closed-string state 2772 =

bmnp ⊗ b̃qrs = gmnpqrs
01011 + gmnpsqr

01011 + gmnprsq
01011 (B.21)

and we ignore the SO(9) states associated with (10002) and (10020) as their SO(10)

Young diagrams have columns with five boxes which imply that the SO(9) states are

proportional to a nine-dimension Levi-Civita. In the above the various tensors g... have

the same symmetries of their associated Young diagrams and Πmn
ab and Πmnp

abc are the

Young projectors [38] (see also [33,39,40]):

Πmn
pq =

1

2
(δ̂mpδ̂nq + δ̂mq δ̂np)−

1

9
δ̂mnδ̂pq (B.22)

Πmnp
qrs = δ̂[mq δ̂nr δ̂

p]
s

where

δ̂mn = δmn − kmkn
(k · k) (B.23)

satisfies kmδ̂mn = 0 for the first-level massive condition α′k2 = −1. Both projectors

(B.22) are traceless and transverse if α′k2 = −1. These conditions are necessary in

order for the above decompositions to be traceless and transverse, since gmn and bmnp

are both traceless and transverse (w.r.t k1). Furthermore

ǫ̂mnpqrsabcd
10 = ǫmnpqrsabcd

10 − 10!α′k
[m
1 ǫ

npqrsabcd]k1

10 (B.24)

satisfies km1 ǫ̂
mnpqrsabcd
10 = 0. If we denote gmn and bmnp by their open-string SO(9)

irrep dimensions 44 and 84, the decompositions above can be summarized by the

following tensor products [26]

44⊗ 84 = 84⊕ 231⊕ 924⊕ 2457 (B.25)

44⊗ 44 = 1⊕ 36⊕ 44⊕ 450⊕ 495⊕ 910

84⊗ 84 = 1⊕ 36⊕ 44⊕ 84⊕ 126⊕ 495⊕ 594⊕ 924⊕ 1980⊕ 2772
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B.1.1. Alternative description of the Garnir symmetries

In this subsection we give an alternative description of the Garnir symmetries following

[41], in which all the signs are positive. More precisely, for a given tableau, summing over

all ways of exchanging the top k elements of one column with k elements of the preceding

column while preserving the vertical orders within each set of k elements gives back the

original tableau.

As an illustration, consider the tableau in (B.1) and its associated tensor T12345678.

To find all its non-trivial symmetries, we start by considering the k = 1 relation for the

second column. We get the corresponding identity

1 5 7 8
2 6
3
4

=

5 1 7 8
2 6
3
4

+

1 2 7 8
5 6
3
4

+

1 3 7 8
2 6
5
4

+

1 4 7 8
2 6
3
5

T12345678 = T52341678 + T15342678 + T12543678 + T12354678 (B.26)

Similarly, k = 1 for the third column yields

1 5 7 8
2 6
3
4

=

1 7 5 8
2 6
3
4

+

1 5 6 8
2 7
3
4

T12345678 = T12347658 + T12345768 , (B.27)

It is easy to see that k = 1 for the fourth column leads to the trivial symmetry (78) that

can be read off from the tableau itself.

Now we consider the k = 2 relation with the top two elements {5, 6} of the second

column in (B.1). This yields

1 5 7 8
2 6
3
4

=

5 1 7 8
6 2
3
4

+

5 1 7 8
2 3
6
4

+

5 1 7 8
2 4
3
6

+

1 2 7 8
5 3
6
4

+

1 2 7 8
5 4
3
6

+

1 3 7 8
2 4
5
6

T12345678 = T56341278 + T52641378 + T52361478 + T15642378 + T15362478 + T12563478 . (B.28)

It is not difficult to show that the above symmetries are equivalent to7

T[12345]678 = 0 , T1234[567]8 = 0 , T1[23456]78 = 0 . (B.29)

7 To show the third equation, start from (B.28) and use (B.26) to rewrite T5... =
∑

T1....
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In this description of the Garnir symmetries it is easy to see that if two adjacent columns

have the same number of boxes, then swapping the corresponding columns in the Young

tableau is a symmetry (choose k to be the total number of boxes).

Young projections. There is a way to experimentally verify the above Garnir symmetries.

To see this for the specific example in (B.1), define the tensor as

T (1, . . . , 8) =W1...8 + (1578) + (26) + [1234] + [56] (B.30)

where W... denote words and the (anti)symmetrizations must follow the specified order:

first symmetrize over 1, 5, 7, 8, then symmetrize over 2, 6, then antisymmetrize over 1, 2, 3, 4

and then antisymmetrize over 5, 6. This yields 2304 words in the right-hand side of (B.30),

and the expression is available to download in [8]. The symmetries (B.29) are then satisfied

by (B.30).
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