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We obtain exact expressions for correlation functions of charged scalar operators at finite density and
low temperature in CFT4 dual to the RN-AdS5 black-brane. We use recent developments in the Heun
connection problem in black hole perturbation theory arising from Liouville conformal field theory (CFT)
and the Alday-Gaiotto-Tachikawa correspondence. The connection problem is solved perturbatively in an
instanton counting parameter, which is controlled in a double-scaling limit where ω; T → 0 holding ω=T
fixed. This provides analytic control over the emergence of the zero temperature branch cut as a confluent
limit of the Heun equation. From the Green’s function we extract analytic results for the critical temperature
of the holographic superconductor, as well as dispersion relations for both gapped and gapless low
temperature quasinormal modes. We demonstrate precise agreement with numerics.
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Introduction and results. The real-time linear response of
strongly coupled quantum field theories (QFTs) at finite
temperature and density is a challenging domain where the
techniques of holographic duality [1,2] can be exploited to
perform first-principles computations. In this context,
retarded correlators are of considerable interest in the
context of condensed matter physics [3,4], nuclear colli-
sions [5–7], and neutron stars [8,9].
In this work we analytically compute retarded correlation

functions at finite density and low temperature by exploit-
ing recent developments connecting black hole perturba-
tion theory to Seiberg-Witten theory [10], and subsequently
the connection problem for the Heun equation [11–14],1
which governs the linear response problem in holography.
We gain unprecedented insight into the analytic structure of
low-temperature correlators, including an exact description
of the coalescence of poles into branch cuts at zero
temperature, as well as analytic control over pole locations
and the superconducting phase transition. Other recent
works in the holographic context that have utilized such
techniques are [16–18].

The focus of this work are retarded Green’s functions of
scalar operators of conformal dimension Δ,

GRðx; yÞ ¼ −iθðx0 − y0Þh½OΦðxÞ;OΦðyÞ�i; ð1Þ

in momentum space, G̃RðpÞ ¼ R d4xGRð0; xÞe−ipx with

pμ ¼ ðω; k⃗Þ. We focus on the 3þ 1-dimensional QFT dual
to the Reissner-Nordström (RN)-AdS5 black-brane at
chemical potential μ, as a solution of the classical equations
of motion of the action, S ¼ R ffiffiffiffiffiffi−gp

d5xðR − F2 þ 12Þ,
where F ¼ dA, given by the following spacetime metric,

ds2 ¼ −fðrÞdt2 þ dr2

fðrÞ þ r2dx⃗2; ð2Þ

fðrÞ ¼ r2 −
1þ 4μ2

3

r2
þ 4μ2

3r4
ð3Þ

and gauge field,

A ¼ μ

�
1 −

1

r2

�
dt: ð4Þ

Here the anti-de Sitter (AdS) radius is one, the event

horizon is located at r ¼ 1 and the temperature T ¼ 3−2μ2
3π .

To compute (1) in this state we consider linearized
charged scalar field perturbations Φ on this background,
dual to the scalar operator OΦ. Φ obeys D2Φ ¼ m2

ΦΦ
where D≡∇ − ieA and m2

Φ ¼ ΔðΔ − 4Þ. We restrict to
Δ > 2 and present our method at generic values of Δ.
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1See also [15], where an isomonodromy method was used to
study the quasinormal modes of small Reissner-Nördstrom-AdS5

black holes.
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Our results are as follows. We denote variables made
dimensionless with μ using hats, i.e., T̂ ¼ T

μ, k̂ ¼ k
μ, ω̂ ¼ ω

μ

and we consider the double scaling regime T̂ → 0 and
ω̂ → 0 holding ω̃ ¼ ω

T fixed. We compute G̃Rðω̃; k̂Þ, which
takes the following form

G̃Rðω̃; k̂Þ ¼ N
C4−Δ;νðω̃; k̂Þ − C4−Δ;−νðω̃; k̂ÞGðω̃; k̂Þ
CΔ;νðω̃; k̂Þ − CΔ;−νðω̃; k̂ÞGðω̃; k̂Þ

; ð5Þ

where the various terms appearing N; CΔ;ν;G are deter-
mined analytically as a systematic expansion in T̂ within
the double scaling regime,

CΔ;νðω̃; k̂Þ ¼ Cð0ÞΔ;νðk̂Þ þ Cð1ÞΔ;νðω̃; k̂ÞT̂ þOðT̂2Þ; ð6Þ
Gðω̃; k̂Þ ¼ Gð0Þðω̃; k̂ÞT̂2ν þ Gð1;þÞðω̃; k̂ÞT̂2νþ1 log T̂

þ Gð1;−Þðω̃; k̂ÞT̂2νþ1 þOðT̂2νþ2 log T̂Þ ð7Þ
N ¼ 2ðΔ − 2Þ3Δ−2 þOðT̂Þ: ð8Þ

We present explicit expressions for the contributions

appearing in (5): Gð0Þðω̃; k̂Þ (9), and Cð0ÞΔ;νðk̂Þ, Cð1ÞΔ;νðω̃; k̂Þ,
Gð1;�Þðω̃; k̂Þ in the Supplemental Material [19]. One may
straightforwardly extend this series to higher orders using
the methodology presented.
In particular note that Gð0ÞT̂2ν can be interpreted as a

finite-T̂ AdS2 Green’s function, where

Gð0Þðω̃; k̂Þ ¼
�
2π2

27

�
ν Γð−2νÞ2
Γð2νÞ2

×
Γð1

2
− ie

2
ffiffi
6

p þ νÞ
Γð1

2
− ie

2
ffiffi
6

p − νÞ
Γð1

2
þ νþ ie

2
ffiffi
6

p − iω̃
2πÞ

Γð1
2
− νþ ie

2
ffiffi
6

p − iω̃
2πÞ

; ð9Þ

and where the parameter

ν≡ 1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ ΔðΔ − 4Þ

3
þ k̂2

2
−
e2

6

s
ð10Þ

labels representations of the near-horizon AdS2 theory at
T̂ ¼ 0 with conformal dimensions δ� ¼ 1

2
� ν [25]. In

particular, G̃R is invariant under ν → −ν. Some parts of
this analytic structure were seen in low ω̂ perturbation
theory near extremality [25–28]. In [25–27] the structure
seen in (9) was obtained as a correlator for a black hole
inside AdS2. In [28] the leading matching coefficients for a
small-ω̂ expansion were obtained using hypergeometric
connection formulas which arise at extremality, and we find
agreement in that limit.2 See also [29–34] for other related

low ω̂; T̂ matching computations involving AdS2 critical
points. Here we emphasize that the Heun connection
problem is naturally controlled by low T̂ at fixed
ω̃ ¼ ω=T ¼ Oð1Þ, which provides a systematic treatment
of the correlators—indeed, ω̃ appears nontrivially inside

each of Gð0Þðω̃; k̂Þ, Cð1ÞΔ;νðω̃; k̂Þ, Gð1;�Þðω̃; k̂Þ.
The closed-form Green’s function (5) is the full

RN-AdS5 correlator—rather than an AdS2 near-horizon
result—and it displays an intricate analytic structure for
which we find excellent agreement with low-temperature
numerics, as shown in Fig. 1. Moreover, we note that taking
T̂ → 0 holding ω̂ fixed at 1 has

T̂2ν
Γð1

2
þ νþ ie

2
ffiffi
6

p − iω̂
2πT̂

Þ
Γð1

2
− νþ ie

2
ffiffi
6

p − iω̂
2πT̂

Þ →
�
−
iω̂
2π

�
2ν

; ð11Þ

where we used the Stirling approximation Γðzþ αÞ=ΓðzÞ ∼
zα for z → ∞ and α∈C, and then took the T̂ → 0 limit.
This analytically describes a line of poles coalescing into a
branch point at ω̂ ¼ 0, capturing the process previously
observed numerically in [35–37] in the context of
RN-AdS4. This is illustrated in Fig. 2.
When ReðνÞ > 0 the line of poles in question can be

determined analytically. Because of the presence of the
term T̂2ν, these poles can be read off from the poles of the Γ
function in the numerator of Gð0Þ,

FIG. 1. Comparison of analytic and numerical results for the
retarded Green’s function. Solid curves show the analytic
expressions (5) while dots are numerics. We take Δ¼ 5=2, k̂ ¼ 0

and ν2 ¼ −0.07 at T̂ ¼ 4 × 10−4, where T̂c ¼ 3.4 × 10−4. The
visible peak is the imprint of the superconductor zero mode since
we are near T̂c. Here Nρ ¼ 400. Upper panel: Along the real ω̃
axis. Lower panel: Along the imaginary ω̃ axis.

2We note qthere ¼ ehere=2, T there ¼
ffiffiffiffiffiffiffiffi
3=2

p
T̂here, and GðTÞ

k;there ¼
22ν34νΓð2νÞGð0Þ

here=Γð−2νÞ.
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ω̃ ¼ ω̃0 þ ω̃1T̂ þ ω̃2νT̂
2ν þOðT̂2; T̂4νÞ; ð12Þ

ω̃0 ¼
πeffiffiffi
6

p − iπð2νþ 2nþ 1Þ ð13Þ

where n∈Z≥0 and where ω̃2ν and ω̃1 are given in (33)
and (34), respectively.3 A comparison of these terms to
numerics is presented in Table I.
Additionally, using (5) we gain analytic control over

the phase transition of the holographic superconductor
[38–41]. If parameters are chosen such that T̂c for super-
conductivity is low, then we can obtain T̂c and the
associated zero mode dispersion relation from (5). For
generic ν, T̂c assumes the n-sheeted expression4

T̂ðnÞ
c ¼ exp

"
1

2ν̃
log

 
Cð0ÞΔ;ν̃ð0Þ

Cð0ÞΔ;−ν̃ð0ÞGð0Þð0; 0Þ

!
−
iπn
ν̃

#
; ð14Þ

where ν̃ ¼ νjk̂¼0. When ReðνÞ ¼ 0, a superconducting
instability is expected on the grounds that the AdS2 BF-
bound is violated [38]. For 0 < 2ν ≤ 1, there is a single real

sheet, given by T̂ð0Þ
c , but for ReðνÞ ¼ 0 there are multiple

sheets labeled by n. As we discuss shortly, the relevant
sheets at asymptotically low temperature correspond to
n ¼ 1, extending to higher temperature by continuity. The
other physical sheets correspond to subleading instabilities
as higher overtone quasinormal modes (QNMs) cross into

the upper half plane. See Fig. 3 where we compare T̂ðnÞ
c to

numerics. Finally, at T̂ ¼ T̂ðnÞ
c , we extract the hydrody-

namic dispersion relation for the superconductor zero
mode,

ω̂ðnÞðk̂Þ ¼ −iDðnÞk̂2 þOðk̂4Þ ð15Þ

with DðnÞ given in the Supplemental Material [19]. We
remark that while the gapped modes (13) at leading order
are associated with a near-horizon AdS2 at T̂ ¼ 0, the
mode (15) is not.

Method and analysis. The first step is to relate the equation
of motion forΦ to the Heun equation. We begin with a new
radial variable

z ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
48μ2 þ 9

p
þ 9

6ð1 − r2Þ ; ð16Þ

with z ¼ 0 corresponding to the conformal boundary and
z ¼ ∞ to the black hole horizon. Under separation of
variables and an appropriate choice of prefactor,5

Φ¼ e−iωtþik⃗·x⃗

ffiffiffi
z

pffiffiffiffiffiffiffiffiffiffi
1−z

p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
6z2−4μ2ðzþ1Þ2−15zþ64

p
×exp

�
−
1

2
tanh−1

�
8μ2þ4ð2μ2−3Þzþ15

3
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
48μ2þ9

p ��
ψðzÞ

ð17Þ

FIG. 2. Analytic structure of G̃R at low T̂ ∼ ω̂ in the ω̂ plane,
described using closed-form solutions to the Heun connection
problem. The analytic expression for G̃R (5) captures the process
where the lineof poles (12) coalesces in to a branch cut at T̂ ¼ 0, as a
confluent limit of the Heun equation via (11). Optionally, by tuning
model parameters so that the holographic superconductor critical
temperature T̂c ≪ 1, then (5) also captures the holographic super-
conductor zero mode (15), (36) (red asterisk) and T̂c itself.

FIG. 3. Comparison of analytic and numerical results for the
holographic superconductor critical temperature at various Δ.
Solid curves show the analytic result (14), while dots are
numerics. For (14) to apply, Δ, e must be such that T̂c is small,
and in this regime we find excellent agreement. The red plus
corresponds to the top-down superconductor of [42] which we
discuss further in the conclusions.

3When e ¼ 0 the leading order term ω̃0 was previously
obtained in [17] using similar methods.

4Strictly speaking T̂c here corresponds to the temperature at
which a zero mode appears in the spectrum.

5The redefinition of the wave function using this prefactor can
be reinterpreted as a particular choice of spacetime foliation as
discussed in [43].
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then ðD2 −m2
ΦÞΦ ¼ 0 reduces to the Heun equation

ψ 00ðzÞ þ
�1
4
− a20
z2

þ
1
4
− a21

ðz − 1Þ2 þ
1
4
− a2t

ðz − tÞ2

−
1
2
− a21 − a2t − a20 þ a2∞ þ u

zðz − 1Þ þ u
zðz − tÞ

�
ψðzÞ ¼ 0;

ð18Þ

with regular singular points at 0; 1; t;∞. The parameters
a0; a1; at; a∞; u and singular point t are given in the
Supplemental Material [19]. We remark that 1=t is propor-
tional to T̂,

1

t
¼ 2π

9
T̂ þOðT̂2Þ; ð19Þ

so that in the extremal limit the singular point t collides with
the one at infinity, resulting in the confluent Heun equation
with an irregular singular point. The local solutions around
the singularities of the differential equation (18) can be
written in terms of the Heun function [44,45]

Heunðt; q; α; β; γ; δ; zÞ ¼ 1þ q
tγ
zþOðz2Þ; ð20Þ

by considering the wave function

wðzÞ ¼ z−
1
2
þa0ð1 − zÞ−1

2
þa1ðt − zÞ−1

2
þatψðzÞ: ð21Þ

In particular, we are interested in the basis of solutions
around z ¼ ∞, the horizon, and around z ¼ 0, the AdS
boundary. At z ¼ ∞ we require ingoing perturbations for
retarded Green’s functions [46–48], which selects the
behavior,

wð∞ÞðzÞ ∼ z−1þa0þa1þatþa∞ for z ∼∞: ð22Þ

This can be analytically continued to the region close to
z ¼ 0 where it can be written as

Cð∞0Þ
þ wð0Þ

þ ðzÞ þ Cð∞0Þ
− wð0Þ

− ðzÞ; ð23Þ

where the independent solutions at the boundary wð0Þ
� ðzÞ

admit the behavior

wð0Þ
− ∼ 1 for z ∼ 0; ð24Þ

wð0Þ
þ ∼ z2a0 for z ∼ 0: ð25Þ

From (23) the retarded Green’s function can be read off,

G̃Rðω̃; k̂Þ ¼ N
Cð∞0Þ

þ
Cð∞0Þ

−
; ð26Þ

whereN accounts for additional constant factors picked up
in a change of variables from z as defined in (16) to
Fefferman-Graham coordinates, and constant prefactors
from holographic renormalization [49],

N ¼ 2ðΔ − 2Þ

×

�
−
3

2
−
1

2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
9þ 2πT̂ð3πT̂ −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
24þ 9π2T̂2

p
Þ

q �Δ−2
:

ð27Þ

The connection formulas for Cð∞0Þ
� in (23) were

obtained in [13] by studying the connection coefficients
of five-point conformal blocks with a degenerate insertion
in Liouville conformal field theory.6 These satisfy the
Belavin-Polyakov-Zamolodchikov equation [50], which in
the semiclassical limit becomes a Heun equation. The
outcome is,

TABLE I. Comparing analytic QNM formulas (12), (33), (34) at n ¼ 0 with a numerical determination of the fundamental mode.
Chosen parameters are Δ ¼ 5=2, e ¼ 2, and k̂ ¼ 7=ð3 ffiffiffi

2
p Þ where ν ¼ 1=3. Bold indicates agreement with numerics when rounded to

that many significant figures. In the “ω̃ numerics” column we used Nρ ¼ 200, 200, 300, 700, 2000 (from top to bottom) to obtain
convergence to the displayed number of decimal digits.

T̂ ω̃ numerics ω̃0 ω̃0 þ ω̃2νT̂
2ν ω̃0 þ ω̃2νT̂

2ν þ ω̃1T̂

10−1 4.273209 − 4.579409i 2.565100 − 5.235988i 2.817226 − 5.066166i 3.783624 − 5.026993i
10−2 2.726249 − 5.195875i 2.565100 − 5.235988i 2.619419 − 5.199401i 2.716058 − 5.195483i
10−3 2.586764 − 5.227755i 2.565100 − 5.235988i 2.576802 − 5.228105i 2.586466 − 5.227714i
10−4 2.568597 − 5.234252i 2.565100 − 5.235988i 2.567621 − 5.234290i 2.568587 − 5.234250i
10−5 2.565740 − 5.235618i 2.565100 − 5.235988i 2.565643 − 5.235622i 2.565739 − 5.235618i

6An alternative approach can be taken using recurrence
relations, as discussed in [14]. In this work we follow the
approach of [11,13].
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Cð∞0Þ
� ¼

X
σ¼�

�
Γð1−2σaÞΓð−2σaÞΓð1−2a∞ÞΓð∓ 2a0ÞQ

θ¼�Γð12−a∞þθat−σaÞ

×
e−

1
2
ð�∂a0

þ∂a∞þσ∂aÞFð1=tÞþiπð1−a1∓a0Þ

t
1
2
−a∞−atþσa

Q
θ¼�Γð12∓ a0þθa1−σaÞ

�
: ð28Þ

The analysis to get this result proceeds in two steps:
considering the pants-decomposition of the four-punctured
sphere representing the z-space of the Heun equation, z¼0
and z ¼ ∞ lie in two different patches. To connect them, one
has to pass through the intermediate region, whose mono-
dromy properties are encoded in the parameter a. a is related
to the instanton part of the Nekrasov-Shatashvili free-
energy, Fð1=tÞ, through Matone relation [51],

u ¼ −
1

4
þ a2 − a2∞ þ a2t þ t∂tFð1=tÞ: ð29Þ

Further details of this procedure and of the computation of
Fð1=tÞ are given in the Supplemental Material [19]. At
leading order one has

Fð1=tÞ¼ ða2−a20þa21− 1
4
Þða2−a2∞þa2t − 1

4
Þ

ð1
2
−2a2Þt þO

�
1

t2

�
:

ð30Þ

Then a can be obtained by inverting (29) order-by-order in
1=t. At leading order in the temperature, provided (19), one
has a ¼ νþOðT̂Þ with ν given in (10). The final step to
obtain (5) is to note that the subleading corrections in T̂ come
with prefactors that behave as ω̂=T̂. If ω̂ is treated asOðT̂0Þ
then these would appear at leading order in the T̂ expansion,
requiring resummation. Instead, here we hold ω̃≡ ω̂=T̂
fixed which leads to a controlled T̂ expansion. This
completes the derivation of (5).
Finally we present some additional details in the analysis

of the resulting Green’s function (5). The pole locations
(12) can be obtained analytically by distinguishing different
regimes for the parameter ν. Let us first consider the case
ReðνÞ > 0. Because of the presence of the term T̂2ν, the
leading order of ω̃ in T̂ is found by looking at the poles of
the Γ function in the numerator of Gð0Þ including ω̃ in its
argument,

1

2
þ νþ ie

2
ffiffiffi
6

p −
iω̃0

2π
¼ −n; n∈Z≥0 ð31Þ

from which we obtain (13). The first subleading correction
depends on the value of Reð2νÞ. If 0 < Reð2νÞ ≤ 1, then
setting ω̃ ¼ ω̃0 þ ω̃2νT̂

2ν and plugging this into Gð0Þ gives

Gð0ÞT̂2ν ¼
�
2π2

27

�
ν 2iπð−1Þn
ω̃2νΓð−n − 2νÞn!

×
Γð−2νÞ2Γð1

2
þ ν − ie

2
ffiffi
6

p Þ
Γð2νÞ2Γð1

2
− ν − ie

2
ffiffi
6

p Þ þOðT̂2νÞ; ð32Þ

from which

ω̃2ν ¼
�
2π2

27

�
ν 2iπð−1Þn
Γð−n − 2νÞn!

Γð1
2
þ ν − ie

2
ffiffi
6

p Þ
Γð1

2
− ν − ie

2
ffiffi
6

p Þ

×
Γð−2νÞ2Qσ¼�Γðνþ σ e

2
ffiffi
3

p þ Δ−1
2
Þ

Γð2νÞ2Qσ¼�Γð−νþ σ e
2
ffiffi
3

p þ Δ−1
2
Þ : ð33Þ

The coefficients of the corrections ω̃kT̂
k, k ¼

1;…; bReð2νÞc in the ω̃ expansion can be obtained by
looking at the poles of the Γ-function Γð1

2
− a∞ þ at þ aÞ

by considering the 1=t expansion of a up to order
bReð2νÞc. This is the generalization of the procedure
providing the expression of ω̃0 seen above. For example,
the expression of ω̃1 reads

ω̃1¼
π2

36

�ð2νþ2nþ1Þ½3eð4ΔðΔ−4Þþ9k̂2−8Þ−7e3�
12νð4ν2−1Þ

þ i

�
7e2−14ðΔ−1ÞðΔ−3Þ−3k̂2

2
ffiffiffi
6

p
ν

−7
ffiffiffi
6

p
ð2nþ1Þ

��
:

ð34Þ

After including these integer corrections, the term ω̃2νT̂
2ν in

the ω̃ expansion will not be affected.
Let us turn to the critical temperature result (14). This

is obtained by setting ω̃ ¼ k̂ ¼ 0 and finding T̂ at which
there is a zero of the denominator of (5) at leading
order,

Cð0Þ4−Δ;ν̃ð0Þ − Cð0Þ4−Δ;−ν̃ð0ÞGð0Þð0; 0ÞT̂2ν̃
c

Cð0ÞΔ;ν̃ð0Þ − Cð0ÞΔ;−ν̃ð0ÞGð0Þð0; 0ÞT̂2ν̃
c

: ð35Þ

Since T̂ appears only in the combination T̂2ν̃ there are
multiple solutions given by (14). Due to the low T̂
expansion employed in (35) we can only capture those
branches of solution which admit a parameter regime
with asymptotically low T̂c. Near ν2 ¼ 0− the n ≥ 1

branches have a low T̂ regime. Near 2ν ¼ 1 the n ¼ 0

branch also has a low T̂ regime, however, we find no

zero mode associated to it; if we expand (35) for T̂c ¼
T̂ð0Þ
c around ν ¼ 1=2, we find an expansion without

poles at ν ¼ 1=2. Indeed, there are a pair of poles, one
of either side of ν ¼ 1=2, whose combined contribution
to the full Green’s function appears at order T̂. Thus we
expect the physical T̂c is given by n ¼ 1 near ν̃2 ¼ 0−,
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and extends to higher T̂c by continuity, along which
n jumps.
When considering the extremal limit T̂ ¼ 0, the gen-

eration of the branch cut in ω can be seen from (11).
Substituting (11) in the leading order of Gðω̂; k̂Þ before
rescaling the frequency with the temperature, we find the
analytic result for the holographic superconductor zero
mode, appearing as a red asterisk in Fig. 2,

ω̂� ¼ 2iπ exp

"
1

2ν
log

 
Cð0ÞΔ;νðk̂Þ

Cð0ÞΔ;−νðk̂ÞGð0Þ
extðk̂Þ

!
−
iπn
ν

#
; ð36Þ

where

Gð0Þ
extðk̂Þ ¼

�
2π2

27

�
ν Γð−2νÞ2
Γð2νÞ2

Γð1
2
− ie

2
ffiffi
6

p þ νÞ
Γð1

2
− ie

2
ffiffi
6

p − νÞ : ð37Þ

The integer n in (36) labels the sheet around the ω̂
branch cut.
By considering the hydrodynamic expansion (around

small ω̂ and small k̂) of the leading order in T̂ of the

denominator of (5) at T̂ ¼ T̂ðnÞ
c ,

Cð0ÞΔ;νðk̂Þ − Cð0ÞΔ;−νðk̂ÞGð0Þ
�

ω̂

T̂ðnÞ
c

; k̂

�
½T̂ðnÞ

c �2ν; ð38Þ

we find the hydrodynamic zero-mode dispersion rela-
tion (15).

Comparison with numerics. To compute G̃Rðω̃; k̂Þ numeri-

cally we write Φ ¼ e−iωtþik⃗·x⃗ð1 − ρ2Þ−iω̃
4πρ4−ΔhðρÞ where

ρ ¼ 1=r, so that regularity of h at ρ ¼ 1 corresponds to
an ingoing perturbation. We then discretize the resulting ρ
differential operator using Chebyshev spectral methods
using Nρ points, and solve for hðρÞ subject to the boundary
condition hð0Þ ¼ 1. Extracting the coefficient of ρ2Δ−4 at
the boundary gives the Green’s function. An example
comparison between numerics and (5) is shown in Fig. 1
near the superconducting critical temperature.

To compute QNMs numerically we write Φ ¼
e−iωtþik⃗·x⃗ð1 − ρÞ−iω̃

4πρ
Δ
2hðρÞ where ρ ¼ 1=r2, so that regular-

ity of h at ρ ¼ 1 corresponds to an ingoing perturbation
while regularity of h at ρ ¼ 0 corresponds to a normalizable
mode. We then discretize the resulting ρ differential
operator using Chebyshev spectral methods using Nρ

points, which yields a matrix eigenvalue problem after
converting to first order form. Eigenvalues are obtained
using Arnoldi iteration. We compute the fundamental mode
and compare to (12) in Table I, with agreement continuing
to improve as T̂ is lowered. With this method, we also
numerically compute T̂c by iteratively root finding for the

zero mode using Newton-Raphson. This is then compared
to the analytic formula (14) in Fig. 3.

Outlook. A natural question is whether any consistent
string/M-theory embeddings of the holographic super-
conductor [42,52,53] can be analytically described. The
type-IIB truncation of [42] falls into the class of models
we have studied here. The operator studied there has Δ ¼
3 and e ¼ 2

ffiffiffi
3

p
, with numerically determined critical

temperature T̂c ≃ 0.1051.7 This operator is marked in
red in Fig. 3. There is an appreciable difference to our
leading analytic result (14), because T̂c is not particularly
small. We can however go a bit further, by including
additional corrections in T̂ to the denominator of (5)
which take the following form,

Cð0ÞΔ;ν þ Cð1ÞΔ;νT̂ − ðCð0ÞΔ;−ν þ Cð1ÞΔ;−νT̂Þ½Gð0ÞT̂2ν

þ Gð1;þÞT̂2νþ1 logðT̂Þ þ Gð1;−ÞT̂2νþ1�; ð39Þ

with Gð1;�Þ given in Supplemental Material [19]. Root
finding in (39) for T̂ at ω̃ ¼ k̂ ¼ 0 we find an improved
agreement, T̂c ≃ 0.1053þ 0.0162i, albeit at the cost of
adding a small imaginary part (which in turn would have
to be removed by even higher order terms).
RN-AdS4 is desirable for comparison with condensed

matter systems, however there, the analogous differential
equation has five singular points and is not of Heun type.
One may expect that the results we obtained for
RN-AdS5 should be similar to RN-AdS4, and in the
latter case the relevant connection formula appears in
[54]. More generally, in RN-AdSdþ1, the radial differ-
ential equation has d=2þ 2 regular singularities if dþ 1
is odd, and dþ 2 regular singularities if dþ 1 is even. In
all these cases, following the technique in [54], it is
possible to select the pair of Γ functions in the Green’s
function responsible for the appearance of the branch cut
in the T̂ → 0 limit. A similar reasoning also holds for
linear perturbations of fields with spin different from 0,
for example for the class of perturbations studied in [55]
in the near-extremal regime.
Given the analytic result for the QNMs (12) and the

gapless mode (15) it would be interesting to try to under-
stand how they fit with recent causality bounds on QNM
dispersion relations as a function of k̂ [56,57]. One
difficulty is while there is a branch point at complex k̂,
this occurs at ν ¼ 0where the approximation used to derive
the QNMs (12) breaks down.

7The chemical potential μthere ¼
ffiffiffi
3

p
μhere and the R-charge

parameter Rthere ¼ 1ffiffi
3

p ehere, due to the different coefficient of F2

in the action.
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