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Exact low-temperature Green’s functions in AdS/CFT:
From the Heun equation to the confluent Heun equation
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We obtain exact expressions for correlation functions of charged scalar operators at finite density and
low temperature in CFT, dual to the RN-AdS5 black-brane. We use recent developments in the Heun
connection problem in black hole perturbation theory arising from Liouville conformal field theory (CFT)
and the Alday-Gaiotto-Tachikawa correspondence. The connection problem is solved perturbatively in an
instanton counting parameter, which is controlled in a double-scaling limit where w, T — 0 holding w/T
fixed. This provides analytic control over the emergence of the zero temperature branch cut as a confluent
limit of the Heun equation. From the Green’s function we extract analytic results for the critical temperature
of the holographic superconductor, as well as dispersion relations for both gapped and gapless low
temperature quasinormal modes. We demonstrate precise agreement with numerics.
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Introduction and results. The real-time linear response of
strongly coupled quantum field theories (QFTs) at finite
temperature and density is a challenging domain where the
techniques of holographic duality [1,2] can be exploited to
perform first-principles computations. In this context,
retarded correlators are of considerable interest in the
context of condensed matter physics [3,4], nuclear colli-
sions [5-7], and neutron stars [8,9].

In this work we analytically compute retarded correlation
functions at finite density and low temperature by exploit-
ing recent developments connecting black hole perturba-
tion theory to Seiberg-Witten theory [10], and subsequently
the connection problem for the Heun equation [11-14],
which governs the linear response problem in holography.
We gain unprecedented insight into the analytic structure of
low-temperature correlators, including an exact description
of the coalescence of poles into branch cuts at zero
temperature, as well as analytic control over pole locations
and the superconducting phase transition. Other recent
works in the holographic context that have utilized such
techniques are [16-18].
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ISee also [15], where an isomonodromy method was used to
study the quasinormal modes of small Reissner-Nordstrom-AdSs
black holes.
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The focus of this work are retarded Green’s functions of
scalar operators of conformal dimension A,

GR(x,y) = =i0(x* = y*)([Oa(x). Oa(y)]). (1)

in momentum space, G®(p) = [ d*xGR(0,x)e~"P* with
Pt = (o, 75) We focus on the 3 4 1-dimensional QFT dual
to the Reissner-Nordstrom (RN)-AdSs black-brane at
chemical potential y, as a solution of the classical equations
of motion of the action, S = [/=gd’x(R— F*+12),
where F' = dA, given by the following spacetime metric,

d 2
ds® = —f(r)d® + JTrr) +2dR2, 2)
14+ 4’
_ 2 _ 3
fiy =Pt 3)

and gauge field,

1

r
Here the anti-de Sitter (AdS) radius is one, the event
horizon is located at r = 1 and the temperature T = %

To compute (1) in this state we consider linearized
charged scalar field perturbations @ on this background,
dual to the scalar operator Og. ® obeys D’® = m3®
where D =V —ieA and m2, = A(A —4). We restrict to
A > 2 and present our method at generic values of A.
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Our results are as follows. We denote variables made

dimensionless with y using hats, i.e., T = %, k=t p=2

w 1z
and we consider the double scaling regime 7 — 0 and
& — 0 holding & = £ fixed. We compute GX (@, k), which

takes the following form

NC4 AU(N A)
CAD(&) )

where the various terms appearing N,C,,,G are deter-

C4 A, v((b ]Ac)g(d)’]%)

GF (@, k) = -
@k Cs(3.0)0(@. 0

)

mined analytically as a systematic expansion in 7" within
the double scaling regime,

CM@M=Q<>H@x%ﬁ+aW»<®

G(@, k) =GO ( T+ G0N (@, k)T og T
( >T2p+1 4 O(T2v+2 log T) (7)

N =2(A-2)32"2 4+ O(T). (8)

We present explicit expressions for the contributions
appearing in (5): G (@, k) (9), and Cfl(fc), Cgl(&),fc),
G5 (@, k) in the Supplemental Material [19]. One may
straightforwardly extend this series to higher orders using
the methodology presented.

In particular note that GOT% can be interpreted as a
finite-7 AdS, Green’s function, where

. 27\ ¥ I'(=2v)?
F(%_F )F( +I/+W——Tﬂ)
F(%—m—y)F( 1/—|—7——§)’

©)

and where the parameter

1 AA=4) B e
UE\/1+(:5)+—66 (10)

labels representations of the near-horizon AdS, theory at
T =0 with conformal dimensions 6. =1+v [25]. In
particular, G¥ is invariant under v — —v. Some parts of
this analytic structure were seen in low & perturbation
theory near extremality [25-28]. In [25-27] the structure
seen in (9) was obtained as a correlator for a black hole
inside AdS,. In [28] the leading matching coefficients for a
small-@ expansion were obtained using hypergeometric
connection formulas which arise at extremality, and we find
agreement in that limit.> See also [29-34] for other related

We note CI[here - ehere/ 27 Tthere -V 3/ There’ and gk there —
22301 (2)G) /T (-20).

61 — 2 meék(&_’ I%)
4 w22 I GR (@, k)
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FIG. 1. Comparison of analytic and numerical results for the

retarded Green’s function. Solid curves show the analytic
expressions (5) while dots are numerics. We take A =5/2, k = 0
and 12 = —0.07 at T =4 x 1074, where 7. = 3.4 x 10™*. The
visible peak is the imprint of the superconductor zero mode since
we are near TA"C. Here N, = 400. Upper panel: Along the real &
axis. Lower panel: Along the imaginary @ axis.

low @, T matching computations involving AdS, critical
points. Here we emphasize that the Heun connection
problem is naturally controlled by low 7 at fixed
@ = w/T = O(1), which provides a systematic treatment
of the correlators—indeed, @ appears nontrivially inside
each of GO (@, k), C\) (@, k), G (@, k).

The closed-form Green’s function (5) is the full
RN-AdS5 correlator—rather than an AdS, near-horizon
result—and it displays an intricate analytic structure for
which we find excellent agreement with low-temperature
numerics, as shown in Fig. 1. Moreover, we note that taking
T — 0 holding @& fixed at 1 has

gL +y+2f_2f’:%)—>( id’)2y (11)
F(E_V—'—z\/é 217{:9

where we used the Stirling approximation I'(z + ) /T'(z) ~
7% for z — oo and a € C, and then took the 7 — 0 limit.
This analytically describes a line of poles coalescing into a
branch point at @ = 0, capturing the process previously
observed numerically in [35-37] in the context of
RN-AdS,. This is illustrated in Fig. 2.

When Re(v) > 0 the line of poles in question can be
determined analytically. Because of the presence of the
term 72, these poles can be read off from the poles of the I'
function in the numerator of Q(O)
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FIG. 2. Analytic structure of G* at low 7' ~ @ in the @ plane,
described using closed-form solutions to the Heun connection
problem. The analytic expression for G¥ (5) captures the process
where the line of poles (12) coalesces in to a branch cut at T =0,asa
confluent limit of the Heun equation via (11). Optionally, by tuning
model parameters so that the holographic superconductor critical
temperature 7, < 1, then (5) also captures the holographic super-
conductor zero mode (15), (36) (red asterisk) and T(, itself.

@ =ay+a T +a,T*+ 0T T%), (12)

By = = — in(2w +2n + 1) (13)

\/6
where ne€ Z,, and where @,, and @, are given in (33)
and (34), respectively.” A comparison of these terms to
numerics is presented in Table L.

Additionally, using (5) we gain analytic control over
the phase transition of the holographic superconductor
[38-41]. If parameters are chosen such that 7", for super-
conductivity is low, then we can obtain 7, and the
associated zero mode dispersion relation from (5). For
generic v, T'. assumes the n-sheeted expression®

R o ‘
TE") = exp élog @) A’”( ) —”fn . (14)
2U Cy (0)g<0) (0,0) v

—U

where 7 =v|;_,. When Re(r) =0, a superconducting
instability is expected on the grounds that the AdS, BF-
bound is violated [38]. For 0 < 2v < 1, there is a single real
sheet, given by 7"£0>, but for Re(v) = 0 there are multiple
sheets labeled by n. As we discuss shortly, the relevant
sheets at asymptotically low temperature correspond to
n = 1, extending to higher temperature by continuity. The
other physical sheets correspond to subleading instabilities
as higher overtone quasinormal modes (QNMs) cross into

the upper half plane. See Fig. 3 where we compare f(c”) to

*When ¢ =0 the leading order term @, was previously
obtained in [17] using similar methods.

4Strictly speaking T, here corresponds to the temperature at
which a zero mode appears in the spectrum.

FIG. 3. Comparison of analytic and numerical results for the
holographic superconductor critical temperature at various A.
Solid curves show the analytic result (14), while dots are
numerics. For (14) to apply, A, e must be such that 7, is small,
and in this regime we find excellent agreement. The red plus
corresponds to the top-down superconductor of [42] which we
discuss further in the conclusions.

numerics. Finally, at 7' = TE-"), we extract the hydrody-

namic dispersion relation for the superconductor zero
mode,

&M (k) = —iDWi* + o(k*) (15)

with D) given in the Supplemental Material [19]. We
remark that while the gapped modes (13) at leading order
are associated with a near-horizon AdS, at 7' =0, the
mode (15) is not.

Method and analysis. The first step is to relate the equation
of motion for @ to the Heun equation. We begin with a new
radial variable

VA8U2 +9+9
=Y —_~ 16
. 6(1 —r?) (16)

with z = 0 corresponding to the conformal boundary and
7 = oo to the black hole horizon. Under separation of
variables and an appropriate choice of prefactor,5

b= e—iwt-&-ilz)_c’ \/z
VI=2y/622 =42 (z+1)> =152+ 6

1 8u? +4(2u% -3 15
X exp <——tanh‘1< HoAu Jat >>l//(z)
2 31/48u> +9

(17)

>The redefinition of the wave function using this prefactor can
be reinterpreted as a particular choice of spacetime foliation as
discussed in [43].
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TABLE I. Comparing analytic QNM formulas (12), (33), (34) at n = 0 with a numerical determination of the fundamental mode.
Chosen parameters are A = 5/2, ¢ = 2, and k = 7/(3v/2) where v = 1/3. Bold indicates agreement with numerics when rounded to

that many significant figures. In the “@ numerics” column we used N, = 200, 200, 300, 700, 2000 (from top to bottom) to obtain
convergence to the displayed number of decimal digits.

T @ numerics @ Dy + @, T @o + @, T + o, T

107! 4.273209 — 4.579409i 2.565100 — 5.235988i 2.817226 — 5.066166i 3.783624 — 5.026993i
1072 2.726249 — 5.195875i 2.565100 — 5.235988i 2.619419 — 5.199401i 2.716058 — 5.195483i
1073 2.586764 — 5.227755i 2.565100 — 5.235988i 2.576802 — 5.228105i 2.586466 — 5.227714i
10~ 2.568597 — 5.234252i 2.565100 — 5.235988i 2.567621 — 5.234290i 2.568587 — 5.234250i
1073 2.565740 — 5.235618i 2.565100 — 5.235988i 2.565643 — 5.235622i 2.565739 — 5.235618i

then (D? — m3)® = 0 reduces to the Heun equation

(18)

with regular singular points at 0, 1, ¢, co. The parameters
ap, a,d;,ds,u and singular point ¢ are given in the
Supplemental Material [19]. We remark that 1/¢ is propor-
tional to T,

:?T+O(T2), (19)

1 27,
t
so that in the extremal limit the singular point ¢ collides with
the one at infinity, resulting in the confluent Heun equation
with an irregular singular point. The local solutions around
the singularities of the differential equation (18) can be
written in terms of the Heun function [44,45]

Heun(t, ¢;a,p8,7,6,2) = 1 + %z +0(z?), (20
by considering the wave function
w(z) = 7301 — )T (1 — 7) Ty (z). (21)
In particular, we are interested in the basis of solutions
around z = oo, the horizon, and around z = 0, the AdS
boundary. At z = co we require ingoing perturbations for
retarded Green’s functions [46—48], which selects the
behavior,
W(®) (7) ~ g~ It a1 tartas

for z ~ 0. (22)

This can be analytically continued to the region close to
z = 0 where it can be written as

O (2) + €00 (7), (23)

where the independent solutions at the boundary wi))(z)

admit the behavior

w® ~1 for z~0, (24)

(0)

wy ~z2%  for z ~0. (25)

From (23) the retarded Green’s function can be read off,

(c00)
N S
GR(@, k) =N L2}

Gl (26)

where N accounts for additional constant factors picked up
in a change of variables from z as defined in (16) to
Fefferman-Graham coordinates, and constant prefactors
from holographic renormalization [49],

N =2(A-2)
1 N N = A-2
x (—%—E\/9+ZET(3ET— \/24+97r2T2)> :

(27)

The connection formulas for (SZSEWO) in (23) were
obtained in [13] by studying the connection coefficients
of five-point conformal blocks with a degenerate insertion
in Liouville conformal field theory.6 These satisfy the
Belavin-Polyakov-Zamolodchikov equation [50], which in
the semiclassical limit becomes a Heun equation. The
outcome is,

®An alternative approach can be taken using recurrence
relations, as discussed in [14]. In this work we follow the
approach of [11,13].
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G0 _ Z I'(1-20a)'(—26a)l'(1 —2a4 )I'(F 2ay)
- [lo-:TG—aew+0a,~0a)

e—%(j:()ao +04, +00,)F(1/1)+in(1-a; Fao)

o=+

‘ . (28)
ﬁ_aw—a,wanezir(% Fag+0a, —oca)

The analysis to get this result proceeds in two steps:
considering the pants-decomposition of the four-punctured
sphere representing the z-space of the Heun equation, z=0
and z = oo lie in two different patches. To connect them, one
has to pass through the intermediate region, whose mono-
dromy properties are encoded in the parameter a. a is related
to the instanton part of the Nekrasov-Shatashvili free-
energy, F(1/t), through Matone relation [51],

1
u=-g+d—a,+ai+0F(1/).  (29)

Further details of this procedure and of the computation of
F(1/t) are given in the Supplemental Material [19]. At
leading order one has

gy O = (1)

(3-2a%)t £
(30)

Then a can be obtained by inverting (29) order-by-order in
1/t. Atleading order in the temperature, provided (19), one
has a = v+ O(T) with v given in (10). The final step to
obtain (5) is to note that the subleading corrections in T come
with prefactors that behave as @ /7" If & is treated as O(7°)
then these would appear at leading order in the 7" expansion,
requiring resummation. Instead, here we hold @ = &/T
fixed which leads to a controlled 7 expansion. This
completes the derivation of (5).

Finally we present some additional details in the analysis
of the resulting Green’s function (5). The pole locations
(12) can be obtained analytically by distinguishing different
regimes for the parameter v. Let us first consider the case
Re(v) > 0. Because of the presence of the term 72, the
leading order of @ in T is found by looking at the poles of
the T" function in the numerator of g<0> including & in its
argument,

ie ld)o

+————=—-n, nez 31
2\/6 27[ 20 ( )

Ly
= v
2

from which we obtain (13). The first subleading correction
depends on the value of Re(2v). If 0 < Re(2v) < 1, then

setting @ = @, + @,, 7% and plugging this into G©) gives

o _ (2 2=y
27 ) @y, I'(=n —2v)n!

[(-2v)TE+v—5

L) R
Vo 2v
. r(2v) i —v- 2; +0(1%),  (32)

26
from which
) (2712)” 2in(—1)r TG+r—3%)
W =\ 57 1 ie
27) T(=n—=2u)n!T(5—v - NG
D(=20)TL-s (v + 0 5% + 45
x 2 e AIy” (33)
P lo=sl (v + 055 +55)
The coefficients of the corrections @ 7%, k=

1,....,|Re(2v)] in the @ expansion can be obtained by
looking at the poles of the I'-function I (% —dy +a;,+a)
by considering the 1/f expansion of a up to order
[Re(2v)|. This is the generalization of the procedure
providing the expression of @, seen above. For example,
the expression of @; reads

w

2 [(u+2n+1)[3e(4A(A —4) + 9k —8) —7¢?]
' 36 120(42 —1)

+i [762 — 144 ;\I/)E(UA 33k TV6(2n + 1)] }

(34)
After including these integer corrections, the term @,,, 7% in
the @ expansion will not be affected.

Let us turn to the critical temperature result (14). This
is obtained by setting @ = k=0 and finding 7 at which
there is a zero of the denominator of (5) at leading
order,

)

12 (0) = C) L(0)6©(0,0)7%
el '
A,

(0) =Y, (0)G1)(0,0)7%

(35)

™ ™

Since 7 appears only in the combination 7% there are
multiple solutions given by (14). Due to the low T
expansion employed in (35) we can only capture those
branches of solution which admit a parameter regime
with asymptotically low 7. Near 12 =0~ the n>1
branches have a low T regime. Near 2v =1 the n =0
branch also has a low T regime, however, we find no
zero mode associated to it; if we expand (35) for T, =
?S.O) around v =1/2, we find an expansion without
poles at v = 1/2. Indeed, there are a pair of poles, one
of either side of v = 1/2, whose combined contribution
to the full Green’s function appears at order T. Thus we
expect the physical TL. is given by n = 1 near 7> = 0™,

L121903-5
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and extends to higher 7. by continuity, along which
n jumps.

When considering the extremal limit 7 = 0, the gen-
eration of the branch cut in w can be seen from (11).
Substituting (11) in the leading order of G(&, k) before
rescaling the frequency with the temperature, we find the
analytic result for the holographic superconductor zero
mode, appearing as a red asterisk in Fig. 2,

o 1 e (k) imn
w, = 2lﬂ.’ eXp 2—1Og W - |> (36)
v CA.—v(k)gext(k)

where

0 (2722\*T(=20)2T
gegt(k) - (7) F(2I/)2 F(%—i—e )

The integer n in (36) labels the sheet around the &
branch cut.

By considering the hydrodynamic expansion (around
small @ and small k) of the leading order in 7 of the

denominator of (5) at T = 7",

b - el (g (¢

k
7

)[Té'”f”, (38)

we find the hydrodynamic zero-mode dispersion rela-
tion (15).

Comparison with numerics. To compute G (&, k) numeri-
cally we write ® = e~ +ikT (] — p2)=izpt=2p(p) where
p = 1/r, so that regularity of 4 at p = 1 corresponds to
an ingoing perturbation. We then discretize the resulting p
differential operator using Chebyshev spectral methods
using N, points, and solve for /(p) subject to the boundary
condition £(0) = 1. Extracting the coefficient of p*~* at
the boundary gives the Green’s function. An example
comparison between numerics and (5) is shown in Fig. 1
near the superconducting critical temperature.

To compute QNMs
e~iwttikT (1 — p)=ip2h(p) where p = 1/r2, so that regular-
ity of h at p = 1 corresponds to an ingoing perturbation
while regularity of / at p = 0 corresponds to a normalizable
mode. We then discretize the resulting p differential
operator using Chebyshev spectral methods using N,
points, which yields a matrix eigenvalue problem after
converting to first order form. Eigenvalues are obtained
using Arnoldi iteration. We compute the fundamental mode
and compare to (12) in Table I, with agreement continuing
to improve as T is lowered. With this method, we also
numerically compute TC by iteratively root finding for the

numerically we write ©® =

zero mode using Newton-Raphson. This is then compared
to the analytic formula (14) in Fig. 3.

Outlook. A natural question is whether any consistent
string/M-theory embeddings of the holographic super-
conductor [42,52,53] can be analytically described. The
type-IIB truncation of [42] falls into the class of models
we have studied here. The operator studied there has A =
3 and e =2v/3, with numerically determined critical
temperature 7, ~0.1051." This operator is marked in
red in Fig. 3. There is an appreciable difference to our
leading analytic result (14), because Tc is not particularly
small. We can however go a bit further, by including
additional corrections in 7 to the denominator of (5)
which take the following form,

cy) + et - (el +eil 1)g0 T
=+ g(1,+)T2v+l log(T) 4 g(],—)jﬁv-&-l]’ (39)

with G('*) given in Supplemental Material [19]. Root
finding in (39) for T at @ = k =0 we find an improved
agreement, 7, ~0.1053 + 0.0162i, albeit at the cost of
adding a small imaginary part (which in turn would have
to be removed by even higher order terms).

RN-AdS, is desirable for comparison with condensed
matter systems, however there, the analogous differential
equation has five singular points and is not of Heun type.
One may expect that the results we obtained for
RN-AdSs should be similar to RN-AdS,, and in the
latter case the relevant connection formula appears in
[54]. More generally, in RN-AdS,,, the radial differ-
ential equation has d/2 + 2 regular singularities if d + 1
is odd, and d + 2 regular singularities if d + 1 is even. In
all these cases, following the technique in [54], it is
possible to select the pair of I' functions in the Green’s
function responsible for the appearance of the branch cut
in the 7 — 0 limit. A similar reasoning also holds for
linear perturbations of fields with spin different from O,
for example for the class of perturbations studied in [55]
in the near-extremal regime.

Given the analytic result for the QNMs (12) and the
gapless mode (15) it would be interesting to try to under-
stand how they fit with recent causality bounds on QNM
dispersion relations as a function of k [56,57]. One
difficulty is while there is a branch point at complex k,

this occurs at v = 0 where the approximation used to derive
the QNMs (12) breaks down.

"The chemical potential gpee = V3ihere and the R-charge

parameter R = % ehere> due to the different coefficient of F>

in the action.
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